MELSEC FX series

Programmable Controllers

Structured Programming Manual
 [Basic \& Applied Instruction]

FXCPU

FXCPU Structured Programming Manual (Basic \& Applied Instruction)

Manual number	JY997D34701
Manual revision	B
Date	$7 / 2009$

Foreword

This manual contains text, diagrams and explanations which will guide the reader through the safe and correct installation, use, and operation of the FX Series function for structured programs. It should be read and understood before attempting to install or use the unit.
Store this manual in a safe place so that you can take it out and read it whenever necessary. Always forward it to the end user.

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses.
Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

Outline Precautions

- This manual provides information for the use of the FX Series Programmable Controllers. The manual has been written to be used by trained and competent personnel. The definition of such a person or persons is as follows;

1) Any engineer who is responsible for the planning, design and construction of automatic equipment using the product associated with this manual should be of a competent nature, trained and qualified to the local and national standards required to fulfill that role. These engineers should be fully aware of all aspects of safety with aspects regarding to automated equipment.
2) Any commissioning or maintenance engineer must be of a competent nature, trained and qualified to the local and national standards required to fulfill the job. These engineers should also be trained in the use and maintenance of the completed product. This includes being familiar with all associated manuals and documentation for the product. All maintenance should be carried out in accordance with established safety practices.
3) All operators of the completed equipment should be trained to use that product in a safe and coordinated manner in compliance with established safety practices. The operators should also be familiar with documentation that is connected with the actual operation of the completed equipment.
Note: the term 'completed equipment' refers to a third party constructed device that contains or uses the product associated with this manual.

- This product has been manufactured as a general-purpose part for general industries, and has not been designed or manufactured to be incorporated in a device or system used in purposes related to human life.
- Before using the product for special purposes such as nuclear power, electric power, aerospace, medicine or passenger movement vehicles, consult with Mitsubishi Electric.
- This product has been manufactured under strict quality control. However when installing the product where major accidents or losses could occur if the product fails, install appropriate backup or failsafe functions into the system.
- When combining this product with other products, please confirm the standards and codes of regulation to which the user should follow. Moreover, please confirm the compatibility of this product with the system, machines, and apparatuses to be used.
- If there is doubt at any stage during installation of the product, always consult a professional electrical engineer who is qualified and trained in the local and national standards. If there is doubt about the operation or use, please consult the nearest Mitsubishi Electric distributor.
- Since the examples within this manual, technical bulletin, catalog, etc. are used as reference; please use it after confirming the function and safety of the equipment and system. Mitsubishi Electric will not accept responsibility for actual use of the product based on these illustrative examples.
- The content, specification etc. of this manual may be changed for improvement without notice.
- The information in this manual has been carefully checked and is believed to be accurate; however, if you notice any doubtful point, error, etc., please contact the nearest Mitsubishi Electric distributor.

Registration

- Microsoft ${ }^{\circledR}$ and Windows ${ }^{\circledR}$ are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
- CompactFlash is a trademark of SanDisk Corporation in the United States and other countries.
- The company name and the product name to be described in this manual are the registered trademarks or trademarks of each company.

Table of Contents

Positioning of This Manual 9
Related Manuals 12
Generic Names and Abbreviations Used in Manuals 15

1. Outline 16
1.1 Outline of Structured Programs and Programming languages 16
1.1.1 Outline of Structured Programs 16
1.1.2 Programming languages 17
1.2 PLC Series and Programming Software Version 17
1.3 Cautions on Creation of Fundamental Programs 18
1.3.1 I/O PROCESSING AND RESPONSE DELAY 18
1.3.2 Double output (double coil) operation and countermeasures 19
1.3.3 Circuits which cannot be created by structured ladder programs and countermeasures 20
1.3.4 Handling of general flags 20
1.3.5 Handling of operation error flag 23
1.3.6 Handling of function extension flag 24
1.3.7 Limitation in number of sequence instructions and number of simultaneous instances of instructions 24
2. Instruction List 27
2.1 Basic Instructions 27
2.2 Step Ladder Instructions 28
2.3 Applied Instructions 28
3. Configuration of Instruction 47
3.1 Expression and Operation Form of Sequence Instructions 47
3.2 Labels 49
3.3 Devices and Addresses 52
3.4 EN and ENO 53
4. How to Read Explanation of Instructions 54
5. Basic Instruction 56
5.1 LD, LDI, AND, ANI, OR, OR 56
5.2 LDP, LDF, ANDP, ANDF, ORP, ORF 61
5.3 OUT (Excluding timers and counters) 67
5.4 Operating Timer 70
5.4.1 OUT_T 70
5.5 Operating Counters 74
5.5.1 OUT_C, OUT_C_32 74
5.6 AND(...), OR(...) 77
5.7 MPS, MRD, MPP 79
5.8 INV 84
5.9 MEP, MEF 86
5.10 SET, RST 88
5.11 PLS, PLF 92
5.12 MC, MCR 95
5.13 END. 99
5.14 NOP (for simple project only) 99
6. Step Ladder Instructions 100
6.1 Step Ladder. 100
6.1.1 Outline 100
6.1.2 Function and operation explanation 100
6.1.3 Program examples 108
6.2 STL 109
6.3 RET 110
7. Applied Instructions 112
7.1 Program Flow 112
7.1.1 CJ 112
7.1.2 CALL 120
7.1.3 SRET 126
7.1.4 IRET 127
7.1.5 DI 130
7.1.6 EI 131
7.1.7 FEND 133
7.1.8 WDT 135
7.1.9 FOR 138
7.1.10 NEXT 139
7.2 Move and Compare 142
7.2.1 CMP 142
7.2.2 ZCP 146
7.2.3 MOV 149
7.2.4 SMOV 154
7.2.5 CML 157
7.2.6 BMOV 160
7.2.7 FMOV 165
7.2.8 XCH 168
7.2.9 BCD 170
7.2.10 BIN 174
7.3 Arithmetic and Logical Operation 178
7.3.1 ADD 178
7.3.2 SUB 181
7.3.3 MUL 185
7.3.4 DIV 189
7.3.5 INC 192
7.3.6 DEC 194
7.3.7 WAND 196
7.3.8 WOR 198
7.3.9 WXOR 200
7.3.10 NEG 203
7.4 Rotation and Shift Operation 207
7.4.1 ROR 207
7.4.2 ROL 210
7.4.3 RCR 213
7.4.4 RCL 216
7.4.5 SFTR 219
7.4.6 SFTL 221
7.4.7 WSFR 224
7.4.8 WSFL 227
7.4.9 SFWR 230
7.4.10 SFRD 233
7.5 Data Operation 235
7.5.1 ZRST 235
7.5.2 DECO 239
7.5.3 ENCO 243
7.5.4 SUM 246
7.5.5 BON 249
7.5.6 MEAN 252
7.5.7 ANS 254
7.5.8 ANR 256
7.5.9 SQR 258
7.5.10 FLT 260
7.6 High Speed Processing. 264
7.6.1 REF 264
7.6.2 REFF 268
7.6.3 MTR 272
7.6.4 DHSCS 276
7.6.5 DHSCR 284
7.6.6 DHSZ 288
7.6.7 SPD 303
7.6.8 PLSY 307
7.6.9 PWM 314
7.6.10 PLSR 317
7.7 Handy Instruction 322
7.7.1 IST 322
7.7.2 SER 334
7.7.3 ABSD 338
7.7.4 INCD 342
7.7.5 TTMR 345
7.7.6 STMR 348
7.7.7 ALT 351
7.7.8 RAMP 354
7.7.9 ROTC 357
7.7.10 SORT 360
7.8 External FX I/O Device 363
7.8.1 TKY. 363
7.8.2 HKY 367
7.8.3 DSW 372
7.8.4 SEGD 376
7.8.5 SEGL 378
7.8.6 ARWS 383
7.8.7 ASC 388
7.8.8 PR 390
7.8.9 FROM 393
7.8.10 TO 399
7.9 External Device (optional device) 402
7.9.1 RS 402
7.9.2 PRUN 405
7.9.3 ASCI 407
7.9.4 HEX 411
7.9.5 CCD 415
7.9.6 VRRD 419
7.9.7 VRSC 421
7.9.8 RS2. 423
7.9.9 PID 426
7.10 External Device 430
7.10.1 MNET 430
7.10.2 ANRD 432
7.10.3 ANWR 434
7.10.4 RMST 435
7.10.5 RMWR 436
7.10.6 RMRD 438
7.10.7 RMMN 440
7.10.8 BLK 441
7.10.9 MCDE 443
7.11 Data Transfer 2 444
7.11.1 ZPUSH 444
7.11.2 ZPOP 447
7.12 Floating Point 449
7.12.1 DECMP 449
7.12.2 DEZCP 451
7.12.3 DEMOV 453
7.12.4 DESTR 455
7.12.5 DEVAL 462
7.12.6 DEBCD 468
7.12.7 DEBIN. 470
7.12.8 DEADD 473
7.12.9 DESUB 475
7.12.10 DEMUL 477
7.12.11 DEDIV 479
7.12.12 DEXP 481
7.12.13 DLOGE 483
7.12.14 DLOG10 485
7.12.15 DESQR 487
7.12.16 DENEG 489
7.12.17 INT 491
7.12.18 DSIN 493
7.12.19 DCOS 495
7.12.20 DTAN 497
7.12.21 DASIN 499
7.12.22 DACOS 502
7.12.23 DATAN 505
7.12.24 DRAD 508
7.12.25 DDEG 511
7.13 Data Operation 2 513
7.13.1 WSUM 513
7.13.2 WTOB 516
7.13.3 BTOW 519
7.13.4 UNI 522
7.13.5 DIS 525
7.13.6 SWAP 527
7.13.7 SORT2 529
7.14 Positioning Control 534
7.14.1 DSZR 534
7.14.2 DVIT 536
7.14.3 DTBL 539
7.14.4 DABS 541
7.14.5 ZRN 543
7.14.6 PLSV 547
7.14.7 DRVI 551
7.14.8 DRVA. 554
7.15 Real Time Clock Control 557
7.15.1 TCMP 557
7.15.2 TZCP 560
7.15.3 TADD 563
7.15.4 TSUB 565
7.15.5 HTOS 567
7.15.6 STOH 570
7.15.7 TRD 573
7.15.8 TWR 575
7.15.9 HOUR 579
7.16 External Device 582
7.16.1 GRY 582
7.16.2 GBIN 584
7.16.3 RD3A 586
7.16.4 WR3A 588
7.17 Extension Function 590
7.17.1 EXTR_IN 590
7.17.2 EXTR_OUT 593
7.18 Others 597
7.18.1 COMRD 597
7.18.2 RND 600
7.18.3 DUTY 602
7.18.4 CRC 605
7.18.5 DHCMOV 609
7.19 Block Data Operation 614
7.19.1 BK+ 614
7.19.2 BK 618
7.19.3 BKCMP=, BKCMP>, BKCMP<, BKCMP<>, BKCMP<=, BKCMP>= 622
7.20 Character String Control 629
7.20.1 STR 629
7.20.2 VAL 636
7.20.3 \$+ 642
7.20.4 LEN 645
7.20.5 RIGHT 648
7.20.6 LEFT 651
7.20.7 MIDR 654
7.20.8 MIDW 658
7.20.9 INSTR 662
7.20.10 \$MOV 665
7.21 Data Operation 3 668
7.21.1 FDEL 668
7.21.2 FINS 671
7.21.3 POP 674
7.21.4 SFR 678
7.21.5 SFL 681
7.22 Data Comparison 684
7.22.1 LD=, LD>, LD<, LD<>, LD<=, LD>= 684
7.22.2 AND=, AND>, AND<, AND<>, AND<=, AND>= 688
7.22.3 $\mathrm{OR}=, \mathrm{OR}>, \mathrm{OR}<, \mathrm{OR}<>, \mathrm{OR}<=, \mathrm{OR}>=$ 692
7.23 Data Table Operation 695
7.23.1 LIMIT 695
7.23.2 BAND 700
7.23.3 ZONE 706
7.23.4 SCL 712
7.23.5 DABIN 717
7.23.6 BINDA 721
7.23.7 SCL2 726
7.24 External Device Communication (Inverter Communication) 732
7.24.1 IVCK 732
7.24.2 IVDR 735
7.24.3 IVRD 738
7.24.4 IVWR 740
7.24.5 IVBWR 742
7.25 Data Transfer 3 745
7.25.1 RBFM 745
7.25.2 WBFM 751
7.26 High Speed Processing 2 753
7.26.1 DHSCT 753
7.27 Extension File Register Control 759
7.27.1 LOADR 759
7.27.2 SAVER 763
7.27.3 INITR 772
7.27.4 LOGR 776
7.27.5 RWER 780
7.27.6 INITER 785
7.28 FX3U-CF-ADP 789
7.28.1 FLCRT 789
7.28.2 FLDEL 793
7.28.3 FLWR 795
7.28.4 FLRD 798
7.28.5 FLCMD 800
7.28.6 FLSTRD 802
8. Interrupt Function and Pulse Catch Function 805
8.1 Outline 805
8.2 Common items 806
8.2.1 Interrupt function 806
8.2.2 How to disable interrupt function and pulse catch function 807
8.2.3 Related items 808
8.2.4 Cautions on use (common) 809
8.3 Input Interrupt (Interrupt Triggered by External Signal) [Without Delay Function] 811
8.3.1 Input Interrupt (Interrupt Triggered by External Signal) [Without Delay Function]. 811
8.3.2 Examples of practical programs (programs to measure short pulse width) 816
8.4 Input Interrupt (Interrupt by External Signal) [With Delay function] 818
8.5 Timer Interrupt (Interrupt in Constant Cycle). 819
8.5.1 Timer Interrupt (Interrupt in Constant Cycle) 819
8.5.2 Example of practical program (timer interrupt program using instruction) 820
8.6 Counter Interrupt - Interrupt Triggered by Counting Up of High Speed Counter. 822
8.7 Pulse Catch Function[M8170 to M8177] 823
8.8 Pulse width/Pulse period measurement function [M8075 to M8083, D8074 to D8097]. 825
Appendix A: Relationships between devices and addresses 830
Warranty 832
Revised History 833

Positioning of This Manual

This manual explains sequence instructions for structured programs provided by GX Works2. Refer to other manuals for devices, parameters and application functions.
Refer to each corresponding manual for analog, communication, positioning control and special units and blocks.

1. When using FX3u/FX3uc/FX3g PLCs

2. When using $F X_{1 s} /$ /FX1N/FXu/FX1NC/FX2NC PLCs

QCPU/FXCPU Structured Programming Manual (Fundamentals) (Additional Manual)

3. When using FXo/FXos/FXon/FXu/FX2c PLCs

QCPU/FXCPU Structured Programming Manual (Fundamentals) (Additional Manual)
Q/FX

Related Manuals

This manual explains devices and parameters for structured programs provided by GX Works2.
Refer to other manuals for sequence instructions and applied functions.
This chapter introduces only reference manuals for this manual and manuals which describe the hardware information of PLC main units.
Manuals not introduced here may be required in some applications.
Refer to the manual of the used PLC main unit and manuals supplied together with used products.
Contact the distributor for acquiring required manuals.
Common among FX PLCs [structured]

| Manual name | Manual number | Supplied with product
 or Additional Manual | Contents |
| :--- | :---: | :---: | :---: | :---: |
| nodel | | | |
| name code | | | |

FX3u/FX3uc/FX3G PLCs

Manual name	Manual number	Supplied with product or Additional Manual	Contents	Model name code
PLC main unit				
FX3U Series Hardware Manual	JY997D18801	Supplied with product	I/O specifications, wiring and installation of the PLC main unit FX3U extracted from the FX3U Series User's Manual - Hardware Edition. For detailed explanation, refer to the FX3U Series User's Manual - Hardware Edition.	-
FX3u Series User's Manual- Hardware Edition	JY997D16501	Additional Manual	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX3U PLC main unit.	$09 R 516$
FX3UC (D, DSS) Series Hardware Manual	JY997D28601	Supplied with product	I/O specifications, wiring and installation of the PLC main unit FX3UC (D, DSS) extracted from the FX3uc Series User's Manual - Hardware Edition. For detailed explanation, refer to the FX3UC Series User's Manual - Hardware Edition.	-
FX3UC-32MT-LT-2 Hardware Manual	JY997D31601	Supplied with product	I/O specifications, wiring and installation of the PLC main unit FX3UC-32MT-LT-2 extracted from the FX3Uc Series User's Manual - Hardware Edition. For detailed explanation, refer to the FX3UC Series User's Manual - Hardware Edition.	-
FX3uc Series User's Manual Hardware Edition	JY997D28701	Additional Manual	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX3UC PLC main unit.	$09 R 519$
FX3G Series Hardware Manual	JY997D33401	Supplied with product	I/O specifications, wiring and installation of the PLC main unit FX3G extracted from the FX3G Series User's Manual - Hardware Edition. For detailed explanation, refer to the FX3G Series User's Manual - Hardware Edition.	-
FX3G Series User's Manual- Hardware Edition	JY997D31301	Additional Manual	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX3G PLC main unit.	$09 R 521$

FXCPU Structured Programming Manual
(Basic \& Applied Instruction)

| Manual name | Manual number | Supplied with product
 or Additional Manual | Model
 name code | |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Programming | JY997D16701 | Additional Manual | Contents
 (FXaileds about the analog special function block
 (FPecial adapter
 (FX3U-****-ADP). | |
| FX3G/FX3U/FX3UC User's Manual-
 Analog Control Edition | JY997D16901 | Additional Manual | Details about simple N : N link, parallel link,
 computer link and no-protocol communication
 (RS instruction and FX2N-232IF). | 09R715 |

FX1s/FX1N/FX2N/FX1Nc/FX2Nc PLCs

Manual name	Manual number	Supplied with product or Additional Manual	Contents	Model name code
PLC main unit				
FX1s HARDWARE MANUAL	JY992D83901	Additional Manual	Details about the hardware including l/O specifications, wiring, installation and maintenance of the FX1s PLC main unit.	-
FX1n HARDWARE MANUAL	JY992D89301	Additional Manual	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX1N PLC main unit.	-
FX2N HARDWARE MANUAL	JY992D66301	Additional Manual	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX2N PLC main unit.	$09 R 508$
FX1Nc HARDWARE MANUAL	JY992D92101	Additional Manual	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX1NC PLC main unit. (Japanese only)	$09 R 505$
FX2Nc HARDWARE MANUAL	JY992D76401	Additional Manual	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FX2NC PLC main unit.	$09 R 509$
Programming				
FX Series User's Manual -Data Communication Edition	JY997D16901	Additional Manual	Details about simple N : N link, parallel link, computer link and no-protocol communication (RS instruction and FX2N-232IF).	$09 R 715$

FXo/FXos/FXon/FXu/FX2c PLCs [whose production is finished]

Manual name	Manual number	Supplied with product or Additional Manual	Contents	Model name code
PLC main unit				
FXo/FXon HARDWARE MANUAL	JY992D47501	Supplied with product	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FXo/FXon PLC main unit.	-
FXos HARDWARE MANUAL	JY992D55301	Supplied with product	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FXos PLC main unit.	-
FX/FX2C HARDWARE MANUAL	JY992D47401	Supplied with product	Details about the hardware including I/O specifications, wiring, installation and maintenance of the FXU/FX2C PLC main unit.	-
Programming				
FX Series User's Manual -Data Communication Edition	JY997D16901	Additional Manual	Details about simple $\mathrm{N}: \mathrm{N}$ link, parallel link, computer link and no-protocol communication (RS instruction and FX2N-232IF).	$09 R 715$

Manuals of models whose production is finished

Production is finished for $F^{\prime} / / F X_{0 S} / F X_{0 N} / F X^{\prime} / F X_{2} C$ PLCs.

Generic Names and Abbreviations Used in Manuals

Abbreviation/generic name	Name
PLCs	
FX3U Series or FX3U PLC	Generic name of FX3U Series PLCs
FX3UC Series or FX3UC PLC	Generic name of FX3Uc Series PLCs
FX3G Series or FX3G PLC	Generic name of FX3G Series PLCs
FX2N Series or FX2N PLC	Generic name of FX2N Series PLCs
FX2NC Series or FX2NC PLC	Generic name of FX2NC Series PLCs
FX1N Series or FX1n PLC	Generic name of FX1N Series PLCs
FX1Nc Series or FX1nc PLC	Generic name of FX1NC Series PLCs These products can only used in Japan.
FX1s Series or FX1s PLC	Generic name of FX1s Series PLCs
FXU Series or FXU PLC	Generic name of FXU(FX,FX2) Series PLCs
FX2C Series or FX2C PLC	Generic name of FX2C Series PLCs
FXon Series or FXon PLC	Generic name of FXon Series PLCs
FXos Series or FXos PLC	Generic name of FXos Series PLCs
FXo Series or FXo PLC	Generic name of FXo Series PLCs
Special adapters	
CF card special adapter	Generic name of CF card special adapters
CF-ADP	FX3U-CF-ADP
Programming language	
ST	Abbreviation of structured text language
Structured ladder	Abbreviation of ladder diagram language
Manuals	
Q/FX Structured Programming Manual (Fundamentals)	Abbreviation of QCPU/FXCPU Structured Programming Manual (Fundamentals)
FX Structured Programming Manual (Device \& Common)	Abbreviation of FXCPU Structured Programming Manual (Device \& Common)
FX Structured Programming Manual (Basic \& Applied Instruction)	Abbreviation of FXCPU Structured Programming Manual (Basic \& Applied Instruction)
FX Structured Programming Manual (Application Functions)	Abbreviation of FXCPU Structured Programming Manual (Application Functions)
COMMUNICATION CONTROL EDITION	Abbreviation of FX Series User's Manual-DATA COMMUNICATION CONTROL EDITION
ANALOG CONTROL EDITION	Abbreviation of FX3G/FX3U/FX3Uc Series User's Manual-ANALOG CONTROL EDITION
POSITIONING CONTROL EDITION	Abbreviation of FX3G/FX3U/FX3Uc Series User's Manual-POSITIONING CONTROL EDITION

1. Outline

This manual explains setting of sequence instructions for structured programs provided by GX Works2. Refer to another manuals for device, parameter, and application functions for structured programs.
Refer to the following manual for label, data types and programming languages for structured programs.
\rightarrow Q/FX Structured Programming Manual (Fundamentals)

1.1 Outline of Structured Programs and Programming languages

1.1.1 Outline of Structured Programs

You can construct two or more programs (program blocks) into one program.
Because you can divide the entire machine processing into small sub processes and create a program for each sub process, you can create a program for a large system efficiently.

1. Structured program

Program structuring is a technique to divide the contents of control executed by the PLC CPU into hierarchical small units (blocks) of processing, and then construct a program. By using this technique, you can design a program while recognizing structuring of a sequence program.

Advantages of hierarchical program

- You can examine the outline of a program at first, and then design its details gradually.
- Program blocks located at the lowest level in the hierarchy are extremely simple and highly dependent.

Advantages of program consisting of program blocks

- Because the processing of each block is clear, the entire program is easy to understand.
- The entire program can be divided into several blocks that are created by several people.
- The program reusability is improved, and the development efficiency is improved accordingly.

2. Improved reusability of programs

You can save program blocks in a library. Program resources in the library can be shared, and often used again.

1.1.2 Programming languages

The following programming languages can be used in each program block.

Graphic languages

1. Structured ladder language

This graphic language is created based on the relay circuit design technology.
Any circuit always starts from the bus line located on the leftmost.
The structured ladder language consists of contacts, coils, functions and function blocks. These components are connected with vertical lines and horizontal lines.

Text language

1. ST ("Structured text language")

The ST language can describe control achieved by syntax using selective branches with conditional statements and repetition by repetitive statements in the same way as high-level languages such as C language. By using the ST language, you can create simple programs easy to understand.
IF X001 THEN
D2:=D0; (* When X001 is ON, the contents of D0 are transferred to D2.*)
END_IF;
IF X002 THEN
D4:=D4+1; (* When X002 is ON, the contents of D4 are added by "1". *)
ELSE
D6:=D6+1; (* When X002 is OFF, the contents of D6 are added by "1". *)
END_IF;

```
```

```
Y000:=(X000 OR Y000) AND NOT X001;
```

```
```

Y000:=(X000 OR Y000) AND NOT X001;

```

\subsection*{1.2 PLC Series and Programming Software Version}
\begin{tabular}{|c|c|c|}
\hline PLC series & Software package name (model name) & GX Works2 version \\
\hline FX3U•FX3UC & \multirow{8}{*}{GX Works2 (SW1DNC-GXW2-E)} & \multirow{8}{*}{Ver. 1.08J or later} \\
\hline FX3G & & \\
\hline FX2N•FX2NC & & \\
\hline FX1N•FX1NC & & \\
\hline FX1S & & \\
\hline FXU•FX2C & & \\
\hline FXON & & \\
\hline FX0•FX0S & & \\
\hline
\end{tabular}

\subsection*{1.3 Cautions on Creation of Fundamental Programs}

This section explains cautions on programming.
Refer to the following manual for cautions on structured programs and programming languages:
\(\rightarrow\) Q/FX Structured Programming Manual (Fundamentals)
Refer to the following programming manual for detailed operations of and cautions on devices and parameters:
\(\rightarrow\) FX Structured Programming Manual (Device \& Common)

\subsection*{1.3.1 I/O PROCESSING AND RESPONSE DELAY}
1. Operation timing of I/O relays and resonse delay
FX PLCs execute the I/O processing by repeating the processing (1) to processing (3).
Accordingly, the control executed by PLCs contains not only the drive time of input filters and output devices but also the response delay caused by the operation cycle.

\section*{Acquiring the latest I/O information}

For acquiring the latest input information or immediately outputting the operation result in the middle of the operation cycle shown above, the I/O refresh instruction "REF" is available.

2. Short input pulses cannot be received.

The ON duration and OFF duration of inputs in PLCs require longer time than "PLC cycle time + Input filter response delay."
When the response delay " 10 ms " of the input filter is considered and the cycle time is supposed as "10 ms", the ON duration and OFF duration should be at least 20 ms respectively.
Accordingly, PLCs cannot handle input pulses at \(25 \mathrm{~Hz}(1000 /(20+20)=25)\) or more. However, the situation can be improved by PLC special functions and instructions.

\section*{Convenient functions for}

\section*{improvement}

By using the following functions, PLCs can receive pulses shorter than the operation cycle.
- High speed counter function
- Input interrupt function
- Pulse catch function
- Input filter value adjustment function


\subsection*{1.3.2 Double output (double coil) operation and countermeasures}

This subsection explains the double output (double coil) operation and countermeasures.

\section*{1. Operation of double output}

When a coil (output variable) is used twice (double coil) in another program block to be executed or in the same program block, the PLC gives priority to the last coil.

Suppose that the same coil Y003 is used in two positions as shown in the figure on the right.
For example, suppose that X 001 is ON and X 002 is OFF.
In the first coil Y003, the image memory turns ON and the output Y004 turns ON also because the input X001 is ON.

In the second coil Y003, however, the image memory is set to OFF because the input X002 is OFF.

Accordingly, the actual output to the outside is "Y003 = OFF, Y004 = ON".


\section*{2. Countermeasures against double output}

Double output (double coil) does not cause an illegal input (program error), but the operation is disrupted as described above. Change the program as shown in the example below.


SET, RST or jump instruction can be used instead, or a same output coil can be programmed at each state by using step ladder instructions STL or RET.
When you use the step ladder instruction STL or RET, note that the PLC regards it as double coils if you program, inside the state, an output coil located outside the RET from another program block or the STL instruction.

\subsection*{1.3.3 Circuits which cannot be created by structured ladder programs and countermeasures}

\section*{1. Bridge circuit}

A circuit in which the current flows in both directions should be changed as shown in the figure on the right (so that a circuit without \(D\) and a circuit without \(B\) are connected in parallel).



\section*{2. Coil connection position}
- You can program a contact on the right side of a coil. In this case, be sure to program a coil (including a function or a function block) at the end of the circuit.



\subsection*{1.3.4 Handling of general flags}

In some types of sequence instructions, the following flags operate:
<Examples> M8020: Zero flag M8021: Borrow flag
M8022: Carry flag M8029: Instruction execution complete flag
M8090: Block comparison signal \({ }^{* 1}\) M8328: Instruction non-execution flag \({ }^{* 1}\)
M8329: Instruction execution abnormal complete flag *2
M8304: Zero flag*1 M8306: Carry flag \({ }^{* 1}\)
*1. Supported only by FX3U and FX3uc PCLs.
*2. Supported only by FX3U, FX3UC and FX3G PLCs.
Each of these flags turns ON or OFF every time the PLC executes a corresponding function. These flags do not turn ON or OFF when the PLC does not execute a corresponding function or when an error occurs.
Because these flags turn ON or OFF in many sequence instructions, the ON/OFF status of flags changes every time such instructions are executed.
Refer to the examples in the next page, and program a flag contact just under the target sequence instruction.

\section*{1. Program containing many flags (example of instruction execution complete flag M8029)}

If you program the instruction execution completion flag M8029 for two or more sequence instructions which actuate the flag M8029, you cannot judge easily by which sequence instruction the flag M8029 is controlled. In addition, the flag M8029 does not turn ON or OFF correctly for each corresponding sequence instruction. Refer to the next page when you would like to use the flag M8029 in any position other than the position just under the corresponding sequence instruction.

2. Introduction of method for using flags in any positions other than directly under sequence instructions.
When two or more sequence instructions are programmed, general flags turn ON or OFF when each sequence instruction turns ON.
Accordingly, when using a flag in any position other than directly under a sequence instruction, set to ON or OFF another bit device (variable), and then use the contact (variable) of the device as the command contact.


\subsection*{1.3.5 Handling of operation error flag}

When there is an error in the sequence instruction configuration, target device or target device number range and an error occurs while operation is executed, the following flag turns ON and the error information is store.

\section*{1. Operation error}
\begin{tabular}{c|c|c|c}
\hline \multirow{2}{*}{ Error flag } & \multirow{2}{|c}{ Device storing error occurrence step } \\
\cline { 3 - 4 } & Device storing error code & \multicolumn{2}{|c}{\begin{tabular}{c} 
FX0/FX0S/FX0N/FXU/FX2C/FX1S \\
IFX1N/FX2N/FX1NC/FX2NC/FX3G
\end{tabular}} \\
\hline M 8067 & D8067 & D8069*1 & FX3U/FX3UC \\
\hline
\end{tabular}
*1. When the error occurrence step is up to the 32767th step in FX3U and FX3UC PLCs, the error occurrence step can be checked in D8069 (16 bits).
- When an operation error has occurred, M8067 is set, D8067 stores the operation error code number, and the device storing error occurrence step (see the table above) stores the error occurrence step number.
- If another error occurs in another step, the stored data is updated in turn to the error code and step number of the new error. (These devices are set to OFF when errors are cleared.)
- When the PLC mode switches from STOP to RUN, these devices are cleared instantaneously, and then set to ON again if errors have not been cleared.

\section*{2. Operation error latch}
\begin{tabular}{c|c|c|c}
\hline \multirow{2}{*}{ Error flag } & \multirow{2}{|c}{ Device storing error code } & \multicolumn{2}{|c}{ Dtoring error occurrence step } \\
\cline { 3 - 4 } & \multirow{2}{*}{\begin{tabular}{c} 
FX0/FX0S/FX0N/FXU/FX2C/FX1S \\
/FX1N/FX2N/FX1NC/FX2NC/FX3G
\end{tabular}} & FX3U/FX3UC \\
\hline M8068 & - & D8068*2 & D8313, D8312 \\
\hline
\end{tabular}
*2. When the error occurrence step is up to the 32767th step in FX3U and FX3UC PLCs, the error occurrence step can be checked in D8068 (16 bits).
- When an operation error has occurred, M8068 is set, and the device storing error occurrence step (see the table above) stores the error occurrence step number.
- Even if another error has occurred in another step, the stored data is not updated, and remains held until these devices are forcibly reset or until the power turns OFF.

\subsection*{1.3.6 Handling of function extension flag}

In some sequence instructions, the function can be extended by combining a specific special auxiliary relay determined for each sequence instruction. An example is explained below using a structured ladder program.
- When X000 turns ON, this instruction exchanges the contents of D10 and D11 with each other.

- If M8160 has been driven before the XCH function and the source and destination of the XCH instruction are specified to the same device, high-order 8 bits and loworder 8 bits are exchanged with each other inside the device.
- For returning this XCH to the normal XCH function, it is necessary to set M8160 to OFF.


When using an instruction requiring the function extension flag in an interrupt program, program DI function (for disabling interrupt) before driving the function extension flag, and program El function (for enabling interrupt) after turning OFF the function extension flag.

\subsection*{1.3.7 Limitation in number of sequence instructions and number of simultaneous instances of instructions}

Each sequence instruction has a limitation in the number of using the instruction and the number of simultaneous instances of instructions. The limitation, however, differs from one PLC to another.

\section*{Limitations in the number of instructions}

Some instructions can be used only up to the specified number of times.
As for the instructions having a limited number of times of use and whose operands allow indexing, device numbers and numeric values in such instructions can be changed by index registers. By indexing, when driving multiple instances simultaneously is required, such instruction can be used as if they were used beyond the allowable number of times.
\(\rightarrow\) FX Structured Programming Manual (Device \& Common) Note that some PLCs do not provide some instructions.
\(\rightarrow\) 2. Instruction List
FX3u, FX3uc and FX3G PLCs
\begin{tabular}{|c|c|c|}
\hline Instruction name & Allowable number of times of use & Remarks \\
\hline MTR & 1 & - \\
\hline DHSCS & \multirow{3}{*}{FX3U, FX3UC PLC is 32. FX3G PLC is 6 .} & \multirow[t]{3}{*}{\begin{tabular}{l}
FX3U, FX3UC PLC is the allowable number of times of sum total use of DHSCS, DHSCR, DHSZ, DHSCT. \\
FX3G PLC is the allowable number of times of sum total use of DHSCS, DHSCR, DHSZ.
\end{tabular}} \\
\hline DHSCR & & \\
\hline DHSZ & & \\
\hline SPD & 8
(1 instruction / input or fewer) & Pay attention so that this instruction does not overlap the input numbers in interrupt input in DVIT instruction, DOG inputs in ZRN instruction, zero point signal in DSZR instruction, input interrupt numbers and high speed counter input numbers. \\
\hline IST & 1 & - - \\
\hline SORT & 1 & FX3G PLC is not provided. \\
\hline TKY & 1 & FX3G PLC is not provided. \\
\hline HKY & 1 & FX3G PLC is not provided. \\
\hline ARWS & 1 & FX3G PLC is not provided. \\
\hline PR & 2 & FX3G PLC is not provided. \\
\hline SORT2 & 2 & FX3G PLC is not provided. \\
\hline DUTY & 5
(1 instruction / 1 output or fewer) & FX3G PLC is not provided. \\
\hline DHSCT & 1 & FX3G PLC is not provided. \\
\hline
\end{tabular}

FX1s, FX1N, FX1Nc, FX2N and FX2Nc PLCs
\begin{tabular}{l|c|c}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Instruction \\
name
\end{tabular}} & \multicolumn{2}{|c}{ Allowable number of times of use } \\
\cline { 2 - 3 } MTR & 1 & FX2N, FX2NC \\
\hline SPD & 1 & 1 \\
\hline PWM & 1 & 1 \\
\hline IST & 1 & 1 \\
\hline ABSD & 1 & 1 \\
\hline INCD & 1 & 1 \\
\hline ROTC & FX1S, FX1N or FX1NC PLCs are not provided. & 1 \\
\hline SORT & FX1S, FX1N or FX1NC PLCs are not provided. & 1 \\
\hline TKY & FX1S, FX1N or FX1NC PLCs are not provided. & 1 \\
\hline HKY & FX1S, FX1N or FX1NC PLCs are not provided. & 1 \\
\hline DSW & No limit & 1 \\
\hline SEGL & No limit & 2 \\
\hline ARWS & FX1S, FX1N or FX1NC PLCs are not provided. & 2 \\
\hline PR & FX1S, FX1N or FX1NC PLCs are not provided. & 1 \\
\hline
\end{tabular}

FXo, FXos, FXon, FXU and FX2c PLCs
\begin{tabular}{|c|c|c|}
\hline Instruction name & Allowable number of times of use & Remarks \\
\hline MTR & 1 & FX0, FXOS or FXON PLCs are not provided. \\
\hline PLSY & 1 & \\
\hline PWM & 1 & \\
\hline IST & 1 & - \\
\hline ABSD & 1 & \\
\hline INCD & 1 & \\
\hline ROTC & 1 & \\
\hline SORT & 1 & \\
\hline TKY & 1 & \\
\hline HKY & 1 & , FXOS or FXON PLCs are not provided. \\
\hline DSW & 2 & \\
\hline SEGL & 2 & \\
\hline ARWS & 1 & \\
\hline PR & 2 & \\
\hline
\end{tabular}

\section*{Limitation in simultaneous instances of instructions}

Some instructions can be programmed two or more times, but the number of simultaneous instances is limited. Even in instructions not shown below, if two or more instructions are driven at the same time for a same I/O number, it is regarded as double outputs. In some combinations of instructions, the operation may be disrupted, or the instructions cannot be executed.
For details, refer to the caution described in each instruction page.
- FX3U, FX3UC and FX3G PLCs

PLSY, PWM, PLSR, DSZR, DVIT* \({ }^{*}\), ZRN, PLSV, DRVI, DRVA
DHSCS, DHSCR, DHSZ, DHSCT*1
RS, RS2, IVCK, IVDR, IVRD, IVWR, IVBWR*1
*1. FX3G PLC is not compatible.
- FX1S, FX1N, FX1NC, FX2N and FX2NC PLCs

DHSCS, DHSCR, DHSZ(FX1S, FX1N, FX1NC, FX2N and FX2NC PLCs)
RS (FX2N and FX2Nc PLCs)
PLSY, PLSR, RS, ZRN, PLSV, DRVI, DRVA(FX1s, FX1N and FX1Nc PLCs)
- FX0, FX0S, FXON, FXU and FX2C PLCs

DHSCS, DHSCR, DHSZ(FXo, FX0s, FXon, FXU and FX2C PLCs)
RS (FXon, FXU and FX2C PLCs)

\section*{2. Instruction List}

This chapter introduces a list of instructions available in programming.

\subsection*{2.1 Basic Instructions}

*1. The instruction is provided in the FX3U and FX3uc PLCs Ver. 2.30 or later.

\subsection*{2.2 Step Ladder Instructions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline Instruction name & &  & \[
\underset{\sim}{\underset{\sim}{㐅}}
\] &  & \[
\begin{aligned}
& \underset{x}{x} \\
& \stackrel{\rightharpoonup}{\lambda}
\end{aligned}
\] & \[
\underset{\sim}{\underset{\sim}{x}}
\] &  & \[
\begin{aligned}
& \text { 즞 } \\
& \text { ¿ }
\end{aligned}
\] & \[
\begin{aligned}
& \text { To } \\
& \stackrel{O}{O}
\end{aligned}
\] & \\
\hline STL & Starts step ladder & \(\checkmark\) & Section 6.2 \\
\hline RET & Completes step ladder & \(\checkmark\) & Section 6.3 \\
\hline
\end{tabular}

\subsection*{2.3 Applied Instructions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline & & &  & \[
\underset{\substack{\pi \\ \underset{\sim}{x}}}{ }
\] & T
N
N &  & \(\underset{\sim}{\text { ¢ }}\) &  &  & ञ & \\
\hline \multicolumn{12}{|l|}{Program Flow} \\
\hline CJ & Continuous & \multirow[b]{2}{*}{Conditional jump} & \(\checkmark\) & \multirow[b]{2}{*}{Section 7.1.1} \\
\hline CJP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline CALL & Continuous & \multirow[t]{2}{*}{Call subroutine} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \multirow[t]{2}{*}{Section 7.1.2} \\
\hline CALLP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline SRET & Continuous & Subroutine return & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & Section 7.1.3 \\
\hline IRET & Continuous & Interrupt return & \(\checkmark\) & Section 7.1.4 \\
\hline DI & Continuous & Disable interrupt & \(\checkmark\) & Section 7.1.5 \\
\hline El & Continuous & Enable interrupt & \(\checkmark\) & Section 7.1.6 \\
\hline FEND & Continuous & Main routine program end & \(\checkmark\) & Section 7.1.7 \\
\hline WDT & Continuous & \multirow[b]{2}{*}{Watchdog timer refresh} & \(\checkmark\) & \multirow[t]{2}{*}{Section 7.1.8} \\
\hline WDTP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline FOR & Continuous & Start a FOR/NEXT Ioop & \(\checkmark\) & Section 7.1.9 \\
\hline NEXT & Continuous & End a FOR/NEXT loop & \(\checkmark\) & Section 7.1.10 \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXU PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3U and FX3Uc PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXU PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXon PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXu and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3uc PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2Nc PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3UC PLC Ver. 1.30 or later.
*12. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3uc PLCs Ver. 2.61 or later. The FX3UC-32MT-LT-2 PLC is due to be upgraded later.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline & & &  & \[
\underset{\sim}{\underset{\sim}{\sim}}
\] &  &  & \(\underset{\sim}{\boldsymbol{x}}\) &  & \[
\begin{aligned}
& \text { T } \\
& \text { X }
\end{aligned}
\] & \(\stackrel{\text { ¢ }}{\text { ¢ }}\) & \\
\hline \multicolumn{12}{|l|}{Move and Compare} \\
\hline CMP & Continuous & \multirow{4}{*}{Compare} & \(\checkmark\) & \multirow{4}{*}{Section 7.2.1} \\
\hline CMPP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DCMP & Continuous & & \(\checkmark\) & \\
\hline DCMPP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline ZCP & Continuous & \multirow{4}{*}{Zone compare} & \(\checkmark\) & \multirow{4}{*}{Section 7.2.2} \\
\hline ZCPP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DZCP & Continuous & & \(\checkmark\) & \\
\hline DZCPP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline MOV & Continuous & \multirow{4}{*}{Move} & \(\checkmark\) & \multirow{4}{*}{Section 7.2.3} \\
\hline MOVP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DMOV & Continuous & & \(\checkmark\) & \\
\hline DMOVP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline SMOV & Continuous & \multirow[b]{2}{*}{Shift move} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \multirow[b]{2}{*}{Section 7.2.4} \\
\hline SMOVP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline CML & Continuous & \multirow{4}{*}{Inversion move} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \multirow{4}{*}{Section 7.2.5} \\
\hline CMLP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DCML & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DCMLP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline BMOV & Continuous & \multirow{2}{*}{Block move} & \(\checkmark\) & & \multirow{2}{*}{Section 7.2.6} \\
\hline BMOVP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline FMOV & Continuous & \multirow{4}{*}{Fill move} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \multirow{4}{*}{Section 7.2.7} \\
\hline FMOVP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DFMOV & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & *1 & & & \\
\hline DFMOVP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & *1 & & & \\
\hline XCH & Continuous & \multirow{4}{*}{Exchange} & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \multirow{4}{*}{Section 7.2.8} \\
\hline XCHP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DXCH & Continuous & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DXCHP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline BCD & Continuous & \multirow{4}{*}{Conversion to binary coded decimal} & \(\checkmark\) & \multirow{4}{*}{Section 7.2.9} \\
\hline BCDP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DBCD & Continuous & & \(\checkmark\) & \\
\hline DBCDP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXU PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3U and FX3Uc PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXU PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXON PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXu and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3UC PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3UC PLC Ver. 1.30 or later.
*12. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3uc PLCs Ver. 2.61 or later. The FX3UC-32MT-LT-2 PLC is due to be upgraded later.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline & & & ¢
¢
¢
¢ & \[
\underset{\sim}{\underset{\sim}{\varkappa}}
\] & N &  & \(\underset{\sim}{\text { ® }}\) & ハ & \[
\begin{aligned}
& \pi \\
& \underset{Z}{\chi}
\end{aligned}
\] & त & \\
\hline \multicolumn{12}{|l|}{Move and Compare} \\
\hline BIN & Continuous & \multirow{4}{*}{Conversion to binary} & \(\checkmark\) & \multirow{4}{*}{Section 7.2.10} \\
\hline BINP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DBIN & Continuous & & \(\checkmark\) & \\
\hline DBINP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline \multicolumn{12}{|l|}{Arithmetic and Logical Operation} \\
\hline ADD & Continuous & \multirow{4}{*}{Addition} & \(\checkmark\) & \multirow{4}{*}{Section 7.3.1} \\
\hline ADDP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DADD & Continuous & & \(\checkmark\) & \\
\hline DADDP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline SUB & Continuous & \multirow{4}{*}{Subtraction} & \(\checkmark\) & \multirow{4}{*}{Section 7.3.2} \\
\hline SUBP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DSUB & Continuous & & \(\checkmark\) & \\
\hline DSUBP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline MUL & Continuous & \multirow{4}{*}{Multiplication} & \(\checkmark\) & \multirow{4}{*}{Section 7.3.3} \\
\hline MULP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DMUL & Continuous & & \(\checkmark\) & \\
\hline DMULP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DIV & Continuous & \multirow{4}{*}{Division} & \(\checkmark\) & \multirow{4}{*}{Section 7.3.4} \\
\hline DIVP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DDIV & Continuous & & \(\checkmark\) & \\
\hline DDIVP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline INC & Continuous & \multirow{4}{*}{Increment} & \(\checkmark\) & \multirow{4}{*}{Section 7.3.5} \\
\hline INCP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DINC & Continuous & & \(\checkmark\) & \\
\hline DINCP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DEC & Continuous & \multirow{4}{*}{Decrement} & \(\checkmark\) & \multirow{4}{*}{Section 7.3.6} \\
\hline DECP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DDEC & Continuous & & \(\checkmark\) & \\
\hline DDECP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXU PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3u and FX3uc PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXU PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXON PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3uc PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3UC PLC Ver. 1.30 or later.
*12. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3Uc PLCs Ver. 2.61 or later.
The FX3UC-32MT-LT-2 PLC is due to be upgraded later.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline & & &  & \[
\underset{\sim}{\underset{\sim}{\chi}}
\] &  &  & \[
\underset{\omega}{\underset{\sim}{x}}
\] &  & \[
\begin{aligned}
& \text { గ } \\
& \text { 㐅} \\
& \text { ¿ }
\end{aligned}
\] & - & \\
\hline \multicolumn{12}{|l|}{Arithmetic and Logical Operation} \\
\hline WAND & Continuous & \multirow{4}{*}{Logical word AND} & \(\checkmark\) & \multirow{4}{*}{Section 7.3.7} \\
\hline WANDP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DAND & Continuous & & \(\checkmark\) & \\
\hline DANDP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline WOR & Continuous & \multirow{4}{*}{Logical word OR} & \(\checkmark\) & \multirow{4}{*}{Section 7.3.8} \\
\hline WORP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DOR & Continuous & & \(\checkmark\) & \\
\hline DORP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline WXOR & Continuous & \multirow{4}{*}{Logical exclusive OR} & \(\checkmark\) & \multirow{4}{*}{Section 7.3.9} \\
\hline WXORP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DXOR & Continuous & & \(\checkmark\) & \\
\hline DXORP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline NEG & Continuous & \multirow{4}{*}{Negation} & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \multirow{4}{*}{Section 7.3.10} \\
\hline NEGP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DNEG & Continuous & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DNEGP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline \multicolumn{12}{|l|}{Rotation and Shift Operation} \\
\hline ROR & Continuous & \multirow{4}{*}{Rotation right} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \multirow{4}{*}{Section 7.4.1} \\
\hline RORP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DROR & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DRORP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline ROL & Continuous & \multirow{4}{*}{Rotation left} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \multirow{4}{*}{Section 7.4.2} \\
\hline ROLP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DROL & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DROLP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline RCR & Continuous & \multirow{4}{*}{Rotation right with carry} & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \multirow{4}{*}{Section 7.4.3} \\
\hline RCRP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DRCR & Continuous & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DRCRP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline RCL & Continuous & \multirow{4}{*}{Rotation left with carry} & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \multirow{4}{*}{Section 7.4.4} \\
\hline RCLP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DRCL & Continuous & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DRCLP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXU PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3U and FX3Uc PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXu PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXon PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3uc PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3uc PLC Ver. 1.30 or later.
*12. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3Uc PLCs Ver. 2.61 or later. The FX3UC-32MT-LT-2 PLC is due to be upgraded later.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline & & &  & \[
\underset{\sim}{\underset{\sim}{\chi}}
\] & \[
\begin{aligned}
& \pi \\
& \text { 즈N } \\
& \text { n }
\end{aligned}
\] &  & \(\underset{\sim}{\text { ¢ }}\) &  & \[
\begin{aligned}
& \text { T } \\
& \text { X }
\end{aligned}
\] & ก & \\
\hline \multicolumn{12}{|l|}{Rotation and Shift Operation} \\
\hline SFTR & Continuous & \multirow[b]{2}{*}{Bit shift right} & \(\checkmark\) & \multirow[b]{2}{*}{Section 7.4.5} \\
\hline SFTRP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline SFTL & Continuous & \multirow[b]{2}{*}{Bit shift left} & \(\checkmark\) & \multirow{2}{*}{Section 7.4.6} \\
\hline SFTLP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline WSFR & Continuous & \multirow[b]{2}{*}{Word shift right} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \multirow[b]{2}{*}{Section 7.4.7} \\
\hline WSFRP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline WSFL & Continuous & \multirow[b]{2}{*}{Word shift left} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \multirow[b]{2}{*}{Section 7.4.8} \\
\hline WSFLP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline SFWR & Continuous & \multirow[t]{2}{*}{\begin{tabular}{l}
Shift write \\
[FIFO/FILO control]
\end{tabular}} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \multirow[b]{2}{*}{Section 7.4.9} \\
\hline SFWRP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline SFRD & Continuous & \multirow[t]{2}{*}{Shift read [FIFO control]} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \multirow[b]{2}{*}{Section 7.4.10} \\
\hline SFRDP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline \multicolumn{12}{|l|}{Data Operation} \\
\hline ZRST & Continuous & \multirow[b]{2}{*}{Zone reset} & \(\checkmark\) & \multirow[b]{2}{*}{Section 7.5.1} \\
\hline ZRSTP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DECO & Continuous & \multirow[t]{2}{*}{Decode} & \(\checkmark\) & \multirow[b]{2}{*}{Section 7.5.2} \\
\hline DECOP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline ENCO & Continuous & \multirow[t]{2}{*}{Encode} & \(\checkmark\) & \multirow[t]{2}{*}{Section 7.5.3} \\
\hline ENCOP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline SUM & Continuous & \multirow{4}{*}{Sum of active bits} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \multirow{4}{*}{Section 7.5.4} \\
\hline SUMP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DSUM & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DSUMP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline BON & Continuous & \multirow{4}{*}{Check specified bit status} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \multirow{4}{*}{Section 7.5.5} \\
\hline BONP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DBON & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DBONP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline MEAN & Continuous & \multirow{4}{*}{Mean} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \multirow{4}{*}{Section 7.5.6} \\
\hline MEANP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DMEAN & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & *1 & & & \\
\hline DMEANP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & *1 & & & \\
\hline ANS & Continuous & Timed annunciator set & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & Section 7.5.7 \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXU PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3u and FX3uc PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXU PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXON PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3uc PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3uc PLC Ver. 1.30 or later.
*12. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3Uc PLCs Ver. 2.61 or later. The FX3Uc-32MT-LT-2 PLC is due to be upgraded later.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline & & &  & \[
\underset{\sim}{\underset{\sim}{\chi}}
\] & \[
\begin{aligned}
& \pi \\
& \text { 즈N } \\
& \text { n }
\end{aligned}
\] &  & \[
\underset{\underset{\omega}{x}}{\underset{\sim}{x}}
\] &  &  &  & \\
\hline \multicolumn{12}{|l|}{Data Operation} \\
\hline ANR & Continuous & \multirow{2}{*}{Annuncator reset} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \multirow{2}{*}{Section 7.5.8} \\
\hline ANRP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline SQR & Continuous & \multirow{4}{*}{Square root} & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \multirow{4}{*}{Section 7.5.9} \\
\hline SQRP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DSQR & Continuous & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DSQRP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline FLT & Continuous & \multirow{4}{*}{Conversion to floating point} & \(\checkmark\) & *12 & \(\checkmark\) & & & *2 & & & \multirow{4}{*}{Section 7.5.10} \\
\hline FLTP & Pulse & & \(\checkmark\) & *12 & \(\checkmark\) & & & *2 & & & \\
\hline DFLT & Continuous & & \(\checkmark\) & *12 & \(\checkmark\) & & & *2 & & & \\
\hline DFLTP & Pulse & & \(\checkmark\) & *12 & \(\checkmark\) & & & *2 & & & \\
\hline \multicolumn{12}{|l|}{High Speed Processing} \\
\hline REF & Continuous & \multirow[b]{2}{*}{Refresh} & \(\checkmark\) & \multirow[b]{2}{*}{Section 7.6.1} \\
\hline REFP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline REFF & Continuous & \multirow[b]{2}{*}{Refresh and filter adjust} & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \multirow[t]{2}{*}{Section 7.6.2} \\
\hline REFFP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline MTR & Continuous & Input matrix & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & Section 7.6.3 \\
\hline DHSCS & Continuous & High speed counter set & \(\checkmark\) & Section 7.6.4 \\
\hline DHSCR & Continuous & High speed counter reset & \(\checkmark\) & Section 7.6.5 \\
\hline DHSZ & Continuous & High speed counter zone compare & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & Section 7.6.6 \\
\hline SPD & Continuous & \multirow[b]{2}{*}{Speed detection} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \multirow[b]{2}{*}{Section 7.6.7} \\
\hline DSPD & Continuous & & *3 & \(\checkmark\) & & & & & & & \\
\hline PLSY & Continuous & \multirow[t]{2}{*}{Pulse Y output} & \(\checkmark\) & \multirow[t]{2}{*}{Section 7.6.8} \\
\hline DPLSY & Continuous & & \(\checkmark\) & \\
\hline PWM & Continuous & Pulse width modulation & \(\checkmark\) & Section 7.6.9 \\
\hline PLSR & Continuous & \multirow[b]{2}{*}{Acceleration/deceleration setup} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \multirow[b]{2}{*}{Section 7.6.10} \\
\hline DPLSR & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline \multicolumn{12}{|l|}{Handy Instruction} \\
\hline IST & Continuous & Initial state & \(\checkmark\) & Section 7.7.1 \\
\hline SER & Continuous & \multirow{4}{*}{Search a data stack} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & *2 & & & \multirow{4}{*}{Section 7.7.2} \\
\hline SERP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & *2 & & & \\
\hline DSER & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & *2 & & & \\
\hline DSERP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & *2 & & & \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXu PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3u and FX3uc PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXU PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXON PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXu and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3uc PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3uc PLC Ver. 1.30 or later.
*12. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3Uc PLCs Ver. 2.61 or later. The FX3UC-32MT-LT-2 PLC is due to be upgraded later.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline & & &  & \[
\underset{\sim}{\underset{\sim}{\mathrm{N}}}
\] & \[
\begin{aligned}
& \text { T } \\
& \text { N } \\
& \text { 2 }
\end{aligned}
\] &  & \(\underset{\sim}{\text { ¢ }}\) &  & \[
\begin{aligned}
& \text { K } \\
& \text { 즐 }
\end{aligned}
\] & ツ & \\
\hline \multicolumn{12}{|l|}{Handy Instruction} \\
\hline ABSD & Continuous & \multirow[b]{2}{*}{Absolute drum sequencer} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \multirow[b]{2}{*}{Section 7.7.3} \\
\hline DABSD & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & *1 & & & \\
\hline INCD & Continuous & Incremental drum sequencer & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & Section 7.7.4 \\
\hline TTMR & Continuous & Teaching timer & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & Section 7.7.5 \\
\hline STMR & Continuous & Special timer & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & Section 7.7.6 \\
\hline ALT & Continuous & \multirow[t]{2}{*}{Alternate state} & \(\checkmark\) & \multirow[b]{2}{*}{Section 7.7.7} \\
\hline ALTP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline RAMP & Pulse & Ramp variable value & \(\checkmark\) & Section 7.7.8 \\
\hline ROTC & Continuous & Rotary table control & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & Section 7.7.9 \\
\hline SORT & Continuous & SORT tabulated data & \(\checkmark\) & & \(\checkmark\) & & & *2 & & & Section 7.7.10 \\
\hline \multicolumn{12}{|l|}{External FX I/O Device} \\
\hline TKY & Continuous & \multirow[b]{2}{*}{Ten key input} & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \multirow[t]{2}{*}{Section 7.8.1} \\
\hline DTKY & Continuous & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline HKY & Continuous & \multirow[t]{2}{*}{Hexadecimal input} & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \multirow[b]{2}{*}{Section 7.8.2} \\
\hline DHKY & Continuous & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline DSW & Continuous & Digital switch & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & Section 7.8.3 \\
\hline SEGD & Continuous & \multirow[b]{2}{*}{Seven segment decoder} & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \multirow[b]{2}{*}{Section 7.8.4} \\
\hline SEGDP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & \\
\hline SEGL & Continuous & Seven segment with latch & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & Section 7.8.5 \\
\hline ARWS & Continuous & Arrow switch & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & Section 7.8.6 \\
\hline ASC & Continuous & ASCII code data input & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & Section 7.8.7 \\
\hline PR & Continuous & Print (ASCII code) & \(\checkmark\) & & \(\checkmark\) & & & \(\checkmark\) & & & Section 7.8.8 \\
\hline FROM & Continuous & \multirow{4}{*}{Read from a special function block} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & *4 & \(\checkmark\) & & \multirow{4}{*}{Section 7.8.9} \\
\hline FROMP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & *4 & & & \\
\hline DFROM & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & *4 & \(\checkmark\) & & \\
\hline DFROMP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & *4 & & & \\
\hline TO & Continuous & \multirow{4}{*}{Write to a special function block} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & *4 & \(\checkmark\) & & \multirow{4}{*}{Section 7.8.10} \\
\hline TOP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & *4 & & & \\
\hline DTO & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & *4 & \(\checkmark\) & & \\
\hline DTOP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & *4 & & & \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXU PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3U and FX3UC PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXU PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXon PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3UC PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3uc PLC Ver. 1.30 or later.
*12. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3Uc PLCs Ver. 2.61 or later. The FX3UC-32MT-LT-2 PLC is due to be upgraded later.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline Instruction name & & &  & \(\underset{\sim}{\text { ¢ }}\) &  &  & \(\underset{\sim}{\text { ¢ }}\) & N & 끛 & ¢ & \\
\hline \multicolumn{12}{|l|}{External Device (optional devices)} \\
\hline RS & Continuous & Serial Communication & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & *2 & *5 & & Section 7.9.1 \\
\hline PRUN & Continuous & \multirow{4}{*}{Parallel run (octal mode)} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \multirow{4}{*}{Section 7.9.2} \\
\hline PRUNP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DPRUN & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline DPRUNP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline ASCI & Continuous & \multirow[b]{2}{*}{Hexadecimal to ASCII conversion} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & *2 & *5 & & \multirow[b]{2}{*}{Section 7.9.3} \\
\hline ASCIP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & *2 & & & \\
\hline HEX & Continuous & \multirow[b]{2}{*}{ASCII to hexadecimal conversion} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & *2 & *5 & & \multirow[b]{2}{*}{Section 7.9.4} \\
\hline HEXP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & *2 & & & \\
\hline CCD & Continuous & \multirow[b]{2}{*}{Check code} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & *2 & *5 & & \multirow[b]{2}{*}{Section 7.9.5} \\
\hline CCDP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & *2 & & & \\
\hline VRRD & Continuous & \multirow[b]{2}{*}{Volume read} & & *12 & *6 & *6 & \(\checkmark\) & \(\checkmark\) & & & \multirow[b]{2}{*}{Section 7.9.6} \\
\hline VRRDP & Pulse & & & *12 & *6 & *6 & \(\checkmark\) & \(\checkmark\) & & & \\
\hline VRSC & Continuous & \multirow[b]{2}{*}{Volume scale} & & *12 & *6 & *6 & \(\checkmark\) & \(\checkmark\) & & & \multirow[b]{2}{*}{Section 7.9.7} \\
\hline VRSCP & Pulse & & & *12 & *6 & *6 & \(\checkmark\) & \(\checkmark\) & & & \\
\hline RS2 & Continuous & Serial data communication & \(\checkmark\) & \(\checkmark\) & & & & & & & Section 7.9.8 \\
\hline PID & Continuous & PID control loop & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & *7 & & & Section 7.9.9 \\
\hline \multicolumn{12}{|l|}{External Device} \\
\hline MNET & Continuous & \multirow[b]{2}{*}{F-16NP/NT communication} & & & & & & *8 & & & \multirow[b]{2}{*}{Section 7.10.1} \\
\hline MNETP & Pulse & & & & & & & *8 & & & \\
\hline ANRD & Continuous & \multirow[t]{2}{*}{Read from F1-6A} & & & & & & *8 & & & \multirow[t]{2}{*}{Section 7.10.2} \\
\hline ANRDP & Pulse & & & & & & & *8 & & & \\
\hline ANWR & Continuous & \multirow[b]{2}{*}{Write to F2-6A} & & & & & & *8 & & & \multirow[t]{2}{*}{Section 7.10.3} \\
\hline ANWRP & Pulse & & & & & & & *8 & & & \\
\hline RMST & Continuous & F2-32RM start & & & & & & \(\checkmark\) & & & Section 7.10.4 \\
\hline RMWR & Continuous & \multirow{4}{*}{Write to F2-32RM} & & & & & & \(\checkmark\) & & & \multirow{4}{*}{Section 7.10.5} \\
\hline RMWRP & Pulse & & & & & & & \(\checkmark\) & & & \\
\hline DRMWR & Continuous & & & & & & & \(\checkmark\) & & & \\
\hline DRMWRP & Pulse & & & & & & & \(\checkmark\) & & & \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXU PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3u and FX3uc PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXU PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXon PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3Uc PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3UC PLC Ver. 1.30 or later.
*12. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3Uc PLCs Ver. 2.61 or later. The FX3UC-32MT-LT-2 PLC is due to be upgraded later.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline & & &  & તָ & T
N
N &  & \(\underset{\text { ¢ }}{\underset{\sim}{x}}\) & N & \(\underset{\sim}{\text { ¢ }}\) & ก & \\
\hline \multicolumn{12}{|l|}{External Device} \\
\hline RMRD & Continuous & \multirow{4}{*}{Read from F2-32RM} & & & & & & \(\checkmark\) & & & \multirow{4}{*}{Section 7.10.6} \\
\hline RMRDP & Pulse & & & & & & & \(\checkmark\) & & & \\
\hline DRMRD & Continuous & & & & & & & \(\checkmark\) & & & \\
\hline DRMRDP & Pulse & & & & & & & \(\checkmark\) & & & \\
\hline RMMN & Continuous & \multirow[b]{2}{*}{F2-32RM monitor} & & & & & & \(\checkmark\) & & & \multirow[b]{2}{*}{Section 7.10.7} \\
\hline RMMNP & Pulse & & & & & & & \(\checkmark\) & & & \\
\hline BLK & Continuous & \multirow[b]{2}{*}{Specify F2-30GM} & & & & & & *8 & & & \multirow[t]{2}{*}{Section 7.10.8} \\
\hline BLKP & Pulse & & & & & & & *8 & & & \\
\hline MCDE & Continuous & \multirow[t]{2}{*}{2-30GM code} & & & & & & *8 & & & \multirow[t]{2}{*}{Section 7.10.9} \\
\hline MCDEP & Pulse & & & & & & & *8 & & & \\
\hline \multicolumn{12}{|l|}{Data Transfer 2} \\
\hline ZPUSH & Continuous & \multirow[b]{2}{*}{Batch store of index register} & \(\checkmark\) & & & & & & & & \multirow[b]{2}{*}{Section 7.11.1} \\
\hline ZPUSHP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline ZPOP & Continuous & \multirow[b]{2}{*}{Batch POP of index register} & \(\checkmark\) & & & & & & & & \multirow[b]{2}{*}{Section 7.11.2} \\
\hline ZPOPP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline \multicolumn{12}{|l|}{Floating Point} \\
\hline DECMP & Continuous & \multirow[b]{2}{*}{Floating point compare} & \(\checkmark\) & *12 & \(\checkmark\) & & & & & & \multirow[t]{2}{*}{Section 7.12.1} \\
\hline DECMPP & Pulse & & \(\checkmark\) & *12 & \(\checkmark\) & & & & & & \\
\hline DEZCP & Continuous & \multirow[t]{2}{*}{Floating point zone compare} & \(\checkmark\) & & \(\checkmark\) & & & & & & \multirow[t]{2}{*}{Section 7.12.2} \\
\hline DEZCPP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & & & & \\
\hline DEMOV & Continuous & \multirow[b]{2}{*}{Floating point move} & \(\checkmark\) & *12 & & & & & & & \multirow[b]{2}{*}{Section 7.12.3} \\
\hline DEMOVP & Pulse & & \(\checkmark\) & *12 & & & & & & & \\
\hline DESTR & Continuous & \multirow[t]{2}{*}{Floating point to character string conversion} & \(\checkmark\) & & & & & & & & \multirow[t]{2}{*}{Section 7.12.4} \\
\hline DESTRP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline DEVAL & Continuous & \multirow[t]{2}{*}{Character string to floating point conversion} & \(\checkmark\) & & & & & & & & \multirow[t]{2}{*}{Section 7.12.5} \\
\hline DEVALP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline DEBCD & Continuous & \multirow[t]{2}{*}{Floating point to scientific notation conversion} & \(\checkmark\) & & \(\checkmark\) & & & & & & \multirow[t]{2}{*}{Section 7.12.6} \\
\hline DEBCDP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & & & & \\
\hline DEBIN & Continuous & \multirow[t]{2}{*}{Scientific notation to floating point conversion} & \(\checkmark\) & & \(\checkmark\) & & & & & & \multirow[t]{2}{*}{Section 7.12.7} \\
\hline DEBINP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & & & & \\
\hline DEADD & Continuous & \multirow[t]{2}{*}{Floating point addition} & \(\checkmark\) & *12 & \(\checkmark\) & & & & & & \multirow[t]{2}{*}{Section 7.12.8} \\
\hline DEADDP & Pulse & & \(\checkmark\) & *12 & \(\checkmark\) & & & & & & \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXU PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3u and FX3uc PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXU PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXoN PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3Uc PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3uc PLC Ver. 1.30 or later.
*12. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3Uc PLCs Ver. 2.61 or later. The FX3Uc-32MT-LT-2 PLC is due to be upgraded later.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline & & &  & \[
\underset{\sim}{\underset{\sim}{\mathrm{N}}}
\] & 끛
N & N & \(\underset{\sim}{\text { ¢ }}\) & N &  & - & \\
\hline \multicolumn{12}{|l|}{Floating Point} \\
\hline DESUB & Continuous & \multirow[b]{2}{*}{Floating point subtraction} & \(\checkmark\) & *12 & \(\checkmark\) & & & & & & \multirow{2}{*}{Section 7.12.9} \\
\hline DESUBP & Pulse & & \(\checkmark\) & *12 & \(\checkmark\) & & & & & & \\
\hline DEMUL & Continuous & \multirow[b]{2}{*}{Floating point multiplication} & \(\checkmark\) & *12 & \(\checkmark\) & & & & & & \multirow{2}{*}{Section 7.12.10} \\
\hline DEMULP & Pulse & & \(\checkmark\) & *12 & \(\checkmark\) & & & & & & \\
\hline DEDIV & Continuous & \multirow[b]{2}{*}{Floating point division} & \(\checkmark\) & *12 & \(\checkmark\) & & & & & & \multirow[b]{2}{*}{Section 7.12.11} \\
\hline DEDIVP & Pulse & & \(\checkmark\) & *12 & \(\checkmark\) & & & & & & \\
\hline DEXP & Continuous & \multirow[b]{2}{*}{Floating point exponent} & \(\checkmark\) & & & & & & & & \multirow[b]{2}{*}{Section 7.12.12} \\
\hline DEXPP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline DLOGE & Continuous & \multirow[b]{2}{*}{Floating point natural logarithm} & \(\checkmark\) & & & & & & & & \multirow[b]{2}{*}{Section 7.12.13} \\
\hline DLOGEP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline DLOG10 & Continuous & \multirow[b]{2}{*}{Floating point common logarithm} & \(\checkmark\) & & & & & & & & \multirow[b]{2}{*}{Section 7.12.14} \\
\hline DLOG10P & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline DESQR & Continuous & \multirow{2}{*}{Floating point square root} & \(\checkmark\) & *12 & \(\checkmark\) & & & & & & \multirow{2}{*}{Section 7.12.15} \\
\hline DESQRP & Pulse & & \(\checkmark\) & *12 & \(\checkmark\) & & & & & & \\
\hline DENEG & Continuous & \multirow[b]{2}{*}{Floating point negation} & \(\checkmark\) & & & & & & & & \multirow[b]{2}{*}{Section 7.12.16} \\
\hline DENEGP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline INT & Continuous & \multirow{4}{*}{Floating point to integer conversion} & \(\checkmark\) & *12 & \(\checkmark\) & & & & & & \multirow{4}{*}{Section 7.12.17} \\
\hline INTP & Pulse & & \(\checkmark\) & *12 & \(\checkmark\) & & & & & & \\
\hline DINT & Continuous & & \(\checkmark\) & *12 & \(\checkmark\) & & & & & & \\
\hline DINTP & Pulse & & \(\checkmark\) & *12 & \(\checkmark\) & & & & & & \\
\hline DSIN & Continuous & \multirow[b]{2}{*}{Floating point sine} & \(\checkmark\) & & \(\checkmark\) & & & & & & \multirow[b]{2}{*}{Section 7.12.18} \\
\hline DSINP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & & & & \\
\hline DCOS & Continuous & \multirow[b]{2}{*}{Floating point cosine} & \(\checkmark\) & & \(\checkmark\) & & & & & & \multirow[b]{2}{*}{Section 7.12.19} \\
\hline DCOSP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & & & & \\
\hline DTAN & Continuous & \multirow[b]{2}{*}{Floating point tangent} & \(\checkmark\) & & \(\checkmark\) & & & & & & \multirow[b]{2}{*}{Section 7.12.20} \\
\hline DTANP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & & & & \\
\hline DASIN & Continuous & \multirow[b]{2}{*}{Floating point arc sine} & \(\checkmark\) & & & & & & & & \multirow[b]{2}{*}{Section 7.12.21} \\
\hline DASINP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline DACOS & Continuous & \multirow[b]{2}{*}{Floating point arc cosine} & \(\checkmark\) & & & & & & & & \multirow[t]{2}{*}{Section 7.12.22} \\
\hline DACOSP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline DATAN & Continuous & \multirow[b]{2}{*}{Floating point arc tangent} & \(\checkmark\) & & & & & & & & \multirow[b]{2}{*}{Section 7.12.23} \\
\hline DATANP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXU PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3u and FX3uc PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXU PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXON PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXu and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3Uc PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3uc PLC Ver. 1.30 or later.
\({ }^{*} 12\). The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3Uc PLCs Ver. 2.61 or later. The FX3Uc-32MT-LT-2 PLC is due to be upgraded later.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline & & &  & N্র &  &  & \(\underset{\sim}{\text { ¢ }}\) & N & 끛 & ツ & \\
\hline \multicolumn{12}{|l|}{Floating Point} \\
\hline DRAD & Continuous & \multirow[t]{2}{*}{Floating point degrees to radians conversion} & \(\checkmark\) & & & & & & & & \multirow[b]{2}{*}{Section 7.12.24} \\
\hline DRADP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline DDEG & Continuous & \multirow[t]{2}{*}{Floating point radians to degrees conversion} & \(\checkmark\) & & & & & & & & \multirow[b]{2}{*}{Section 7.12.25} \\
\hline DDEGP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline \multicolumn{12}{|l|}{Data Operation 2} \\
\hline WSUM & Continuous & \multirow{4}{*}{Sum of word data} & *9 & & & & & & & & \multirow{4}{*}{Section 7.13.1} \\
\hline WSUMP & Pulse & & *9 & & & & & & & & \\
\hline DWSUM & Continuous & & *9 & & & & & & & & \\
\hline DWSUMP & Pulse & & *9 & & & & & & & & \\
\hline WTOB & Continuous & \multirow[b]{2}{*}{WORD to BYTE} & *9 & & & & & & & & \multirow[b]{2}{*}{Section 7.13.2} \\
\hline WTOBP & Pulse & & *9 & & & & & & & & \\
\hline BTOW & Continuous & \multirow[b]{2}{*}{BYTE to WORD} & *9 & & & & & & & & \multirow[t]{2}{*}{Section 7.13.3} \\
\hline BTOWP & Pulse & & *9 & & & & & & & & \\
\hline UNI & Continuous & \multirow[b]{2}{*}{4-bit linking of word data} & *9 & & & & & & & & \multirow[b]{2}{*}{Section 7.13.4} \\
\hline UNIP & Pulse & & *9 & & & & & & & & \\
\hline DIS & Continuous & \multirow[b]{2}{*}{4-bit grouping of word data} & *9 & & & & & & & & \multirow[b]{2}{*}{Section 7.13.5} \\
\hline DISP & Pulse & & *9 & & & & & & & & \\
\hline SWAP & Continuous & \multirow{4}{*}{Byte swap} & \(\checkmark\) & & \(\checkmark\) & & & & & & \multirow{4}{*}{Section 7.13.6} \\
\hline SWAPP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & & & & \\
\hline DSWAP & Continuous & & \(\checkmark\) & & \(\checkmark\) & & & & & & \\
\hline DSWAPP & Pulse & & \(\checkmark\) & & \(\checkmark\) & & & & & & \\
\hline SORT2 & Continuous & \multirow[t]{2}{*}{Sort tabulated data 2} & *9 & & & & & & & & \multirow[t]{2}{*}{Section 7.13.7} \\
\hline DSORT2 & Continuous & & *9 & & & & & & & & \\
\hline \multicolumn{12}{|l|}{Positioning Control} \\
\hline DSZR & Continuous & Dog search zero return & \(\checkmark\) & \(\checkmark\) & & & & & & & Section 7.14.1 \\
\hline DVIT & Continuous & \multirow[b]{2}{*}{Interrupt positioning} & \(\checkmark\) & & & & & & & & \multirow[t]{2}{*}{Section 7.14.2} \\
\hline DDVIT & Continuous & & \(\checkmark\) & & & & & & & & \\
\hline DTBL & Continuous & Batch data positioning mode & *9 & \(\checkmark\) & & & & & & & Section 7.14.3 \\
\hline DABS & Continuous & Absolute current value read & \(\checkmark\) & \(\checkmark\) & *10 & \(\checkmark\) & \(\checkmark\) & & & & Section 7.14.4 \\
\hline ZRN & Continuous & \multirow[b]{2}{*}{Zero return} & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & \(\checkmark\) & & & & \multirow[t]{2}{*}{Section 7.14.5} \\
\hline DZRN & Continuous & & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline PLSV & Continuous & \multirow[b]{2}{*}{Variable speed pulse output} & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & \(\checkmark\) & & & & \multirow[t]{2}{*}{Section 7.14.6} \\
\hline DPLSV & Continuous & & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXU PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3U and FX3Uc PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXU PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXoN PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3Uc PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2Nc PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3uc PLC Ver. 1.30 or later.
*12. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3UC PLCs Ver. 2.61 or later. The FX3Uc-32MT-LT-2 PLC is due to be upgraded later.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline & & &  & \[
\underset{\sim}{\underset{\sim}{\mathrm{N}}}
\] & \[
\begin{aligned}
& \text { 주 } \\
& \text { N } \\
& \text { no }
\end{aligned}
\] & \[
\begin{aligned}
& \pi \\
& \underset{ }{\grave{z}}
\end{aligned}
\] & \[
\underset{\underset{\omega}{x}}{\underset{\sim}{x}}
\] &  &  & ¢ & \\
\hline \multicolumn{12}{|l|}{Positioning Control} \\
\hline DRVI & Continuous & \multirow[b]{2}{*}{Drive to increment} & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & \(\checkmark\) & & & & \multirow[b]{2}{*}{Section 7.14.7} \\
\hline DDRVI & Continuous & & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline DRVA & Continuous & \multirow[b]{2}{*}{Drive to absolute} & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & \(\checkmark\) & & & & \multirow{2}{*}{Section 7.14.8} \\
\hline DDRVA & Continuous & & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline \multicolumn{12}{|l|}{Real Time Clock Control} \\
\hline TCMP & Continuous & \multirow[b]{2}{*}{RTC data compare} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \multirow[b]{2}{*}{Section 7.15.1} \\
\hline TCMPP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline TZCP & Continuous & \multirow[b]{2}{*}{RTC data zone compare} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \multirow[b]{2}{*}{Section 7.15.2} \\
\hline TZCPP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline TADD & Continuous & \multirow[b]{2}{*}{RTC data addition} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \multirow[b]{2}{*}{Section 7.15.3} \\
\hline TADDP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline TSUB & Continuous & \multirow[b]{2}{*}{RTC data subtraction} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \multirow[b]{2}{*}{Section 7.15.4} \\
\hline TSUBP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline HTOS & Continuous & \multirow{4}{*}{Hour to second conversion} & \(\checkmark\) & & & & & & & & \multirow{4}{*}{Section 7.15.5} \\
\hline HTOSP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline DHTOS & Continuous & & \(\checkmark\) & & & & & & & & \\
\hline DHTOSP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline STOH & Continuous & \multirow{4}{*}{Second to hour conversion} & \(\checkmark\) & & & & & & & & \multirow{4}{*}{Section 7.15.6} \\
\hline STOHP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline DSTOH & Continuous & & \(\checkmark\) & & & & & & & & \\
\hline DSTOHP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline TRD & Continuous & \multirow[t]{2}{*}{Read RTC data} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \multirow[t]{2}{*}{Section 7.15.7} \\
\hline TRDP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline TWR & Continuous & \multirow[t]{2}{*}{Set RTC data} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \multirow[t]{2}{*}{Section 7.15.8} \\
\hline TWRP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline HOUR & Continuous & \multirow[t]{2}{*}{Hour meter} & \(\checkmark\) & \(\checkmark\) & *10 & \(\checkmark\) & \(\checkmark\) & & & & \multirow[t]{2}{*}{Section 7.15.9} \\
\hline DHOUR & Continuous & & \(\checkmark\) & \(\checkmark\) & *10 & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline \multicolumn{12}{|l|}{External Device} \\
\hline GRY & Continuous & \multirow{4}{*}{Decimal to gray code conversion} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & & & \multirow{4}{*}{Section 7.16.1} \\
\hline GRYP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & & & \\
\hline DGRY & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & & & \\
\hline DGRYP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & & & \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXU PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3u and FX3uc PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXU PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXon PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3uc PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3uc PLC Ver. 1.30 or later.
*12. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3uc PLCs Ver. 2.61 or later. The FX3Uc-32MT-LT-2 PLC is due to be upgraded later.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline & & &  & \[
\underset{\sim}{\underset{\sim}{\mathrm{N}}}
\] &  &  & \(\underset{\text { ¢ }}{\text { ¢ }}\) &  & \[
\begin{aligned}
& \text { T } \\
& \text { X }
\end{aligned}
\] & 끙 & \\
\hline \multicolumn{12}{|l|}{External Device} \\
\hline GBIN & Continuous & \multirow{4}{*}{Gray code to decimal conversion} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & & & \multirow{4}{*}{Section 7.16.2} \\
\hline GBINP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & & & \\
\hline DGBIN & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & & & \\
\hline DGBINP & Pulse & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & & & \\
\hline RD3A & Continuous & \multirow[t]{2}{*}{Read from dedicated analog block} & \(\checkmark\) & \(\checkmark\) & *10 & \(\checkmark\) & & & & & \multirow[b]{2}{*}{Section 7.16.3} \\
\hline RD3AP & Pulse & & \(\checkmark\) & \(\checkmark\) & *10 & \(\checkmark\) & & & & & \\
\hline WR3A & Continuous & \multirow[b]{2}{*}{Write to dedicated analog block} & \(\checkmark\) & \(\checkmark\) & *10 & \(\checkmark\) & & & & & \multirow[b]{2}{*}{Section 7.16.4} \\
\hline WR3AP & Pulse & & \(\checkmark\) & \(\checkmark\) & *10 & \(\checkmark\) & & & & & \\
\hline \multicolumn{12}{|l|}{Extension Function} \\
\hline EXTR_IN & Continuous & \multirow{4}{*}{External ROM function} & & & *10 & & & & & & \multirow[b]{2}{*}{Section 7.17.1} \\
\hline EXTRP_IN & Pulse & & & & *10 & & & & & & \\
\hline EXTR_OUT & Continuous & & & & *10 & & & & & & \multirow[b]{2}{*}{Section 7.17.2} \\
\hline EXTRP_OUT & Pulse & & & & *10 & & & & & & \\
\hline \multicolumn{12}{|l|}{Others} \\
\hline COMRD & Continuous & \multirow[t]{2}{*}{Read device comment data} & *9 & & & & & & & & \multirow[b]{2}{*}{Section 7.18.1} \\
\hline COMRDP & Pulse & & *9 & & & & & & & & \\
\hline RND & Continuous & \multirow[b]{2}{*}{Random number generation} & \(\checkmark\) & & & & & & & & \multirow[b]{2}{*}{Section 7.18.2} \\
\hline RNDP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline DUTY & Continuous & Timing pulse generation & *9 & & & & & & & & Section 7.18.3 \\
\hline CRC & Continuous & \multirow[b]{2}{*}{Cyclic redundancy check} & \(\checkmark\) & & & & & & & & \multirow[t]{2}{*}{Section 7.18.4} \\
\hline CRCP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline DHCMOV & Continuous & High speed counter move & \(\checkmark\) & & & & & & & & Section 7.18.5 \\
\hline \multicolumn{12}{|l|}{Block Data Operation} \\
\hline BK+ & Continuous & \multirow{4}{*}{Block data addition} & *9 & & & & & & & & \multirow{4}{*}{Section 7.19.1} \\
\hline BK+P & Pulse & & *9 & & & & & & & & \\
\hline DBK+ & Continuous & & *9 & & & & & & & & \\
\hline DBK+P & Pulse & & *9 & & & & & & & & \\
\hline BK- & Continuous & \multirow{4}{*}{Block data subtraction} & *9 & & & & & & & & \multirow{4}{*}{Section 7.19.2} \\
\hline BK-P & Pulse & & *9 & & & & & & & & \\
\hline DBK- & Continuous & & *9 & & & & & & & & \\
\hline DBK-P & Pulse & & *9 & & & & & & & & \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXU PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3U and FX3uc PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXU PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXon PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3uc PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3UC PLC Ver. 1.30 or later.
*12. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3Uc PLCs Ver. 2.61 or later. The FX3Uc-32MT-LT-2 PLC is due to be upgraded later.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline & & &  & \[
\underset{\sim}{\underset{\sim}{\sim}}
\] & \[
\begin{aligned}
& \pi \\
& \text { 즈N } \\
& \text { n }
\end{aligned}
\] &  & \[
\underset{\underset{\omega}{\boldsymbol{x}}}{\underset{\sim}{x}}
\] &  & \[
\begin{aligned}
& \text { T } \\
& \text { X }
\end{aligned}
\] & ツ & \\
\hline \multicolumn{12}{|l|}{Block Data Operation} \\
\hline BKCMP= & Continuous & \multirow{24}{*}{Block data compare} & *9 & & & & & & & & \multirow{24}{*}{Section 7.19.3} \\
\hline BKCMP> & Continuous & & *9 & & & & & & & & \\
\hline BKCMP< & Continuous & & *9 & & & & & & & & \\
\hline BKCMP<> & Continuous & & *9 & & & & & & & & \\
\hline BKCMP<= & Continuous & & *9 & & & & & & & & \\
\hline BKCMP>= & Continuous & & *9 & & & & & & & & \\
\hline BKCMP=P & Pulse & & *9 & & & & & & & & \\
\hline BKCMP>P & Pulse & & *9 & & & & & & & & \\
\hline BKCMP<P & Pulse & & *9 & & & & & & & & \\
\hline BKCMP<>P & Pulse & & *9 & & & & & & & & \\
\hline BKCMP<=P & Pulse & & *9 & & & & & & & & \\
\hline BKCMP>=P & Pulse & & *9 & & & & & & & & \\
\hline DBKCMP= & Continuous & & *9 & & & & & & & & \\
\hline DBKCMP> & Continuous & & *9 & & & & & & & & \\
\hline DBKCMP< & Continuous & & *9 & & & & & & & & \\
\hline DBKCMP<> & Continuous & & *9 & & & & & & & & \\
\hline DBKCMP<= & Continuous & & *9 & & & & & & & & \\
\hline DBKCMP>= & Continuous & & *9 & & & & & & & & \\
\hline DBKCMP=P & Pulse & & *9 & & & & & & & & \\
\hline DBKCMP>P & Pulse & & *9 & & & & & & & & \\
\hline DBKCMP<P & Pulse & & *9 & & & & & & & & \\
\hline DBKCMP<>P & Pulse & & *9 & & & & & & & & \\
\hline DBKCMP<=P & Pulse & & *9 & & & & & & & & \\
\hline DBKCMP>=P & Pulse & & *9 & & & & & & & & \\
\hline \multicolumn{12}{|l|}{Character String Control} \\
\hline STR & Continuous & \multirow{4}{*}{BIN to character string conversion} & *9 & & & & & & & & \multirow{4}{*}{Section 7.20.1} \\
\hline STRP & Pulse & & *9 & & & & & & & & \\
\hline DSTR & Continuous & & *9 & & & & & & & & \\
\hline DSTRP & Pulse & & *9 & & & & & & & & \\
\hline VAL & Continuous & \multirow{4}{*}{Character string to BIN conversion} & *9 & & & & & & & & \multirow{4}{*}{Section 7.20.2} \\
\hline VALP & Pulse & & *9 & & & & & & & & \\
\hline DVAL & Continuous & & *9 & & & & & & & & \\
\hline DVALP & Pulse & & *9 & & & & & & & & \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXU PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3U and FX3Uc PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXU PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXon PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3uc PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2Nc PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3UC PLC Ver. 1.30 or later.
*12. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3Uc PLCs Ver. 2.61 or later. The FX3UC-32MT-LT-2 PLC is due to be upgraded later.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline & & &  & ञ &  &  & \(\underset{\sim}{\text { ¢ }}\) & ハ & 끚 & - & \\
\hline \multicolumn{12}{|l|}{Character String Control} \\
\hline \$+ & Continuous & \multirow[b]{2}{*}{Link character strings} & \(\checkmark\) & & & & & & & & \multirow{2}{*}{Section 7.20.3} \\
\hline \$+P & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline LEN & Continuous & \multirow[b]{2}{*}{Character string length detection} & \(\checkmark\) & & & & & & & & \multirow[t]{2}{*}{Section 7.20.4} \\
\hline LENP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline RIGHT & Continuous & \multirow[t]{2}{*}{Extracting character string data from the right} & \(\checkmark\) & & & & & & & & \multirow[t]{2}{*}{Section 7.20.5} \\
\hline RIGHTP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline LEFT & Continuous & \multirow[t]{2}{*}{Extracting character string data from the left} & \(\checkmark\) & & & & & & & & \multirow[t]{2}{*}{Section 7.20.6} \\
\hline LEFTP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline MIDR & Continuous & \multirow[t]{2}{*}{Random selection of character strings} & \(\checkmark\) & & & & & & & & \multirow[t]{2}{*}{Section 7.20.7} \\
\hline MIDRP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline MIDW & Continuous & \multirow[t]{2}{*}{Random replacement of character strings} & \(\checkmark\) & & & & & & & & \multirow[t]{2}{*}{Section 7.20.8} \\
\hline MIDWP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline INSTR & Continuous & \multirow[b]{2}{*}{Character string search} & *9 & & & & & & & & \multirow[b]{2}{*}{Section 7.20.9} \\
\hline INSTRP & Pulse & & *9 & & & & & & & & \\
\hline \$MOV & Continuous & \multirow[b]{2}{*}{Character string transfer} & \(\checkmark\) & & & & & & & & \multirow[b]{2}{*}{Section 7.20.10} \\
\hline \$MOVP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline \multicolumn{12}{|l|}{Data Operation 3} \\
\hline FDEL & Continuous & \multirow[b]{2}{*}{Deleting data from tables} & *9 & & & & & & & & \multirow[b]{2}{*}{Section 7.21.1} \\
\hline FDELP & Pulse & & *9 & & & & & & & & \\
\hline FINS & Continuous & \multirow[b]{2}{*}{Inserting data to tables} & *9 & & & & & & & & \multirow[b]{2}{*}{Section 7.21.2} \\
\hline FINSP & Pulse & & *9 & & & & & & & & \\
\hline POP & Continuous & \multirow[t]{2}{*}{Shift last data read [FILO control]} & \(\checkmark\) & & & & & & & & \multirow[b]{2}{*}{Section 7.21.3} \\
\hline POPP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline SFR & Continuous & \multirow[b]{2}{*}{Bit shift right with carry} & \(\checkmark\) & & & & & & & & \multirow[b]{2}{*}{Section 7.21.4} \\
\hline SFRP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline SFL & Continuous & \multirow[b]{2}{*}{Bit shift left with carry} & \(\checkmark\) & & & & & & & & \multirow[b]{2}{*}{Section 7.21.5} \\
\hline SFLP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXU PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3u and FX3Uc PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXU PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXon PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXu and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3uc PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3uc PLC Ver. 1.30 or later.
*12. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3uc PLCs Ver. 2.61 or later. The FX3UC-32MT-LT-2 PLC is due to be upgraded later.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline & & &  & \[
\underset{\sim}{\underset{\sim}{x}}
\] &  & \[
\begin{aligned}
& \pi \\
& \underset{\vdots}{\underset{~}{n}}
\end{aligned}
\] & \[
\underset{\sim}{\boldsymbol{x}}
\] &  & \[
\begin{aligned}
& \pi \\
& \underset{z}{\chi} \\
& \text { in }
\end{aligned}
\] & \(\stackrel{7}{\circ}\) & \\
\hline \multicolumn{12}{|l|}{Data Comparison} \\
\hline LD= & Continuous & \multirow{12}{*}{Load compare} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \multirow{12}{*}{Section 7.22.1} \\
\hline LD> & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline LD< & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline LD<> & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline LD<= & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline LD>= & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline LDD= & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline LDD> & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline LDD< & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline LDD<> & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline LDD<= & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline LD>= & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline AND= & Continuous & \multirow{12}{*}{AND compare} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \multirow{12}{*}{Section 7.22.2} \\
\hline AND> & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline AND< & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline AND<> & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline AND<= & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline AND>= & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline ANDD= & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline ANDD> & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline ANDD< & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline ANDD<> & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline ANDD<= & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline ANDD>= & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXU PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3U and FX3Uc PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXU PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXon PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3UC PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2Nc PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3Uc PLC Ver. 1.30 or later.
*12. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3uc PLCs Ver. 2.61 or later. The FX3Uc-32MT-LT-2 PLC is due to be upgraded later.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline & & &  & \[
\underset{\sim}{\underset{\sim}{\mathrm{N}}}
\] &  &  & \(\underset{\sim}{\text { ¢ }}\) & ハ &  & ツ & \\
\hline \multicolumn{12}{|l|}{Data Comparison} \\
\hline OR= & Continuous & \multirow{12}{*}{OR compare} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \multirow{12}{*}{Section 7.22.3} \\
\hline OR> & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline OR< & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline OR<> & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline OR<= & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline OR>= & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline ORD= & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline ORD> & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline ORD< & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline ORD<> & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline ORD<= & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline ORD>= & Continuous & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline \multicolumn{12}{|l|}{Data Table Operation} \\
\hline LIMIT & Continuous & \multirow{4}{*}{Limit control} & \(\checkmark\) & & & & & & & & \multirow{4}{*}{Section 7.23.1} \\
\hline LIMITP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline DLIMIT & Continuous & & \(\checkmark\) & & & & & & & & \\
\hline DLIMITP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline BAND & Continuous & \multirow{4}{*}{Dead band control} & \(\checkmark\) & & & & & & & & \multirow{4}{*}{Section 7.23.2} \\
\hline BANDP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline DBAND & Continuous & & \(\checkmark\) & & & & & & & & \\
\hline DBANDP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline ZONE & Continuous & \multirow{4}{*}{Zone control} & \(\checkmark\) & & & & & & & & \multirow{4}{*}{Section 7.23.3} \\
\hline ZONEP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline DZONE & Continuous & & \(\checkmark\) & & & & & & & & \\
\hline DZONEP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline SCL & Continuous & \multirow{4}{*}{Scaling (coordinate by point data)} & \(\checkmark\) & & & & & & & & \multirow{4}{*}{Section 7.23.4} \\
\hline SCLP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline DSCL & Continuous & & \(\checkmark\) & & & & & & & & \\
\hline DSCLP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXU PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3u and FX3uc PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXU PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXon PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3uc PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3UC PLC Ver. 1.30 or later.
*12. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3uc PLCs Ver. 2.61 or later. The FX3UC-32MT-LT-2 PLC is due to be upgraded later.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline & & &  & \[
\underset{\sim}{\underset{\sim}{\mathrm{N}}}
\] & T
¢
2 & \(\xrightarrow{\text { T }}\) & \(\underset{\sim}{\underset{\sim}{x}}\) &  & \[
\begin{aligned}
& \text { గ } \\
& \text { 을 }
\end{aligned}
\] & T
¢
O & \\
\hline \multicolumn{12}{|l|}{Data Table Operation} \\
\hline DABIN & Continuous & \multirow{4}{*}{Decimal ASCII to BIN conversion} & *9 & & & & & & & & \multirow{4}{*}{Section 7.23.5} \\
\hline DABINP & Pulse & & *9 & & & & & & & & \\
\hline DDABIN & Continuous & & *9 & & & & & & & & \\
\hline DDABINP & Pulse & & *9 & & & & & & & & \\
\hline BINDA & Continuous & \multirow{4}{*}{BIN to decimal ASCII conversion} & *9 & & & & & & & & \multirow{4}{*}{Section 7.23.6} \\
\hline BINDAP & Pulse & & *9 & & & & & & & & \\
\hline DBINDA & Continuous & & *9 & & & & & & & & \\
\hline DBINDAP & Pulse & & *9 & & & & & & & & \\
\hline SCL2 & Continuous & \multirow{4}{*}{Scaling 2 (coordinate by X/Y data)} & \(\checkmark\) & & & & & & & & \multirow{4}{*}{Section 7.23.7} \\
\hline SCL2P & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline DSCL2 & Continuous & & \(\checkmark\) & & & & & & & & \\
\hline DSCL2P & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline \multicolumn{12}{|l|}{External Device Communication (Inverter Communication)} \\
\hline IVCK & Continuous & Inverter status check & \(\checkmark\) & *12 & & & & & & & Section 7.24 .1 \\
\hline IVDR & Continuous & Inverter drive & \(\checkmark\) & *12 & & & & & & & Section 7.24.2 \\
\hline IVRD & Continuous & Inverter parameter read & \(\checkmark\) & *12 & & & & & & & Section 7.24.3 \\
\hline IVWR & Continuous & Inverter parameter write & \(\checkmark\) & *12 & & & & & & & Section 7.24.4 \\
\hline IVBWR & Continuous & Inverter parameter block write & \(\checkmark\) & & & & & & & & Section 7.24.5 \\
\hline \multicolumn{12}{|l|}{Data Transfer 3} \\
\hline RBFM & Continuous & Divided BFM read & *9 & & & & & & & & Section 7.25 .1 \\
\hline WBFM & Continuous & Divided BFM write & *9 & & & & & & & & Section 7.25.2 \\
\hline \multicolumn{12}{|l|}{High Speed Processing 2} \\
\hline DHSCT & Continuous & High speed counter compare with data table & \(\checkmark\) & & & & & & & & Section 7.26.1 \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXU PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3U and FX3uc PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXU PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXon PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3uc PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3uc PLC Ver. 1.30 or later.
*12. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3UC PLCs Ver. 2.61 or later. The FX3UC-32MT-LT-2 PLC is due to be upgraded later.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Execution condition} & \multirow[b]{2}{*}{Function} & \multicolumn{8}{|c|}{Applicable PLCs} & \multirow[b]{2}{*}{Reference} \\
\hline Instruction name & & & ¢
㐅
¢
¢ & \[
\underset{\sim}{\underset{\sim}{\chi}}
\] & T
x &  & \(\underset{\sim}{\underset{\sim}{x}}\) &  & \[
\begin{aligned}
& \text { T } \\
& \text { X }
\end{aligned}
\] & \(\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}\) & \\
\hline \multicolumn{12}{|l|}{Extension File Register Control} \\
\hline LOADR & Continuous & \multirow{2}{*}{Load from ER} & \(\checkmark\) & \(\checkmark\) & & & & & & & \multirow{2}{*}{Section 7.27 .1} \\
\hline LOADRP & Pulse & & \(\checkmark\) & \(\checkmark\) & & & & & & & \\
\hline SAVER & Continuous & Save to ER & \(\checkmark\) & & & & & & & & Section 7.27.2 \\
\hline INITR & Continuous & \multirow[t]{2}{*}{Initialize R and ER} & \(\checkmark\) & & & & & & & & \multirow[t]{2}{*}{Section 7.27 .3} \\
\hline INITRP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline LOGR & Continuous & \multirow[b]{2}{*}{Logging R and ER} & \(\checkmark\) & & & & & & & & \multirow[b]{2}{*}{Section 7.27.4} \\
\hline LOGRP & Pulse & & \(\checkmark\) & & & & & & & & \\
\hline RWER & Continuous & \multirow{2}{*}{Rewrite to ER} & *11 & \(\checkmark\) & & & & & & & \multirow{2}{*}{Section 7.27.5} \\
\hline RWERP & Pulse & & *11 & \(\checkmark\) & & & & & & & \\
\hline INITER & Continuous & \multirow[b]{2}{*}{Initialize ER} & *11 & & & & & & & & \multirow[b]{2}{*}{Section 7.27.6} \\
\hline INITERP & Pulse & & *11 & & & & & & & & \\
\hline \multicolumn{12}{|l|}{FX3U-CF-ADP} \\
\hline FLCRT & Continuous & File create / check & *13 & & & & & & & & Section 7.28 .1 \\
\hline FLDEL & Continuous & File delete / CF card format & *13 & & & & & & & & Section 7.28.2 \\
\hline FLWR & Continuous & Data write & *13 & & & & & & & & Section 7.28.3 \\
\hline FLRD & Continuous & Data read & *13 & & & & & & & & Section 7.28.4 \\
\hline FLCMD & Continuous & CF-ADP command & *13 & & & & & & & & Section 7.28.5 \\
\hline FLSTRD & Continuous & CF-ADP status read & *13 & & & & & & & & Section 7.28.6 \\
\hline
\end{tabular}
*1. The instruction is provided in the FXU PLC Ver. 2.30 or later.
*2. The instruction is provided in the FXU PLC Ver. 3.07 or later.
*3. The 32-bit operations are provided in the FX3U and FX3Uc PLCs Ver. 2.20 or later.
*4. The instruction is provided in the FXU PLC Ver. 2.10 or later.
*5. The instruction is provided in the FXon PLC Ver. 1.20 or later.
*6. Though programmed, this instruction is not valid because the FX1NC or FX2NC PLC does not have a volume to read out under this instruction.
*7. The instruction is provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*8. The instruction is not provided in the FXU and FX2C PLCs Ver. 3.30 or later.
*9. The instruction is provided in the FX3uc PLC Ver. 2.20 or later.
*10. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.
*11. The instruction is provided in the FX3Uc PLC Ver. 1.30 or later.
*12. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*13. The instruction is provided in the FX3U and FX3UC PLCs Ver. 2.61 or later. The FX3Uc-32MT-LT-2 PLC is due to be upgraded later.

\section*{3. Configuration of Instruction}

This chapter explains the configuration of sequence instructions.

\subsection*{3.1 Expression and Operation Form of Sequence Instructions}

\section*{Instructions and arguments}
- Each instruction is given a specific name that indicates its contents.
"SMOV" (shift move) is one of such examples.
- Each instruction consists of the arguments that indicate input and output data used in that particular instruction.

: This symbol indicates an argument called "source" that does not change its contents by the execution of an instruction.This symbol indicates an argument called "destination" that changes its contents by the execution of an instruction.
\(\mathrm{m}, \mathrm{n} \quad\) : Symbols " m " and " n " indicate an argument that belongs to neither the source nor the destination.

\section*{Applicable devices of arguments}
- An input variable (label or device) specifies the applicable device of an argument.
- Bit devices such as X, Y, M and S may be handled.
- These bit devices may be combined to form \(\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}\) and KnS to be handled as numerical data. \(\rightarrow\) FX Structured Programming Manual (Device \& Common)
- The current value register of data register D , timer T and counter C may be handled.
- When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data. A 32-bit counter can be specified directly as it is a 32-bit long device. Use a global label to specify a device.
When handling 32-bit data, a 16-bit data register \(D\) is a combination of data registers of two consecutive points.
For example, where data register D0 is defined by a label as the argument of a 32-bit instruction, the 32-bit data of (D1, D0) is handled. (D1 is high order 16 bits and D 2 is low order 16 bits.) Where the current value registers of \(T\) and \(C\) are used as general data registers, they are handled in the same manner.

\section*{Instruction mode and Operation form}

Instructions are divided into "16-bit instructions" and "32-bit instructions" depending on the size of values they handle. The instructions also have characteristics of either a "continuous execution" or "pulse execution" depending on the form of execution.
Some of the instructions have all these combinations.
1. 16-bit and 32-bit instructions
- An applied instruction that handles a numeric value is either 16 bits or 32 bits depending on the bit length of the numeric value data.


Instruction that transfers the D10 contents to D12

Instruction that transfers the contents of (D21, D20) to (D23, D22).
Label 1 and label 2 define D20 and D22, respectively.
- Where it is a 32-bit instruction, "D" is added to express as "DMOV".
- The specified device can be an even number or an odd number and is used in combination with the device of the next higher number. (In the case of word devices such as T, C and D)
To avoid confusion, it is suggested to give an even number to the low order device specified by the argument of a 32-bit instruction.
- A 32-bit counter is of the size of 32 bits with this device alone, enabling to directly specify as an argument.

\section*{2. Pulse execution and continuous execution instructions}

\section*{Pulse operation}

In an example shown on the right, when X000 changes from OFF to ON, the instruction is executed only once. No other execution takes place.


It is therefore suggested that the instructions of pulse operation be used if not executed all the time.
Symbol "P" indicates that the instruction is of pulse operation.
The same is applied to DMOVP.

\section*{Continuous operation}

The instruction in the figure on the right is of continuous operation. It is executed in each cycle of operation while X 001 is ON .


Where continuous execution instructions such as INC and DEC are used, some instructions have the destination contents be changed in each cycle of operation.

In either cases, the instruction is not executed if the drive input X000 or X001 is OFF. The destination does not change either if the instruction is not specified otherwise.

\subsection*{3.2 Labels}

\section*{Types of labels}

Labels are either global labels or local labels.
- Global labels are available for use in program blocks and function blocks.
- Local labels are available for use only in a declared program part.

\section*{Label classes}

The label classes indicate how they are used in which program parts.
The table below shows the label classes.
\begin{tabular}{l|l|l|l|c}
\hline \multirow{2}{*}{ Label class } & & \multicolumn{2}{|c}{ Program parts available for use } \\
\hline & & \begin{tabular}{c} 
Program \\
block
\end{tabular} & \begin{tabular}{c} 
Function
\end{tabular} & \begin{tabular}{c} 
Function \\
block
\end{tabular} \\
\hline VAR_GLOBAL & A common label that can be used in all program parts. & \(\checkmark\) & & \(\checkmark\) \\
\hline VAR_GROBAL_CONSTANT & A common constant that can be used in all program parts. & \(\checkmark\) & & \(\checkmark\) \\
\hline VAR & \begin{tabular}{l} 
A label used within declared program parts. It cannot be used \\
in other program parts.
\end{tabular} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline VAR_CONSTANT & \begin{tabular}{l} 
A constant used within declared program parts. It cannot be \\
used in other program parts.
\end{tabular} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline VAR_INPUT & \begin{tabular}{l} 
A label that receives values. It cannot be changed within \\
program parts.
\end{tabular} & & \(\checkmark\) & \(\checkmark\) \\
\hline VAR_OUTPUT & A label for output from a function block. & & \(\checkmark\) \\
\hline VAR_IN_OUT & \begin{tabular}{l} 
A local label that receives values and outputs from a program \\
part.
\end{tabular} & & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Definition of labels}

Before using a label, the label needs to be defined. An error is generated if attempting to convert (compile) a program where the label is not defined.
- Where defining a global label, the label name, class, data type and device are interrelated.
- Where defining a local label, the label name, class and data type are set.

The user does not have to specify a device when using a local label. A device is allocated automatically during the compilation.
The following is an example of setting the label VAR_D10 and VAR_D20 of a DMOV instruction.

- When using as a global label:

Set the class, label name and data type and device or address.

- When using as a local label:

Set the class, label name and data type.


\section*{Expressing constants}

The following describes the method of expression when setting constant to a label.
\begin{tabular}{l|l|l}
\hline \multicolumn{1}{c|}{ Type of constant } & \multicolumn{1}{c}{ Method of expression } & \multicolumn{1}{c}{ Example } \\
\hline Bit & Enter either "FALSE" or "TRUE", or either "0" or "1". & TRUE, FALSE \\
\hline Binary number & Add "2\#" before the binary number. & \(2 \# 0010,2 \# 01101010\) \\
\hline Octal number & Add "8\#" before the octal number. & \(8 \# 0,8 \# 337\) \\
\hline Decimal number & \begin{tabular}{l} 
Enter the decimal number directly. Or, add "K" before the decimal \\
number
\end{tabular} & \(123, \mathrm{~K} 123\) \\
\hline Hexadecimal number & Add "16\#" or "H" before the hexadecimal number. & 16\#FF, HFF \\
\hline Real number & Enter the real number directly. Or, add "E" before the real number. & 2.34, E2.34 \\
\hline Character string & \begin{tabular}{l} 
Put the character string between single quotations (") or double \\
quotations ("").
\end{tabular} & 'ABC', "ABC" \\
\hline
\end{tabular}

\section*{Data type}

The data type of label is either basic data type or universal data type.
- The table below lists the basic data types.
\begin{tabular}{l|l|l|l}
\hline \multicolumn{1}{c|}{ Data type } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Value range } & \multicolumn{1}{c}{ Bit length } \\
\hline Bit & Boolean data & 0(FALSE), 1(TRUE) & 1 bit \\
\hline Word [signed] & Integer & -32768 to 32767 & 16 bits \\
\hline \begin{tabular}{l} 
Double Word [signed]
\end{tabular} & Double precision integer & \begin{tabular}{l}
-2147483648 to \\
2147483647
\end{tabular} & 32 bits \\
\hline \begin{tabular}{l} 
Word [unsigned]/Bit String \\
[16-bit]
\end{tabular} & 16-bit data & 0 to 65535 & 16 bits \\
\hline \begin{tabular}{l} 
Double Word [unsigned]/Bit \\
String [32-bit]
\end{tabular} & 32 -bit data & 0 to 4294967295 & 32 bits \\
\hline FLOAT (Single Precision) & Real number & \begin{tabular}{l}
\(\mathrm{E} \pm 1.175495^{-38}\) to \\
\(\mathrm{E} \pm 3.402823+38\) \\
\((\) Number of significant figures: 6\()\)
\end{tabular} & 32 bits \\
\hline String & Character string & Time value & \begin{tabular}{l} 
T\#-24d-0h31m23s648.00ms to \\
T\#24d20h31m23s647.00ms
\end{tabular} \\
\hline Time & & 32 bits \\
\hline
\end{tabular}
- The universal data type is the data type of a label that puts together several basic data types. The data type name starts with "ANY".

*1 Refer to the following manual for details.
\(\rightarrow\) Q/FX Structured Programming Manual (Fundamentals)

\subsection*{3.3 Devices and Addresses}

A device is expressed by a device or an address.

\section*{Device}

The device is expressed by a device name and a device number.


\section*{Address}

An address is expressed by a method defined by IEC61131-3.
It is expressed as follows according to IEC61131-3.
\begin{tabular}{c|c|c|c|c|c|c}
\hline Top & \multicolumn{2}{|c|}{\begin{tabular}{c} 
1st character: \\
position
\end{tabular}} & \multicolumn{2}{|c|}{ 2nd character: size } & \begin{tabular}{c} 
3rd character and \\
onwards: classification
\end{tabular} & \multicolumn{1}{c}{ Number } \\
\hline \multirow{3}{*}{\(\%\)} & I & Input & (Omitted) & Bit & \begin{tabular}{l} 
These are the numbers for \\
detailed classification. This \\
number is separated by "." \\
(period) from subsequent \\
numbers. \\
This number may be \\
omitted.
\end{tabular} & \begin{tabular}{l} 
The number that indicates a \\
device number (decimal \\
number).
\end{tabular} \\
\cline { 2 - 6 } & Q & Output & X & Internal & W & Bit
\end{tabular}

- Position of memory area

This is the first classification to identify the position of memory area either by input, output and internal where data is allocated.
\(\begin{array}{ll}\mathrm{X}(\mathrm{X} \text { device) } & : I \text { (Input) } \\ Y(Y \text { device }) & : Q \text { (Output) } \\ \text { Device other than above } & : M \text { (Internal) }\end{array}\)
- Size

The principle of expression method corresponding to device (method of expression for MELSEC) is as
follows.
Bit device :X (Bit)
Word device :W (Word), D (Double word)
- Classification

This is the second classification to identify the types of device that cannot be classified only by the above position and size.
\(X\) or \(Y\) of a device does not classify.
Refer below for the expression corresponding to the device expression.

\subsection*{3.4 EN and ENO}

The execution control is available for an instruction with "EN".
- EN is for entering an execution condition of instruction.
- ENO is for outputting the state of execution of instruction.
- The table below shows the relationships between the EN and ENO and the contents of operation results.
\begin{tabular}{c|l|l}
\hline \multicolumn{1}{c|}{ EN } & \multicolumn{1}{|c}{ ENO } & \multicolumn{1}{|c}{ Operation results } \\
\hline \multirow{2}{*}{ TRUE(Executing operation) } & TRUE(Without operation error) & Operation output value \\
\cline { 2 - 3 } & FALSE(With operation error) & Undefined value \\
\hline FALSE(Stopping operation) & FALSE & Undefined value \\
\hline
\end{tabular}


In the instruction above,
instruction MOV is executed only when X000 is TRUE.

\section*{4. How to Read Explanation of Instructions}

The following shows one of the pages that explains the instructions.

* The above is different from the actual page, as it is provided for explanation only.
1) Indicates the corresponding chapter, section, subsection, number and instruction name.
2) Indicates the PLCs that support the instruction.
\begin{tabular}{c|l}
\hline Item & \multicolumn{1}{c}{ Descriptions } \\
\hline\(\bigcirc\) & Supported by PLCs from the first release. \\
\hline\(\Delta\) & \begin{tabular}{l} 
The support conditions depend on the versions. \\
"Cautions" explains the applicable versions.
\end{tabular} \\
\hline\(\times\) & This particular series PLCs do not support the instruction. \\
\hline
\end{tabular}
3) Indicates the data length, operation form and expression of each instruction.
\begin{tabular}{c|l}
\hline Item & \multicolumn{1}{c}{ Descriptions } \\
\hline 16 bits & An instruction of 16-bit data length \\
\hline 32 bits & An instruction of 32-bit data length \\
\hline Continuous & \begin{tabular}{l} 
This is a continuous execution instruction that is executed in each cycle of \\
operation while the execution condition (EN) is being satisfied.
\end{tabular} \\
\hline Pulse & \begin{tabular}{l} 
This is a pulse execution instruction that is executed only when the execution \\
condition (EN) changes from the state of not established to the state of established.
\end{tabular} \\
\hline Structured ladder & Indicates a structured ladder language instruction. \\
\hline ST & Indicates a ST language instruction. \\
\hline
\end{tabular}

Some PLCs do not support "16 bits / 32 bits" or "continuous / pulse" depending on their versions. Refer to "Cautions".
4) Indicates the names of the input and output variables of the instruction and the contents and data type of each variable.
Refer to the following manual for details of data type.
\(\rightarrow\) Q/FX Structured Programming Manual (Fundamentals)
5) Applicable devices
"-" indicates the devices that can be used in an instruction.
Devices marked " \(\mathbf{\Delta}\) " have restrictions in use.
Refer to "Cautions".
6) Function and operation explanation

Explains the functions that the instruction is responsible for.
This explanation uses an example of structured ladder language.
7) Summarizes the notes before using the instruction.
8) Program example

Explains a program example in each language.

\section*{5. Basic Instruction}

This chapter introduces the instructions and operators for the structured project corresponding to the basic instructions for the simple project.
Refer to the following manual for variable, instruction and data type.
\(\rightarrow\) Q/FX Structured Programming Manual (Fundamentals)

\subsection*{5.1 LD, LDI, AND, ANI, OR, OR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

The LD and LDI instructions are contacts connected to bus lines.
The AND and ANI instructions connect one contact in series.
The OR and ORI instructions connect one contact in parallel.
1. Format and operation, execution form

2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline Input variable & - & Variable that are applicable to AND and OR input. & Bit \\
\hline Output variable & - & Result of operation of AND and OR. & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Instruction} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Special Unit
\[
\mathbf{U} \square \mathbf{I G} \square
\]}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & & V & Z & Modifier & K & H & & & \\
\hline LD & \(\bullet\) & \(\bullet\) & - & - & - & - & 41 & & & & & & & & & & & & & 42 & & & & & \\
\hline LDI & - & - & - & - & - & - & 41 & & & & & & & & & & & & & -2 & & & & & \\
\hline AND & \(\bullet\) & - & - & - & - & - & 41 & & & & & & & & & & & & & 42 & & & & & \\
\hline ANI & - & - & - & - & - & - & A1 & & & & & & & & & & & & & 42 & & & & & \\
\hline OR & \(\bullet\) & - & - & - & - & - & 41 & & & & & & & & & & & & & 42 & & & & & \\
\hline ORI & \(\bullet\) & - & \(\bullet\) & - & - & - & 41 & & & & & & & & & & & & & (2) & & & & & \\
\hline
\end{tabular}
© : Refer to "Cautions".

\section*{Function and operation explanation}
1. LD (Initial logical operation of NO (normally open) contacts)
[Structured ladder]
[ ST ]


Y000:= X000;
timing chart
X000

Y000

2. LDI (Initial logical operation of NC (normally closed) contact type)
[Structured ladder] [ ST ]


Y000:= NOT X000;
timing chart
X000

3. AND (Serial connection of NO (normally open) contacts)
[Structured ladder]

timing chart

4. ANI (Serial connection of NC (normally closed) contacts)
[Structured ladder]
[ST]

Y003:= X002 AND NOT X000;
timing chart

5. OR (Parallel connection of NO (normally open) contacts)
[Structured ladder]

timing chart

6. ORI (Parallel connection of NC (normally closed) contacts)
[Structured ladder]

timing chart


\section*{7. Relationship with AND (...)}


The parallel connection by OR or ORI instruction is connected to the preceding LD or LDI instruction in principle. The "AND (...) after" instruction, however, the parallel connection by OR or ORI instruction is connected to the second preceding LD or LDI instruction.

\section*{8. Indexing}

Devices used in LD, LDI, AND, ANI, OR and ORI can be indexed with index registers (V, Z).
(State relays (S), special auxiliary relays (M), 32-bit counters (C) or "D \(\square . b\) " cannot be indexed.) Applicable only to the FX3U and FX3uc PLCs.
[Structured ladder]
[ ST ]


Y000:= X000 OR X001V0

When a used devices is an input ( X ) or output \((\mathrm{Y})\), the value of an index register ( V or Z ) is converted into an octal number, and then added.
Example: When the value of V0 is "10", the LD contact is set to ON (becomes conductive) or OFF (becomes nonconductive) by X013.
9. Bit specification of data register (D)

A bit in data register (D) can be specified as a device used in LD, LDI, AND, ANI, OR and ORI. Applicable only to the FX3U and FX3Uc PLCs.
[Structured ladder]
[ST]


When specifying a bit in data register, input "." after a data register (D) number, and then input a bit number ( 0 to \(F\) ) consecutively. Only 16-bit data resister is applicable.
Specify a bit number as "0 1, 2, ..., 9, A, B, ..., F" from the least significant bit. LD contact is set to ON (becomes conductive) or OFF (becomes nonconductive) by the bit 3 of D0.

\section*{Cautions}
1) Some restrictions to applicable devices
©1: The FX3U and FX3Uc PLCs only are applicable.
42: Only the \(F^{2} 3 \cup\) and \(F X_{3} \cup C\) PLCs are capable of indexing applicable devices. The following devices cannot be indexed.
- Special auxiliary relays (M)
- 32-bit counters (C)
- State (S)
- Word bit specification "D \(\square . b\)

\section*{Errors}
1) When an I/O number used in LD, LDI, AND, ANI, OR or ORI instruction does not exist due to indexing, M8316 (Non-existing I/O specification error) turns ON. (Applicable to the FX3U and FX3UC PLCs only)
2) When the device number of a device ( \(M, T\) or \(C\) ) other than \(I / O\) does not exist due to indexing, an operation error (error code: 6706) occurs. (Applicable to the FX3U and FX3uc PLCs only)

\subsection*{5.2 LDP, LDF, ANDP, ANDF, ORP, ORF}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

Contact instructions LDP, ANDP, and ORP detect the rising edge, and become active during one operation cycle only at the rising edge of a specified bit device (that is, when the bit device turns ON from OFF).
Contact instructions LDF, ANDF and ORF detect the falling edge, and become active during one operation cycle only at the falling edge of a specified bit device (that is, when the bit device turns OFF from ON).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & Structured ladder & ST \\
\hline LDP & \begin{tabular}{l}
Pulse \\
(detecting rising pulse)
\end{tabular} &  & LDP(EN,s); \\
\hline LDF & \begin{tabular}{l}
Pulse \\
(detecting falling pulse)
\end{tabular} &  & LDF(EN,s); \\
\hline ANDP & Pulse (detecting rising pulse) &  & ANDP(EN,s); \\
\hline ANDF & \begin{tabular}{l}
Pulse \\
(detecting falling pulse)
\end{tabular} &  & ANDF(EN,s); \\
\hline ORP & Pulse (detecting rising pulse) &  & ORP(EN,s); \\
\hline ORF & \begin{tabular}{l}
Pulse \\
(detecting falling pulse)
\end{tabular} &  & ORF(EN,s); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & \begin{tabular}{l} 
LDP,LDF: \\
Except LDP, LDF: BOOL
\end{tabular} \\
\cline { 2 - 4 } \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Applicable devices & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Instruction} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Special Unit
\[
\text { U } \square \mathbf{I G} \square
\]}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\) \\
\(\square "\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & \(\mathbf{Y}\) & M \(\mathbf{T}\) & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & & V & Z & Modifier & K & H & & & \\
\hline LDP & \(\bullet\) & - & - & - & - & - & 41 & & & & & & & & & & & & & & & & & & \\
\hline LDF & \(\bullet\) & - & - & - & - & - & -1 & & & & & & & & & & & & & & & & & & \\
\hline ANDP & - & - & - & - & - & - & 41 & & & & & & & & & & & & & & & & & & \\
\hline ANDF & - & - & - & - & - & - & A1 & & & & & & & & & & & & & & & & & & \\
\hline ORP & - & - & - & - & - & - & 41 & & & & & & & & & & & & & & & & & & \\
\hline ORF & \(\bullet\) & - & & - & - & - & -1 & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}
1. LDP, ANDP, ORP (Initial logical operation of rising edge pulse, serial connection and parallel connection)

timing chart


In the example shown above, M0 or M1 is ON during only one operation cycle when X000 to X002 turn ON from OFF.
2. LDF, ANDF, ORF (Initial logical operation of falling/trailing edge pulse, serial connection and parallel connection)

```

IF (LDF(TRUE,X0)) OR (LDF(TRUE,X001)) THEN
M0:= TRUE;
END_IF;
M1:= ANDF(M8000,X002);

```
timing chart


In the example shown above, M0 or M1 is ON during only one operation cycle when X000 to X002 turn OFF from ON.

\section*{3. Bit specification of data register (D)}

A bit data register (D) can be specified as a device used in LDP, LDF, ANDP, ANDF, ORP and ORF instructions.
[Structured ladder]


When specifying a bit in data register, input "." after a data register (D) number, and then input a bit number ( 0 to F ) consecutively.
Only 16-bit data resister is applicable.
Specify a bit number as " \(01,2, \ldots, 9, \mathrm{~A}, \mathrm{~B}, \ldots\), F" from the least significant bit.
Example: In the example shown on the left, LDP contact turns ON (becomes conductive) or OFF (becomes nonconductive) when the bit 3 of D0 turns ON or OFF.

\section*{4. Output drive side}

The following two circuits offer the same operation.
<OUT instruction> <Pulse instruction>


In each circuit, M6 is ON during only one operation cycle when X010 turns ON from OFF.
<Rising edge detection> <Pulse instruction (applied instruction)>


In each circuit, MOV instruction is executed only once when X020 turns ON from OFF.

\section*{5. Differences in the operation caused by auxiliary relay (M) numbers}

Not supported by the FX1s, FX1N or FX1NC PLC.
When an auxiliary relay ( M ) is specified as a device in LDP, LDF, ANDP, ANDF, ORP and ORF instructions, the operation varies depending on the device number range as shown in the figure below.
<M0 to M2799, M3072 to M7679> (M0 to M2799 for the FX2N and FX2NC PLCs)
 to MO are activated.
- The contacts 1) to 3) detect the rising edge of M0.
- Because of LD instruction, the contact 4 ) is conductive while MO is ON
<M2800 to M3071>


From M2800 driven by X000, the program is divided into the upper block (block A) and the lower block (block B). In each of the blocks A and \(B\), only the first contact which detects the rising or falling edge is activated.
Because of LD instruction, the contact in the block C is conductive while M2800 is ON.
By utilizing these characteristics, "transition of state by same signal" in a step ladder circuit can be efficiently programmed.

\section*{Cautions}
1) When LDP, LDF, ANDP, ANDF, ORP or ORF instruction programmed in a same step is executed two or more times within one operation cycle, the operation is as follows.

Programs executed two or more times
- Program between FOR and NEXT instructions
- Program which executes a same subroutine program from two or more CALL instructions during one operation cycle.
- Program which jumps to a label (P) in a smaller step number by CJ instruction.

Operation
- When a device turns ON from OFF 1st time :LDP, ANDP or ORP instruction turns ON.


2nd time and later :When the device status is same as the time when the instruction was executed last, the instruction turns OFF.
- When a device turns OFF from ON

1st time :LDF, ANDF or ORF instruction turns ON.
2nd time and later :When the device status is same as the time when the instruction was executed last, the instruction turns OFF.
2) When write during RUN is completed for a circuit including an instruction for falling edge pulse (LDF, ANDF, or ORF instruction), the instruction for falling edge pulse is not executed without regard to the ON/ OFF status of the target device of the instruction for falling edge pulse.
When write during RUN is completed for a circuit including an instruction for falling edge pulse (PLF instruction), the instruction for falling edge pulse is not executed without regard to the ON/OFF status of the operation condition device.
It is necessary to set to ON the target device or operation condition device once and then set it to OFF for executing the instruction for falling edge pulse.
3) When write during RUN is completed for a circuit including an instruction for rising edge pulse, the instruction for rising edge pulse is executed if a target device of the instruction for rising edge pulse or the operation condition device is ON.
Target instructions for rising edge pulse: LDP, ANDP, ORP and pulse operation type applied instructions (such as MOVP)
\begin{tabular}{c|c|c}
\hline \begin{tabular}{c} 
Contact ON/OFF status (while write \\
during RUN is executed)
\end{tabular} & Instruction for rising edge pulse & Instruction for falling edge pulse \\
\hline OFF & Not executed & Not executed \\
\hline ON & Executed \(^{* 1}\) & Not executed \\
\hline
\end{tabular}
*1. PLS instruction is not executed.
4) Some restrictions to applicable devices

A1: The FX3U and FX3UC PLCs only are applicable.

\subsection*{5.3 OUT (Excluding timers and counters)}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline O & O & O & O & O & O & O & O \\
\hline
\end{tabular}

\section*{Outline}

This instruction outputs the operation result up to the execution of the OUT instruction to the specified device.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & Structured ladder & ST \\
\hline OUT & Continuous &  & \begin{tabular}{l}
OUT(EN,d); \\
Or an assignment statement \\
Example: \\
OUT(X000,Y000); \\
When using an assignment statement.
Y000:=X000;
\end{tabular} \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Bit \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Target variable
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Instruction} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{6}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{5}{|l|}{System User} & \multirow[t]{2}{*}{Special Unit U \(\square\) IG \(\square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square "\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & c & c & & R & & V & Z & Modifier & K & H & & & \\
\hline OUT & & - & \(\bullet\) & & \(\bullet\) & A1 & & & & & & & & & & & & & \(\pm 2\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}
1. When a bit device is used

A device described in OUT instruction turns ON or OFF according to the driven contact status.
Parallel OUT instructions can be used consecutively as many times as necessary.
In the program example shown below, OUT M100 and OUT M101 are parallel.
If two or more OUT instructions are executed for a same device number, however, the double output (double coil) operation is resulted.

[ST]
OUT(X000,Y000);
IF NOT X001 THEN
OUT(TRUE,M100); OUT(TRUE,M101);
END_IF;

For assignment statement
Y000:= X000;
M100:= NOT X001;
M101:= NOT X001;
timing chart


\section*{2. Indexing}

Devices used in OUT instruction can be indexed with index registers ( V and Z ).
(State relays (S), special auxiliary relays (M), or "D \(\square . b\) " cannot be indexed.)
Applicable only to the FX3U and FX3Uc PLCs.
[Structured ladder]
[ST]


OUT(X000,Y000ZO);
For assignment statement Y000Z0:= X000;

When a used devices is an input ( \(X\) ) or output ( Y ), the value of an index register ( V or \(Z\) ) is converted into an octal number, and then added.
Example: When the value of Z 0 is " 20 ", Y024 turns ON or OFF.
3. Bit specification of data register (D)

A bit in data register (D) can be specified as a device used in OUT instruction.
Applicable only to the FX3U and FX3UC PLCs.
[Structured ladder]

[ST]

OUT(X000,D0.3);
For assignment statement D0.3:= X000;

When specifying a bit in data register, input "." after a data register ( D ) number, and then input a bit number ( 0 to F) consecutively.
Only 16-bit data resister is applicable.
Specify a bit number as " \(01,2, \ldots, 9, A, B\), ..., F" from the least significant bit.
Example: In the example shown on the left, the bit 3 of DO turns ON or OFF when X000 turns ON or OFF.

\section*{Cautions}
1) Some restrictions to applicable devices

A1: The FX3U and FX3UC PLCs only are applicable.
42: Only the FX3U and FX3Uc PLCs are capable of indexing applicable devices. The following devices cannot be indexed.
- Special auxiliary relays (M)
- State (S)
- Word bit specification "D \(\square . b "\)
2) The following instructions are used to operate the timer and counter in a structured program. Note that they are not operable in the OUT instruction.
\begin{tabular}{l|c}
\hline \multicolumn{1}{c|}{ Instruction name } & Reference \\
\hline OUT_T & Section 5.4.1 \\
\hline OUT_C & Section 5.5.1 \\
\hline OUT_C_32 & Section 5.5.1 \\
\hline
\end{tabular}

\section*{Errors}
1) When a \(Y\) number used in OUT instruction does not exist due to indexing, M8316 (Non-existing I/O specification error) turns ON. (Applicable to the FX3U and FX3UC PLCs only)
2) When the device number of a device ( \(\mathrm{M}, \mathrm{T}, \mathrm{C}\) ) other than \(\mathrm{I} / \mathrm{O}\) does not exist due to indexing, an operation error (error code: 6706) occurs. (Applicable to the FX3U and FX3Uc PLCs only.)

\section*{Program example}
1. When using bit device
[Structured ladder]


\section*{OUT(X5,Y33);}

IF X6 THEN
OUT(TRUE,Y34);
OUT(TRUE,Y35);
END_IF;
2. When specifying bit of word device
[Structured ladder]

[ST ]
OUT(X5,D0.5);
IF X6 THEN
OUT(TRUE,D0.6);
OUT(TRUE,D0.7);
END IF;

\subsection*{5.4 Operating Timer}

\subsection*{5.4.1 OUT_T}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline O & O & O & O & O & O & O & O \\
\hline
\end{tabular}

\section*{Outline}

An output is generated when a set time expires.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline OUT_T & 16 bits & Continuous &  & OUT_T(EN, TCoil, TValue); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
\multirow{2}{*}{} \\
variable
\end{tabular}} & EN & Execution condition & TCoil \\
\cline { 2 - 4 } & TValue & Target timer & Bimer set value \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U■IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\)
\(\square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline TCoil & & & \(\bullet\) & & & & & & & & & & & & & & & & & & & & \\
\hline TValue & & & & & & & & & & & & & \(\bullet\) & -1 & & & & 42 & \(\bullet\) & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. OUT_T operation}
1) When the operation result up to the OUT_T operation is ON, the timer coils is ON and counts until the set value is reached. When the set time expires (or reaches the set count), the contacts become as follows:
\begin{tabular}{l|c}
\hline NO (normally open) contact & Timer is conductive. \\
\hline NC (normally closed) contact & Timer is not conductive. \\
\hline
\end{tabular}
2) When the operation result up to the OUT_T operation turns OFF from ON, the timer parameters become as follows.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Timer type} & \multirow[b]{2}{*}{Timer coil} & \multirow[b]{2}{*}{Current timer value} & \multicolumn{2}{|r|}{Before time-up} & \multicolumn{2}{|c|}{After time-up} \\
\hline & & & NO (normally open) contact & NC (normally closed) contact & NO (normally open) contact & \[
\begin{aligned}
& \text { NC (normally } \\
& \text { closed) } \\
& \text { contact }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
100 ms timer \\
0.1 to 3276.7 seconds
\end{tabular} & \multirow{3}{*}{OFF} & \multirow{3}{*}{0} & \multirow{3}{*}{Nonconductive} & \multirow{3}{*}{Conductive} & \multirow{3}{*}{Nonconductive} & \multirow{3}{*}{Conductive} \\
\hline 10 ms timer 0.01 to 327.67 seconds & & & & & & \\
\hline \[
\begin{aligned}
& \hline 1 \mathrm{~ms} \text { timer }{ }^{\star 1} \\
& 0.001 \text { to } 32.767 \text { seconds }
\end{aligned}
\] & & & & & & \\
\hline 100 ms integrating timer\({ }^{*} 2\) 0.1 to 3276.7 seconds & \multirow[t]{2}{*}{OFF} & \multirow[t]{2}{*}{Holding current value} & \multirow[t]{2}{*}{Nonconductive} & \multirow[t]{2}{*}{Conductive} & \multirow[t]{2}{*}{Nonconductive} & \multirow[t]{2}{*}{Conductive} \\
\hline 1 ms integrating timer \({ }^{*}{ }^{2}\) 0.001 to 32.767 seconds & & & & & & \\
\hline
\end{tabular}
*1. Not supported by the FX2N, FX2NC, FX1N, FX1NC, FXU, FX2C, FX0 or FX0s PLC.
*2. Not supported by the FX1s, FXon, FX0 or FXos PLC.
2. Clearing integrating timer

After the set time expires, the current value of the integrating timer is cleared and the contacts are turned OFF by the RST.

\section*{3. Timer set value}

The set value can be specified directly by a decimal number (K) or indirectly using a data register (D) or extension register ( R ).
Indirect setting by the extension register (R) is applicable only to the FX3u and FX3UC PLCs.
No negative numbers ( -32768 to -1 ) can be set.
If the timer value is set to " 0 ", the time expires at the same time as the OUT_T activates.

\section*{4. OUT_T operation}

The following processes take place when the OUT_T activates.
1) The OUT_T TC coil turns ON or OFF.
2) The OUT_T TS contacts turn ON or OFF.
3) The OUT_T TN current value is changed.

If the OUT_T is skipped by an instruction such as JMP while the OUT_T is ON, neither the current value is updated nor contacts are turned ON or OFF.
When one particular OUT_T operates more than once within the same scan, the current value is updated as many times as the timer operates.

\section*{Cautions}
1) When a timer device is specified in a program, use the following depending on the locations of use.
- Used as contacts: TS
- Used as a coil: TC
- Used as a current value: TN
2) Use the timer T192 to T199 within a subroutine or interrupt routine. This timer counts the time when executing a coil instruction or END instruction.
When the set value is reached, the output contact operates when the coil instruction or the END instruction is executed.
A general purpose timer counts the time only when the coil instruction is executed. Such a timer does not operate normally because it does not count the time if used in a subroutine or an interrupt routine where the coil instruction is executed only under certain conditions.
3) Note: If a 1 ms integrating timer is used in a subroutine or an interrupt routine, the output contact operates when the first coil instruction is executed after the set value is reached (FX3U, FX3UC, FX3G, FX1N, FX2N, FX1NC, FX2NC, FX2C and FXU PLCs)
4) Some restrictions to applicable devices

41: Applicable only to the FX3U, FX3UC and FX3G PLCs.
42: The target device can be indexed only by the FX3U and FX3Uc PLCs.

\section*{Program example}
1. Program that turns \(\mathrm{ON} Y 010\) and Y 014 in 10 seconds after X 000 turns ON .
[Structured ladder]


\section*{[ST]}

OUT_T(X000,TC1,100);
OUT(TS1,Y010);
OUT(TS1,Y014);
2. Program that sets the BCD data of X010 to X01F to a timer.
[Structured ladder]


BCD data of X010 to X01F is converted to binary data and stored in D10.

BINP(X000,K4X010,Var_D10); OUT_T(X002,TC2,Var_D10); OUT(TS2,Y015);
*1. Var_D10 is a global label and is defined as D10.
3. Program that turns ON Y010 in \(\mathbf{2 5 0}\) milliseconds after X000 turns ON.
[Structured ladder]

[ST]
OUT_T(X000,TC200,25); OUT(TS200,Y010);

When X002 turns ON, timer
starts to count using data stored in D10 as set value.

When T2 timer completes counting up, Y015 turns on.

\subsection*{5.5 Operating Counters}

\subsection*{5.5.1 OUT_C, OUT_C_32}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

The counter starts counting when the condition turns ON from OFF. It generates an output when counting up to the set value.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline OUT_C & 16 bits & Continuous & \(\quad\) OUT_C
\(=\) EN
\(=\) CCoil
-
CValue & OUT_C(EN,CCoil,CValue); \\
\hline OUT_C_32 & 32 bits & Continuous & \begin{tabular}{l}
\(|\)\begin{tabular}{l} 
OUT_C_32 \\
EN \\
CCoil \\
- \\
CValue
\end{tabular} \\
\hline
\end{tabular} & OUT_C_32(EN,CCoil,CValue); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multirow{2}{c}{ Description } & \multicolumn{2}{c}{ Data type } \\
\cline { 3 - 5 } & & \multicolumn{2}{c}{ 16-bit operation } & 32-bit operation \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & CCoil & Target counter & Bit & \\
\cline { 2 - 5 } & CValue & Counter set value & Bit & \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square \mathbf{I G} \square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{c} 
Character \\
String
\end{tabular}
" \(\square "\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) M & M T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline CCoil & & & & - & & & & & & & & & & & & & & & & & & & \\
\hline CValue & & & & & & & & & & & & & - & -1 & & & & 42 & \(\bullet\) & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. OUT_C operation}
1) When the operation result up to the OUT_C turns ON from OFF, the counter counts up the current value (count value) by +1 . When the counter completes counting (the current value reaches the set value), the contact becomes as follows.
\begin{tabular}{l|c}
\hline NO (normally open) contact & Conductive \\
\hline NC (normally closed) contac & Nonconductive \\
\hline
\end{tabular}
2) The counter does not count if the operation result remains ON. (The count input does not need to be in the form of pulse.)

\section*{2. Counter reset}

After completing to count, the count value and contact condition does not change until the RST is executed.

\section*{3. Counter set value}

The set value of the counter can be specified directly by a decimal number ( K ) or indirectly using a data register (D) or extension register (R).
Indirect setting by the extension register (R) is applicable only to the FX3u and FX3Uc PLCs.
No negative numbers (-32768 to -1) can be set.
If set to " 0 ", the same process as 1 takes place.
4. When using counter device

When a counter device is specified in a program, use the following depending on the locations of use.
- Used as contacts: CS
- Used as a coil: CC
- Used as a current value: CN

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32 -bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
2) Some restrictions to applicable devices

41: Applicable only to the \(\mathrm{FX}_{3} \cup, \mathrm{FX}_{3} \cup \mathrm{C}\) and FX 3 C PLCs.
42: Only the FX3U and FX3uc PLCs can index the target device.
A 32-bit counter cannot be indexed.

\section*{Program example}
1. This program turns \(\mathrm{ON} Y 30\) when X 0 turns ON 10 times and resets the counter when X 1 turns ON.
[Structured ladder]

[ST]
OUT_C(X0,CC10,10);
OUT(CS10,Y30);
RST(X1,CN10);
2. This program sets " 10 " to C 10 when X 0 turns ON and sets to " 20 " to C 10 when X 1 turns ON .
[Structured ladder]

[ST]

MOVP(X0 AND NOT X1,10,Var_D0); MOVP(X1 AND NOT X0,20,Var_D0); OUT_C(X3,CC10,Var_D0); OUT(CS10,Y30);
*1. Var_D10 is a global label and is defined as D10.

\subsection*{5.6 AND(...), OR(...)}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline O & O & O & O & O & O & O & O \\
\hline
\end{tabular}

\section*{Outline}

Use AND (...) instruction to connect a branch circuit (parallel circuit block) to the preceding circuit in series.
Use OR (...) instruction to connect a series circuit block in parallel.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|c|}{Expression in each language} \\
\hline & & Structured ladder & ST \\
\hline AND(...) & Continuous &  & \begin{tabular}{l}
AND(...) \\
The ladder diagram (or LD) is described as follows.
Y000:=(X000 OR X001) AND(X002 OR X003);
\end{tabular} \\
\hline OR(...) & Continuous & \begin{tabular}{|cc|c} 
X000 & X001 & Y001 \\
\hdashline\(\longmapsto\) & ( ) \\
X002 & X003 & \\
\cline { 1 - 1 }\(\longmapsto\) & \\
& &
\end{tabular} & \begin{tabular}{l}
OR(...) \\
The ladder diagram (or LD) is described as follows.
Y001:=(X000 AND X001) OR(X002 AND X003);
\end{tabular} \\
\hline
\end{tabular}

\section*{2. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Instruction} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{5}{|r|}{System User} & Special Unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(\because\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & \(\mathbf{Y}\) & M T & c & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline AND(...) & \multicolumn{24}{|c|}{\multirow[t]{2}{*}{There are no applicable devices.}} \\
\hline OR(...) & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. AND(...)(Serial connection of circuit blocks)

AND (...) is an independent instruction not associated with any device number in the same way as the OR (...) instruction described later.
When there are many parallel circuits, the AND (...) instruction can be used for each circuit block to connect them.

[ST]
Y007:= ((X000 OR X001) AND ((X002 AND X003) OR (NOT X004 AND X005) OR X006)) OR X003;

\section*{2. OR(...)(Parallel connection of circuit blocks)}

OR (...) is an independent instruction not associated with any device number in the same way as the AND (...) instruction.
When there are many parallel circuits, the OR (...) instruction can be used for each circuit block to connect them.
[Structured ladder]

[ ST ]
Y007:=(X000 AND X001) OR (X002 AND X003) OR (NOT X004 AND X005);

\subsection*{5.7 MPS, MRD, MPP}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline O & O & O & O & O & O & O & O \\
\hline
\end{tabular}

\section*{Outline}

These PLCs have 11 memories called "Stack" which store the intermediate result (ON or OFF) of operations.

\section*{1. Format and operation, execution form}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & Structured ladder & ST \\
\hline MPS & Continuous &  & MPS(EN); \\
\hline MRD & Continuous &  & MRD(EN); \\
\hline MPP & Continuous &  & MPP(EN); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|lc}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & \begin{tabular}{l} 
MPS: \\
MRD, MPP:
\end{tabular}\(\quad\)\begin{tabular}{l} 
Bit \\
Always TRUE
\end{tabular} \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Bit \\
\hline
\end{tabular}
3. Applicable devices


\section*{Function and operation explanation}

These instructions are convenient in programming branched multi-output circuits.
1. MPS, MRD, MPP (Stack push down, stack read and stack popup)
[Structured ladder]

[ ST ]
Y002:= X005 AND MPS(X004);
Y003:= MRD(TRUE) AND X006;
Y004:= MRD(TRUE);
Y005:= MPP(TRUE) AND X007;

1) Use MPS instruction to store the intermediate result of operation, and then drive the output Y002.
2) Use MRD instruction to read the stored data, and then drive the output Y003. MRD instruction can be programmed as many times as necessary.
3) In the final output circuit, use MPP instruction instead of MRD instruction. MPP instruction reads the stored data described above, and then resets it.

\section*{Error}

MPS instruction can be used two or more times. However, the difference between the number of MPS instructions and the number of MPP instructions should be 11 or less, and should be 0 at the end.

\section*{Caution}

When a circuit is programmed as shown on the left, it is compiled in fact as the program on the right that does not use MPS, MRD or MPP instruction.


\section*{Program example}

\section*{1. Program example 1 (One stack)}

Only one stack is used in this example.
[Structured ladder]

[ST]

Y000:= MPS(X000 AND X001) AND X002; Y001:= MPP(TRUE);

Y002:= MPS(X003) AND X004;
Y003:= MPP(TRUE) AND X005;
Y004:= MPS(X006) AND X007;
Y005:= MRD(TRUE) AND X010;
Y006:= MRD(TRUE) AND X011;
Y007:= MPP(TRUE) AND X012;
2. Program example 2 (One stack with AND (...) and OR (...) instructions)
[Structured ladder]

[ST]
Y000:= MPS(X000) AND (X001 OR X002);
Y001:= MRD(TRUE) AND ((X003 AND X004) OR (X005 AND X006));
Y002:= MPP(TRUE) AND X007;
Y003:= Y002 AND (X010 OR X011);

\section*{3. Program example 3 (Two stacks)}
[Structured ladder]


\section*{[ ST ]}

Y000:= (MPS(X000) AND MPS(X001)) AND X002; Y001:= MPP(TRUE) AND X003;
Y002:= (MPP(TRUE) AND MPS(X004)) AND X005; Y003:= MPP(TRUE) AND X006;

\section*{4. Program example 4 (Four stacks)}
[Structured ladder]

[ST]
Y000:= (((MPS(X000) AND MPS(X001)) AND MPS(X002)) AND MPS(X003)) AND X004;
Y001:= MPP(TRUE);
Y002:= MPP(TRUE);
Y003:= MPP(TRUE);
Y004:= MPP(TRUE);


In programming a circuit on the upper side, it is necessary to use MPS instruction three times.
By changing the circuit on the upper side into the circuit on the lower side, the same contents can be programmed easily without MPS instruction.

\subsection*{5.8 INV}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline O & O & O & O & O & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

INV instruction inverts the operation result up to just before INV instruction.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & Structured ladder & ST \\
\hline INV & Continuous &  & INV(EN); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c}{ Description } & Data type \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Bit \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Instruction} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & Special Unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & Real Number & Character String & Pointer \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) M & M T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & E & " \(\square\) " & P \\
\hline INV & \multicolumn{23}{|c|}{There are no applicable devices.} \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. INV(inverts the result of operations)


In the figure above, Y000 turns ON when X000 is OFF, and Y000 turns OFF when X000 is ON. INV instruction can be used in a same position as serial contact instructions (AND, ANI, ANDP and ANDF). Different from LD, LDI, LDP and LDF instructions shown in the list, INV instruction cannot execute connection to bus lines. Different from OR, ORI, ORP and ORF instructions, INV instruction cannot be used independently in parallel to a contact instruction.
2. Operation range of INV instruction

When INV instruction is used in a complicated circuit containing ORB and ANB instructions, the operation range of INV instruction is as shown in the figure below:


INV instruction inverts the operation result after LD, LDI, LDP or LDF instruction located before INV instruction.
Accordingly, if INV instructions are used inside ORB and ANB instructions, blocks after LD, LDI, LDP or LDF instruction seen from each INV instruction are regarded as the target of INV operation.

\subsection*{5.9 MEP, MEF}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

MEP and MEF commands are instructions that change the operation results to pulses so that device numbers do not have to be specified.
1) MEP

The operation results up to the MEP instruction become conductive when the driving contacts turn ON from OFF.
The use of MEP instructions simplifies the process of changing driving contacts to pulses when multiple contact points connect in a series.
2) MEF

The operation results up to the MEF instruction become conductive when the driving contacts turn OFF from ON.
The use of MEF instructions simplifies the process of changing driving contacts to pulses when multiple contact points connect in a series.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|c|}{Expression in each language} \\
\hline & & Structured ladder & ST \\
\hline MEP & Pulse & EN \begin{tabular}{|c|}
\hline \multicolumn{2}{c|}{ MEP } \\
\hline
\end{tabular} & MEP(EN); \\
\hline MEF & Pulse & \(-\mathrm{EN}_{2}^{2} \mathrm{MEF}\) & MEF(EN); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Execution state \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Instruction} & \multicolumn{6}{|r|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & Special Unit & \multicolumn{4}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \begin{tabular}{c|}
\hline Real \\
Number
\end{tabular} & Character String & Pointer \\
\hline & X & Y & M T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & & Modifier & K & H & E & " \(\square\) " & P \\
\hline MEP & \multicolumn{24}{|c|}{\multirow[b]{2}{*}{applicable devices.s}} \\
\hline MEF & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

1．\(M E P(O N\) during rising edge of driving contacts results）


SET（TRUE，MO）；
END＿IF；
2． \(\operatorname{MEF}(O N\) during falling edge of driving contacts results）
［Structured ladder］

［ST ］
IF X000 AND X001 THEN
MEF（TRUE）；
SET（TRUE，MO）
END＿IF；

\section*{Cautions}

1）The \(F X_{3 U}\) and \(F X_{3} U c\) PLCs of \(V 2.30\) or later support MEP and MEF instructions．
2）MEP and MEF instructions may not operate normally if the indexed contact is modified and changed to pulses by sub－routine programs，the FOR and NEXT instructions，etc．
3）As the MEP and MEF instructions operate using the operation results immediately before them，use at the list program as the AND instruction．
The MEP and MEF instructions cannot be used at the list program as LD or OR．
4）Caution on writing during RUN
a）Pulse command during rising edge of operation（MEP instruction）results
After writing to the circuit with MEP instructions during RUN，the MEP instruction result turns ON （conductive）while the operation results up to the MEP instruction are ON．
b）Pulse instruction during falling edge of operation（MEF command）results
After writing to the circuit with MEF instructions during RUN，the MEF instruction result turns OFF （nonconductive），regardless of the operation results up to the MEF instruction．The operation results of MEF instruction turns ON（conductive）when the operation results up to the MEF instruction turn OFF．
\begin{tabular}{c|c|c}
\hline \begin{tabular}{c} 
Operation Results up to MEP／MEF Instruction \\
（while writing is excuted during RUN）
\end{tabular} & MEP & MEF \\
\hline OFF & OFF（non－conductive） & OFF（non－conductive） \\
\hline ON & ON（conductive） & OFF（non－conductive） \\
\hline
\end{tabular}

\subsection*{5.10 SET, RST}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline O & O & O & O & O & O & O & O \\
\hline
\end{tabular}

\section*{Outline}
1) Setting a bit device (SET instruction [holding operation])

When the command input turns ON, SET instruction sets to ON an output relay (Y), auxiliary relay (M), state relay (S) and bit specification of word device.
Even if the command input turns OFF after that, the device which was set to ON by SET instruction remains ON.
2) Resetting a bit device (RST instruction [resetting folding operation])

RST instruction resets an output relay \((\mathrm{Y})\), auxiliary relay (M), state relay (S), timer ( \(T\) ), counter (C) or bit specification of a word device.
Use the RST instruction to reset (reset to OFF) a device which was set to ON by SET instruction.
3) Clearing the current value of a word device (RST instruction [Clearing current value and resister]) RST instruction clears the current value data of a timer (T), counter (C), data register (D), extension register or \((\mathrm{R})\) index register \((\mathrm{V})(\mathrm{Z})\). (The same result can be obtained by MOV instruction which transfers the constant K0.)
RST instruction can be used also to reset the current value and return the contact of retentive type timers. SET and RST instructions can be used for a same device as many times as necessary in an arbitrary order.

\section*{1. Format and operation, execution form}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & Structured ladder & ST \\
\hline SET & Continuous &  & \begin{tabular}{l}
SET(EN,d); \\
Example: \\
SET(X000,Y000);
\end{tabular} \\
\hline RST & Continuous &  & \begin{tabular}{l}
RST(EN,d); \\
Example: \\
RST(X001,Y000);
\end{tabular} \\
\hline
\end{tabular}
*1. This symbol is applicable to the bit type data only.

\section*{2. Set data}
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Bit \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Applicable device or variable & \begin{tabular}{l} 
SET \\
RST
\end{tabular} Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Instruction} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{5}{|c|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{1 \%}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y \({ }^{\text {M }}\) & M T & c & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & & R & & V & Z & Modifier & K & H & & & \\
\hline SET & & & & & - & -1 & & & & & & & & & & & & & -3 & & & & & \\
\hline RST & & & & & & 41 & & & & & & - & - & & 42 & & & \(\bullet\) & \(\triangle 3\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

SET instruction drives the coil for an output relay (Y), auxiliary relay (M), state relay (S) and bit specification of data register (D).
1. When using a bit device

SET instructions located in parallel can be used consecutively as many times as necessary.
In the program example shown below, RST (X1001, Y000) after SET (X000, Y000) corresponds to this usage.
[Structured ladder]

[ST]
SET(X000,Y000); RST(X001,Y000);


\section*{2. When using word device (timer or counter)}

Use RST instruction to reset a counter or retentive type timer.
1) Program example of an internal counter


C0 up-counts the number of turning ON from OFF at X011. When the counting result reaches the set value K10, the output contact C0 is activated. Even if X011 changes from OFF to ON after that, the current value of the counter remains unchanged and the output contact remains activated.
For clearing the counter and returning the output contact, X010 is set to ON.

In case of latched (battery backed) type counters, the current value and the operation status and reset status of the output contact are latched even after power failure.
2) Program example of a high speed counter


For one-phase one-input counters, use special auxiliary relays for specifying the counting direction.
X010 in ON status: specifies down counting.
X010 in OFF status: Specifies up counting
When X011 turns ON, the output contact of the counter
\(C \triangle \triangle \triangle\) is returned and the current value of the counter is reset to "0".
In counters with reset input, the same situation is achieved by interrupt operation when the corresponding reset input turns ON, but any program is not required for this operation.
When X012 turns ON, turning ON/OFF of a counting input X000 to X 005 determined according to the counter number is counted.
In counters having start input, counting is started only after the corresponding start input turns ON.
When the current value of a counter increases and reaches the set value ( \(K\) or contents of \(D\) ), the output contact is set. When the current value decreases and reaches the set value, the output contact is reset.

As a contact driving the counting coil of a high speed counter, program a contact which is normally ON when high speed counting is executed.
If an input relay (X000 to X 005 ) assigned for high speed counters is used for driving the counting coil, accurate counting cannot be achieved.
3) Caution on using RST instruction for a jumped program, subroutine program or interrupt program When RST instruction for a timer or counter is executed in a jumped program, subroutine program or interrupt program, the timer or counter may be kept in the reset status and the timer or counter may be disabled.
For details, refer to the following sections.
\(\rightarrow\) For a jumped program, refer to subsection 7.1.1. \(\rightarrow\) For a subroutine program, refer to subsection 7.1.2. \(\rightarrow\) For an interrupt program, refer to subsection 8.2.3.

\section*{3. Indexing}

Devices used in SET and RST instructions can be indexed with index registers ( \(\mathrm{V}, \mathrm{Z}\) ).
(State relays (S), special auxiliary relays (M), 32-bit counters, "D \(\square . b\) " and word devices cannot be indexed.) This is applicable only to the FX3U and FX3UC PLCs.
[Structured ladder]

[ ST ]
SET(X000,Y000ZO); RST(X001,Y000ZO);

When a used device is an input \((X)\) or output (Y), the value of an index register \((\mathrm{V}, \mathrm{Z})\) is converted into octal, and then added.
Example: When ZO is " 20 ", Y024 turns ON or OFF.

\section*{4. Bit specification of a data register (D)}

A bit data register (D) can be specified as a device used in SET or RST instruction.
This is applicable only to the FX3U and FX3Uc PLCs.


When specifying a bit in data register, input "." after a data register ( \(D\) ) number, and then input a bit number ( 0 to F ) consecutively.
Only 16-bit data registers are available.
Specify a bit number as " \(0,1,2, \ldots, 9, A, B, \ldots, F "\) from the least significant bit.
Example: In the example shown on the left, when X000 turns ON once, the bit 3 of D0 turns ON. When X001 turns ON, the bit 3 of DO turns OFF.

\section*{Cautions}
1) Some restrictions to applicable devices

A1: The FX3U and FX3UC PLCs only are applicable.
A2: The FX3U, FX3UC and FX3G PLCs only are applicable.
43: Only the FX3U and FX3UC PLCs are capable of indexing applicable devices.
The following devices cannot be indexed.
- Special auxiliary relays (M)
- 32-bit counters (C)
- State (S)
- Word device
- Word bit specification "D \(\square . b "\)
2) When SET and RST instructions are executed for an output relay \((Y)\) in a same operation, the result of the instruction located nearest the END instruction (which specifies the end of program) is output.
3) When using the retentive type timers of the \(F_{1} 1 \mathrm{~N}, \mathrm{FX}_{2} \mathrm{~N}, \mathrm{FX}_{1} \mathrm{NC}\) and \(\mathrm{FX}_{2} \mathrm{NC}\), be sure to create a program where the RST instruction resets the retentive type timers to be used. If no such a reset circuit by RST is present in the program, the timers remain in the state of reset, possibly causing the timers not to operate.

\section*{Error}
1) When an I/O number used in SET or RST instruction does not exist due to indexing, M8316 (non-existing I/O specification error) turns ON. (Applicable only to the FX3U and FX3uc PLCs.)
2) When the device number of a device ( \(M, T\) or \(C\) ) other than I/O used in SET or RST instruction does not exist due to indexing, an operation error (error code: 6706) occurs. (Applicable only to the FX3U and FX3uc PLCs.)

\subsection*{5.11 PLS, PLF}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

When PLS instruction is executed, an applicable device is activated during only one operation cycle after a drive input turns ON.
When PLF instruction is executed, an applicable device is activated during only one operation cycle after a drive input turns OFF.
For example, when PLC mode is changed in the way "RUN \(\rightarrow\) STOP \(\rightarrow\) RUN while a drive input remains ON, "PLS(**, M0) operates, but "PLS (**, M600) (backed up by the battery)" does not operate (when the PLC mode switches from STOP to RUN) because the status of M600 is latched even while the PLC is in the STOP mode.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & Structured ladder & ST \\
\hline PLS & Pulse &  & PLS(EN,d); \\
\hline PLF & Pulse &  & PLF(EN,d); \\
\hline
\end{tabular}

\section*{2. Set data}
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Bit \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Applicable device or variable \\
\cline { 2 - 4 } & d & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Instruction} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|l|}{System User} & \multirow[t]{2}{*}{Special Unit U \(\square\) IG \(\square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{17} \square\) \\
\(\square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline PLS & & \(\bullet\) & -1 & & & & & & & & & & & & & & & & 42 & & & & & \\
\hline PLF & & \(\bullet\) & -1 & & & & & & & & & & & & & & & & 42 & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. PLS (rising edge differential output)}

[ ST ]
PLS(X000, MO);
PLS instruction
M 0 \(\qquad\)

In the figure above, M0 is ON during only one operation cycle when X000 changes from OFF to ON.
2. PLF (falling edge differential output)


In the figure above, M 1 is ON during only one operation cycle when X 000 changes from ON to OFF.

\section*{3. Output drive side}

The following two circuits cause a same operation.
<<OUT instruction>>
<<PLS instruction>>


In each case, M0 is ON during only one operation cycle when X 000 changes from OFF to ON.

<<Pulse operation type applied instruction>>


In each case, MOV instruction is executed only once when X000 changes from OFF to ON.

\section*{Cautions}
1) When write during RUN is completed for a circuit including an instruction for falling edge pulse (LDF, ANDF or ORF instruction), the instruction is not executed without regard to the ON/OFF status of the target device of the instruction for falling edge pulse.
When write during RUN is completed for a circuit including an instruction for falling edge pulse (PLF instruction), the instruction is not executed without regard to the ON/OFF status of the operation condition device.
It is necessary to set to ON the target device or operation condition device once and then set it to OFF for executing the instruction for falling edge pulse.
2) When write during RUN is completed for a circuit including an instruction for rising edge pulse, the instruction is executed if a target device of the instruction for rising edge pulse or the operation condition device is ON.
Target instructions for rising edge pulse: LDP, ANDP, ORP, and pulse operation type applied instructions (such as MOVP)
\begin{tabular}{c|c|c}
\hline \begin{tabular}{c} 
Contact ON/OFF status \\
(while write during RUN is \\
executed)
\end{tabular} & Instruction for rising edge pulse & Instruction for falling edge pulse \\
\hline OFF & Not executed & Not executed \\
\hline ON & Executed 11 & Not executed \\
\hline
\end{tabular}
*1. PLS instruction is not executed.
3) Some restrictions to applicable devices

A1: Excluding special auxiliary relays (M)
42: Only the FX3U and FX3UC PLCs are capable of indexing applicable devices.
The following devices cannot be indexed.
- Special auxiliary relays (M)

\subsection*{5.12 MC, MCR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

When MC instruction is executed, the bus line (LD or LDI point) is moved to a position after MC contact.
The bus line can be returned to the original position by MCR instruction.
By changing a device ( Y or M ) number, MC instruction can be used as many times as necessary.
If a same device number is used twice, however, it results in the double coil operation in the same way as OUT instruction.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & Structured ladder & ST \\
\hline MC & Continuous &  & MC(EN, n , d); \\
\hline MCR & Continuous & \begin{tabular}{ll|}
\hline \multicolumn{2}{c|}{MCR} \\
-n & ENO \\
\hline
\end{tabular} & MCR(EN,n); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow[b]{2}{*}{Input variable} & EN & Execution condition & \begin{tabular}{ll} 
MC: & Bit \\
MCR: & Always TRUE
\end{tabular} \\
\hline & (n) & \begin{tabular}{l}
Nesting level \\
When adopting a nesting structure, use it in order of \(0 \rightarrow 1 \rightarrow\) \(2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7\). If not adopting a nesting structure, it is always " 0 ".
\end{tabular} & ANY16 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Device or variable of common connection contact & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Instruction} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|l|}{\[
\begin{aligned}
& \text { System } \\
& \text { User }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG \(\square\)
\end{tabular}}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & & V & Z & Modifier & K & H & & & \\
\hline MC & & \(\bullet\) & -1 & & & & & & & & & & & & & & & & & & & & & & \\
\hline MCR & & & & & & & & & & & & & & & & & applicabl & & & ces. & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

When MC instruction is executed, the bus line is moved to a position after MC contact.
Drive instructions connected to the bus line after MC contact execute each operation only when MC instruction is executed, and do not execute the operation when MC instruction is not executed (the same operation with the contact OFF).
In the program example below, the instructions from MC to MCR are executed as they are while the input X000 is ON.
However, while the input X000 is OFF, each driven device offers the following operation.
Timers (except retentive type timers) and devices driven by OUT instruction: Turn OFF
Retentive type timers, counters and devices driven by SET/RST instruction : Hold the current status.
The expressions of circuit programs used to explain operations are circuits (for reading or monitoring) of GX Works2.
[Structured ladder]


\section*{Caution}

Some restrictions to applicable devices
A1: Excluding special auxiliary relays (M)

\section*{Program examples}
1. When the nesting structure is not adopted.


\section*{2. When the nesting structure is adopted.}

When using MC instructions inside MC instruction, increase the nesting level " N " in turn in the way "N0 \(\rightarrow \mathrm{N} 1\) \(\rightarrow \mathrm{N} 2 \rightarrow \mathrm{~N} 3 \rightarrow \mathrm{~N} 4 \rightarrow \mathrm{~N} 5 \rightarrow \mathrm{~N} 6 \rightarrow \mathrm{~N} 7\) ".
For returning from the nesting structure, reset the nesting levels from the highest one in turn using MCR instruction in the way "N7 \(\rightarrow \mathrm{N} 6 \rightarrow \mathrm{~N} 5 \rightarrow \mathrm{~N} 4 \rightarrow \mathrm{~N} 3 \rightarrow \mathrm{~N} 2 \rightarrow \mathrm{~N} 1 \rightarrow \mathrm{~N} 0\) ".
For example, if "MCR N5" is programmed without programming "MCR N6" and "MCR N7", the nesting level is returned to 5 at one time.
Available nesting levels are from N0 to N7 (eight layers).


\subsection*{5.13 END}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

END instruction specifies the end of a program.
(Do not write the END instruction in the middle of a program.)
END instruction for ending a program and input/output processing and returning to 0 step is automatically written at the end of the program. It cannot be programmed into program structural elements (POU).

\section*{Function and operation explanation}

PLCs repeat "input processing \(\rightarrow\) program execution \(\rightarrow\) output processing". When END instruction is written at the end of a program, PLCs immediately execute the output processing without executing steps after END instruction.
If END instruction is not written at the end of a program, PLCs execute the program until the final step, and then execute the output processing.
At the first execution after the PLC mode was changed from STOP to RUN, PLCs start from END instruction. When END instruction is executed, the watchdog timer (which checks to see if the operation cycle is too long) is refreshed.


\section*{Cautions}

Do not write END instruction in the middle of a program.

\subsection*{5.14 NOP (for simple project only)}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\times\) & \(\times\) \\
\hline
\end{tabular}

This instruction is available for use only in the simple project. It cannot be programmed in the structured project.

\section*{6. Step Ladder Instructions}

\subsection*{6.1 Step Ladder}

This chapter introduces the instructions of structured project that correspond to the MELSEC-LD step ladder instructions.

\subsection*{6.1.1 Outline}

In programs using step ladder instructions, a state relay \(S\) is assigned to each process based on machine operations, and input condition and output control are programmed as sequences connected to the state output.

\subsection*{6.1.2 Function and operation explanation}

In step ladder program, a state \(S\) is regarded as one control process, and a sequence of input condition and output control are programmed in a state relay.
Because the preceding process is not performed any more when the program execution proceeds to the next process, a machine can be controlled using simple sequences for each process.

\section*{1. Operation of instruction}

In a step ladder program, each process performed by the machine is expressed by a state relay.
A state relay consists of a drive coil and contact (STL output) in the same way as other relays.
Use SET or OUT instruction to drive a coil, and use STL instruction for a contact.
- When a state relay turns ON, a connected circuit (internal circuit) is activated by way of an STL output. When a state relay turns OFF, a connected internal circuit is deactivated by way of an STL output. After one operation cycle, non-driving of an instruction (jump status) is not available.
- When a condition (transfer condition) provided between state relays is satisfied, the next state relay turns ON, and the state relay which has been ON so far turns OFF (transfer operation).
In the state relay transfer process, the both state relays are ON only instantaneously (during one operation cycle).
In the next operation cycle after the ON status was transferred the former state is reset to OFF.
When the transfer state relay \(S\) is used in a contact instruction, however, the contact image is executed in the OFF status immediately after the transfer condition is satisfied.
- One state relay number can be used only once.


Process of S31
When X001 turns ON,
S32 turns ON and S31
is automatically reset.

*1. Output coils can be used again in different state relays.

\section*{2. Primary knowledge for creating programs}
- List of sequence instructions available between STL instruction and RET instruction
\begin{tabular}{l|l|l|l|l}
\hline \multirow{2}{*}{ State relay } & \multicolumn{3}{c|}{ Instruction } \\
\cline { 3 - 5 } & \begin{tabular}{c} 
LD/LDI/LDP/LDF \\
AND/ANI/ANDP/ANDF, \\
OR/ORI/ORP/ORF, OUT, \\
SET/RST, PLS/PLF
\end{tabular} & \begin{tabular}{c} 
ANB/ORB/MPS/MRD/ \\
MPP
\end{tabular} & MC/MCR
\end{tabular}
- STL instruction cannot be used in interrupt program and subroutine programs.
- It is not prohibited to use jump instructions in state relays. But it is not recommended to use jump instructions because complicated movements will be resulted.
*1. MPS instruction cannot be used immediately after an STL instruction, even in a drive processing circuit.
- Special auxiliary relays

For efficiently creating step ladder programs, it is necessary to use some special auxiliary relays. The table below shows major ones.
\begin{tabular}{c|l|l}
\hline \begin{tabular}{c} 
Device \\
number
\end{tabular} & \multicolumn{1}{|c}{ Name } & \multicolumn{1}{c}{ Function and application } \\
\hline M8000 & RUN monitor & \begin{tabular}{l} 
This relay is normally ON while the PLC is in the RUN mode. \\
Use this relay as the program input condition requiring the normally driven status or for indicating the PLC \\
operation status.
\end{tabular} \\
\hline M8002 & Initial pulse & \begin{tabular}{l} 
This relay turns ON and remains ON only instantaneously (during one operation cycle) when the PLC \\
mode is changed from STOP to RUN. \\
Use this relay for the initial setting of a program or for setting the initial state relay.
\end{tabular} \\
\hline M8040 & \begin{tabular}{l} 
STL transfer \\
disable
\end{tabular} & \begin{tabular}{l} 
When this relay is set to ON, transfer of the ON status is disabled among all state relays. \\
Because programs in state relays are operating even in the transfer disabled status, output coils do not \\
turn OFF automatically.
\end{tabular} \\
\hline M8046*1 & STL state ON & \begin{tabular}{l} 
This relay automatically turns ON M8046 when any of the state relays S0 to S899 or S1000 to S4095 turn \\
ON. \\
Use this relay to prevent simultaneous start up of another float or as a process ON/OFF flag.
\end{tabular} \\
\hline M8047*1 & \begin{tabular}{l} 
Enable STL \\
monitoring
\end{tabular} & \begin{tabular}{l} 
When this device is driven, the state relays in the ON status on the programming function are \\
automatically read and displayed. \\
For details, refer to the manual of each peripheral equipment.
\end{tabular} \\
\hline
\end{tabular}
*1. Processed when END instruction is executed.
- Block

When there are relay ladder blocks and step ladder blocks, put RET instruction at the end of each step ladder program. A PLC starts the step ladder processing by STL instruction, and returns to the relay ladder processing from the step ladder processing by RET instruction. However, when consecutively programming a step ladder in a different flow (when there is no relay ladder before the step ladder in the different flow), RET instruction between flows can be omitted, and RET instruction can be programmed only at the end of the last flow.

- Output driving method

It is required to include a LD or LDI instruction before the last OUT instruction in a state relay. Change such a circuit as shown below.


State relay transfer method
Each OUT and SET instruction in state relays automatically resets the transfer source, and has the selfholding function.
OUT instructions can be used only for transfer to a separate state relay in an SFC program.


\section*{3. Program with state relays in branches and recombination}
- Example of selective branch

Do not use MPS, MRD, MPP, AND (...) and OR (...) instructions in a transfer processing program with branches and recombination.
Even in a load driving circuit, MPS instructions cannot be used immediately after STL instructions. In the same way as programs for general state relays, program the drive processing first, and then program the transfer processing.
Continuously program all transfer processing.

- Example of selective recombination

Do not use MPS, MRD, MPP, AND (...) and OR (...) instructions in a transfer processing program with branches and recombination.
Even in a load driving circuit, MPS instructions cannot be used immediately after STL instructions. Pay attention to the programming order so that a branch line does not cross a recombination line.


Before recombination, program the drive processing of state relays first.
After that, program only the transfer processing to recombination state relays continuously.
This rule should be observed to enable inverse conversion into an SFC program.
- Example of parallel branch

Do not use MPS, MRD, MPP, AND (...) and OR (...) instructions in a transfer processing program with branches and recombination.
Even in a load driving circuit, MPS instructions cannot be used immediately after STL instructions. In the same way as programs for general state relays, program the drive processing first, and then program the transfer processing.
Continuously program all transfer processing.

- Example of parallel recombination

Do not use MPS, MRD, MPP, AND (...) and OR (...) instructions in a transfer processing program with branches and recombination.
Even in a load driving circuit, MPS instructions cannot be used immediately after STL instructions. Pay attention to the programming order so that a branch line does not cross a recombination line.


Before recombination, program the drive processing of state relays first. After that, program only the transfer processing to recombination state relays continuously.
- Composition of branches and recombination

When a recombination line is directly connected to a branch line (not by way of a state relay as shown below), it is recommended to provide a dummy state relay between the lines.
Create step ladder programs as shown below.
1) Selective recombination and selective branch

2) Parallel recombination and parallel branch

3) Selective recombination and parallel branch


4) Parallel recombination and selective branch


\subsection*{6.1.3 Program examples}

\section*{Examples of single flows}

\section*{1. Example of flicker circuit}
- When the PLC mode is changed from STOP to RUN, the state relay S3 is driven by the initial pulse (M8002).
- The state relay S3 outputs Y000. One second later, the ON status transfers to the state relay S20.
- The state relay S20 outputs Y001. 1.5 seconds later, the ON status returns to the state relay S3.

[ST]
SET(M8002,S3);
STL(TRUE, S3);
Y000:=TRUE;
OUT_T(TRUE, TC0,K10);
SET(TS0, S20);
STL(TRUE, S20);
Y001:=TRUE;
OUT_T(TRUE, TC1, K15);
S3:=TS1;
RET(TRUE);

\subsection*{6.2 STL}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

In programs using step ladder instructions, a state relay State \(S\) is assigned to each process based on machine operations, and input condition and output control are programmed as sequences connected to the state output.

STL instruction for step ladder programs is expressed as follows in each language.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline STL & 16 bits & Continuous &  & STL(EN,s); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Always TRUE \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & s & Target device or variable & Bit \\
\cline { 2 - 4 } & ENO & Execution state & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}


\section*{4. Caution}

Refer to the cautions in the items below for expressing step ladders in a structured project (structured ladder, ST).
\(\rightarrow\) Section 6.3 RET

\subsection*{6.3 RET}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline O & O & O & O & O & O & O & O \\
\hline
\end{tabular}

\section*{Outline}

RET instruction for step ladder programs is expressed as follows in each language.
1. Format and operation, execution form
\begin{tabular}{l|l|c|c|cc}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Instruction \\
name
\end{tabular}} & \multirow{2}{*}{ Operation } & \multirow{2}{|c}{\begin{tabular}{c} 
Execution \\
form
\end{tabular}} & \multicolumn{3}{|c}{ Expression in each language } \\
\cline { 4 - 5 } & & & Structured ladder & ST \\
RET & 16 bits & Continuous & & RET(EN); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & Data type \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Always TRUE \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|l|}{System User} & Special Unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & Real Number & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y \({ }^{\text {M }}\) & M T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & E & & \\
\hline - & \multicolumn{23}{|c|}{No target device is available.} \\
\hline
\end{tabular}

\section*{4. Caution}

The following examples show how MELSEC-LD step ladders are expressed in the structured programs (structured ladder, ST).

\section*{Reference: MELSEC-LD step ladder expression}
1) When expressing step ladder (STL) instructions in the coil format. (Same as that for GX Developer)

2) When expressing step ladder (STL) instructions in the contact format.


Expressing step ladder in structured program
1) Structured ladder

2) \(S T\)

SET(M8002, S0);
STL(TRUE, SO);
Y000:=TRUE;
SET(X000, S20);
STL(TRUE, S20);
SO:=X001;
RET(TRUE);

\section*{7. Applied Instructions}

This chapter introduces the structured project instructions corresponding to the applied instructions for the simple project.
\[
\rightarrow \text { Q/FX Structured Programming Manual (Fundamentals) }
\]

\subsection*{7.1 Program Flow}

\subsection*{7.1.1 CJ}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

CJ or CJP instruction jumps to a pointer \(p\).
The sequence program steps between CJ or CJP instruction and the pointer are not executed.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline CJ & 16 bits & Continuous &  & \multirow[t]{2}{*}{\begin{tabular}{l}
Syntax such as condition sentence is used. Refer to the following manual for syntaxes. \\
\(\rightarrow\) Q/FX Structured \\
Programming Manual \\
(Fundamentals)
\end{tabular}} \\
\hline CJP & 16 bits & Pulse &  & \\
\hline
\end{tabular}
2. Input and output data types
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Circuit block label for the jump destination & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|l|}{System User} & \multirow[t]{2}{*}{Special Unit U \(\square\) IG} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline Character \\
String
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (P) & & & & & & & & & & & & & & & & & & & - & & & & & - \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. 16-bit operation(CJ, CJP)

While the command input is ON, CJ or CJP instruction executes a program with a specified label (pointer number).
1) In the case of \(C J\) instruction

2) In the case of CJP instruction


\section*{Cautions}
1) The FXo, FXos or FXon PLC does not support the instructions of pulse operation type.

To execute pulse operation, make the instruction execution condition pulse type.
2) The figure below shows programming of a label.

When creating a circuit program, move the cursor to the left side of the bus line in the ladder diagram, and input a label \(P\) at the head of the circuit block.


Bus line
3) A label can be programmed in a smaller number step than \(C J\) instruction. However, note that a watchdog timer error occurs when the scan time exceeds 200 ms (default setting).

4) When the pointer number in operands is same and there is one label, the following operation is caused. When X020 turns ON, the program execution jumps from CJ instruction corresponding to X020 to the label P9. When X020 turns OFF and X021 turns ON, the program execution jumps from CJ instruction corresponding to X021 to the label P9.

5) When a label number (including labels for CALL instructions described later) is used two or more times, an error is caused.

6) The pointer P63 specifies jump to END step. Do not program P63. If P63 is programmed, PLCs will display the error code 6507 (defective label definition) and stop.

7) Any label cannot be shared by CALL instruction and CJ instruction.

8) Because M8000 is normally ON while a PLC is operating, unconditional jump is specified when M8000 is used in the following example.

9) The operation of the CJ and contact coils are described later.
10) The relationships between the master control instructions and jump instructions are described later.

\section*{Program examples}

In one operation cycle after X023 changes to ON from OFF, CJ P7 instruction becomes valid.
By using this method, jump can be executed after all outputs between CJ P7 instruction and the label P7 turn OFF.


\section*{CJ instruction and operations of contact and coil}

In the program example shown below, when X000 turns ON, the program execution jumps from CJ instruction in the first circuit to the label P8. While X000 is OFF, jump is executed. The program is sequentially executed from first step, and jumps from 11th circuit to the label 9.
The jumped instruction is not executed.
1. Circuit example 1 for explain operations

- Double coil operation of output Y001 While X000 is OFF, output Y001 is activated by X001. While X000 is ON, output Y001 is activated by X012. Even in a program divided by conditional jumps, if a same coil (YOOO in this case) is programmed two or more times within the jump area or outside the jump area, such a coil is handled as double coil.
- When the reset (RST) instruction for the retentive type timer (T246) is located outside jump area: Even if the counting coil (T246) is jumped, reset (return of the contact and clearing of the current value) is valid.
- When the reset (RST) instruction for the counter (C0) is located outside the jump area:
Even if the counting coil is jumped, reset (return of the contact and clearing of the current value) is valid.
- Operation of the routine timers:

A routine timer continues its operation even if it is jumped after the coil is driven, and the output contact is activated.
- Operation of the high speed counters:

A high speed counter continues its operation even if it is jumped after the coil is driven, and the output contact is activated.

When each input changes during jump in the program shown on the left, each coil executes the following operation:
\begin{tabular}{|c|c|c|}
\hline Classification & Contact status before jump & Coil operation during jump \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \mathrm{Y}, \mathrm{M}, \mathrm{~S} \\
& \text { (Y001, M1, S1) }
\end{aligned}
\]} & X001, X002, X003 OFF & Y001, M1, S1 OFF \\
\hline & X001, X002, X003 ON & Y001, M1, S1 ON \\
\hline \multirow[b]{2}{*}{10 ms timer and 100 ms timer (T0)} & X004 OFF & Timer is not activated. \\
\hline & X004 ON & Counting is paused (and is restarted after X000 turns OFF). \\
\hline \multirow[b]{2}{*}{1 ms timer
(T246)} & \[
\begin{aligned}
& \text { X005 OFF } \\
& \text { X006 OFF }
\end{aligned}
\] & Timer is not activated. The deactivation status is reset when X013 turns ON. \\
\hline & \[
\begin{aligned}
& \text { X005 OFF } \\
& \text { X006 ON }
\end{aligned}
\] & Counting is continued (and the contact is activated after X000 turns OFF). \\
\hline \multirow[b]{2}{*}{Counter (C0)} & \[
\begin{aligned}
& \text { X007 OFF } \\
& \text { X010 OFF }
\end{aligned}
\] & \begin{tabular}{l}
Countint is not activated. \\
The deactivation status is reset when X013 turns ON.
\end{tabular} \\
\hline & \[
\begin{aligned}
& \text { X007 OFF } \\
& \text { X010 ON }
\end{aligned}
\] & Counting is paused (and is restarted after X000 turns OFF). \\
\hline \multirow[b]{2}{*}{Applied instruction (MOV)} & X011 OFF & FNC instruction is not \\
\hline & X011 ON & executed during jump. But MTR, HSCS, HSCR, HSZ, SPD, PLSY and PWM instructions continue their operations. \\
\hline
\end{tabular}
2. Circuit example 2 for explaining operations (when only an RST instruction for timer or counter is jumped)


When X011 turns ON while the RST instruction for the counter C0 is operating ( \(\mathrm{X010}\) is \(\mathrm{ON} \mathrm{)}\), program execution jumps past the RST instruction due to the CJ instruction.
In this jump status, the counter C0 remains reset. Accordingly, the current value of C0 remains " 0 " even if X012 turns ON.
To clear this reset status, it is necessary to turn OFF the RST instruction for counter C0. (Refer to the program shown below.)

\section*{Timing chart}


Program example for activating a timer and counter even during a jump


\section*{Timing chart}


\section*{Relationship between master control instruction and jump instruction}

The figure below shows the contents of operation and the relationship between the master control instruction. Avoid using 2), 4) and 5) because the operation will be complicated.


Jump is enabled while M1 is ON.
In circuits after jump, M2 is regarded as ON regardless of the actual ON/OFF status of M2. And the first MCR is ignored.


\subsection*{7.1.2 CALL}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction calls and executes a program which should be processed commonly in a sequence program.
This instruction saves the number of program steps, and achieves efficient program design.
For creating a subroutine program, FEND and SRET instructions are required.
A similar processing is available by creating a function block and read it out from the program block.
Refer to the following manual for creating function blocks.
\(\rightarrow \mathbf{G X}\) Works2 Version1 Operating Manual (Structured Project)
\(\rightarrow\) Q/FX Structured Programming Manual (Fundamentals)
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline CALL & \multirow[t]{2}{*}{16 bits} & Continuous &  & Use a subroutine program by reading out the \\
\hline CALLP & & Pulse &  & funtion block made of other program parts. \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
\begin{tabular}{l} 
variable
\end{tabular}
\end{tabular} & EN & Execution condition & Bit \\
\cline { 2 - 5 } \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Circuit block label of subroutine program to be executed. & ANY16 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|l|}{System User} & \multirow[t]{2}{*}{Special Unit U \(\square\) IG \(\square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \[
\begin{array}{|c|}
\hline \text { Real } \\
\text { Number }
\end{array}
\] & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\)
\(\square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & E & & \\
\hline (P) & & & & & & & & & & & & & & & & & & & \(\bullet\) & & & & & \(\bullet\) \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation}

While the command input is ON, CALL instruction is executed and the program execution jumps to a step with a label \(p\).
Then, a subroutine program with the label \(p\) is executed.
When SRET instruction is executed, the program execution returns to the step after CALL instruction.
- At the end of the main program, put FEND instruction.
- Put a label p for CALL instruction after FEND instruction.


\section*{Cautions}
1) The FXo, FXos or FXon PLC does not support the instructions of pulse operation type.

To execute pulse operation, make the instruction execution condition pulse type.
2) To use the subroutine call, follow the steps below.

Name the task "MELSEC_MAIN".
Using a different task name prompts an error because the "one set in the program block" by the function FEND and the "one finally added to the program block during compiling" become redundant.

Be sure to program in combination with the SRET and FEND functions.
\(\rightarrow\) Refer to Section 7.1.3 for SRET.
\(\rightarrow\) Refer to Section 7.1.7 for FEND.
\(\rightarrow\) Refer to Section 7.1.3 for SRET.
\(\rightarrow\) Refer to Section 7.1.7 for FEND.
3) In CALL instructions, a same number can be used two or more times in operands (P). However, do not use a label (P) and number used in another instruction (CJ).

4) Cautions about the use in subroutines or interrupt routines are described later.

\section*{Program examples}
1. Example of fundamental use (no nesting)


Main program
While X000 is ON, the program
execution jumps to a step with the label P10.

Subroutine program
When SRET instruction is executed
after the subroutine program has executed, the program execution returns to the original step +1 .
2. Example of multiple CALL instructions in subroutines (multiple nesting)

CALL instruction can be used up to 4 times in subroutine programs. Nesting of up to five layers is allowed.


Main program
\(\overline{\text { When X001 turns ON from OFF, the program }}\) execution jumps to the label P11 only once.

\begin{tabular}{l} 
子 \\
\(\square\) \\
\hline
\end{tabular}
Subroutine program1
When SRET instruction is executed, the program execution returns to the main program.
If X 002 is ON while the subroutine program 1 is executed, the program execution jumps to a step with the label P12.

Subroutine program2
The subroutine program with P12 is executed, and then the program execution returns to the subroutine program with P11 by SRET instruction.

\section*{Cautions on subroutines and interrupt routines}

This section explains cautions on creating programs in subroutines and interrupt routines.
The explanation below is given for subroutines, but the situation also applies to interrupt routines.
1. When using timers in subroutines (or interrupt routines)

Use retentive type timers T192 to T199 in subroutines.
These timers execute counting when the coil instruction or END instruction is executed.
After a timer reaches the set value, the output contact is activated when the coil instruction or END instruction is executed.
Because general timers execute counting only when the coil instruction is executed, they do not execute counting if they are used in subroutines in which the coil instruction is executed only under some conditions.
2. When using retentive type 1 ms timers in subroutines (or interrupt routines)

If a retentive type 1 ms timer is used in a subroutine, note that the output contact is activated when the first coil instruction (or subroutine) is executed after the timer reaches its set value.

\section*{3. Countermeasures against latches of devices used in subroutines (or interrupt routines)}

Devices which were set to ON in a subroutine are latched in the ON status even after the subroutine is finished. (Refer to the program described later.)
When RST instruction for a timer or counter is executed, the reset status of the timer or counter is latched also.
For turning OFF such a device latched in the ON status or for canceling such a timer or counter latched in the reset status, reset such a device in the main program after the routine is finished, or program a sequence for resetting such a device or for deactivating RST instruction in the routine. (Refer to the program described later.)
1) Example in which outputs are latched

In the following program example, the counter C0 is provided to count X001. When X000 is input, the subroutine P0 is executed only in one scan, and then the counter is reset and Y007 is output.
- Program examples

- Timing chart


2）Example for resetting held outputs（countermeasures）
－Program examples

－Timing chart


\subsection*{7.1.3 SRET}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & O & O & O & O & O & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction returns the program execution from a subroutine to the main program.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline SRET & 16 bits & Continuous &  & Use a subroutine program by reading out the function block made of other program parts. \\
\hline
\end{tabular}

\section*{2. Set data}
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Always TRUE \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{6}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{1}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M \(T\) & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline - & \multicolumn{23}{|c|}{No target device is available.} \\
\hline
\end{tabular}

\section*{Function and operation explanation}

When CALL instruction in the main program is executed, the program execution jumps to a subroutine. SRET instruction returns the program execution to the main routine.
\(\rightarrow\) Refer to Section 7.1.2.

\section*{7．1．4 IRET}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U（C） & FX3G & FX2N（C） & FX1N（C） & FX1S & FXU／FX2C & FX0N & FX0（S） \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction returns the program execution from an interrupt routine to the main program．
1．Format and operation，execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline IRET & 16 bits & Continuous &  & IRET（EN）； \\
\hline
\end{tabular}

2．Input and output data types
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & Data type \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Always TRUE \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Bit \\
\hline
\end{tabular}

3．Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{6}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|l|}{System User} & Special Unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(\because \square\)
\(\square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y \({ }^{\text {M }}\) & M T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline － & \multicolumn{23}{|c|}{No target device is available．} \\
\hline
\end{tabular}

\section*{Function and operation explanation}

When an interrupt（input，timer or counter）is generated while the main program is executed，the program execution jumps to an interrupt（I）routine．
IRET instruction returns the program execution to the main routine．
The table below shows the three types of jump to an interrupt routine．
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Function } & \multicolumn{1}{c}{ Description } \\
\hline Input interrupt & Executes the interrupt processing when an input（X）signal turns ON or OFF． \\
\hline Timer interrupt & Executes the interrupt processing at a specified time interval（constant cycle）． \\
\hline Counter interrupt \({ }^{* 1}\) & Executes the interrupt processing when a high speed counter reaches its set value． \\
\hline
\end{tabular}
＊1．Only the FX3U，FX3UC and FX2C PLCs of V3．07 or later support this function．
Applicabla

\section*{Cautions}
1) Create a task for the interrupt program and the main program.
2) Use "Event" to specify the interrupt pointer to be used for the task for the interrupt program.
\(\rightarrow\) For the interrupt pointer, refer to Chapter 8.

3) IRET instruction needs not to be programmed because the function IRET is automatically added during the compilation at the end of the program block that is registered in the task for the interrupt program.


Do not program IRET instruction because it is automatically added during the compilation.
4) The program block registered in the task for the main program requires the function El (interrupt enabled). Program the function DI (interrupt disabled) as necessary.


\section*{Program examples}
[Structured ladder]

Task for main program


Task for interrupt program(Interrupt pointer 1001 is set by event.) 1001:The rising edge of X 000 is detected.


Task for interrupt program(Interrupt pointer 1620 is set by event.) 1620:Interrupt every 20 ms .


Task for interrupt program(Interrupt pointer 1010 is set by event.) 1010:High speed counter interrupt


High speed counter routine
[ST]
Task for main program


Task for interrupt program(Interrupt pointer 1001 is set by event.) 1001:The rising edge of X000 is detected.
Y000: \(=X 000 ;\)
\(\zeta\)
IRET(TRUE);


Task for interrupt program(Interrupt pointer 1620 is set by event.)
1620:Interrupt every 20 ms .


Task for interrupt program(Interrupt pointer 1010 is set by event.)
1010:High speed counter interrupt
Y000: \(=X 000 ;\)
\(\zeta\)
IRET(TRUE);

Interrupts are usually disabled in PLCs.
Use El instruction to enable interrupts.
When X000 turns ON while the main program is executed, instructions after the interrupt routine pointer 1001 are executed, and the program execution returns to the original main program by IRET instruction.

The timer interrupt of the pointer 1620 is executed every timer time of 20 ms , and the program execution is returned to the original main program by IRET instruction each time.

The high speed counter interrupt of the pointer 1010 is executed when the current value of a high speed counter becomes equivalent to a value specified by DHSCS instruction, and the program execution returns to the original main program by IRET.

Interrupts are usually disabled in PLCs. Use El instruction to enable interrupts. When X000 turns ON while the main program is executed, instructions after the interrupt routine pointer 1001 are executed, and the program execution returns to the original main program by IRET instruction.

The timer interrupt of the pointer 1620 is executed every timer time of 20 ms , and the program execution is returned to the original main program by IRET instruction each time.

The high speed counter interrupt of the pointer 1010 is executed when the current value of a high speed counter becomes equivalent to a value specified by DHSCS instruction, and the program execution returns to the original main program by IRET.

\subsection*{7.1.5 DI}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction disables interrupts after interrupts were enabled by El instruction.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[t]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DI & 16 bits & Continuous &  & DI(EN); \\
\hline
\end{tabular}

\section*{2. Set data}
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & Data type \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Always TRUE \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{6}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|l|}{System User} & \begin{tabular}{l}
Special \\
Unit
\end{tabular} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M \(\mathbf{T}\) & T C & S & D■.b & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline - & \multicolumn{23}{|c|}{No target device is available.} \\
\hline
\end{tabular}

\section*{Function and operation explanation}

DI instruction is the independent type, and does not require command (drive) contact.

\section*{Cautions}

Interrupts (requests) generated after DI instruction are processed after El instruction is executed.

\subsection*{7.1.6 El}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

Interrupts are usually disabled in PLCs. This instruction enables interrupts in PLCs.
Use this instruction for using the input interrupt, timer interrupt and counter interrupt functions.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline El & 16 bits & Continuous & \(-\mathrm{EN}^{2} \mathrm{El} \mathrm{ENO}-\) & El(EN); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Input condition & Always TRUE \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Input status & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & Special Unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & Real Number & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\)
\(\square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M \(T\) & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & E & & \\
\hline - & \multicolumn{23}{|c|}{No target device is available.} \\
\hline
\end{tabular}

\section*{Function and operation explanation}

El instruction is the independent type, and does not require command (drive) contact.

\section*{Cautions}
1) Refer to the following items for the cautions on the interrupt program.
2) Use the El instruction as follows when the \(F X U, F X 2 C, F X 2 N, F X 2 N C, F X 3 U\) and \(F X_{3} U C\) PLCs use the pulse catch function. The IE instruction does not need to be programmed when the FXo, FX0S, FX0N, FX1S, FX1N, FX1NC or FX3G PLC uses the pulse catch function.
For the details of special auxiliary relays and other devices used with the pulse catch function, refer to the following manual.

When using the FX3U PLC
\(\rightarrow\) FX Structured Programming Manual (Device \& Common)

[ST]
EI(TRUE)


Y000:=M8170;* \({ }^{*}\)
RST(X001, M8170); \({ }^{* 1}\)

With the rising edge of X 000 detected, M8170 is reset by interrupt.

Resets pulse catch results.
*1. A special auxiliary relay for the X000 pulse catch function used in the FX1s, FX1N, FXu, FX2C, FX2N, FX2NC, FX3G, FX3U and FX3UC PLCs. The special auxiliary relay depends on the PLC used and input number. For the pulse catch function, refer to Chapter 8.

\subsection*{7.1.7 FEND}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction indicates the end of the main program.
1. Format and operation, execution form
\begin{tabular}{l|c|c|c|cc}
\hline \begin{tabular}{c} 
Instruction \\
name
\end{tabular} & \multirow{2}{*}{ Operation } & \multirow{2}{|c}{\begin{tabular}{c} 
Execution \\
form
\end{tabular}} & \multicolumn{3}{|c}{ Expression in each language } \\
\cline { 4 - 5 } & & & Structured ladder & ST \\
\hline FEND & 16 bits & Continuous & & \multirow{2}{c}{ FEND } & FEND(EN); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Input condition & Input status \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Biways TRUE \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{6}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) 
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y \({ }^{\text {M }}\) & M \({ }^{\text {T }}\) & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline - & \multicolumn{23}{|c|}{No target device is available.} \\
\hline
\end{tabular}

\section*{Function and operation explanation}

When FEND instruction is executed, output processing, input processing and watchdog timer refresh are executed, and then the program execution returns to the step 0.
FEND instruction is required in creating subroutine programs and interrupt programs.
1. In the case of CJ instruction


\section*{2. In the case of CALL instruction}


\section*{Cautions}
1) The function FEND instruction is usually added automatically during compilation. It is not necessary to program the FEND instruction in the program block except when creating a subroutine. As for the subroutine programs, refer to the following.
\(\rightarrow\) Refer to Section 7.1.2.
2) When FEND instruction is programmed two or more times, put a subroutine program or interrupt routine program between the last FEND instruction and END instruction.
3) When CALL or CALLP instruction is used, put a label after FEND instruction. And the SRET instruction is required in every case.
4) When CALL or CALLP instruction is used, if FEND instruction is executed after CALL or CALLP instruction was executed and before SRET instruction is executed, an error is caused.
5) When FOR instruction is used, if FEND instruction is executed after FOR instruction was executed and before NEXT instruction is executed, an error is caused.
6) When the interrupt function (I) is used, be sure to program an interrupt label (pointer) after FEND instruction. And IRET instruction is required in every case.

\subsection*{7.1.8 WDT}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction refreshes the watchdog timer in a sequence program.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline WDT & \multirow{2}{*}{16 bits} & Continuous &  & WDT(EN); \\
\hline WDTP & & Pulse &  & WDTP(EN); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c}{ Description } & Data type \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Bit \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|l|}{System User} & Special Unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M \({ }^{\text {T }}\) & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) \G \(\square\) & V & Z & Modifier & K & H & & & \\
\hline - & \multicolumn{23}{|c|}{No target device is available.} \\
\hline
\end{tabular}

\section*{Function and operation explanation}

When the operation cycle (time until END or FEND instruction is executed after the step 0) of a PLC exceeds 200 ms , a watchdog timer error (indicating abnormal operation) occurs. The CPU error LED lights, and the PLC stops. When the operation cycle is long, insert WDT instruction in the middle of the program to avoid the watchdog timer error.


\section*{Related device}
\begin{tabular}{c|c|c}
\hline Device & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c}{ Description } \\
\hline D8000 & Watchdog timer time & Up to 32767 ms can be set in units of ms (initial value: 200 ms ). \\
\hline
\end{tabular}

\section*{Cautions}
1) The FX 0 , FX 0 s or FXon PLC does not support the pulse operation type instructions. To execute pulse operation, make the instruction execution condition pulse type.
2) A watchdog timer error may occur in the following cases. To avoid the error, input a program shown below near the head step to extend the watchdog timer time, or shift FROM/TO instruction execution timing.
- Caution when many special extension devices are connected.

In such configuration that many special extension devices (such as positioning units, cam switches, analog units and link units) are connected, the buffer memory initialization time may become longer, thus the operation time may become longer, and a watchdog timer error may occur.
- Caution when many FROM/TO instructions are driven at one time.

When many FROM/TO instructions are executed or when many buffer memories are transferred, the operation time may become longer, and a watchdog timer error may occur.
- Caution when there are many high speed counters (software counters).

When many high speed counters are provided and high frequency are counted at one time, the operation time may become longer, and a watchdog timer error may occur.
3) The watchdog timer time can be changed.

By overwriting the contents of D8000 (watchdog timer time), the watchdog timer detection time (initial value: 200 ms ) can be changed.
By inputting the program shown below, the sequence program after this insertion is monitored by a new watchdog timer time.


\section*{Program examples}

\section*{1. When the operation cycle is long and causes an error}

For example, by dividing a program whose operation cycle is 240 ms into two portions and inserting WDT instruction between them, the operation cycle becomes less than 200 ms in both the former half portion and the latter half portion.

2. When a label \((P)\) of \(C J\) instruction is located in a step number smaller than the step number of CJ instruction
Put WDT instruction after the label (P).


If an input relay ( X ) is used as the command contact, input refresh is disabled, so the program execution cannot be returned from the area between \(P\) and \(C J\). As the command contact, use such device that can be set to OFF in a program being jumped.
3. When FOR/NEXT instruction is repeated many times

Put WDT instruction between FOR and NEXT.


\subsection*{7.1.9 FOR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

FOR instruction specifies the number of repetition of the loop between FOR and NEXT instructions.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline FOR & 16 bits & Continuous &  & FOR(EN); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
\begin{tabular}{l} 
variable
\end{tabular} \\
\cline { 2 - 4 }
\end{tabular} & EN & Execution condition & \begin{tabular}{l} 
Number of repetition of the loop between FOR and NEXT \\
instructions
\end{tabular} \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Always TRUE \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M T & C & S & & D.b & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline n & & & & & & & & \(\bullet\) & - & \(\bullet\) & - & \(\bullet\) & & - & -1 & -2 & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}
\(\rightarrow\) Refer to Section 7.1.10 for details.

\section*{Related instruction}

FOR instruction and NEXT instruction are set as a pair in programming.

\section*{Cautions}
1) The repeat syntax (FOR...DO syntax) can program the same function. For the repeat syntax of the ST program, refer to the following manual.
\(\rightarrow\) FX Structured Programming Manual (Device \& Common)
2) Some restrictions to applicable devices
© 1: The FX3U, FX3UC and FX3G PLCs only are applicable.
A2: The FX3U and FX3uc PLCs only are applicable.

\subsection*{7.1.10 NEXT}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

FOR instruction specifies the number of repetition of the loop between FOR and NEXT instructions.
1. Format and operation, execution form
\begin{tabular}{l|c|c|c|cc}
\hline \begin{tabular}{c} 
Instruction \\
name
\end{tabular} & \multirow{2}{*}{ Operation } & \multirow{2}{|c}{\begin{tabular}{c} 
Execution \\
form
\end{tabular}} & \multicolumn{3}{|c}{ Expression in each language } \\
\cline { 4 - 5 } & & & Structured ladder & ST \\
\hline NEXT & 16 bits & Continuous & & \multirow{2}{c}{ NEXT } & NEXT(EN); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & Data type \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Always TRUE \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{6}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & Special Unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{Real Number} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(\because \square\) 
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) M & M \(T\) & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline - & \multicolumn{23}{|c|}{No target device is available.} \\
\hline
\end{tabular}

\section*{Function and operation explanation}

The loop between FOR and NEXT instruction is repeated " \(n\) " times (which is specified by the input variable ( n\()\) ).
After the loop is repeated by the specified number of times, steps after NEXT instruction are executed.


\section*{Cautions}

FOR-NEXT loop can be nested up to 5 levels.


\section*{Error}
1) When FOR-NEXT loop is repeated many times, the operation cycle (D8010) is too long, and a watchdog timer error may occur. In such a case, change the watchdog timer time or reset the watchdog timer.
\(\rightarrow\) For details on changing and resetting the watchdog timer, refer to Section 7.1.8.
2) The following programs are regarded as errors.

When NEXT instruction is located before FOR instruction
When NEXT instruction does not exist


When number of FOR instructions is not equivalent to the number of NEXT instructions.


When NEXT instruction exits after FEND instruction.


\section*{Program examples}
1. Program example with three FOR-NEXT loops
When K1X000 is " 7 ", the loop 1 ) is repeated 7 times. When X010 is ON
The program execution jumps to the pointer P22, and the loop 1) is skipped.
Number of times of repeating the loops 1), 2) and 3).
\begin{tabular}{l|c|c}
\hline & \(\mathrm{X} 010=\mathrm{OFF}\) & \(\mathrm{X010}=\mathrm{ON}\) \\
\hline 1\()\) & \(7 \times 6 \times 4=168\) times & 0 time \\
\hline 2\()\) & \(6 \times 4=24\) times & 24 times \\
\hline 3\()\) & 4 times & 4 times \\
\hline
\end{tabular}

\subsection*{7.2 Move and Compare}

\subsection*{7.2.1 CMP}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction compares two values, and outputs the result (smaller, equal or larger) to bit devices (3 points).
\(\rightarrow\) For the contact comparison instruction, refer to Section 7.22. \(\rightarrow\) For floating point comparison, refer to Section 7.12.1.
1. Format and operation, execution form

2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|c|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Data or device number handled as comparison value & ANY16 & ANY32 \\
\hline & (s2) & Data or device number handled as comparison source & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Head bit device to which comparison result is output. & \multicolumn{2}{|l|}{ARRAY [0..2] OF Bit} \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square \mathbf{I G} \square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{Real Number E} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(1 \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & S & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & - & - & - & - 2 & \(\triangle 3\) & - & - & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & - 2 & \(\Delta 3\) & - & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & - & - & & & - & ©1 & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}
1. 16-bit operation(CMP, CMPP)

The comparison value specified by (s1) and the comparison source specified by s2 are compared with each other. According to the result (smaller, equal or larger), any of the three points of the devices specified by d turns on.
- The source data specified by s1 and s2 are handled as BIN (binary) values.
- Comparison is executed algebraically. Example: \(-10<2\)

(d) to d +2 latch the status just before the command input turns OFF from ON.
*1 This defines the head bit device that stores the comparison result. (Defines M100)

\section*{2. 32-bit operation(DCMP, DCMPP)}

The comparison value specified by s 1 and the comparison source specified by s2 are compared with each other. According to the result (smaller, equal or larger), any of the three points of the devices specified byturns on.
- The source data specified by (s1) and s2 are handled as BIN (binary) values.
- Comparison is executed algebraically. Example: \(-125400<22466\)


Even if the command input turns OFF and DCMP instruction is not executed, (d) to (d) +2 latch the status just before the command input turns OFF from ON.
*1 This defines comparison value data or the device that stores the comparison value data
*2 This defines the comparison source data or the device that stores the comparison source data.
*3 This defines the head bit device that stores the comparison result. (Defines M100)

\section*{Cautions}
1) Some restrictions to applicable devices
©1:The FX3U and FX3Uc PLCs only are applicable. Not indexed (V,Z).
©2:The FX3u, FX3UC and FX3G PLCs only are applicable.
A3:The FX3U and FX3uc PLCs only are applicable.
2) When handling array data or 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle array data or 32-bit data. A 32-bit counter can be specified directly as it is a 32-bit long device. Use a global label to specify a device.
3) The FXo, FXos or FXon PLC does not support the pulse operation type instructions. To execute pulse operation, make the instruction execution condition pulse type.
4) From the device specified as (d), three devices are occupied. Be sure not to use those devices in another control.

\section*{Program examples}

\section*{1. When comparing present value of a counter}
[Structured ladder]


```

CMP(X000, K100, CN20, Var_CMP*1);
Y000:=X000 AND MO;
Y001:=X000 AND M1;
Y002:=X000 AND M2;
*1 Var_CMP is a global label and is defined as M0.

```

If it is necessary to clear the comparison result when the instruction is not executed, add the following contents under the above program.
1) \(R S T\)
[Structured ladder]

2) \(Z R S T\)
[Structured ladder]

[ST]

RST(NOT X000, MO);
RST(NOT X000, M1);
RST(NOT X000, M2);
[ST ]
ZRST(NOT X000, M0, M2);

\subsection*{7.2.2 ZCP}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction compares two values (zone) with the comparison source, and outputs the result (upper, equal or lower) to bit devices (3 points).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution
form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline ZCP & 16 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{lr} 
ZCP & \\
EN & ENO \\
s1 & \\
s2 & \\
s3 & \\
\hline
\end{tabular} - } \\
\end{tabular} & ZCP(EN,s1,s2,s3,d); \\
\hline ZCPP & 16 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{|c|}{ ZCPP } \\
EN & ENO \\
s1 & \\
s2 & \\
s3 & \\
\hline
\end{tabular} & ZCPP(EN,s1,s2,s3,d); \\
\hline DZCP & 32 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{|c|}{ DZCP } \\
EN & ENO \\
-s 1 & \\
s2 & \\
s3 & \\
\hline
\end{tabular} & DZCP(EN,s1,s2,s3,d); \\
\hline DZCPP & 32 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{|c|}{ DZCPP } \\
EN & ENO \\
s1 & \\
-s 2 & \\
s3 & \\
\hline
\end{tabular} & DZCPP(EN,s1,s2,s3,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow{4}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Data or device handled as lower comparison value & ANY16 & ANY32 \\
\hline & s2) & Data or device handled as upper comparison value & ANY16 & ANY32 \\
\hline & (53) & Data or device number handled as comparison source & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Head bit device to which comparison result is output. & \multicolumn{2}{|l|}{ARRAY [0..2] OF Bit} \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|l|}{} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{6}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{c}
\begin{tabular}{c} 
Character \\
String
\end{tabular} \\
\hline\(" \square "\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & - & - & -2 & \(\triangle 3\) & - & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & \(\triangle 2\) & \(\triangle 3\) & - & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s3) & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & -2 & 43 & & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & - & \(\bullet\) & & \(\bullet\) & A1 & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

А: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(ZCP, ZCPP)}

The lower comparison value specified by s1 and the upper comparison value specified by s2 are compared with the contents of the comparison source specified by s3. According to the result (smaller, within zone or larger), any of the three points of the devices specified by \(₫\) turns ON.
- Comparison is executed algebraically. Example: \(-10<2<10\)


Even if the command input turns OFF and ZCP instruction is not executed,
(d) to (d) +2 latch the status just before the command input turns OFF from ON.
*1 This defines the head bit device that stores the comparison result. (Defines M100)

\section*{2. 32-bit operation(DZCP, DZCPP)}

The lower comparison value specified by (s1) and the upper comparison value specified by s2 are compared with the contents of the comparison source specified by s3. According to the result (smaller, within zone or larger), any of the three points of the devices specified by durns ON.
- Comparison is executed algebraically. Example: \(-125400<22466<1015444\)

*1 This defines the lower comparison value data or the devices that stores the lower comparison value data.
*2 This defines the upper comparison value data or the devices that stores the upper comparison value data.
*3 This defines the comparison source data or the device that stores the comparison source data.
*4 This defines the head bit device that stores the comparison result. (Defines M100)

\section*{Cautions}
1) Some restrictions to applicable devices

1:The FX3U and FX3UC PLCs only are applicable. Not indexed (V,Z).
©2:The FX3u, FX3UC and FX3G PLCs only are applicable.
A3:The FX3u and FX3uc PLCs only are applicable.
2) When handling array data or 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle array data or 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
3) The FXo, FXos or FXon PLC does not support the pulse operation type instructions.

To execute pulse operation, make the instruction execution condition pulse type.
4) From the device specified as (d) three devices are occupied. Be sure not to use those devices in another control.
5) The lower comparison value specified by should be smaller than the upper comparison value specified by s2).
- When the lower comparison value s1 is smaller than the upper comparison value s2

*1 Var_ZCP1 is a global label and is defined as M3.
- When the lower comparison value \(\sqrt{(1)}\) is larger than the upper comparison value (s2)

*1 Var_ZCP1 is a global label and is defined as M3.

\subsection*{7.2.3 MOV}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline O & O & O & O & O & O & O & O \\
\hline
\end{tabular}

\section*{Outline}

This instruction transfers (copies) the contents of a device to another device.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline MOV & 16 bits & Continuous & \begin{tabular}{lr}
-EN & ENO \\
-s & d
\end{tabular} & \begin{tabular}{l}
MOV(EN,s,d); \\
Or an assignment statement
\end{tabular} \\
\hline MOVP & 16 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ MOVP } \\
EN & ENO \\
-s & d
\end{tabular} & MOVP(EN,s,d); Or an assignment statement \\
\hline DMOV & 32 bits & Continuous &  & DMOV(EN,s,d); Or an assignment statement \\
\hline DMOVP & 32 bits & Pulse &  & DMOVP(EN,s,d); Or an assignment statement \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow[t]{2}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (S & Data or device of transfer source & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Transfer destination device & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square \mathbf{I G} \square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{Character String
" "} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M T & C & S & D \(\square . b\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & \(\bullet\) & - & - & - & \(\bullet\) & - & - & -1 & -2 & - & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & & & & & & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & & - & -1 & -2 & - & - & - & & & & & \\
\hline
\end{tabular}
©: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(MOV, MOVP)}

The contents of the transfer source specified by \(\boldsymbol{s}\) are transferred to the transfer destination specified by (d).
- While the command input is OFF, the transfer destination specified by \(\subset\) does not change.
- When a constant \((\mathrm{K})\) is specified as the transfer source specified by \(\Omega\), it is automatically converted into binary.


When specifying digits of a bit device ( \(\mathrm{K} 1 \mathbf{X 0 0 0} \rightarrow\) K1Y000)
The bit device transfers a maximum of 16 points (multiple of 4 ).




When a word device is specified
The word device transfers 1 point.



\section*{2. 32-bit operation(DMOV, DMOVP)}

The contents of the transfer source specified by \(\subseteq\) are transferred to the transfer destination specified by (d).
- While the command input is OFF, the transfer destination specified by \(\subset d\) does not change.
- When a constant \((\mathbb{K})\) is specified as the transfer source specified by \((\mathbb{S}\), it is automatically converted into binary.

*1 This defines the transfer source data or the device that stores the transfer source data.
*2 This defines the transfer destination device.
When specifying digits of a bit device (K8X000 \(\rightarrow\) K8Y000)
The bit device transfers a maximum of 32 points (multiple of 4).
\begin{tabular}{|c|c|c|}
\hline Command input & DMOV & \\
\hline †1 & EN ENO & - \\
\hline Var_MO & s & Var_MOV2 \\
\hline
\end{tabular}

*1 Var_MOV1 is a global label and is defined as K8X000.
*2 Var_MOV2 is a global label and is defined as K8Y000.

\section*{When a word device is specified}


The word device transfers 1 point.
\begin{tabular}{|c|c|c|}
\hline Command input & DMOV & \\
\hline & ENO & \\
\hline Var_MOV1*1 & d & - Var_MOV2*2 \\
\hline
\end{tabular}
\begin{tabular}{|cc|}
\hline \begin{tabular}{c} 
Before \\
execution
\end{tabular} \begin{tabular}{|ll}
\(\mathrm{s}: \mathrm{D} 11, \mathrm{D} 10\) & d : D51, D50 \\
K 500000 & K 4321 \\
\hline
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|}
\hline After \\
execution \\
K 500000 & Transfer \\
& \multicolumn{4}{c}{K 500000} \\
\hline
\end{tabular}


\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data. A 32-bit counter can be specified directly as it is a 32-bit long device. Use a global label to specify a device.
2) The \(F X_{0}\), FXOs or FXON PLC does not support the pulse operation type instructions. To execute pulse operation, make the instruction execution condition pulse type.
3) Some restrictions to applicable devices
©1: The FX3U, FX3UC and FX3G PLCs only are applicable.
©2:The FX3U and FX3uc PLCs only are applicable.

\section*{Program examples}

\section*{1. When reading the current value of a timer and counter}
[Structured ladder]

[ ST ]
MOV(X001,TN0,D20);
(Current value of TO) \(\rightarrow\) (D20)
The operation is the same as a counter.
2. When indirectly specifying the set value of a timer or counter

As the set value of the timer T20, two values can be specified by turning ON or OFF the switch X002. For specifying more than two set values, more than one switch is required.
[Structured ladder]

3. When transferring a bit device

The program written by basic instructions shown below can be expressed using MOV instruction.
\begin{tabular}{|c|c|}
\hline X000 & Y000 \\
\hline & ( )- \\
\hline X001 & Y001 \\
\hline  & ( ) \\
\hline X002 & Y002 \\
\hline & - \\
\hline X003 & Y003 \\
\hline & ( )- \\
\hline
\end{tabular}

[ST]
MOV(M8000, K1X000, K1Y000);

\section*{4. When transferring 32-bit data}

Be sure to use DMOV instruction for transferring an applied instruction (such as MUL) whose operation result is output in 32 bits, and for transferring a 32-bit numeric value or transferring the current value of a high speed counter (C235 to C255) which is a 32-bit device.
[Structured ladder]

[ST]
MOV(X000, Var_MOV1*1 , Var_MOV2*2 );
MOV (X001, Var_MOV3*3, Var_MOV4*4 );
*1 Var_MOV1 is a global label and is defined as D0.
*2 Var_MOV2 is a global label and is defined as D10.
*3 Var_MOV3 is a global label and is defined as CN235.
*4 Var_MOV4 is a global label and is defined as D20.

\subsection*{7.2.4 SMOV}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction distributes and composes data in units of digit (4 bits).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline SMOV & 16 bits & Continuous &  & SMOV(EN,s,m1,m2,n,d); \\
\hline SMOVP & 16 bits & Pulse &  & SMOVP(EN,s,m1,m2,n,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{5}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s) & Word device storing data whose digits will be moved. & ANY16 \\
\hline & (m1) & Head digit position to be moved & ANY16 \\
\hline & (m2) & Number of digits to be moved & ANY16 \\
\hline & ( \({ }^{\text {a }}\) & Word device storing data whose digits are moved & ANY16 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Head digit position of movement destination & ANY16 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG \(\square\)
\end{tabular}}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(11 \square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c}
\hline Pointer \\
\(\mathbf{P}\)
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & & -2 & - & - & \(\bullet\) & & & & & \\
\hline (m1 & & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (m2) & & & & & & & & & & & & & & & & & & & & & - & \(\bullet\) & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & & -2 & - & \(\bullet\) & \(\bullet\) & & & & & \\
\hline ( & & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(SMOV, SMOVP)}

The contents of the transfer source specified by \(\triangle\) and transfer destination specified by \(\mathbb{d}\) are converted into 4-digit BCD (0000 to 9999) respectively. "m2" digits starting from "m1"th digit are transferred (composed) to the transfer destination specified by (d) starting from " \(n\) "th digit, converted into binary, and then stored to the transfer destination specified by \((d\).
- While the command input is OFF, the transfer destination specified by d does not change.
- When the command input turns ON, the data of the transfer source specified by \(\subseteq\) and unspecified digits in the transfer destination specified by d do not change.


1) \(s\) is converted from binary into BCD.
2) "m2" digits starting from "m1"th digit are transferred (composed) to (d) starting from "n"th digit. The digits of \(10^{3}\) and \(10^{\circ}\) of d \(^{\prime}\) are not affected even if data is transferred from \({ }_{s}\) '.
3) The composed data (BCD) is converted into binary, and stored to (d).

\section*{2. Extension function}

When M8168 is set to ON first and then SMOV instruction is executed, conversion from binary to BCD is not executed.
Data is moved in units of 4 bits.


\section*{Cautions}
1) Some restrictions to applicable devices

A1:The FX3U, FX3UC and FX3G PLCs only are applicable.
A2:The FX3U and FX3uc PLCs only are applicable.

\section*{Program examples}

The data on three-digit digital switches are composed, and stored as binary data to D2.


Data on three digital switches connected to non-consecutive input terminals are composed.
[Structured ladder]

[ ST ]
BIN(M8000, K2X020, D2);
BIN(M8000, K1X000, D1);
SMOV(M8000, D1, K1, K1, K3, D2);

\subsection*{7.2.5 CML}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline O & O & O & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction inverts data in units of bit, and then transfers (copies) the inverted data.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[t]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline CML & 16 bits & Continuous &  & CML(EN,s,d); \\
\hline CMLP & 16 bits & Pulse &  & CMLP(EN,s,d); \\
\hline DCML & 32 bits & Continuous &  & DCML(EN,s,d); \\
\hline DCMLP & 32 bits & Pulse &  & DCMLP(EN,s,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow[t]{2}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (S & Data to be inverted or word device storing the data & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Destination word device storing inverted data & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square \mathbf{I G} \square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{Character String
" "} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M T & C & S & D \(\square . b\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & \(\bullet\) & - & - & - & \(\bullet\) & - & - & -1 & -2 & - & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & & & & & & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & & - & -1 & -2 & - & - & - & & & & & \\
\hline
\end{tabular}
© : Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16 -bit operation(CML, CMLP)}

Each bit of a device specified by \(s\) is inverted (from 0 to 1 or from 1 to 0 ), and then transferred to the device specified by \((d\).
- When a constant \((K)\) is specified as \(S\), it is automatically converted into binary.
- This operation is useful when a logically inverted output is required as an output from a PLC.


(d)


\section*{2. 32-bit operation(DCML, DCMLP)}

Each bit of a device specified by \(\subseteq\) is inverted (from 0 to 1 or from 1 to 0 ), and then transferred to the device specified by \((d\).
- When a constant \((\mathrm{K})\) is specified as \(\Omega\), it is automatically converted into binary.
- This operation is useful when a logically inverted output is required as an output from a PLC.


*1 This defines the data to be inverted or the word device that stores the data.
*2 This defines the word device that stores the inverted data.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline b31 & b30 & b29 & b28 & b27 & b26 & b25 & to & b7 & b6 & n5 & b4 & b3 & b2 & 1 & b0 \\
\hline 1 & 0 & 1 & 0 & 1 & 0 & 1 & & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
\hline & & & & & & & \multicolumn{7}{|c|}{0=Positive number 1=Negative number)} & & \\
\hline
\end{tabular}


\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
2) Some restrictions to applicable devices
©1:The \(F_{3} u\), \(F X_{3} \cup C\) and \(F X_{3 G}\) PLCs only are applicable.
A2:The FX3U and FX3uc PLCs only are applicable.

\section*{Program examples}
1. When receiving an inverted input

The sequence program shown below can be written by CML instruction.


CML(M8000, K1X000, K1M0);
2. When four bits are specified for a device with digit specification
[Structured ladder]



CML(X000, D0, K1Y000);

\subsection*{7.2.6 BMOV}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction transfers (copies) a specified number of data at one time.
1. Format and operation, execution form

2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
\multirow{2}{*}{ variable }
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & s & Transfer source device & ANY16 \\
\cline { 2 - 5 } & n & Number of transferred points (including file registers) & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Transfer destination device & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{\mathrm{NI}}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M \(\mathbf{T}\) & C & c & 5 & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & -1 & 42 & & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & & - & - & - & \(\bullet\) & - & - & -1 & -2 & & & - & & & & & \\
\hline (n) & & & & & & & & & & & & & & \(\bullet\) & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

BMOV instruction transfers " \(n\) " points of data from the device specified by \(s\) to the device specified by (d) at one time.
- If the device number range is exceeded, data is transferred within the possible range.

1. Transfer is enabled even if the transfer number range is overlapped.

To prevent overwriting before transfer of source data, data is automatically transferred in the order "1) \(\rightarrow 2\) ) \(\rightarrow\) 3 )" according to the number overlap status.


\section*{2. Extension function (bi-directional transfer function)}

By controlling the direction inverse flag M8024*1 for BMOV instruction, data can be transferred in two directions in one program.

\begin{tabular}{|c|c|c|}
\hline BMOV direction inverse flag & Transfer direction & (s) (d) \\
\hline M8024*1:OFF & (s) \(\rightarrow\) d & \[
\begin{aligned}
& \mathrm{D} 5 \rightarrow \mathrm{D} 10 \\
& \mathrm{D} 6 \rightarrow \mathrm{D} 11 \\
& \mathrm{D} 7 \rightarrow \mathrm{D} 12
\end{aligned}
\] \\
\hline M8024*1:ON & (s) \(\leftarrow\) d & \[
\begin{aligned}
& \text { D5 } 5 \text { D10 } \\
& \text { D6↔D11 } \\
& \text { D7ヶD12 }
\end{aligned}
\] \\
\hline
\end{tabular}
*1. M8024 is cleared when the PLC mode is changed from RUN to STOP.

\section*{Cautions}
1) The FXon, FXU and FX2C PLCs handle file registers as follows.
\begin{tabular}{l|c|c}
\hline \multirow{2}{*}{} & \multicolumn{2}{|c}{ BMOV instruction } \\
\cline { 2 - 3 } & Read & Write \\
\hline FXON & \(\checkmark\) & \\
\hline FXU & \(\checkmark\) & \(\checkmark\) \\
FX2C & \(\checkmark\) & \\
\hline FXU \\
(V2.30 or earlier) & & \\
\hline
\end{tabular}
2) The FXon PLC does not support the instructions of pulse operation type.

To execute pulse operation, make the instruction execution condition pulse type.
3) When specifying digits of bit devices, specify a same number of digits for \(s\) and \(d\).


Specify a same number of digits. (Example: K1)


4) Some restrictions to applicable devices
©1:The \(F_{3} \cup, F X_{3} \cup c\) and \(F X_{3 G}\) PLCs only are applicable.
42:The FX3U and FX3uc PLCs only are applicable.

\section*{Function of transfer between file registers and data registers}

BMOV instruction has a special function to file registers (D1000 and later).
The maximum number of file register differs from one PLC to another.
This explanation here uses the FX3U and FX3UC PLCs as examples.
For the details of the file registers, refer to the following manual.
\(\rightarrow\) FX Structured Programming Manual (Device \& Common)
1. What are file registers

By parameter setting, D1000 to D7999 can be handled as file registers, and written to and read from the program memory area.
1) Outline of setting

File registers (D1000 to D7999) do not exist in the initial status. They are valid only when some number of file registers are secured by parameter setting in a programming tool.
2) Number of file registers

In parameter setting, set 500 file registers as 1 block.
1 to 14 blocks (each of which has 500 file registers) can be set.
1 block occupies 500 steps in the program memory area.
3) Difference between BMOV instruction and other instructions

The table below shows the difference between BMOV instruction and other instructions with regard to file registers (D1000 and later).
\begin{tabular}{l|l|l}
\hline \multicolumn{1}{c|}{ Instruction } & \multicolumn{1}{c|}{ Contents of transfer } & \multicolumn{1}{c}{ Remarks } \\
\hline BMOV & \begin{tabular}{l} 
Can read from and write to the file register area \([\mathrm{A}]\) \\
inside the program memory.
\end{tabular} & - \\
\hline \begin{tabular}{l} 
Other applied \\
instructions than \\
BMOV
\end{tabular} & \begin{tabular}{l} 
Can read from and write to the data register area \\
{\([\mathrm{B}]\) inside the image memory in the same way as } \\
general data registers.
\end{tabular} & \begin{tabular}{l} 
Because the data register area \([\mathrm{B}]\) is provided inside the \\
system RAM in PLCs, its contents can be arbitrarily \\
changed without regard to the optional memory format.
\end{tabular} \\
\hline
\end{tabular}

When power is turned ON, data registers set as file registers are automatically copied from the file register area \([A]\) to the data register area \([B]\).


\section*{2. Cautions on use}
1) When updating the contents of a file register with a same number (same-number update mode), make sure that the file register number is equivalent between \((s)\) and \((d\).
2) When using file registers in the same-number update mode, make sure that the number of transfer points specified by " \(n\) " does not exceed the file register area.
3) If the file register area is exceeded while file registers are used in the same-number update mode, an operation error (M8067) is caused and the instruction is not executed.
4) In the case of indexing (in the same-number update mode)

When \(s\) and \(d\) are modified with index, the instruction is executed if the actual device number is within the file register area and the number of transfer points does not exceed the file register area.
5) Handling of flash memory

When changing the contents of file registers secured inside the flash memory, observe the following condition:
- Set the protect switch to OFF in the optional memory.
- When writing data using a continuous operation type instruction in a program, data is written to the flash memory in every operation cycle of the PLC.
To prevent this, as the flash memory has a limit to the number of times of writing operations, be sure to use a pulse operation type instruction (BMOVP) so that the number of times of writing is reduced.
- It takes 66 to 132 ms to write data of one serial block ( 500 points) to the flash memory.

Execution of the program is paused during this period. Because the watchdog timer is not refreshed at this time, it is necessary to take proper countermeasures such as insertion of WDT instruction in a user program.
6) File register operation

File registers are secured inside the built-in memory or memory cassette.
Different from general data registers, file registers can be read and written directly only by peripheral equipment or BMOV instruction.
7) If a file register is not specified as the destination in BMOV instruction, the file register is not accessed.
a) Outline of memory operation

b) Program examples

When X000 is set to ON, the data register area \([B]\) is read.


A file register can be specified as \(\mathbb{C}\). But if a same number with \(\circlearrowleft\) is specified, the same-number register update mode is selected.
However, even if a file register having different number is specified for \(s\) and \(d\) respectively, data cannot be transferred from the file register area to another file register area. In such a case, read the contents of a file register specified as \(\subseteq\) in the same-number register update mode to the data register area \([B]\) once, and then write the data.

\subsection*{7.2.7 FMOV}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction transfers same data to specified number of devices.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{3}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & & ST \\
\hline FMOV & 16 bits & Continuous &  & FMOV(EN,s,n,d); & \\
\hline FMOVP & 16 bits & Pulse &  & FMOVP(EN,s,n,d); & \\
\hline DFMOV & 32 bits & Continuous &  & DFMOV(EN,s,n,d); & \\
\hline DFMOVP & 32 bits & Pulse &  & DFMOVP(EN,s,n,d); & \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s) & Transfer source data or device storing data & ANY16 & ANY32 \\
\hline & n & Number of transfer points & \multicolumn{2}{|l|}{ANY16} \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Head word device of transfer destination (Same data is transferred from the transfer source at one time.) & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{c} 
Character \\
String
\end{tabular}
"口"} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & \(\mathbf{Y}\) & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & - & \(\bullet\) & - & - & - & - & -1 & \(\triangle 2\) & - & - & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & - & - & - & - & - & -1 & -2 & & & \(\bullet\) & & & & & \\
\hline ( n & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}
© : Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(FMOV, FMOVP)}

The data or contents of a device specified by \(s\) are transferred to " n " devices starting from a device specified by \(\mathbb{d}\).
- The contents will be same among all of " n " devices.
- If the number of points specified by " n " exceeds the device number range, data is transferred within the possible range.
- While the command input is OFF, the transfer destination specified by \(\triangle\) does not change.
- While the command input is ON, the data of the transfer source specified by \(\leftrightarrows\) does not change.
- When a constant \((\mathrm{K})\) is specified as the transfer source specified by \(\circlearrowleft\), it is automatically converted into binary.


\section*{2. 32-bit operation(DFMOV, DFMOVP)}

The contents of the transfer source specified by \(\subseteq\) are transferred to "n" 32-bit devices starting from the device specified by d.
- The contents will be the same among all of "n" 32-bit devices.
- If the number of points specified by " n " exceeds the device number range, data is transferred within the possible range.
- While the command input is OFF, the transfer destination specified by \(\mathbb{d}\) does not change.
- While the command input is ON, the data of the transfer source specified by \(s\) does not change.
- When a constant \((\mathrm{K})\) is specified as the transfer source specified by \(\Omega\), it is automatically converted into binary.

*1 This defines the transfer source data or the device that stores the transfer source data.
*2 This defines the head word device at the transfer destination.


\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
2) The FXU PLC of V2.30 or earlier does not support 32-bit instructions.
3) Some restrictions to applicable devices
© 1:The FX3u, FX3UC and FX3G PLCs only are applicable.
©2:The FX3U and FX3uc PLCs only are applicable.

\section*{Program examples}
1. When writing specified data to two or more devices

[ST]
FMOV(X000, K0, K5, D0);


\subsection*{7.2.8 XCH}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction exchanges data between two devices.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline XCH & 16 bits & Continuous &  & \(\mathrm{XCH}(\mathrm{EN}, \mathrm{d} 1, \mathrm{~d} 2)\); \\
\hline XCHP & 16 bits & Pulse &  & XCHP(EN,d1,d2); \\
\hline DXCH & 32 bits & Continuous &  & DXCH(EN, d1, d2); \\
\hline DXCHP & 32 bits & Pulse &  & DXCHP(EN, d1,d2); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & & \multicolumn{2}{c}{ Description } & \begin{tabular}{c}
\multicolumn{2}{c}{\begin{tabular}{c} 
16-bit \\
operation
\end{tabular}} & \begin{tabular}{c} 
32-bit \\
operation
\end{tabular} \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} \\
\end{tabular} \\
& EN & Execution condition & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square \mathbf{I G} \square\)
\end{tabular}}} & \multicolumn{4}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{Character String
} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & & V & Z & & Modifier & K & H & & & \\
\hline (d1) & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & - & - & \(\triangle\) & & A1 & - & - & & - & & & & & \\
\hline (d2) & & & & & & & & - & - & \(\bullet\) & \(\bullet\) & - & - & - & & -1 & - & & & - & & & & & \\
\hline
\end{tabular}
© : Refer to "Cautions".

\section*{Function and operation explanation}
1. 16-bit operation \((X C H, X C H P)\)

Data is exchanged between the device specified by (d1) and the device specified by (d2).


Before execution After execution

2. 32-bit operation(DXCH, DXCHP)

Data is exchanged between the device specified by (d1) and the device specified by (d2).

*1 This defines the device that stores the data to be exchanged.


\section*{Extension function}

When the instruction is executed while M8160 is ON, high-order 8 bits (byte) and low-order 8 bits (byte) of a word device are exchanged each other.
(The FXU PLC of V2.30 or earlier does not support the extension function.)
This is the same operation as SWAP instruction, so use SWAP instruction for newly programming.
In the case of 32-bit operation, high-order 8 bits (byte) and low-order 8 bits (byte) of a word device are changed.


1 Var DXCH1 is a global label and is defined as D10.
*2 Var_DXCH2 is a global label and is defined as D10.

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
2) Some restrictions to applicable devices

A1:The FX3U and FX3UC PLCs only are applicable.

\section*{Error}

An operation error occurs in the following case. The error flag M8067 turns ON, and the error code is stored in D8067.
- When M8160 is ON, and the device numbers specified by (d1 and (d2 are different.

\subsection*{7.2.9 BCD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts binary (BIN) data into binary-coded decimal (BCD) data.
Binary data is used in operations in PLCs. Use this instruction to display numeric values on the sevensegment display unit equipped with BCD decoder.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|l|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline BCD & 16 bits & Continuous &  & \(B C D(E N, s, d) ;\) \\
\hline BCDP & 16 bits & Pulse &  & BCDP(EN,s,d); \\
\hline DBCD & 32 bits & Continuous &  & DBCD (EN,s,d); \\
\hline DBCDP & 32 bits & Pulse &  & DBCDP(EN,s,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow[t]{2}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s) & Word device storing the conversion source (binary) data & ANY16 & ANY32 \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Word device of the conversion destination (binary-coded decimal) data & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{5}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{c} 
Special \\
Unit
\end{tabular}
U \(\square \backslash \square \square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\) \\
\(\square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & C & S & & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & -1 & -2 & \(\bullet\) & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & - & -1 & \(\Delta 2\) & - & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(BCD, BCDP)}

This instruction converts the binary (BIN) data specified by \(s\) into binary-coded decimal (BCD) data, and transfers the converted BCD data to the device specified by \((d)\).
- The data of the device specified by \(s\) can be converted if it is within the range from K0 to K9999 (BCD).
- The table below shows digit specification for the devices specified by \(\triangle\) and \(\mathbb{d}\) respectively.

\begin{tabular}{c|c|c}
\hline d & Number of digits & Data range \\
\hline K1Y000 & 1 & 0 to 9 \\
\hline K2Y000 & 2 & 00 to 99 \\
\hline K3Y000 & 3 & 000 to 999 \\
\hline K4Y000 & 4 & 0000 to 9999 \\
\hline
\end{tabular}

\section*{2. 32-bit operation(DBCD, DBCDP)}

This instruction converts the binary (BIN) data specified by \(s\) into binary-coded decimal (BCD) data, and transfers the converted BCD data to the device specified by \(\mathbb{d}\).
- The data of the device specified by \(S\) can be converted if it is within the range from K0 to K99999999 (BCD).
- The table below shows digit specification for the devices specified by \(\subseteq\) and \(\mathbb{d}\) respectively.

\begin{tabular}{c|c|c}
\hline [d \(+\mathbf{1}\), d ] & Number of digits & Data range \\
\hline K1Y000 & 1 & 0 to 9 \\
\hline K2Y000 & 2 & 00 to 99 \\
\hline K3Y000 & 3 & 000 to 999 \\
\hline K4Y000 & 4 & 0000 to 9999 \\
\hline K5Y000 & 5 & 00000 to 99999 \\
\hline K6Y000 & 6 & 000000 to 999999 \\
\hline K7Y000 & 7 & 0000000 to 9999999 \\
\hline K8Y000 & 8 & 00000000 to 99999999 \\
\hline
\end{tabular}

\section*{Extension function(FXU and FX2C PLCs)}

The FXU PLC of V2.30 or earlier does not support the extension function.
When executing the instruction with M8023 ON, conversion takes place from binary float to decimal float.


For the float conversion, only data register \((D)\) is applicable as the device for \(\Omega\) and \(\mathbb{d}\).

\section*{Related instruction}
\begin{tabular}{c|l}
\hline Instruction & \multicolumn{1}{|c}{ Function } \\
\hline BIN & Converts binary-coded decimal (BCD) data into binary (BIN) data. \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data. A 32-bit counter can be specified directly as it is a 32-bit long device. Use a global label to specify a device.
2) The \(F X_{0}\), FXos or FXON PLC does not support the instructions of pulse operation type. To execute pulse operation, make the instruction execution condition pulse type.
3) Because conversion between binary-coded decimal data and binary data is automatically executed in SEGL and ARWS instructions, BCD instruction is not required.
4) Binary data is used in all operations in PLCs including arithmetic operations (,,\(+- \times\) and \(\div\) ), increment and decrement instructions.
- When receiving the digital switch information in the binary-coded decimal (BCD) format into a PLC, use BIN instruction for converting BCD data into binary data.
- When outputting data to the seven-segment display unit handling binary-coded decimal (BCD) data, use \(B C D\) instruction for converting binary data into BCD data.
5) Some restrictions to applicable devices
©1:The FX3u, FX3UC and FX3G PLCs only are applicable.
A2:The FX3U and FX3uc PLCs only are applicable.

\section*{Error}

In BCD or BCDP (16-bit type) instructions, an operation error occurs when the \(s\) value is outside the range from 0 to 9,999.
In DBCD or DBCDP (32-bit type) instructions, an operation error occurs when the \(s\) value is outside the range from 0 to \(99,999,999\).

\section*{Program examples}

\section*{1．When the seven－segment display unit has 1 digit}
［Structured ladder］

［ST］
BCD（X000，D0，K1Y000）；


2．When the seven－segment display unit has 2 to 4 digits
［Structured ladder］


BCD（X000，D0，K2Y000）；

\section*{3．When the seven－segment display unit has 5 to 8 digits}
［Structured ladder］


In the case of 5 digits：K5
In the case of 6 digits：K6
In the case of 7 digits：K7
In the case of 8 digits：K8
Output destination

［ST］
DBCD（X000，Var＿BCD1＊1 ，Var＿BCD2＊2 \({ }^{*}\) ；
＊1 Var＿BCD1 is a global label and is defined as D0．
＊2 Var＿BCD2 is a global label and is defined as K5Y000．

\subsection*{7.2.10 BIN}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts binary-coded decimal (BCD) data into binary (BIN) data.
Use this instruction to convert a binary-coded decimal (BCD) value such as a value set by a digital switch into binary (BIN) data and to receive the converted binary data so that the data can be handled in operations in PLCs.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline BIN & 16 bits & Continuous &  & \(\operatorname{BIN}(\mathrm{EN}, \mathrm{s}, \mathrm{d})\); \\
\hline BINP & 16 bits & Pulse &  & BINP(EN,s,d); \\
\hline DBIN & 32 bits & Continuous &  & DBIN(EN,s,d); \\
\hline DBINP & 32 bits & Pulse &  & DBINP(EN,s,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow[b]{2}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s) & Word device storing the conversion source (binary-coded decimal) data & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Word device of the conversion destination (binary) & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{6}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\) 
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M \(\mathbf{T}\) & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & -1 & 42 & - & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & - & - & - & - & - & - & -1 & -2 & - & & - & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(BIN, BINP)}

This instruction converts the binary-coded decimal (BCD) data specified by \(s\) into binary (BIN) data, and transfers the converted binary data to the device specified by \(d\).
- The data of the device specified by \(s\) can be converted if it is within the range from 0 to 9999 (BCD).
- The table below shows digit specification for the devices specified by \(s\) and \(\mathbb{d}\).

\begin{tabular}{c|c|c}
\hline s & Number of digits & Data range \\
\hline K1X000 & 1 & 0 to 9 \\
\hline K2X000 & 2 & 00 to 99 \\
\hline K3X000 & 3 & 000 to 999 \\
\hline K4X000 & 4 & 0000 to 9999 \\
\hline
\end{tabular}

\section*{2. 32-bit operation(DBIN, DBINP)}

This instruction converts the binary-coded decimal (BCD) data specified by \(s\) into binary (BIN) data, and transfers the converted binary data to the device specified by \((d\).
- The data of the device specified by \(\subseteq\) can be converted if it is within the range from 0 to 99999999 (BCD).
- The table below shows digit specification for the devices specified by \(\subseteq\) and \(\mathbb{d}\).

*1 This defines the transfer source device.
*2 This defines the transfer destination device.


\section*{Extension function(FXU and FX2C PLCs)}

The FXU PLC of V2.30 or earlier does not support the extension function.
When executing the instruction with M8023 ON, conversion takes place from binary-coded decimal float to binary float.

*1 This defines D4.
*2 This defines D6.
For the float conversion, only data register (D) is applicable as the device for \(\Omega\) and \((d\).

\section*{Related instruction}
\begin{tabular}{c|l}
\hline Instruction & \multicolumn{1}{c}{ Function } \\
\hline BCD & Converts binary (BIN) data into binary-coded decimal (BCD) data. \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
2) The FXo, FXos or FXon PLC does not support the instructions of pulse operation type.

To execute pulse operation, make the instruction execution condition pulse type.
3) Because conversion between binary-coded decimal data and binary data is automatically executed in DSW, BIN instruction is not required.
4) Binary data is used in all operations in PLCs including arithmetic operations (+,,\(- \times\) and \(\div\) ), increment and decrement instructions.
- When receiving the digital switch information in the binary-coded decimal (BCD) format into a PLC, use BIN instruction for converting BCD data into binary data.
- When outputting data to the seven-segment display unit handling binary-coded decimal (BCD) data, use BCD instruction for converting binary data into BCD data.
5) Some restrictions to applicable devices
© 1: The FX3U, FX3UC and FX3G PLCs only are applicable.
42:The FX3U and FX3uc PLCs only are applicable.

\section*{Error}

M8067 (operation error) turns ON when the source data is not binary-coded decimal (BCD).

\section*{Program examples}

\section*{1. When the digital switch has 1 digit}
[Structured ladder]

[ST]
BIN(X000, K1X000, D0);

MOV instruction can be used instead.
[Structured ladder]

[ST]
MOV (X000, K1X000, D0);

\section*{2. When the digital switch has 2 to \(\mathbf{4}\) digits}

3. When the digital switch has \(\mathbf{5}\) to \(\mathbf{8}\) digits

[ST]
DBIN (X000, Var_BIN1*1 \({ }^{* 1}\) Var_BIN2 \({ }^{* 2}\) );
*1 Var_BIN1 is a global label and is defined as K5X000.
*2 Var_BIN2 is a global label and is defined as D0.

\subsection*{7.3 Arithmetic and Logical Operation}

\subsection*{7.3.1 ADD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction executes addition by two values to obtain the result ( \(A+B=C\) )
\(\rightarrow\) For the floating point addition instruction [DEADD], refer to Section 7.12.8.
1. Format and operation, execution form

2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|c|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & S1 & Data for addition or word device storing data & ANY16 & ANY32 \\
\hline & s2 & Data for addition or word device storing data & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Word device storing the addition result & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square \mathbf{I G} \square\)
\end{tabular}} & \multicolumn{4}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & & Modifier & K & H & & & \\
\hline (s1) & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & - & -1 & \(\triangle 2\) & \(\bullet\) & - & & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & -1 & \(\pm 2\) & - & & & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & -1 & -2 & - & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}
1. 16-bit operation(ADD, ADDP)

The data specified by \(\sqrt{51}\) ) and (\$2) are added in the binary format, and the addition result is transferred to the device specified by \(\subset\).

- The most significant bit of each data indicates the sign (positive: 0 or negative: 1 ), and data is added algebraically. \(5+(-8)=-3\)
- When a constant \((\mathrm{K})\) is specified in S 11 or (s2), it is automatically converted into the binary format.

\section*{2. 32-bit operation(DADD, DADDP)}

The data specified by (s1) and (s2) are added in the binary format, and the addition result is transferred to the device specified by (d).

\[
[(s 1)+1,(s 1)]+[(s 2)+1,(s 2)] \rightarrow[(d)+1,(d)]
\]
*1 This defines the data to be added or the device that stores the data.
*2 This defines the device that stores the results of addition.
- The most significant bit of each data indicates the sign (positive: 0 or negative: 1 ), and data is added algebraically.
\(5,500+(-8,540)=-3,040\)
- When a constant \((K)\) is specified in s1 or s2, it is automatically converted into the binary format.

\section*{Related device}
1. Relationship between the flag operation and the sign
\(\rightarrow\) For the flag operations, refer to Section 1.3.4.
\begin{tabular}{c|c|l}
\hline Device & Name & \multicolumn{1}{c}{ Description } \\
\hline M8020 & Zero & \begin{tabular}{l} 
ON : When the operation result is 0 \\
OFF : When the operation result is not 0
\end{tabular} \\
\hline M8021 & Borrow & \begin{tabular}{l} 
ON : When the operation result is less than -32,768 (in 16-bit operation) or -2,147,483,648 (in \\
32-bit operation), the borrow flag operates. \\
OFF : When the operation result is not less than -32,768 (in 16-bit operation) or \\
\(-2,147,483,648\) (in 32-bit operation)
\end{tabular} \\
\hline M8022 & Carry & \begin{tabular}{l} 
ON : When the operation result is more than 32,767 (in 16-bit operation) or 2,147,483,647 (in \\
32-bit operation), the carry flag operates. \\
OFF : When the operation result is not more than 32,767 (in 16-bit operation) or \\
\(2,147,483,647\) (in 32-bit operation)
\end{tabular} \\
\hline
\end{tabular}


\section*{Extension function(FXU and FX2C PLCs)}

The FXU PLC of V2.30 or earlier does not support the extension function. When executing an instruction with M8023 ON, a binary float operation takes place. In this case, \(K, H\) and \(D\) are valid as the object device for \(s 1\) and \(s 2\) and \(D\) is valid for \(d\). The source data needs to be converted into binary float value in advance by FLT instruction. Note, however, that constants K and H are automatically converted into binary float values.

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32 -bit long device.
Use a global label to specify a device.
2) The FXO, FXOS or FXON PLC does not support the instructions of pulse operation type.

To execute pulse operation, make the instruction execution condition pulse type.
3) When using a 32-bit operation instruction (DADD or DADDP) and specifying word devices, a 16-bit word device on the low-order side is specified first, and a word device with the subsequent device number is automatically set for the high-order 16 bits.
To prevent number overlap, it is recommended to always specify an even number, for example.
4) The same device number can be specified for both the source and the destination.

In this case, note that the addition result changes in every operation cycle if a continuous operation type instruction (ADD or DADD) is used.

5) Some restrictions to applicable devices
© 1: The \(F_{3} \cup, F X_{3} \cup c\) and \(F X_{3 G}\) PLCs only are applicable.
42:The FX3U and FX3uc PLCs only are applicable.

\section*{Program examples}

\section*{1. Difference between ADD instruction and INC instruction caused by a program for adding} "+1".
When ADD[P] instruction is executed, " 1 " is added to the contents of D0 every time X001 turns ON from OFF. ADD[P] instruction is similar to INCP instruction described later except the contents shown in the table below.
\begin{tabular}{|c|c|c|c|c|}
\hline & & & ADD/ADDP/DADD/DADDP & INC/INCP/DINC/DINCP \\
\hline \multicolumn{3}{|l|}{Flag (zero, borrow, carry)} & Operates & Does not operate \\
\hline \multirow[t]{4}{*}{} & \multirow[t]{2}{*}{16-bit operation} & (s) \(+(+1)=\) d & \(+32,767 \rightarrow 0 \rightarrow+1 \rightarrow+2 \rightarrow\) & \(+32,767 \rightarrow-32,768 \rightarrow-32,767\) \\
\hline & & (s) \(+(-1)=\) d & \(\leftarrow-2 \leftarrow-1 \leftarrow 0 \leftarrow-32,768\) & - \\
\hline & \multirow[t]{2}{*}{32-bit operation} & (s) \(+(+1)=\) d & \(+2,147,483,647 \rightarrow 0 \rightarrow+1 \rightarrow+2 \rightarrow\) & \(+2,147,483,647 \rightarrow-2,147,483,648 \rightarrow-2,147,483,647\) \\
\hline & & (s) \(+(-1)=\) d & \(\leftarrow-2 \leftarrow-1 \leftarrow 0 \leftarrow-2,147,483,648\) & - \\
\hline
\end{tabular}
[Structured ladder]

\(\left(\begin{array}{ll}\mathrm{D} & 0\end{array}\right)+1 \rightarrow\left(\begin{array}{ll}\mathrm{D} & 0\end{array}\right)\)
[ST]
ADDP(X001, D0, K1, D0);

INCP(X001, D0);
\(\left(\begin{array}{ll}\mathrm{D} & 0\end{array}\right)+1 \rightarrow(\mathrm{D} 0)\)

\subsection*{7.3.2 SUB}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction executes subtraction using two values to obtain the result ( \(A-B=C\) ). \(\rightarrow\) For the floating point subtraction instruction [DESUB], refer to Section 7.12.9.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{3}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & & ST \\
\hline SUB & 16 bits & Continuous &  & SUB(EN,s1,s2,d); & \\
\hline SUBP & 16 bits & Pulse &  & SUBP(EN,s1,s2,d); & \\
\hline DSUB & 32 bits & Continuous &  & DSUB(EN,s1,s2,d); & \\
\hline DSUBP & 32 bits & Pulse &  & DSUBP(EN,s1,s2,d); & \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & S1 & Data for subtraction or word device storing data & ANY16 & ANY32 \\
\hline & (s2 & Data for subtraction or word device storing data & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Word device storing the subtraction result & ANY16 & ANY32 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{Special Unit U \(\square \mathbf{I G} \square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|c}
\begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & - & - & \(\bullet\) & - & \(\bullet\) & - & - & -1 & -2 & - & - & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & - & - & -1 & -2 & - & & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & - & -1 & -2 & \(\bullet\) & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}
1. 16-bit operation(SUB, SUBP)

The data specified by \(s 2\) is subtracted from the data specified by \(s 1\) in the binary format, and the subtraction result is transferred to \((d\).

- The most significant bit of each piece of data indicates the sign (positive: 0 or negative: 1 ), and data is subtracted algebraically.
(5-(-8)=13)
- When a constant \((\mathrm{K})\) is specified in S 1 or s 2 , it is automatically converted into the binary format.

\section*{2. 32-bit operation(DSUB, DSUBP)}

The data specified by \(s 2\) is subtracted from the data specified by \(\mathbb{S O}^{1}\) in the binary format, and the subtraction result is transferred to (d).

*1 This defines the data or the device that stores the data.
*2 This defines the device that stores the subtraction result.
- The most significant bit of each piece of data indicates the sign (positive: 0 or negative: 1 ), and data is subtracted algebraically.
\((5,500-(-8,540)=14,040)\)
- When a constant \((K)\) is specified in s1 or s2), it is automatically converted into the binary format.

\section*{Extension function(FXU and FX2C PLCs)}

The FXU PLC of V2.30 or earlier does not support the extension function.
When executing an instruction with M8023 ON, a binary float operation takes place.
In this case, \(K, H\) and \(D\) are valid as the object device for (s1) and ©s2 and D is valid for d.
The source data needs to be converted into binary float value in advance by FLT instruction.
Note, however, that constants K and H are automatically converted into binary float values.

\section*{Related device}
1. Relationship between the flag operation and the sign
\(\rightarrow\) For the flag operations, refer to Section 1.3.4.
\begin{tabular}{|c|c|c|}
\hline Device & Name & Description \\
\hline M8020 & Zero & ON : When the operation result is 0 OFF : When the operation result is not \\
\hline M8021 & Borrow & \begin{tabular}{l}
ON : When the operation result is less than -32,768 (in 16-bit operation) or - \(2,147,483,648\) (in 32-bit operation), the borrow flag operates. \\
OFF : When the operation result is not less than -32,768 (in 16-bit operation) or -2,147,483,648 (in 32-bit operation)
\end{tabular} \\
\hline M8022 & Carry & \begin{tabular}{l}
ON : When the operation result is more than 32,767 (in 16-bit operation) or 2,147,483,647 (in 32-bit operation), the carry flag operates. \\
OFF : When the operation result is not more than 32,767 (in 16-bit operation) or 2,147,483,647(in 32-bit operation)
\end{tabular} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device. Use a global label to specify a device.
2) The FXO, FXos or FXON PLC does not support the instructions of pulse operation type. To execute pulse operation, make the instruction execution condition pulse type.
3) When using a 32-bit operation instruction (DSUB or DSUBP) and specifying word devices, a 16-bit word device on the low-order side is specified first, and a word device with the subsequent device number is automatically set for the high-order 16 bits.
To prevent number overlap, it is recommended to always specify an even number, for example.
4) The same device number can be specified for both the source and the destination.

In this case, note that the addition result changes in every operation cycle if a continuous operation type instruction (SUB or DSUB) is used.

(D 0) \(-25 \rightarrow(\mathrm{D} 0)\)
5) Some restrictions to applicable devices
© 1:The FX3U, FX3UC and FX3G PLCs only are applicable.
© 2: The FX3U and FX3uc PLCs only are applicable.

\section*{Program examples}
1. Difference between SUB instruction and DEC instruction caused by a program for subtracting "1"
" 1 " is subtracted from the contents of D0 every time X001 turns ON from OFF.
SUB instruction is similar to DECP instruction described later except the contents shown in the table below.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & SUB/SUBP/DSUB/DSUBP instructions & DEC/DECP/DDEC/DDECP instructions \\
\hline \multicolumn{3}{|l|}{Flag (zero, borrow, carry)} & Operates & Does not operate \\
\hline \multirow[t]{4}{*}{} & \multirow[t]{2}{*}{16-bit operation} & (s) \(-(+1)=\) d & \(\leftarrow-2 \leftarrow-1 \leftarrow 0 \leftarrow-32,768\) & \(-32,768 \rightarrow+32,767 \rightarrow+32,766\) \\
\hline & & (s) \(-(-1)=\) d & \(+32,767 \rightarrow 0 \rightarrow+1 \rightarrow+2 \rightarrow\) & - \\
\hline & \multirow[t]{2}{*}{\[
\begin{aligned}
& 32 \text {-bit } \\
& \text { operation }
\end{aligned}
\]} & (s) \(-(+1)=\) d & \(\leftarrow-2 \leftarrow-1 \leftarrow 0 \leftarrow-2,147,483,648\) & \(-2,147,483,648 \rightarrow+2,147,483,647 \rightarrow+2,147,483,646\) \\
\hline & & (s) \(-(-1)=\) d & \(+2,147,483,647 \rightarrow 0 \rightarrow+1 \rightarrow+2 \rightarrow\) & - \\
\hline
\end{tabular}
[Structured ladder]
 4
[ST]
SUBP(X001, D0, K1, D0);
\((\mathrm{D} 0)-1 \rightarrow(\mathrm{D} 0)\)
\(\left(\begin{array}{ll}\mathrm{D} & 0\end{array}\right)-1 \rightarrow\left(\begin{array}{ll}\mathrm{D} & 0\end{array}\right)\)

\subsection*{7.3.3 MUL}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction executes multiplication by two values to obtain the result ( \(A \times B=C\) ).
\(\rightarrow\) For the floating point multiplication instruction [DEMUL], refer to Section 7.12.10.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{3}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & & ST \\
\hline MUL & 16 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ MUL } \\
EN & ENO \\
-s 1 & \\
s2 & \\
\hline
\end{tabular} & MUL(EN,s1,s2,d); & \\
\hline MULP & 16 bits & Pulse &  & MULP(EN,s1,s2,d); & \\
\hline DMUL & 32 bits & Continuous &  & DMUL(EN,s1,s2,d); & \\
\hline DMULP & 32 bits & Pulse & \[
\] & DMULP(EN,s1,s2,d); & \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Variable} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Data for multiplication or word device storing the multiplication data & ANY16 & ANY32 \\
\hline & s2 & Data for multiplication or word device storing the multiplication data & ANY16 & ANY32 \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Head word device storing the multiplication result & ANY32 & ARRAY [1..2] OF ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c}
\begin{tabular}{c} 
Character \\
String
\end{tabular} \\
\hline\(" \square "\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X Y & Y \(\mathbf{N}\) & M T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & \(\bullet\) & \(\bullet\) & - & - & - & - & - & -1 & \(\triangle 2\) & & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & -1 & -2 & & \(\bullet\) & - & - & \(\bullet\) & & & \\
\hline (d) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & -1 & -2 & & \(\triangle 3\) & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(MUL, MULP)}

The data specified by \(s 1\) is multiplied by data specified by \(s 2\) in the binary format, and the multiplication result is transferred to 32-bit (double word) device specified by \(\mathbb{d}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Command input} & \multicolumn{2}{|c|}{MUL} & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{BIN} & \multirow[b]{2}{*}{BIN} & \multirow[b]{2}{*}{BIN} \\
\hline & EN & ENO & & & & \\
\hline ultiplication data 1 & s1 & d & - Label1** & (s1) & ( s2) & +1, \\
\hline Multiplicati & s2 & & & 16 bits & 16 bits & 32 bits \\
\hline
\end{tabular}
*1 This defines the device that stores the multiplication result.
- The most significant bit of each piece of data indicates the sign (positive: 0 or negative: 1 ), and data is multiplied algebraically. ( \(5 \times(-8)=-40\) )
- When a constant (K) is specified in (s1) or ©s2), it is automatically converted into the binary format.
- When a digit (K1 to K8) is specified for the device specified by \(\mathbb{C}\) :

A digit can be specified in the range from K1 to K8.
For example, when K2 is specified, only low-order 8 bits can be obtained out of the product ( 32 bits).



\section*{2. 32-bit operation(DMUL, DMULP)}

The data specified by ©1 is multiplied by the data specified by s2 in the binary format, and the multiplication result is transferred to 64-bit (d) (four word devices).

*1 This defines the multiplication data or the device that stores the multiplication data.
*2 This defines the device that stores the multiplication result.

- The most significant bit of each piece of data indicates the sign (positive: 0 or negative: 1 ), and data is multiplied algebraically.
\((5,500 \times(-8,540)=-46,970,000)\)
- When a constant \((\mathrm{K})\) is specified in s1 or s2), it is automatically converted into the binary format.
- When a digit (K1 to K8) is specified for the device specified by \(\mathbb{d}\), the result is obtained only for loworder 32 bits, and is not obtained for high-order 32 bits.
Transfer the data to word devices once, then execute the operation.

\((\) D51, D50 \()\)
K100 \(\times\) K150 \(\rightarrow \underset{\text { K15000 }}{(D 103, ~ D 102, ~ D 101, ~ D 100) ~})\)
K15
*1 Var_s1 is a global label and is defined as D50.
*2 Var_s2 is a global label and is defined as K150.
*3 Var_d3 is a global label and is defined as D100.
*4 Var_IN1 is a global label and is defined as D100.
*5 Var_OUT1 is a global label and is defined as K8Y000.
*6 Var_IN2 is a global label and is defined as D102.
*7 Var_OUT2 is a global label and is defined as K8Y040.

\section*{Extension function(FXU and FX2C PLCs)}

The FXU PLC of V2.30 or earlier does not support the extension function.
When executing an instruction with M8023 ON, a binary float operation takes place, for example, (D1, D0) \(\times\) (D3, D2) = (D5, D4).
In this case, \(K, H\) and \(D\) are valid as the object device for \(s 1\) and \(s 2\) and \(D\) is valid for \(d\).
The source data needs to be converted into binary float value in advance by FLT instruction.
Note, however, that constants K and H are automatically converted into binary float values.

\section*{Related device}
1. Relationship between the flag operation and the sign
\begin{tabular}{c|c|l}
\hline Device & Name & \multicolumn{1}{c}{ Description } \\
\hline M8304*1 & Zero & ON : When the operation result is 0 \\
& OFF : When the operation result is not 0 \\
\hline
\end{tabular}
*1. Available in the \(F X_{3} U\) and \(F X_{3} U C\) PLCs of Ver. 2.30 or later and FX3G PLC of Ver. 1.00 or later.

\section*{Cautions}
1) Some restrictions to applicable devices

A1:The FX3u, FX3UC and FX3G PLCs only are applicable.
©2: The FX3U and FX3Uc PLCs only are applicable.
43:Available only for a 16-bit operation. Not available for a 32-bit operation.
2) When handling array data or 32 -bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle array data or 32-bit data. A 32-bit counter can be specified directly as it is a 32-bit long device. Use a global label to specify a device.
3) The FXO, FXOS or FXON PLC does not support the instructions of pulse operation type. To execute pulse operation, make the instruction execution condition pulse type.
4) When a 32-bit operation (DMUL or DMULP) is used, " \(Z\) " cannot be specified to the device specified by (d).
5) In monitoring the operation results by a programming tool, 64-bit data as the operation results cannot be monitored at one time even if a word device is used. In such a case, the FX3U, FX3UC and FX3G PLCs can use floating point operation.
\(\rightarrow\) For the floating point operation, refer to Section 7.12.

\section*{Program examples}

\section*{1. 16 -bit operation}
[Structured ladder]


\section*{2. 32-bit operation}
[Structured ladder]


\section*{Function changes according to versions}
\begin{tabular}{c|c|c|c|l}
\hline \multicolumn{3}{|c|}{ Compatible versions } & \multirow{2}{*}{ Item } & \\
\hline FX3U & FX3UC & FX3G & & \\
\hline \begin{tabular}{c} 
Ver. 2.30 or \\
later
\end{tabular} & \begin{tabular}{c} 
Ver. 2.30 or \\
later
\end{tabular} & \begin{tabular}{c} 
Ver. 1.00 or \\
later
\end{tabular} & Zero flag & \begin{tabular}{l} 
Turns the special device M8304 ON when the operation result of MUL \\
instruction is 0.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{7.3.4 DIV}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction executes division by two values to obtain the result \([A \div B=C \ldots(\) remainder \()]\).
\(\rightarrow\) For the floating point division instruction [DEDIV], refer to Section 7.12.11.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{3}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & & ST \\
\hline DIV & 16 bits & Continuous & \begin{tabular}{lr|}
\hline & \multicolumn{2}{c}{ DIV } & \\
-EN & ENO \\
-s 1 & \\
s2 & \\
\hline
\end{tabular} & DIV(EN,s1,s2,d); & \\
\hline DIVP & 16 bits & Pulse &  & DIVP(EN,s1,s2,d); & \\
\hline DDIV & 32 bits & Continuous & \[
\] & DDIV(EN,s1,s2,d); & \\
\hline DDIVP & 32 bits & Pulse & \[
\] & DDIVP(EN,s1,s2,d); & \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Data for division or word device storing the data (dividend). & ANY16 & ANY32 \\
\hline & (s2) & Data for division or word device storing the data (divisor). & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Head word device storing the division result (quotient and remainder) & \[
\begin{aligned}
& \hline \text { ARRAY [0..1] } \\
& \text { OF ANY16 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ARRAY [0..1] } \\
& \text { OF ANY32 }
\end{aligned}
\] \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\[
\begin{gathered}
\begin{array}{c}
\text { Special } \\
\text { Unit }
\end{array} \\
\hline \text { U } \square I G \square
\end{gathered}
\]} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & - & \(\bullet\) & - & - & \(\bullet\) & - & - & 11 & -2 & & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & 11 & 42 & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & & & & & & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & - & - & 11 & -2 & & -3 & - & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(DIV, DIVP)}

The contents specified by s1 indicates the dividend, the contents specified by s2 indicates the divisor, the quotient and remainder are transferred to the device specified by \(d\).

\begin{tabular}{|c|c|c|c|}
\hline Dividend & isor & Que & \\
\hline N & BIN & BIN & BIN \\
\hline (S1) \(\div\) & \(\div(\) s2) \()\) & (d) & (d) +1 ) \\
\hline 16 bits & 16 bits & 16 bit & \\
\hline
\end{tabular}
*1 This defines the device that stores the division result.
- The most significant bit of each data indicates the sign (positive: 0 or negative: 1 ), and data is divided algebraically, for example, \(36 \div(-5)=-7\) (quotient) and 1 (remainder).
- Two devices in total starting from (d are occupied to store the operation result (quotient and remainder). Make sure that these two devices are not used for other control.
- When a constant \((K)\) is specified in \(s 1\) or \(s 2\), it is automatically converted into the binary format.

\section*{2. 32-bit operation(DDIV, DDIVP)}

The contents specified by (s1) indicates the dividend, the contents specified by s2) indicates the divisor, the quotient and remainder are transferred to the device specified by \((d)\).

*1 This defines the dividend data or the device that stores the dividend data
*2 This defines the divisor data or the device that stores the divisor data.
*3 This defines the device that stores the division result.
\begin{tabular}{|c|c|c|c|}
\hline Dividend BIN & Divisor BIN & Quotient BIN & Remainder BIN \\
\hline \multicolumn{4}{|l|}{s1 +1, s1] \(\div[\) s2 \(+1, s 2] \rightarrow\) (d) +1, d \(] \cdots\) [d +3 , d +2} \\
\hline 32 bits & 32 bits & 32 bits & 32 bits \\
\hline
\end{tabular}
- Four devices in total starting from \((d)\) are occupied to store the operation result (quotient and remainder). Make sure that these four devices are not used for other control.
- The most significant bit of each data indicates the sign (positive: 0 or negative: 1 ), and data is divided algebraically, for example, \(5,500 \div(-540)=-10\) (quotient) and 100 (remainder).
- When a constant \((\mathrm{K})\) is specified in s 1 or s 2 , it is automatically converted into the binary format.

\section*{Extension function(FXU and FX2C PLCs)}

The FXu PLC of V2.30 or earlier does not support the extension function.
When executing an instruction with M8023 ON, a binary float operation takes place, for example, (D1, D0) : (D3, D2) = (D5, D4).
In this case, \(K, H\) and \(D\) are valid as the object device for \(s 1\) and s2 and \(D\) is valid for \(d\).
The source data needs to be converted into binary float value in advance by FLT instruction.
Note, however, that constants K and H are automatically converted into binary float values.

\section*{Related device}
\begin{tabular}{c|c|l}
\hline Device & Name & \multicolumn{1}{c}{ Description } \\
\hline M8304*1 & Zero & \begin{tabular}{l} 
ON : When the operation result is 0 \\
OFF : When the operation result is not 0
\end{tabular} \\
\hline M8306*1 & Carry & \begin{tabular}{l} 
ON : When the operation result is more than 32,767 (in 16-bit operation) or 2,147,483,647 (in \\
32-bit operation), the carry flag operates. \\
OFF : When the operation result is not more than 32,767 (in 16-bit operation) or \\
\(2,147,483,647\) (in 32-bit operation)
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
*1. Available in the FX3U and FX3Uc PLCs of Ver. 2.30 or later and FX3G PLC of Ver. 1.00 or later.
}

\section*{Cautions}

1）Some restrictions to applicable devices
©1：The \(F_{3} X_{3}, F X_{3} \cup C\) and \(F X_{3 G}\) PLCs only are applicable．
©2：The FX3U and FX3uc PLCs only are applicable．
43：Available only for a 16－bit operation．Not available for a 32－bit operation．
2）When handling array data or 32－bit data in a structured program，a 16－bit device cannot be specified directly as in the case of a simple project．Use a label to handle array data or 32－bit data． A 32－bit counter can be specified directly as it is a 32－bit long device． Use a global label to specify a device．
3）The FXO，FXos or FXon PLC does not support the instructions of pulse operation type． To execute pulse operation，make the instruction execution condition pulse type．
4）The most significant bit of the quotient and remainder indicates the sign（positive： 0 or negative： 1 ）．
5）The quotient is negative when either the dividend or divisor is negative． The remainder is negative when the dividend is negative．
6）The remainder is not obtained when a bit device is specified with digit specification for the device specified by d．
7）In a 32－bit operation（by DDIV or DDIVP），Z cannot be specified as the device specified by \(\mathbb{d}\) ．

\section*{Program examples}

1．16－bit operation
［Structured ladder］


> [ ST ]
> MUL(X000,D0,D2,Var_DIV*1 );
> *1 Var_DIV is a global label and is defined as D4.

2．32－bit operation
［Structured ladder］

＊1 Var＿s1 is a global label and is defined as D0．
＊2 Var＿s2 is a global label and is defined as D2．
＊3 Var＿d3 is a global label and is defined as D4．

\section*{Function changes according to versions}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Compatible versions} & \multirow[b]{2}{*}{Item} & \multirow[b]{2}{*}{Function summary} \\
\hline FX3U & FX3UC & FX3G & & \\
\hline & & & Zero flag & Turns M8304 ON when the operation result of DIV instruction is 0 ． \\
\hline Ver． 2.30 or later & Ver． 2.30 or later & Ver． 1.00 or later & Carry flag & \begin{tabular}{l}
Turns M8306 ON when the operation result of DIV instruction overflows． 16－bit operation：Only when the maximum negative value \((-32,768)\) is divided by＂-1 ＂． \\
32－bit operation：Only when the maximum negative value \((-2,147,483,648)\) is divided by＂-1 ＂．
\end{tabular} \\
\hline
\end{tabular}

\subsection*{7.3.5 INC}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction increments the data of a specified device by "1" (+1 addition).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline INC & 16 bits & Continuous &  & INC(EN, d); \\
\hline INCP & 16 bits & Pulse &  & INCP(EN, d); \\
\hline DINC & 32 bits & Continuous &  & DINC(EN,d); \\
\hline DINCP & 32 bits & Pulse &  & DINCP(EN,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline Input variable & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Word device storing data to be incremented by "1" & ANY16 & ANY32 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{Special Unit} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & c & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (d) & & & & & & & & & - & - & \(\bullet\) & \(\bullet\) & & - & -1 & -2 & \(\bullet\) & \(\bullet\) & - & & & & & \\
\hline
\end{tabular}

Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(INC, INCP)}

The contents of the device specified by \((d)\) is incremented by "1", and the increment result is transferred to (d).


\section*{2. 32-bit operation(DINC, DINCP)}

The contents of the device specified by \((d)\) is incremented by "1", and the increment result is transferred to (d).

\([(d)+1,(d)]+1 \rightarrow[(d)+1,(d)]\)
*1 This defines the device that stores the data to be added by "1".

\section*{Cautions}
1) When handling array data or 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle array data or 32-bit data. A 32-bit counter can be specified directly as it is a 32-bit long device. Use a global label to specify a device.
2) The FXO, FXos or FXON PLC does not support the instructions of pulse operation type. To execute pulse operation, make the instruction execution condition pulse type.
3) Note that data is incremented in every operation cycle in a continuous operation type instruction.
4) In a 16 -bit operation, when "+32,767" is incremented by "1", the result is "-32,768". Flags (zero, borrow and carry) are not activated at this time.
5) In a 32-bit operation, when "+2,147,483,647" is incremented by "1", the result is "-2,147,483,648". Flags (zero, borrow and carry) are not activated at this time.
6) Some restrictions to applicable devices
© 1:The FX3U, FX3UC and FX3G PLCs only are applicable.
© 2: The FX3U and FX3uc PLCs only are applicable.

\section*{Program examples}
[Structured ladder]


\subsection*{7.3.6 DEC}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction decrements the data of a specified device by "1" (-1 addition).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution
form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DEC & 16 bits & Continuous &  & DEC(EN, d); \\
\hline DECP & 16 bits & Pulse &  & DECP(EN, d); \\
\hline DDEC & 32 bits & Continuous &  & DDEC(EN,d); \\
\hline DDECP & 32 bits & Pulse &  & DDECP(EN,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline Input variable & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Device storing data to be decremented by "1" & ANY16 & ANY32 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{6}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square \mathbf{I G} \square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M \({ }^{\text {T }}\) & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (d) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & -1 & -2 & & \(\bullet\) & \(\bullet\) & & & & & \\
\hline
\end{tabular}

Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16 -bit operation(DEC, DECP)}

The contents of the device specified by \((d)\) are decremented by "1", and the decremented result is transferred to the device specified by d.

2. 32-bit operation(DDEC, DDECP)

The contents of the device specified by \((d)\) are decremented by "1", and the decremented result is transferred to the device specified by (d).

*1 This defines the device that stores the data to be decremented by "1".

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data. A 32-bit counter can be specified directly as it is a 32-bit long device. Use a global label to specify a device.
2) The FXO, FXOS or FXON PLC does not support the instructions of pulse operation type. To execute pulse operation, make the instruction execution condition pulse type.
3) In a 16 -bit operation, when " \(+32,767\) " is incremented by " 1 ", the result is "- 32,768 ". Flags (zero, borrow and carry) are not activated at this time.
4) In a 32 -bit operation, when "+2,147,483,647" is incremented by " 1 ", the result is "-2,147,483,648". Flags (zero, borrow and carry) are not activated at this time.
5) Some restrictions to applicable devices
©1:The FX3U, FX3UC and FX3G PLCs only are applicable.
A2: The FX3u and FX3uc PLCs only are applicable.
FX3

\subsection*{7.3.7 WAND}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction executes the logical product (AND) operation of two numeric values.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured Iadder & ST \\
\hline WAND & 16 bits & Continuous & \begin{tabular}{lr}
-EN & ENO \\
-s 1 & \(\mathrm{~d} 1-\) \\
-s 2 & \\
\hline
\end{tabular} & WAND(EN,s1,s2,d1); \\
\hline WANDP & 16 bits & Pulse & \begin{tabular}{lr}
\(-{ }^{2}\) WANDP \\
EN & ENO- \\
-s 1 & \(\mathrm{~d} 1-\) \\
-s 2 & \\
\hline
\end{tabular} & WANDP(EN,s1,s2,d1); \\
\hline DAND & 32 bits & Continuous &  & DAND(EN,s1,s2,d1); \\
\hline DANDP & 32 bits & Pulse & \begin{tabular}{lr}
\hline \multicolumn{2}{c|}{ DANDP } \\
EN & ENO \\
-s 1 & d \\
s 2 & \\
\hline
\end{tabular} & DANDP(EN,s1,s2,d1); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Data used for logical product or word device storing data & ANY16 & ANY32 \\
\hline & (s2) & Data used for logical product or word device storing data & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Word device storing the logical product result & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{6}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{Special Unit U \(\square \mathbf{I G} \square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M \(T\) & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & \(\bullet\) & - & - & - & \(\bullet\) & - & - & -1 & -2 & \(\bullet\) & - & - & - & \(\bullet\) & & & \\
\hline (s2) & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & -1 & -2 & \(\bullet\) & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & -1 & -2 & \(\bullet\) & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}
1. 16-bit operation(WAND, WANDP)

The logical product (AND) operation is executed to the contents specified by (s1) and \((s 2)\) in units of bit, and the result is transferred to the device specified by (d).

- While the command input is OFF, the data of the transfer destination specified by d does not change.
- While the command input is ON, the data of the transfer sources specified by s1 and s2 do not change.
- When a constant \((\mathrm{K})\) is specified in the transfer sources specified by s 1 and \(s 2\), it is automatically converted into the binary format.
- The logical product operation is executed in units of bit as shown in the table below ( \(1 \wedge 1=1,0 \wedge 1=0\), \(1 \wedge 0=0\) and \(0 \wedge 0=0\) ).

In the table : 1=ON, 0=OFF
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{(s1)} & \multirow[b]{2}{*}{(s2)} & (d) \\
\hline & & & WAND \\
\hline \multirow{4}{*}{Logical operation (unit: bit)} & 0 & 0 & 0 \\
\hline & 1 & 0 & 0 \\
\hline & 0 & 1 & 0 \\
\hline & 1 & 1 & \\
\hline
\end{tabular}
2. 32-bit operation(DAND, DANDP)

The logical product (AND) operation is executed to the contents specified by \(s 1\) and s2 in units of bit, and the result is transferred to the device specified by (d).


*1 This defines the logical product data or the device that stores the logical product data.
*2 This defines the device that stores the logical product operation result.
- While the command input is OFF, the data of the transfer destination specified by \(\mathbb{d}\) does not change.
- While the command input is ON, the data of the transfer sources specified by s1 and s2 do not change.
- When a constant \((\mathrm{K})\) is specified in the transfer sources specified by \(s 1\) and s2) , it is automatically converted into the binary format.
- The logical product operation is executed in units of bit as shown in the table below ( \(1 \wedge 1=1,0 \wedge 1=0,1 \wedge 0\) \(=0\) and \(0 \wedge 0=0\) ).

In the table: \(1=\mathrm{ON}, 0=\mathrm{OFF}\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{(s1) +1, s1} & \multirow[t]{2}{*}{(s2) +1, s2} & (d) +1 , d \\
\hline & & & DAND instruction \\
\hline \multirow{4}{*}{Logical operation (unit: bit)} & 0 & 0 & 0 \\
\hline & 1 & 0 & 0 \\
\hline & 0 & 1 & 0 \\
\hline & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device. Use a global label to specify a device.
2) The FXo, FXos or FXon PLC does not support the instructions of pulse operation type.

To execute pulse operation, make the instruction execution condition pulse type.
3) Some restrictions to applicable devices
\(\mathbf{\Delta 1}_{1}\) :The \(\mathrm{FX}_{3} \mathrm{U}, \mathrm{FX} 3 \cup \mathrm{C}\) and \(\mathrm{FX}_{3}\) P PLCs only are applicable.
\(\mathbf{\Delta}\) 2: The FX3U and FX3uc PLCs only are applicable.

\subsection*{7.3.8 WOR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction executes the logical sum (OR) operation of two numeric values.
1. Format and operation, execution form

2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Data used for logical sum or word device storing data & ANY16 & ANY32 \\
\hline & s2 & Data used for logical sum or word device storing data & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Word device storing the logical sum result. & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{c} 
Special \\
Unit
\end{tabular}
U \(\square \backslash \square \square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M 7 & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & - & - & - & -1 & 42 & \(\bullet\) & - & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & -1 & 42 & \(\bullet\) & - & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & -1 & -2 & - & - & - & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}
1. 16-bit operation(WOR, WORP)

The logical sum (OR) operation is executed to the contents specified by \(s 1\) and s2 in units of bit, and the result is transferred to the device specified by \((d\).

- While the command input is OFF, the data of the transfer destination specified by d does not change.
- While the command input is ON, the data of the transfer sources specified by s1 and s2 do not change.
- When a constant \((\mathrm{K})\) is specified in the transfer sources specified by \(s 1\) and \(s 2\), it is automatically converted into the binary format.
- The logical sum operation is executed in units of bit as shown in the table below ( \(1 \vee 1=1,0 \vee 1=1\), \(0 \vee 0=0\) and \(1 \vee 0=1\) ).

In the table : \(1=\mathrm{ON}, 0=\mathrm{OFF}\)
\begin{tabular}{|c|c|c|c|}
\hline & \multirow[t]{2}{*}{(s1)} & \multirow[t]{2}{*}{(s2)} & (d) \\
\hline & & & WOR \\
\hline \multirow{4}{*}{Logical operation (unit: bit)} & 0 & 0 & 0 \\
\hline & 1 & 0 & 1 \\
\hline & 0 & 1 & 1 \\
\hline & 1 & 1 & 1 \\
\hline
\end{tabular}
2. 32-bit operation(DOR, DORP)

The logical sum (OR) operation is executed to the contents specified by \(s 1\) and \(s 2\) in units of bit, and the result is transferred to the device specified by (d).

*1 This defines the logical sum data or the device that stores the logical sum data.
*2 This defines the device that stores the logical sum result.
- While the command input is OFF, the data of the transfer destination specified by \(\mathbb{d}\) does not change.
- While the command input is ON, the data of the transfer sources specified by s1 and s2 do not change.
- When a constant \((\mathrm{K})\) is specified in the transfer sources specified by s 1 and s2 , it is automatically converted into the binary format.
- The logical sum operation is executed in units of bit as shown in the table below ( \(1 \vee 1=1,0 \vee 1=1\), \(0 \vee 0=0\) and \(1 \vee 0=1\) ).

In the table: \(1=\mathrm{ON}, 0=\mathrm{OFF}\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{(s1) +1, s1} & \multirow[t]{2}{*}{(s2) +1, s2} & (d) +1, d \\
\hline & & & DOR instruction \\
\hline \multirow{4}{*}{Logical operation (unit: bit)} & 0 & 0 & 0 \\
\hline & 1 & 0 & 1 \\
\hline & 0 & 1 & 1 \\
\hline & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device. Use a global label to specify a device.
2) The \(F X_{0}\), FXos or FXON PLC does not support the instructions of pulse operation type.

To execute pulse operation, make the instruction execution condition pulse type.
3) Some restrictions to applicable devices
©1:The FX3U, FX3UC and FX3G PLCs only are applicable.
42:The FX3U and FX3uc PLCs only are applicable.

\subsection*{7.3.9 WXOR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction executes the exclusive logical sum (XOR) operation of two numeric values.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured Iadder & ST \\
\hline WXOR & 16 bits & Continuous &  & WXOR(EN,s1,s2,d1); \\
\hline WXORP & 16 bits & Pulse & \begin{tabular}{lr}
\hline \multicolumn{2}{c}{ WXORP } \\
EN & ENO- \\
-s 1 & d 1 \\
-s 2 & \\
\hline
\end{tabular} & WXORP(EN,s1,s2,d1); \\
\hline DXOR & 32 bits & Continuous &  & DXOR(EN,s1,s2,d1); \\
\hline DXORP & 32 bits & Pulse & \begin{tabular}{lr}
-2 & DXORP \\
EN & ENO- \\
-s 1 & d \\
s2 & \\
\hline
\end{tabular} & DXORP(EN,s1,s2,d1); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l|l|l}
\hline \multirow{2}{*}{ Variable } & \multirow{2}{c}{ Description } & \multicolumn{2}{c}{ Data type } \\
\cline { 4 - 6 } & & & \begin{tabular}{c} 
16-bit \\
operation
\end{tabular} & \begin{tabular}{c} 
32-bit \\
operation
\end{tabular} \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit & \\
\cline { 2 - 6 } & s1 & Data used for exclusive logical sum or word device storing data & ANY16 & ANY32 \\
\cline { 2 - 6 } & S2 & Data used for exclusive logical sum or word device storing data & ANY16 & ANY32 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit & ANY32 \\
\cline { 2 - 6 } & & Word device storing the exclusive logical sum result & ANY & ANY \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{6}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{Special Unit U \(\square \mathbf{I G} \square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M \(T\) & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & \(\bullet\) & - & - & - & \(\bullet\) & - & - & -1 & -2 & \(\bullet\) & - & - & - & \(\bullet\) & & & \\
\hline (s2) & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & -1 & -2 & \(\bullet\) & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & -1 & -2 & \(\bullet\) & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}
1. 16-bit operation(WXOR, WXORP)

The exclusive logical sum (XOR) operation is executed to the contents specified by \(s 1\) and \(s 2\) in units of bit, and the result is transferred to the device specified by \((d\).

- While the command input is OFF, the data of the transfer destination specified by d does not change.
- While the command input is ON, the data of the transfer sources specified by \(s 1\) and \(s 2\) do not change.
- When a constant \((\mathrm{K})\) is specified in the transfer sources specified by \(s 1\) and \(s 2\), it is automatically converted into the binary format.
- The logical exclusive sum operation is executed in units of bit as shown in the table below ( \(1 \forall 1=0,0 \forall 0\) \(=0,1 \forall 0=1\) and \(0 \forall 1=1\) ).

In the table : 1=ON, 0=OFF
\begin{tabular}{l|c|c|c}
\hline & s1 & \multirow{2}{*}{} & (d) \\
\cline { 3 - 4 } & & & WXOR \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Logical operation \\
(unit: bit)
\end{tabular}} & 0 & 0 & 0 \\
\cline { 2 - 4 } & 1 & 0 & 1 \\
\cline { 2 - 4 } & 0 & 1 & 1 \\
\cline { 2 - 4 } & 1 & 1 & 0 \\
\hline
\end{tabular}
2. 32-bit operation(DXOR, DXORP)

The exclusive logical sum (XOR) operation is executed to the contents specified by \(s 1\) and \(s 2\) in units of bit, and the result is transferred to the device specified by \(\mathbb{d}\).


*1 This defines the exclusive logical sum data or the device that stores the exclusive logical sum data.
*2 This defines the devices that stores the exclusive logical sum result.
- While the command input is OFF, the data of the transfer destination specified by d does not change.
- While the command input is ON, the data of the transfer sources specified by \(s 1\) and \(s 2\) do not change.
- When a constant \((\mathrm{K})\) is specified in the transfer sources specified by \((\mathrm{si} 1\) and s2), it is automatically converted into the binary format.
- The logical exclusive sum operation is executed in units of bit as shown in the table below ( \(1 \forall 1=0,0 \forall 0\) \(=0,1 \forall 0=1\) and \(0 \forall 1=1\) ).

In the table: 1=ON, 0=OFF
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{(s1) +1, s1} & \multirow[t]{2}{*}{(s2) +1, s2} & (d) +1 , d \\
\hline & & & DXOR instruction \\
\hline \multirow{4}{*}{Logical operation (unit: bit)} & 0 & 0 & 0 \\
\hline & 1 & 0 & 1 \\
\hline & 0 & 1 & 1 \\
\hline & 1 & 1 & 0 \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device. Use a global label to specify a device.
2) The FXO, FXOS or FXON PLC does not support the instructions of pulse operation type.

To execute pulse operation, make the instruction execution condition pulse type.
3) Some restrictions to applicable devices
©1:The FX3U, FX3UC and FX3G PLCs only are applicable.
©2:The FX3U and FX3uc PLCs only are applicable.

\section*{Program examples}

By combining WXOR and CML instructions, the exclusive logical sum not (XORNOT) operation can be executed.


\section*{[ ST ]}

WXOR(X000, D10, D12, D14);
CML(X000, D14, D14);

\subsection*{7.3.10 NEG}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction obtains the 2's complement of a numeric value (by inverting each bit and adding "1").
A sign of a numeric value can be converted by this instruction.
\(\rightarrow\) For the floating point sign inversion instruction [DENEG], refer to Section 7.12.16.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline NEG & 16 bits & Continuous &  & NEG(EN,d); \\
\hline NEGP & 16 bits & Pulse &  & NEGP(EN,d); \\
\hline DNEG & 32 bits & Continuous &  & DNEG(EN,d); \\
\hline DNEGP & 32 bits & Pulse &  & DNEGP(EN, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & & \multicolumn{2}{c}{ Description } \\
\cline { 3 - 5 } \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & \begin{tabular}{c} 
16-bit \\
operation
\end{tabular} & \begin{tabular}{c} 
32-bit \\
operation
\end{tabular} \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit & \\
\cline { 2 - 6 } & & \begin{tabular}{l} 
Word device which stores data for obtaining complement and will \\
store the operation result. (The operation result will be stored in \\
the same word device.)
\end{tabular} & ANY16 & ANY32 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{Real Number
\(\qquad\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
"口"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M \({ }^{\text {T }}\) & C & S & & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & -1 & -1 & - & - & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".


\section*{Function and operation explanation}
1. 16-bit operation(NEG, NEGP)

Each bit of the device specified by \((d)\) is inverted \((0 \rightarrow 1,1 \rightarrow 0), " 1 "\) is added, and then the result is stored in the original device.


\section*{2. 32-bit operation(DNEG, DNEGP)}

Each bit of the device specified by \((d)\) is inverted \((0 \rightarrow 1,1 \rightarrow 0), " 1 "\) is added, and then the result is stored in the original device.

*1 This defines the device that stores the complement data.

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data. A 32-bit counter can be specified directly as it is a 32-bit long device. Use a global label to specify a device.
2) Note that the complement is obtained in every scan time (operation cycle) in a continuous operation type instruction (NEG,DNEG).
3) Some restrictions to applicable devices A1:The FX3U and FX3uc PLCs only are applicable.

\section*{Program examples}

The program examples below are provided to obtain the absolute value of a negative binary value.
1. Obtaining the absolute value of a negative value using NEG instruction
[Structured ladder]


In BON (ON bit check) instruction, M0 turns ON when the bit 15 (b15 among b0 to b15) of D10 is "1".

NEGP instruction is executed for D10 only when M0 turns ON.
[ST]
BON(M8000, D0, K15, M0);
NEGP(M0, D10);

\section*{2. Obtaining the absolute value by SUB (subtraction) instruction}

Even if NEG instruction (complement operation) is not used, D30 always stores the absolute value of the difference.
[Structured ladder]


\section*{Negative value expression and absolute value (reference)}

In PLCs, a negative value is expressed in 2's complement.
When the most significant bit is "1", it is a negative value, and its absolute value can be obtained by NEG instruction.
(D 10) = 2
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{tabular}
(D 10) = 1
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}
(D 10) = 0
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 10) & = & & & & & & & & & & & & & & & & & 10) & + & & & & & & & & & & & & & \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & 1 & 1 & 1 & 1 & \(\rightarrow\) & 0 & 0 & 0 & 0 & O & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline \multicolumn{18}{|l|}{(D 10) = -2} & \multicolumn{16}{|l|}{\((\overline{\mathrm{D} 10})+1=2\)} \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & 1 & 1 & 1 & & & 0 & 0 & 0 & & & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{tabular}

2



\subsection*{7.4 Rotation and Shift Operation}

\subsection*{7.4.1 ROR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction shifts and rotates the bit information rightward by the specified number of bits without the carry flag.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline ROR & 16 bits & Continuous &  & ROR(EN, \(\mathrm{n}, \mathrm{d}\) ); \\
\hline RORP & 16 bits & Pulse &  & RORP(EN, \(\mathrm{n}, \mathrm{d})\); \\
\hline DROR & 32 bits & Continuous &  & DROR(EN, \(\mathrm{n}, \mathrm{d}\) ); \\
\hline DRORP & 32 bits & Pulse &  & DRORP(EN,n,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow[b]{2}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & ( n & Number of bits to be rotated \(\mathrm{n} \leq 16\) (16-bit operation), \(\mathrm{n} \leq 32\) (32-bit operation) & \multicolumn{2}{|l|}{ANY16} \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Word device storing data to be rotated rightward & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|c|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{\circ 1}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & c & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (d) & & & & & & & & & -1 & -1 & -1 & - & - & - & \(\triangle 2\) & \(\triangle 3\) & - & & - & & & & & \\
\hline (n) & & & & & & & & & & & & & & - & \(\triangle 2\) & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (ROR, RORP)}
" n " bits out of 16 bits of the device specified by \((d)\) are rotated rightward.

- The final bit is stored in the carry flag (M8022).
- In a device with digit specification, K4 (16-bit instruction) is valid.


\section*{2. 32-bit operation (DROR, DRORP)}
" n " bits out of 32 bits of the device specified by \((d)\) are rotated rightward.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Command input} & \multicolumn{2}{|c|}{DROR} & \\
\hline & EN & ENO & \\
\hline Number of bits & n & d & \\
\hline
\end{tabular}
to be rotated
*1 This defines the device that stores the data to be rotated rightward.
- The final bit is stored in the carry flag (M8022).
- In a device with digit specification, K8 (32-bit instruction) is valid.


\section*{Related device}
\(\rightarrow\) For the carry flag use method, refer to Section 1.3.4.
\begin{tabular}{c|l|l}
\hline Device & \multicolumn{1}{|c|}{ Name } & \\
\hline M8022 & Carry & Turns ON when the bit shifted last from the lowest position is "1". \\
\hline
\end{tabular}

\section*{Cautions}
1) Some restrictions to applicable devices
\(\mathbf{\Delta} 1: \mathrm{K} 4 \mathrm{YOOO}, \mathrm{K} 4 \mathrm{MOOO}\) and K 4 SOOO are valid for a 16 -bit operation.
\(\mathrm{K} 8 \mathrm{YOOO}, \mathrm{K} 8 \mathrm{MOOO}\) and K 8 SOOO are valid for a 32 -bit operation.
A2:The FX3U, FX3Uc and FX3G PLCs only are applicable.
© 3:The FX3U and FX3uc PLCs only are applicable.
2) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
3) In the case of continuous operation type instructions (ROR and DROR), note that shift and rotation are executed in every scan time (operation cycle).
4) When a device with digit specification is specified as \((d\), only K4 (16-bit instruction) or K8 (32-bit instruction) is valid (examples: K4Y010 or K8M0).

\subsection*{7.4.2 ROL}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction shifts and rotates the bit information leftward by the specified number of bits without the carry flag.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline ROL & 16 bits & Continuous &  & ROL(EN,n,d); \\
\hline ROLP & 16 bits & Pulse &  & ROLP(EN,n,d); \\
\hline DROL & 32 bits & Continuous &  & DROL(EN, n, d); \\
\hline DROLP & 32 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DROLP } \\
-nN & ENO \\
n & d \\
\hline
\end{tabular} & DROLP(EN, \(\mathrm{n}, \mathrm{d})\); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow[b]{2}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & ( n & Number of bits to be rotated \(\mathrm{n} \leq 16\) (16-bit operation), \(\mathrm{n} \leq 32\) (32-bit operation) & \multicolumn{2}{|l|}{ANY16} \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Word device storing data to be rotated leftward & ANY16 & ANY32 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{Special Unit
\[
\text { U } \square \mathbf{I G} \square
\]} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
"口"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & c & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (d) & & & & & & & & & -1 & -1 & -1 & \(\bullet\) & - & \(\bullet\) & -2 & \(\triangle 3\) & \(\bullet\) & & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & \(\bullet\) & -2 & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (ROL, ROLP)}
" n " bits out of 16 bits of the device specified by \(\triangle\) are rotated leftward.

- The final bit is stored in the carry flag (M8022).
- In a device with digit specification, K4 (16-bit instruction) is valid.


The contents of b12 are stored.
2. 32-bit operation (DROL, DROLP)
" \(n\) " bits out of 32 bits of the device specified by \(\mathbb{C}\) are rotated leftward.
\begin{tabular}{|l|l|l|}
\hline Command input & \multicolumn{2}{|c|}{ DROL } \\
\begin{tabular}{c} 
Number of bits \\
to be rotated
\end{tabular} & n & d \\
\hline
\end{tabular}
*1 This defines the device that stores the data to be rotated leftward.
- The final bit is stored in the carry flag (M8022).
- In a device with digit specification, K8 (32-bit instruction) is valid.


\section*{Related device}
\(\rightarrow\) For the carry flag use method, refer to Section 1.3.4.
\begin{tabular}{c|c|l}
\hline Device & Name & \\
\hline M8022 & Carry & Turns ON when the bit shifted last from the highest position is "1". \\
\hline
\end{tabular}

\section*{Cautions}
1) Some restrictions to applicable devices
© 1:K4YOOO, K4MOOO and K4SOOO are valid for a 16-bit operation.
\(\mathrm{K} 8 \mathrm{YOOO}, \mathrm{K} 8 \mathrm{MOOO}\) and K 8 SOOO are valid for a 32-bit operation.
A2:The FX3U, FX3Uc and FX3G PLCs only are applicable.
43:The FX3U and FX3uc PLCs only are applicable.
2) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
3) In the case of continuous operation type instructions (ROL and DROL), note that shift and rotation are executed in every scan time (operation cycle).
4) When a device with digit specification is specified as \(\mathbb{}\), only K4 (16-bit instruction) or K8 (32-bit instruction) is valid (examples: K4Y010 or K8M0).

\subsection*{7.4.3 RCR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction shifts and rotates the bit information rightward by the specified number of bits together with the carry flag.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline RCR & 16 bits & Continuous &  & RCR(EN, \(\mathrm{n}, \mathrm{d}\) ); \\
\hline RCRP & 16 bits & Pulse &  & RCRP(EN, n, d); \\
\hline DRCR & 32 bits & Continuous &  & DRCR(EN, n, d); \\
\hline DRCRP & 32 bits & Pulse &  & DRCRP(EN, \(\mathrm{n}, \mathrm{d})\); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow[b]{2}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & ( n & Number of bits to be rotated \(\mathrm{n} \leq 16\) (16-bit operation), \(\mathrm{n} \leq 32\) (32-bit operation) & \multicolumn{2}{|l|}{ANY16} \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Word device storing data to be rotated rightward & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\("^{1}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (d) & & & & & & & & & A1 & -1 & -1 & - & - & - & -2 & -2 & \(\bullet\) & - & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & - & -2 & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (RCR, RCRP)}
" n " bits out of 16 bits of the device specified by \(\triangle\) and 1 bit (carry flag M8022) are rotated rightward.


The carry flag is intervened in the rotation loop. If M8022 has been set to ON or OFF before the rotation instruction, the carry flag is transferred to the destination.
2. 32-bit operation (DRCR, DRCRP)
" n " bits out of 32 bits of the device specified by \((d\) and 1 bit (carry flag M8022) are rotated rightward.
\begin{tabular}{|c|c|c|}
\hline Command input & \multicolumn{2}{|c|}{DRCR} \\
\hline Н1 & EN & ENO \\
\hline Number of bits & n & d \\
\hline
\end{tabular}
*1 This defines the device that stores the data to be rotated rightward.


\section*{Related device}
\(\rightarrow\) For the carry flag use method，refer to Section 1．3．4．
\begin{tabular}{c|c|l}
\hline Device & Name & \\
\hline M8022 & Carry & Turns ON when the bit shifted last from the lowest position is＂1＂． \\
\hline
\end{tabular}

\section*{Cautions}

1）Some restrictions to applicable devices
\(\mathbf{\Delta} 1: \mathrm{K} 4 \mathrm{YOOO}, \mathrm{K} 4 \mathrm{MOOO}\) and K 4 SOOO are valid for a 16 －bit operation．
\(\mathrm{K} 8 \mathrm{YOOO}, \mathrm{K} 8 \mathrm{MOOO}\) and K 8 SOOO are valid for a 32－bit operation．
A2：The FX3U and FX3Uc PLCs only are applicable．
2）When handling 32－bit data in a structured program，a 16－bit device cannot be specified directly as in the case of a simple project．Use a label to handle 32－bit data．
A 32－bit counter can be specified directly as it is a 32－bit long device．
Use a global label to specify a device．
3）In the case of continuous operation type instructions（RCR and DRCR），note that shift and rotation are executed in every scan time（operation cycle）．
4）When a device with digit specification is specified as \(S\) ，only K4（16－bit instruction）or K8（32－bit instruction）is valid（examples：K4Y010 or K8M0）．

\subsection*{7.4.4 RCL}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction shifts and rotates the bit information leftward by the specified number of bits together with the carry flag.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline RCL & 16 bits & Continuous &  & RCL(EN,n,d); \\
\hline RCLP & 16 bits & Pulse &  & RCLP(EN,n,d); \\
\hline DRCL & 32 bits & Continuous &  & DRCL(EN,n,d); \\
\hline DRCLP & 32 bits & Pulse &  & DRCLP(EN, \(\mathrm{n}, \mathrm{d})\); \\
\hline
\end{tabular}

\section*{2. Set data}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & \begin{tabular}{l}
32-bit \\
operation
\end{tabular} \\
\hline \multirow[b]{2}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & n & Number of bits to be rotated \(\mathrm{n} \leq 16\) (16-bit operation), \(\mathrm{n} \leq 32\) (32-bit operation) & \multicolumn{2}{|l|}{ANY16} \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Word device storing data to be rotated leftward & ANY16 & ANY32 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square \mathbf{I G} \square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (d) & & & & & & & & & 41 & -1 & -1 & - & - & - & -2 & 42 & - & - & - & & & & & \\
\hline (n) & & & & & & & & & & & & & & \(\bullet\) & -2 & & & & & - & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}
1. 16-bit operation (RCL, RCLP)
"n" bits out of 16 bits of the device specified by \(\mathbb{C}\) and 1 bit (carry flag M8022) are rotated leftward.


The carry flag is intervened in the rotation loop. If M8022 has been set to ON or OFF before the rotation instruction, the carry flag is transferred to the destination.

\section*{2. 32-bit operation (DRCL, DRCLP)}
" n " bits out of 32 bits of the device specified by (d) and 1 bit (carry flag M8022) are rotated leftward.

*1 This defines the device that stores the data to be rotated leftward.


\section*{Related device}
\(\rightarrow\) For the carry flag use method, refer to Section 1.3.4.
\begin{tabular}{c|c|l}
\hline Device & Name & \\
\hline M8022 & Carry & Turns ON when the bit shifted last from the highest position is "1". \\
\hline
\end{tabular}

\section*{Cautions}
1) Some restrictions to applicable devices
\(\mathbf{\Delta} 1: \mathrm{K} 4 \mathrm{YOOO}, \mathrm{K} 4 \mathrm{MOOO}\) and K 4 SOOO are valid for a 16 -bit operation.
\(\mathrm{K} 8 \mathrm{YOOO}, \mathrm{K} 8 \mathrm{MOOO}\) and K8SOOO are valid for a 32-bit operation.
A2:The FX3U and FX3Uc PLCs only are applicable.
2) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
3) In the case of continuous operation type instructions (RCL and DRCL), note that shift and rotation are executed in every scan time (operation cycle).
4) When a device with digit specification is specified as \(S\), only K4 (16-bit instruction) or K8 (32-bit instruction) is valid (examples: K4Y010 or K8M0).

\subsection*{7.4.5 SFTR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction shifts bit devices of the specified bit length rightward by the specified number of bits.
After shift, the bit device specified by \(s\) is transferred by " n 2 " bits from the most significant bit.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline SFTR & 16 bits & Continuous &  & SFTR(EN,s,n1,n2,d); \\
\hline SFTRP & 32 bits & Pulse & \begin{tabular}{lr|} 
& \multicolumn{2}{c}{ SFTRP } \\
EN & ENO \\
-s & d \\
-n 1 & \\
-n 2 & \\
\hline
\end{tabular} & SFTRP(EN,s,n1,n2,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{l|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & s & Head bit device to be stored to the shift data after rightward shift. & Bit \\
\cline { 2 - 5 } & n2 & Bit length of the shift data (see Caution). & ANY16 \\
\cline { 2 - 5 } & n2 & Number of bits to be shifted rightward (see Caution) & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Head bit device to be shifted rightward & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|c|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square \backslash\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
11 \\
ロ"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & \(\bullet\) & - & \(\bullet\) & & & - & A1 & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline (d) & & - & - & & & \(\bullet\) & & & & & & & & & & & & & - & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (n2) & & & & & & & & & & & & & & - & -2 & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16 -bit operation (SFTR, SFTRP)}

For " n 1 " bits (shift register length) starting from the bit device specified by \(\mathbb{C}\), " n 2 " bits are shifted rightward (1) and 2) shown below).

After shift, " n 2 " bits from the bit device specified by \(\Omega\) are transferred to " n 2 " bits from \(\mathbb{d}+\mathrm{n} 1-\mathrm{n} 2\) (3) shown below).


\section*{Cautions}
1) Some restrictions to applicable devices

A1:Applicable only to the FX3U and FX3uc PLCs. Not indexed (V, Z).
A2:The FX3u, FX3UC and FX3G PLCs only are applicable.
2) The FXO, FXos or FXON PLC does not support the instructions of pulse operation type. To execute pulse operation, make the instruction execution condition pulse type.
3) Note that " n 2 " bits are shifted every time the command input turns ON from OFF in SFTRP instruction, but that "n2" bits are shifted in each scan time (operation cycle) in SFTR instruction.
4) Limitation to \(n 1\) and \(n 2\) differs from one PLC to another.
\begin{tabular}{l|ll}
\hline \multicolumn{1}{c|}{ PLC } & & Limit \\
\hline \begin{tabular}{l} 
FX3U, FX3UC, FX3G, FX1N, FX2N, FX1NC, FX2NC, FX2, \\
FX2C
\end{tabular} & \(n 2 \leq n 1 \leq 1024\) & \\
\hline FX1S, FX0, FX0S, FX0N & \(n 2 \leq n 1 \leq 512\) & \\
\hline
\end{tabular}

\section*{Error}

If the transfer source specified by \(\quad s\) is equivalent to the shifted device specified by \(\mathbb{C}\), an operation error occurs (error code: K6710). (Applicable only to the FX3U and FX3Uc PLCs)

\subsection*{7.4.6 SFTL}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction shifts bit devices of the specified bit length leftward by the specified number of bits. After shift, the bit device specified by \(s\) is transferred by " n 2 " bits from the least significant bit.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline SFTL & 16 bits & Continuous &  & SFTL(EN,s,n1,n2,d); \\
\hline SFTLP & 16 bits & Pulse &  & SFTLP(EN,s,n1,n2,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{l|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & s & Head bit device to be stored to the shift data after leftward shift & Bit \\
\cline { 2 - 5 } & n2 & Bit length of the shift data (see Caution). & ANY16 \\
\cline { 2 - 5 } \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Bit length of the shift data (see Caution). & ANY16 \\
\cline { 2 - 5 } & d & Execution state & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|c|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(\square "\) \\
\({ }^{11} \square\)
\end{tabular}} & \multirow[t]{2}{*}{} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & \(\bullet\) & - & \(\bullet\) & & & - & -1 & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline (d) & & - & \(\bullet\) & & & \(\bullet\) & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline (n1) & & & & & & & & & & & & & & & & & & & & - & \(\bullet\) & & & \\
\hline (n2) & & & & & & & & & & & & & & - & -2 & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (SFTL, SFTLP)}

For " n 1 " bits (shift register length) starting from the bit device specified by \(\mathbb{C}\), "n2" bits are shifted leftward (1) and 2) shown below).

After shift, " n 2 " bits from the bit device specified by \(\circlearrowleft\) are transferred to " n 2 " bits from the bit device specified by (d) (3) shown below).


After
execution


\section*{Cautions}
1) Some restrictions to applicable devices
©1:Applicable only to the FX3U and FX3Uc PLCs. Not indexed (V, Z).
A2:The FX3u, FX3UC and FX3G PLCs only are applicable.
2) The FX0, FXos or FXon PLC does not support the instructions of pulse operation type. To execute pulse operation, make the instruction execution condition pulse type.
3) Note that " n 2 " bits are shifted every time the command input turns ON from OFF in SFTLP instruction, but that " n 2 " bits are shifted in each operation cycle in SFTL instruction.
4) Limitation to \(n 1\) and \(n 2\) differs from one PLC to another.
\begin{tabular}{l|ll}
\hline \multicolumn{1}{c|}{ PLC } & & Limit \\
\hline \begin{tabular}{l} 
FX3U, FX3UC, FX3G, FX1N, FX2N, FX1NC, FX2NC, FXU, \\
FX2C
\end{tabular} & \(n 2 \leq n 1 \leq 1024\) \\
\hline FX1S, FX0, FX0S, FX0N & \(n 2 \leq n 1 \leq 512\) & \\
\hline
\end{tabular}

\section*{Error}

If the transfer source specified by \(s\) is equivalent to the shifted device specified by \(\mathbb{d}\), an operation error occurs (error code: K6710). (Applicable only to the FX3U and FX3Uc PLCs)

\section*{Program examples(Conditional stepping of 1-bit data)}

By setting X000 to X007 to ON in turn, Y000 to Y007 are activated in turn. If the order is wrong, activation is disabled.
[Structured ladder]


Bit 1 of MO is regarded as the head input, and 8 -bit shift register is constructed by SO to S 7 .
*1:By using a state relay (S), the state under operation can be monitored by the dynamic monitoring function of the state relay.

[ ST ]
M0:= X000 AND NOT M8046;
SFTL((NOT M8046 AND X000) OR (S0 AND X001) \(\cdots\) OR (S1 AND X002) R(S7 AND X000), M0, K8, K1, S0); MOV(M8000, K2S0, K2Y000);
M8047:= M8000;

\subsection*{7.4.7 WSFR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction shifts word devices with " n 1 " data length rightward by " n 2 " words.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline WSFR & 16 bits & Continuous &  & WSFR(EN,s,n1,n2,d); \\
\hline WSFRP & 16 bits & Pulse &  & WSFRP(EN,s,n1,n2,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{4}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s) & Head device to be stored to the shift data after rightward shift & ANY16 \\
\hline & (n1) & Word data length of the shift data ( \(\mathrm{n} 2 \leq \mathrm{n} 1 \leq 512\) ) & ANY16 \\
\hline & (n2) & Number of words to be shifted rightward ( \(\mathrm{n} 2 \leq \mathrm{n} 1 \leq 512\) ) & ANY16 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Head word device storing data to be shifted rightward & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & Special Unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real \\
Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square "\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M \(\mathbf{T}\) & T C & c & , & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & -1 & 42 & & & - & & & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & - & - & - & - & - & -1 & -2 & & & - & & & & & \\
\hline (n1) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (n2) & & & & & & & & & & & & & & \(\bullet\) & \(\triangle 1\) & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (WSFR, WSFRP)}

For " n 1 " word devices starting from the device specified by \(\mathbb{C}\), "n2" words are shifted rightward (1) and 2) shown below)
After shift, "n2" words starting from the device specified by \(\subseteq\) are transferred to " n 2 " words starting from the device specified by [ \(\mathbb{C}+n 1-n 2\) ] (3) shown below).


\section*{Cautions}
1) Note that " n 2 " words are shifted when the drive input turns ON in WSFRP instruction, but that "n2" words are shifted in each operation cycle in WSFR instruction.
2) Some restrictions to applicable devices
© 1:The FX3U, FX3UC and FX3G PLCs only are applicable.
©2:The FX3u and FX3uc PLCs only are applicable.

\section*{Error}

If the transfer source device specified by \(\mathbb{s}\) is equivalent to the shifted device specified by \(\mathbb{d}\), an operation error occurs (error code: K6710).

\section*{Program examples}

\section*{1. Shifting devices with digit specification}
[Structured ladder]


Specify a same digit for devices with digit specification.

[ST]
WSFR(X000, K1X000, K4, K2, K1Y000);

\subsection*{7.4.8 WSFL}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction shifts the word data information leftward by the specified number of words.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline WSFL & 16 bits & Continuous &  & WSFL(EN,s,n1,n2,d); \\
\hline WSFLP & 16 bits & Pulse &  & WSFLP(EN,s,n1,n2,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{l|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & s & Head device to be stored to the shift data after leftward shift & ANY16 \\
\cline { 2 - 5 } & \(n 2\) & Word data length of the shift data \((\mathrm{n} 2 \leq \mathrm{n} 1 \leq 512)\) & ANY16 \\
\cline { 2 - 5 } \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Number of words to be shifted leftward (n2 \(\leq \mathrm{n} 1 \leq 512)\) & ANY16 \\
\cline { 2 - 5 } & d & Execution state & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{Special Unit U \(\square\) IG \(\square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\) \(\square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T C & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & - & - & - & -1 & -2 & & & - & & & & & \\
\hline (d) & & & & & & & & & - & - & - & - & - & - & -1 & -2 & & & - & & & & & \\
\hline (n1) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (n2) & & & & & & & & & & & & & & \(\bullet\) & -1 & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (WSFL, WSFLP)}

For " \(n 1\) " word devices starting from the device specified by (d) " \(n 2\) " words are shifted leftward (1) and 2) shown below).
After shift, "n2" words starting from the device specified by s are shifted to " n 2 " words starting from the \(^{\text {n }}\) device specified by \((d\).



\section*{Cautions}
1) Note that "n2" words are shifted every time the drive input turns ON from OFF in WSFLP instruction, but that " n 2 " words are shifted in each operation cycle in WSFL instruction.
2) Some restrictions to applicable devices
© 1:The FX3U, FX3UC and FX3G PLCs only are applicable.
©2:The FX3u and FX3uc PLCs only are applicable.

\section*{Error}

If the transfer source specified by \(s\) is equivalent to the shifted device specified by \(\mathbb{d}\), an operation error occurs (error code: K6710).

\section*{Program examples}

\section*{1. Shifting devices with digit specification}
[Structured ladder]

[ST]
WSFL(X000, K1X000, K4, K2, K1Y000);

\subsection*{7.4.9 SFWR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction writes data for first-in first-out (FIFO) and first-in last-out (FILO) control.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline SFWR & 16 bits & Continuous & \begin{tabular}{lr}
\multicolumn{2}{c}{ SFWR } \\
EN & ENO- \\
-s & \(\mathrm{d}-\) \\
n & \\
\hline
\end{tabular} & SFWR(EN,s,n,d); \\
\hline SFWRP & 16 bits & Pulse &  & SFWRP(EN,s,n,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & s & Word device storing data to be put in first & ANY16 \\
\cline { 2 - 5 } & \(n\) & \begin{tabular}{l} 
Number of store points (for pointer, value is added by "+1".) \\
\(2 \leq n \leq 512\)
\end{tabular} & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Head word device storing and shifting data. & ANY16 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{5}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
"口"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & - & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & - & - & - & - & -1 & -2 & \(\bullet\) & \(\bullet\) & - & - & \(\bullet\) & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & - & -1 & 42 & & & \(\bullet\) & & & & & \\
\hline ( n & & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}
1. 16-bit operation (SFWR, SFWRP)

The contents of the device specified by \(\leftrightarrows\) are written to " \(n-1\) " devices from the device specified by \(\mathbb{d}+1\), and " 1 " is added to the number of data stored in the device specified by \(\mathbb{d}\).
For example, when the device specified by \((d)\) is " 0 ", the contents of the device specified by \(\Omega\) are written to the device specified by \(d\). When the device specified by \(\mathbb{d}\) is "1", the contents of the device specified by \(\triangle\) are written to the device specified by \(\mathbb{d}+2\).

1) When \(X 000\) turns \(O N\) from OFF, the contents of the device specified by \(\Omega\) are stored to the device specified by \(d+1\). So the contents of the device specified by \((d+1\) become equivalent to the contents of the device specified by \(\qquad\)
2) When the contents of the device specified by \(\subseteq\) are changed and then the command input is set to ON from OFF again, the new contents of the device specified by \(\checkmark\) are stored to the device specified by (d) +2 . So the contents of the device specified by (d) +2 become equivalent to the contents of the device specified by \(S\). (When the continuous operation type SFWR instruction is used, the contents are stored in each operation cycle. Use the pulse operation type SFWRP instruction in programming.)
3) Data are stored from the right end in the same way, and the number of stored data is indicated by the contents of the pointer specified by \((d\).

\section*{Related device}
\(\rightarrow\) For the carry flag use method, refer to Section 1.3.4.
\begin{tabular}{c|c|l}
\hline Device & Name & \multicolumn{1}{c}{ Description } \\
\hline M8022 & Carry & \begin{tabular}{l} 
When the contents of the pointer specified by \\
written) and the carry flag M8022 turns ON.
\end{tabular} \\
\hline
\end{tabular}

\section*{Related instructions}
\begin{tabular}{c|ll}
\hline Instruction & & Description \\
\hline SFRD & Shift read (for FIFO control) \\
\hline POP & Last-in data read (for FILO control) & \\
\hline
\end{tabular}

\section*{Cautions}
1. In the case of continuous operation type (SFWR) instruction.
2. Some restrictions to applicable devices

A1:The FX3U, FX3UC and FX3G PLCs only are applicable.
\(\mathbf{\Delta}\) 2:The FX3U and FX3uc PLCs only are applicable.

\section*{Program examples}

\section*{1. Example of first-in first-out control}
\(\rightarrow\) For a program example of FILO, refer to Section 7.21.3.
In the example below, the shift write (SFWR) and shift read (SFRD) instructions are used.
1) Contents of operation
- In this circuit example, a product number to be taken out now is output according to "first-in first-out" rule while products which were put into a warehouse with their product numbers registered are taken out of the warehouse.
- The product number is hexadecimal, and up to 4 digits. Up to 99 products can be stored in the warehouse.
2) Program
[Structured ladder]


The product number of a product put into first is output to D357 in response to the request to take a product out of the warehouse.

[ST]
MOVP(X020, K4X000, D256);
SFWRP(X020, D256, K100, D257);
SFRDP(X021, D257, K100, D357); MOV(M8000, D357, K4Y000);


\subsection*{7.4.10 SFRD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction reads data for first-in first-out control.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline SFRD & 16 bits & Continuous & \begin{tabular}{lr}
\multicolumn{2}{c|}{ SFRD } \\
-EN & ENO \\
-n & d \\
\hline
\end{tabular} & SFRD(EN,s,n,d); \\
\hline SFRDP & 16 bits & Pulse & \begin{tabular}{lr}
-2 & \multicolumn{2}{c|}{ SFRDP } \\
-EN & \(\mathrm{ENO}-\) \\
-n & d
\end{tabular} & SFRDP(EN,s,n,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & s & Head word device storing data & ANY16 \\
\cline { 2 - 5 } & n & \begin{tabular}{l} 
Number of store points (for pointer, value is added by "+1".) \\
\(2 \leq \mathrm{n} \leq 512\)
\end{tabular} & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Word device storing data taken out first & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{1}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & \(\bullet\) & - & \(\bullet\) & - & - & - & -1 & -2 & & & - & & & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & -1 & -2 & - & - & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. 16 -bit operation (SFRD, SFRDP)

The data of the device specified by [ \(\$ 1\) ] +1 ] written in turn by SFWR instruction is transferred (read) to the device specified by (d), and "n-1" words from the device specified by \(\sigma_{1}+1\) are shifted rightward by 1 word. "1" is subtracted from the number of data stored in the device specified by \(s\).

1) When the command contact turns ON , the contents of the device specified by [ \(\mathrm{s}+1]\) are transferred (read) to the device specified by \(d\).
2) Accompanied by this transfer, the contents of the pointer specified by \(\triangle\) decrease, and the data on the left side are shifted rightward by 1 word. (When the continuous operation type SFRD instruction is used, the contents are shifted in turn in each operation cycle. Use the pulse operation type SFRDP instruction in programming.)

\section*{Related device}

For the zero flag use method, refer to Section 1.3.4.
\begin{tabular}{c|c|l}
\hline Device & Name & \\
\hline M8020 & Zero & \begin{tabular}{l} 
Data is always read from the device specified by [ \(\overbrace{s}+1]\). When the contents of the pointer specified \\
by \(\triangle\) become "0", the zero flag M8020 turns ON.
\end{tabular} \\
\hline
\end{tabular}

\section*{Related instructions}
\begin{tabular}{c|ll}
\hline Instruction & & Description \\
\hline SFWR & Shift write (for FIFO/FILO control) \\
\hline POP & Last-in data read (for FILO control) \\
\hline
\end{tabular}

\section*{Cautions}
1) The contents of the device specified by [ \(s+n]\) do not change by reading.
2) In the case of continuous operation type (SFRD) instruction, data is read in turn in each scan time (operation cycle), but the contents of the device specified by [ \(\checkmark+n\) ] do not change.
3) When pointer specified by \(s\) is " 0 ", data is not processed, and the contents of the device specified by (d) do not change.
4) Some restrictions to applicable devices

1:The FX3U, FX3UC and FX3G PLCs only are applicable.
\(\mathbf{\Delta}\) 2:The FX3U and FX3uc PLCs only are applicable.

\section*{Program examples}

Refer to the program example provided for SFWR instruction.

\subsection*{7.5 Data Operation}

\subsection*{7.5.1 ZRST}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction resets devices located in a zone between two specified devices at one time. Use this instruction for restarting operation from the beginning after pause or after resetting control data.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline ZRST & 16 bits & Continuous &  & ZRST(EN,d1,d2); \\
\hline ZRSTP & 16 bits & Pulse & \(-\mathrm{EN}^{2}\)\begin{tabular}{rr} 
ZRSTP \\
& ENO \\
& d 1 \\
& d 2
\end{tabular} & ZRSTP(EN, d1, d2); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline Input variable & EN & Execution condition & Bit \\
\hline \multirow{3}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d1) & Head device to be reset at one time & ANY_SIMPLE \\
\hline & (d2) & Last device to be reset at one time & ANY_SIMPLE \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & Special Unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & Real Number & \multirow[t]{2}{*}{Character String
} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & E & & \\
\hline (d1) & & \(\bullet\) & - & & & - & & & & & & - & - & - & -1 & 42 & & & - & & & & & \\
\hline (d2) & & \(\bullet\) & - & & & \(\bigcirc\) & & & & & & - & & - & -1 & 42 & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (ZRST, ZRSTP)}

Same type of devices specified by (d1) to (d2) are reset at one time.
When the devices specified by (d1) and (d2) are bit devices
"OFF (reset)" is written to the entire range from the devices specified by (d1) to (d2 at one time.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Before execution & (d2) & \(\cdots\) & (d1) +9 & (d1) +8 & (d1) +7 & (d1) +6 & (d1) +5 & (d1) +4 & (d1) +3 & (d1) +2 & (d1) +1 & (d1) \\
\hline
\end{tabular}


When the devices specified by (d1) and (d2) are word devices
"K0" is written to the entire range from the devices specified by (d1) to (d2) at one time.


\section*{Related instructions}
1. RST

As an independent reset instruction for devices, RST instruction can be used for bit devices ( \(\mathrm{Y}, \mathrm{M}\) and S ) and word devices ( \(T, C, D\) and \(R\) ).


\section*{2. FMOV}

FMOV instruction is provided to write a constant (example: KO ) at one time. By using this instruction, " 0 " can be written to word devices (KnY, KnM, KnS, T, C, D and R) at one time.


\section*{Cautions}
1) The FXo, FXos or FXon PLC does not support the instructions of pulse operation type.

To execute pulse operation, make the instruction execution condition pulse type.
2) Specify same type of devices in the devices specified by (d1) and (d2). The device number of the device specified by (d1 should be smaller than or equal to the device number of the device specified by (d2). If the device number of the device specified by (d1) is larger than the device number of the device specified by (d2), only one device specified by (d1) is reset.
3) When specifying the high-speed counter, ZRST instruction is handled as the 16-bit type, but 32-bit counters can be specified in (d1) and (d2).
However, it is not possible to specify a 16-bit counter in the device specified by d1 and specify a 32-bit counter in the device specified by (d2) ; d1) and (d2) should be a same type.

Program example



4) Some restrictions to applicable devices
© 1:The FX3U, FX3UC and FX3G PLCs only are applicable.
A2: The FX3u and FX \({ }_{3}\) ( PLCs only are applicable.

\section*{Program examples}
1. When using devices in the latch area as non-latch type devices

When the power of the PLC is turned ON or when the PLC mode is changed to RUN, the specified ranges of bit devices and word devices are reset at one time.


\subsection*{7.5.2 DECO}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts numeric data into ON bit.
A bit number which is set to ON by this instruction indicates a numeric value
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DECO & 16 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c}{DECO} \\
-EN & ENO \\
-n & \\
& \\
& \\
& \\
\hline
\end{tabular} & DECO(EN,s,n,d); \\
\hline DECOP & 16 bits & Pulse & \begin{tabular}{lr}
-2 & DECOP \\
-s & ENO \\
-n & \\
\end{tabular} & DECOP(EN,s,n,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & s & Data to be decoded or word device storing data & ANY_SIMPLE \\
\cline { 2 - 5 } & \(n\) & \begin{tabular}{l} 
Number of bits of device storing the decoding result ( \(\mathrm{n}=1\) to 8). \\
(No processing is executed in the case of " \(\mathrm{n}=0\) ".)
\end{tabular} & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bevice storing decoding result \\
\cline { 2 - 5 } & & & ANY_SIMPLE \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|c|}{System User} & Special Unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Character \\
String
\end{tabular} \\
"口"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & \(\bullet\) & - & - & & - & & & & & & \(\bullet\) & - & - & A1 & \(\Delta 2\) & - & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & - & - & & \(\bullet\) & & & & & & \(\bullet\) & - & - & 11 & -2 & & & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}
© : Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (DECO, DECOP)}

One bit among the devices specified by [d to \(d\) +2n-1] is set to ON according to the value of the device specified by s .
1) When the device specified by \((d\) is a bit device \((1 \leq n \leq 8)\)
\(n\) bits \((1 \leq n \leq 8)\) of a device specified by \(\circlearrowleft\) is decoded to the device specified by \(\triangle\).
- When all bits of the devices specified by \(s\) are " 0 ", the bit device specified by \(\mathbb{d}\) turns ON.
- When " n " is " 8 ", the bit device specified by (d) occupies maximum \(2^{8}=256\) bits.

2) When the device specified by \((d\) is word device \((1 \leq n \leq 4)\)
\(n\) bits on the low-order side of the device specified by \(\circlearrowleft\) is decoded to the device specified by \(\mathbb{d}\).
- When all bits of the device specified by \(\circlearrowleft\) are " 0 ", b0 of the word device specified by \(\mathbb{d}\) turns ON.
- In the case of " \(\mathrm{n} \leq 3\) ", all of high-order bits of the device specified by \(\mathbb{C}\) become " 0 " (turn OFF).

\((1 \leq n \leq 4)\)


\section*{Cautions}
1) The FXo, FXos or FXon PLC does not support the instructions of pulse operation type. To execute pulse operation, make the instruction execution condition pulse type.
2) While the command input is OFF, the instruction is not executed. The activated decode output is held in the previous ON/OFF status.
3) When " \(n\) " is " 0 ", the instruction executes no processing.
4) Some restrictions to applicable devices
©1:The FX3U, FX3UC and FX3G PLCs only are applicable.
A2:The FX3U and FX3uc PLCs only are applicable.

\section*{Program examples}
1. When setting bit devices to ON according to the value of a data register

The value of D0 (whose current value is "14" in this example) is decoded to M0 to M15.

- When the value of b0 to b3 of D0 is "14 \((=0+2+4+8)\) ", M14 (which is the 15 th from M 0 ) becomes " 1 " (turns ON).
- When the value of D0 is "0", M0 becomes "1" (turns ON).
- When " n " is set to "K4", any one point among M0 to M15 turns ON according to the value of D0 (0 to 15).
- By changing "n" from K1 to K8, D0 can correspond to numeric values from 0 to 255.

However, because the device range of the device specified by \(d\) is occupied for decoding accordingly, such device range should not be used for another control.

\section*{2. Turning \(O N\) the bit out of word devices according to the contents of bit devices}

The value expressed by X000 to X002 is decoded to DO (XO00 and X001 are ON, and X002 is OFF in this example).

- When the values expressed by X000 to X002 are "3 (=1+2+0)", b3 (which is the 4th from b0) becomes "1" (turns ON).
- When all of X000 to X002 are "0" (OFF), b0 becomes "1" (turns ON).

\subsection*{7.5.3 ENCO}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction obtains positions in which bits are ON in data.
1. Format and operation, execution form

2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
\multirow{2}{*}{} \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & s & Data to be encoded or word device storing data & ANY_SIMPLE \\
\cline { 2 - 5 } & n & \begin{tabular}{l} 
Number of bits of device storing the encoding result ( \(\mathrm{n}=1\) to 8) \\
(When "n" is "0", no processing is executed.)
\end{tabular} & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 4 } & d & Device storing the encoding result & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|c}
\hline \begin{array}{c}
\text { Special } \\
\text { Unit }
\end{array} \\
\hline \text { U } \square \text { IG } \square \\
\hline
\end{array}
\]}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{Real Number E} & \multirow[t]{2}{*}{Character String " \(\square\) "} & \multirow[t]{2}{*}{} \\
\hline & X & Y & M & T & S & & \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & & V & Z & Modifier & K & H & & & \\
\hline (s) & \(\bullet\) & \(\bullet\) & - & - & - & & & & & & & \(\bullet\) & - & - & - & & 42 & - & - & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & & & & & \(\bullet\) & - & - & A & & 42 & - & - & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (ENCO, ENCOP)}

The \(2^{n}\) bit of the data specified by \(S\) is encoded, and the result value is stored to the device specified by (d).

This instruction converts data into binary data according to a bit position in the ON status.
1) When the device specified by \(S\) is a bit device \((1 \leq n \leq 8)\)

ON bit positions among " 2 " bits \((1 \leq n \leq 8)\) from the device specified by \(\subseteq\) are encoded to the device specified by \(\mathbb{C}\).
- When " n " is " 8 ", the device specified by \(\subseteq\) occupies \(2^{8}=256\) bits (which is the maximum value).
- The encoding result of the device specified by \((d)\) is all "0" (OFF) from the most significant bit to the low-order bit "n".

2) When the device specified by \(S\) is a word device \((1 \leq n \leq 4)\)

ON bit positions among " \(2 n\) " bits ( \(1 \leq n \leq 4\) ) from a device specified by \(\circlearrowleft\) are encoded to the device specified by d.
- The encoding result of the device specified by \((d)\) is all "0" (OFF) from the most significant bit to the low-order bit "n".


\section*{Cautions}
1) The FXo, FXos or FXon PLC does not support the instructions of pulse operation type.

To execute pulse operation, make the instruction execution condition pulse type.
2) When two or more bits are \(O N\) in the data specified by \(S\), the low-order side is ignored, and only the ON position on the high-order side is encoded.
3) When the command input is OFF, the instruction is not executed. Activated encode outputs are latched in the previous ON/OFF status.
4) Some restrictions to applicable devices
©1:The FX3U, FX3UC and FX3G PLCs only are applicable.
A2:The FX3u and FX3uc PLCs only are applicable.

\subsection*{7.5.4 SUM}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction counts the number of "1" (ON) bits in the data of a specified device.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline SUM & 16 bits & Continuous &  & SUM(EN,s,d); \\
\hline SUMP & 16 bits & Pulse &  & SUMP(EN,s,d); \\
\hline DSUM & 32 bits & Continuous &  & DSUM(EN,s,d); \\
\hline DSUMP & 32 bits & Pulse &  & DSUMP(EN,s,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Input \\
variable
\end{tabular}} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s) & Word device storing the data & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Word device storing the result data & ANY16 & ANY32 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square \mathbf{I G} \square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\) \\
\(\square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & \(\mathbf{Y}\) & M \(\mathbf{T}\) & T & c & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & - & \(\bullet\) & - & - & - & - & - & -1 & 42 & \(\bullet\) & - & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & & - & -1 & -2 & \(\bullet\) & & \(\bullet\) & & & & & \\
\hline
\end{tabular}
\(\mathbf{A}\) : Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (SUM ,SUMP)}

The number of bits in the ON status in the device specified by \(\Omega\) is counted, and stored to the device specified by \(\mathbb{C}\).
- When all bits are 0 (OFF) in the device specified by \(\subseteq\), the zero flag M8020 turns ON.



\section*{2. 32-bit operation (DSUM, DSUMP)}

The number of bits in the ON status in the device specified by \(S\) is counted, and stored to the device specified by © .
- The number of bits in the ON status is stored in the device specified by \(\triangle d\), and K0 is stored in \(\mathbb{d}+1\).
- When all bits are 0 (OFF) in the device specified by \(\subseteq\), the zero flag M8020 turns ON.
*1 This defines the data that executes SUM_2 or the device number storing the source data.
*2 This defines the device that stores the result of executing SUM_2.

3. Operation result of the device specified by \(\subset\) according to the value specified by \(\subseteq\) (in 16-bit operation)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{18}{|c|}{(s)} & \multirow{3}{*}{(d)} & \multirow{3}{*}{\[
\begin{gathered}
\text { M8020 } \\
\text { Zero flag }
\end{gathered}
\]} \\
\hline \multicolumn{16}{|c|}{Bit device} & \multicolumn{2}{|r|}{Word device} & & \\
\hline b15 & b14 & b13 & b12 & b11 & b10 & b9 & b8 & b7 & b6 & b5 & b4 & b3 & b2 & b1 & b0 & Decimal & Hexadecimal & & \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0000 & 0 & ON \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0001 & 1 & OFF \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 0002 & 1 & OFF \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 3 & 0003 & 2 & OFF \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 4 & 0004 & 1 & OFF \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 5 & 0005 & 2 & OFF \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 6 & 0006 & 2 & OFF \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 7 & 0007 & 3 & OFF \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 8 & 0008 & 1 & OFF \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 9 & 0009 & 2 & OFF \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 10 & 000A & 2 & OFF \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 11 & 000B & 3 & OFF \\
\hline & & & & & & & & & & & & & & & & : & ! & ! & OFF \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & -5 & FFFB & 15 & OFF \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & -4 & FFFC & 14 & OFF \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & -3 & FFFD & 15 & OFF \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & -2 & FFFE & 15 & OFF \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & FFFF & 16 & OFF \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
2) While the command input is OFF, the instruction is not executed. The output of the number of bits in the ON status is latched in the previous status.
3) Some restrictions to applicable devices

A1:The FX3U, FX3UC and FX3G PLCs only are applicable.
A2:The FX3U and FX3UC PLCs only are applicable.

\section*{Program examples}

When X 000 is ON , the number of bits in the ON status in D0 is counted, and stored to D2.
[Structured ladder]
[ ST]
X000 SUM SUM_2(X000, D0, D2);
The number of "1" in D0 is stored to D2.


D \(0=K 21847\)
D \(2=\mathrm{K} 9\)
\(-32168421\)


\subsection*{7.5.5 BON}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction checks whether a specified bit position in a device is ON or OFF.
1. Format and operation, execution form

2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & \begin{tabular}{l}
32-bit \\
operation
\end{tabular} \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s) & Word device storing the data & ANY16 & ANY32 \\
\hline & ( n & Bit position to be checked [ \(\mathrm{n}=0\) to 15 (16-bit instruction), \(\mathrm{n}=0\) to 31 (32-bit instruction)] & \multicolumn{2}{|l|}{ANY16} \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Bit device to be driven & \multicolumn{2}{|l|}{Bit} \\
\hline
\end{tabular}
3. Applicable devices


A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(BON, BONP)}

The status (ON or OFF) of the bit "n" in the device specified by \(\subseteq\) is output to the device specified by \((d\). [When the bit " \(n\) " is ON, the device specified by \((d)\) is set to ON. When the bit " \(n\) " is OFF, the device specified by \((d)\) is set to OFF.]
- When a constant \((K)\) is specified as \(\subseteq\), it is automatically converted into the binary format.


\section*{2. 32-bit operation(DBON, DBONP)}

The status (ON or OFF) of the bit " \(n\) " in the device specified by \(\Omega\) is output to the device specified by \(\mathbb{}\). [When the bit " \(n\) " is ON, the device specified by \((d)\) is set to ON. When the bit " \(n\) " is OFF, the device specified by \((d)\) is set to OFF.]
- When a constant \((K)\) is specified as \(\subset\), it is automatically converted into the binary format.

*1 This defines the data that executes DBON or the device number storing the source data.


\section*{Cautions}
1) Some restrictions to applicable devices
© 1:Applicable only to the FX3U and FX3Uc PLCs. Not indexed (V, Z).
© 2: The \(F^{\prime} X_{3}, F X_{3} \cup c\) and \(F X_{3 G}\) PLCs only are applicable.
©3:The FX3U and FX3uc PLCs only are applicable.
2) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.

\section*{Program examples}

When the bit \(9(n=9)\) in D10 is "1" (ON), M0 is set to "1" (ON).
[Structured ladder]


D 10

\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline b15
\end{tabular}\(\rightarrow\) M 0=OFF

\subsection*{7.5.6 MEAN}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction obtains the mean value of data.
1. Format and operation, execution form

2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Variable} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & S & Head word device storing data to be averaged & ANY16 & ANY32 \\
\hline & (n) & Number of data to be averaged ( \(\mathrm{n}=1\) to 64) & \multicolumn{2}{|l|}{ANY16} \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Word device storing the mean value result & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & Special Unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) \\
\(\square "\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & c & S & D \(\square . b\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & \(\bullet\) & - & - & -1 & -2 & & & - & & & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & - & - & -1 & -2 & \(\bullet\) & - & \(\bullet\) & & & & & \\
\hline ( n & & & & & & & & & & & & & & - & -1 & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (MEAN, MEANP)}

The mean value of " \(n\) " 16 -bit data from the device specified by \(\circlearrowleft\) is stored to the device specified by \(\mathbb{}\).
- The sum is obtained as algebraic sum, and divided by " n ".
- The remainder is ignored.

2. 32-bit operation (DMEAN, DMEANP)

The mean value of " \(n\) " 32 -bit data from the device specified by \((\checkmark)\) is stored to the device specified by \(\mathbb{C}\).
- The sum is obtained as algebraic sum, and divided by "n".
- The remainder is ignored.

*1 This defines the head device number that stores the data to be averaged.
*2 This defines the device that stores the mean data.
\[
\frac{[s]+1, s]+[s+3, \Omega+2]+\cdots+[\{(s)+n \times 2-1\}],[\{(s)+n \times 2-2\}]}{n} \rightarrow[d]+1,(d]
\]

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
2) The FXU PLC of V2.30 or earlier does not support 32-bit instructions.
3) When a device number is exceeded, " \(n\) " is handled as a smaller value in the possible range.
4) Some restrictions to applicable devices
©1:The FX3u, FX3UC and FX3G PLCs only are applicable.
42:The FX3U and FX3uc PLCs only are applicable.

\section*{Error}

When " n " is any value outside the range from "1" to " 64 ", an operation error (M8067) is caused.

\section*{Program examples}

The data of D0, D1 and D2 are summed, divided by " 3 ", and then stored to D10.
[Structured ladder]

[ ST ]
MEAN(X000, D0, K3, D10);

\subsection*{7.5.7 ANS}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction sets a state relay as an annunciator.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured Iadder & ST \\
\hline ANS & 16 bits & Continuous &  & ANS(EN,s,m,d); \\
\hline
\end{tabular}

\section*{2. Set data}
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & s & Timer for evaluation time (100 ms timer) & ANY16 \\
\cline { 2 - 4 } & m & Evaluation time \(\mathrm{m}=1\) to 32,767 (unit: 100 ms\()\) & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Annunciator device to be set \\
\cline { 2 - 5 } & & & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|l|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Con
stant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Character \\
String
\end{tabular} \\
"口"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M T & C & & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & \(\Delta 1\) & & & & & & & - & & & & & \\
\hline (m) & & & & & & & & & & & & & & - & \(\triangle 3\) & & & & & - & \(\bullet\) & & & \\
\hline (d) & & & & & & 2 & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation}

When the command input remains ON for equivalent to or longer than the evaluation time [ \(\mathrm{m} \times 100 \mathrm{~ms}\), timer specified by \((\mathrm{s}\) ], the device specified by \((d)\) is set.
When the command input remains ON for less than the evaluation time [ \(\mathrm{m} \times 100 \mathrm{~ms}\) ] and then turns OFF, the current value of the timer for evaluation specified by \(\subseteq\) is reset and the device specified by \(\propto\) is not set. When the command input turns OFF, the timer for evaluation is reset.


\section*{Related device}
\begin{tabular}{c|l|l}
\hline Device & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c}{ Description } \\
\hline M8049 & Enable annunciator & When M8049 is set to ON, M8048 and D8049 are valid. \\
\hline M8048 & Annunciator ON & When M8049 is ON and one of the state relays S900 to S999 is ON, M8048 turns ON. \\
\hline D8049 & \begin{tabular}{l} 
Smallest state relay \\
number in ON status
\end{tabular} & Among S900 to S999, the smallest state relay number in the ON status is stored. \\
\hline
\end{tabular}

\section*{Cautions}

Some restrictions to applicable devices
A1:T0 to T199
A2:S900 to 999
43:The FX3U, FX3UC and FX3G PLCs only are applicable.

\section*{Program examples}

\section*{1. Displaying a fault number using an annunciator}

When the program for external fault diagnosis shown below is created and the content of D8049 (smallest state relay number in the ON status) is monitored, the smallest state relay number in the ON status from S900 to S 999 is displayed.
If two or more faults are present at the same time, the next smallest fault number is displayed after the fault of the smallest fault number is cleared.
[Structured ladder]


When M8049 turns ON, monitoring becomes valid.

If the forward end detection input X 000 does not turn ON within 1 second after the forward movement output Y005 is driven, S900 turns ON.

If both the upper limit input X001 and the lower limit input X002 are OFF for 2 seconds or more due to a DOG error, S901 turns ON.

The switch X004 is set to ON in one operation cycle of the machine. If the switch X004 is not set to ON while the continuous operation mode input X003 is ON in the machine whose tact time is less than 10 seconds, S902 turns ON.

When one among S900 to S999 turns ON, M8048 turns ON and the fault display output Y006 turns ON.

A state relay which was set to ON by the external fault diagnosis program is set to OFF by the reset button X007. Every time X007 is set to ON, an operation state relay in the ON status with the smallest device number is reset (set to OFF) in turn.

M8049:= M8000;
ANS(Y005 AND NOT X000, T0, K10, S900);
ANS(NOT X001 AND NOT X002,T1, K20, S901);
ANS(X003 AND NOT X004, T2, K100, S902);
Y005:=X005;
Y006:=M8048;
ANRP(X007);

\subsection*{7.5.8 ANR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction resets an annunciator in the ON status with the smallest number.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline ANR & 16 bits & Continuous & \(-2 \mathrm{EN} \quad \mathrm{ENO}\) & ANR(EN); \\
\hline ANRP & 32 bits & Pulse & \(-\mathrm{EN}^{2 \mathrm{ANRP}} \mathrm{ENO}\) & ANRP(EN); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & Data type \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Bit \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|l|}{System User} & \multirow[t]{2}{*}{Special Unit} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M \({ }^{\text {T }}\) & T & c & S & D \(\square . b\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline
\end{tabular}

There are no applicable devices.

\section*{Function and operation explanation}
1. 16-bit operation (ANR, ANRP)

When the command input turns ON, a state relay working as annunciator in the ON status is reset.
- If two or more state relays are ON, the state relay with the smallest number is reset.

When the command input is set to ON again, the state relay with the next smallest number is reset among state relays working as annunciators in the ON status.
Command input EN ANR

\section*{Related device}
\begin{tabular}{c|l|l}
\hline Device & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c}{ Description } \\
\hline M8049 & Enable annunciator & When M8049 is set to ON, M8048 and D8049 are valid. \\
\hline M8048 & Annunciator ON & When M8049 is ON and one of the state relays S900 to S999 is ON, M8048 turns ON. \\
\hline D8049 & \begin{tabular}{l} 
Smallest state relay \\
number in ON status
\end{tabular} & Among S900 to S999, the smallest state relay number in the ON status is stored. \\
\hline
\end{tabular}

\section*{Cautions}

\section*{1. Execution in each operation cycle}
- When ANR instruction is used, annunciators in the ON status are reset in turn in each operation cycle.
- When ANRP instruction is used, an annunciator in the ON status is reset only in one operation cycle (only once).

\section*{Program examples}

Refer to ANS instruction

\subsection*{7.5.9 SQR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction obtains the square root.
The DESQR instruction obtains the square root in floating point operation.
\(\rightarrow\) For DESQR instruction, refer to Section 7.12.15.

\section*{1. Format and operation, execution form}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[t]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline SQR & 16 bits & Continuous &  & SQR(EN,s,d); \\
\hline SQRP & 16 bits & Pulse &  & SQRP(EN,s,d); \\
\hline DSQR & 32 bits & Continuous &  & DSQR(EN,s,d); \\
\hline DSQRP & 32 bits & Pulse &  & DSQRP(EN,s,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & \begin{tabular}{l}
32-bit \\
operation
\end{tabular} \\
\hline \multirow[t]{2}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & S & Word device storing data whose square root is obtained. & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Data register storing the square root operation result & ANY16 & ANY32 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{6}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|c|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square \mathbf{I G} \square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real \\
Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y \(\mathbf{M}\) & M T & C & S & D■.b & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & - & A1 & A1 & & & - & - & \(\bullet\) & & & \\
\hline (d) & & & & & & & & & & & & & - & -1 & -1 & & & - & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (SQR, SQRP)}

The square root of the data stored in the device specified by \(S\) is calculated, and stored to the device specified by (d).


\section*{2. 32-bit operation (DSQR, DSQRP)}

The square root of the data stored in the device specified by \(\subseteq \subseteq\) is calculated, and stored to the device specified by (d).

*1 This defines the device that stores the data whose square root is obtained.
*2 This defines the device that stores the square root operation result.

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
2) The obtained square root is an integer because the decimal point is ignored. When the decimal point is ignored, M8021 (borrow flag) turns ON.
3) When the calculated value is true " 0 ", M8020 (zero flag) turns ON.
4) Some restrictions to applicable devices

A1:The FX3U and FX3uc PLCs only are applicable.

\section*{Program examples}

The square root of D10 is stored to D12.
The value of D10 is "100".
[Structured ladder]

[ ST ]
SQR(X000, D10, D12);

\subsection*{7.5.10 FLT}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\Delta\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\Delta\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts a binary integer into a binary floating point (real number).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline FLT & 16 bits & Continuous &  & FLT(EN,s,d); \\
\hline FLTP & 16 bits & Pulse &  & FLTP(EN,s,d); \\
\hline DFLT & 32 bits & Continuous &  & DFLT(EN,s,d); \\
\hline DFLTP & 32 bits & Pulse &  & DFLTP(EN,s,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & \begin{tabular}{l}
32-bit \\
operation
\end{tabular} \\
\hline \multirow[t]{2}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & S & Data register storing binary integer & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Data register storing binary floating point (real number) & \multicolumn{2}{|l|}{ANY_SIMPLE} \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|c|}{System User} & Special Unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|c|}
\hline Real \\
Number
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(1 \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M T & C & c & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & - & -1 & -2 & & & - & & & & & \\
\hline (d) & & & & & & & & & & & & & & \(\bullet\) & -1 & -2 & & & - & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (FLT, FLTP)}

The binary integer data of the device specified by \(\leftrightarrows\) is converted into binary floating point (real number), and stored to the device specified by \((d\).

(s) \(\rightarrow \quad(d)+1\), d \()\)

Binary integer Binary floating point (real number)
*1 This defines the device that stores the binary floating point data.
2. 32-bit operation (DFLT, DFLTP)

The binary integer data of the device specified by \(\subseteq\) is converted into binary floating point (real number), and stored to the device specified by \(\mathbb{d}\).


*1 This defines the device that stores the binary integer data.
*2 This defines the device that stores the binary floating point data.

\section*{Related instruction}
\begin{tabular}{c|l}
\hline Instruction & \multicolumn{1}{c}{ Description } \\
\hline INT & It is inverse of FLT instruction, and converts binary floating point into binary integer. \\
\hline
\end{tabular}

\section*{Related devices}
\(\rightarrow\) For the method of the zero and borrow flags, refer to Section Section 1.3.4.
\begin{tabular}{c|c|l}
\hline Device & Name & \\
\hline M8020 & Zero flag & Turns ON when the value is true "0". \\
\hline M8021 & Borrow flag & Turns ON when the floating point is rounded down.. \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
2) The \(F X_{3 G}\) PLC of \(V 1.10\) or later supports the instruction.
3) The FXU PLC of V3.07 or later supports the instruction.
4) The value of K or H specified in each instruction for binary floating point (real number) operation is automatically converted into binary floating point (real number). It is not necessary to convert such a constant by FLT instruction.
( K and H cannot be specified in RAD, DEG, EXP and LOGE instructions.)
5) Some restrictions to applicable devices
\(\mathbf{\Delta 1}_{1}\) :The \(\mathrm{FX}_{3} \mathrm{U}, \mathrm{FX} 3 \cup \mathrm{C}\) and FX3G PLCs only are applicable.
42:The FX3U and FX3uc PLCs only are applicable.

\section*{Program examples}
1. Arithmetic operations by binary floating point operations The sequence program shown below is constructed as follows:
1) Calculation example

2) Program
[Structured ladder]

[ST]
FLT(M8000, D0, Var_FLT1*1 );
BIN(M8000, K2X010, D22);
FLT(M8000, D22, Var_FLT2*2 );
DEDIV(M8000, Var_EDIV1*3, Var_EDIV2 \({ }^{* 4}\), Var_EDIV3*5 );
DEDIV(M8000, Var_EDIV4*6 , Var_EDIV5*7, Var_EDIV6*8 );
DEMUL(M8000, Var_EMUL1 \({ }^{* 9}\), Var_EMUL2 \({ }^{* 10}\), \(\overline{\text { Var_EMUL3* }}{ }^{* 11}\) );
DEBCD(M8000, Var_EBCD1*12 , Var_EBCD2*13 );
DINT(M8000, Var_DINT1*14 , Var_DINT2 \({ }^{* 15}\) );
*1 Var_FLT1 is a global label and is defined as D20.
*2 Var_FLT2 is a global label and is defined as D24.
*3 Var_EDIV1 is a global label and is defined as K345.
*4 Var_EDIV2 is a global label and is defined as K10.
*5 Var_EDIV3 is a global label and is defined as D26.
*6 Var_EDIV4 is a global label and is defined as D20.
*7 Var_EDIV5 is a global label and is defined as D24.
*8 Var_EDIV6 is a global label and is defined as D28.
*9 Var_EMUL1 is a global label and is defined as D28.
*10 Var_EMUL2 is a global label and is defined as D26.
*11 Var_EMUL3 is a global label and is defined as D10.
*12 Var_EBCD1 is a global label and is defined as D10.
*13 Var_EBCD2 is a global label and is defined as D12.
*14 Var_DINT1 is a global label and is defined as D10.
*15 Var_DINT2 is a global label and is defined as D14.
(D22) \(\rightarrow\)
BIN (D25, D24)
\(\mathrm{K} 345 \div \mathrm{K} 10 \rightarrow(\mathrm{D} 27, \mathrm{D} 26)\) Binary floating point operation
\((\mathrm{D} 21, \mathrm{D} 20) \div(\mathrm{D} 25, \mathrm{D} 24) \rightarrow(\mathrm{D} 29, \mathrm{D} 28)\)
Binary floating point division Binary floating point operation
\((\mathrm{D} 29, \mathrm{D} 28) \times(\mathrm{D} 27, \mathrm{D} 26) \rightarrow(\mathrm{D} 11, \mathrm{D} 10)\)
Binary floating point multiplication

Binary floating point operation \(\rightarrow\left(\begin{array}{l}\text { (D13, } \\ \text { Decimal floating point }\end{array}\right.\) operation for monitoring
(D11, D10) \(\rightarrow\) (D15, D14)
Binary floating point operation 32-bit binary integer

\subsection*{7.6 High Speed Processing}

\subsection*{7.6.1 REF}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction immediately outputs the latest input \((\mathrm{X})\) information or the current output \((\mathrm{Y})\) operation result in the middle of a sequence program operation.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline REF & 16 bits & Continuous &  & REF(EN, d, n); \\
\hline REFP & 16 bits & Pulse &  & REFP(EN, d, n); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{ Input variable } & EN & Execution condition & Bit \\
\cline { 2 - 5 } & d & Bit device (X or Y) to be refreshed & Bit \\
\cline { 2 - 5 } & Number of bit devices to be refreshed (multiple of 8 in the range from 8 to \\
256)
\end{tabular} ANY16 \begin{tabular}{l} 
Bit \\
\hline Output variable \\
\cline { 2 - 5 } \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{c|}
\hline \begin{tabular}{c} 
Special \\
Unit
\end{tabular} \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Constant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{c}
\begin{tabular}{c} 
Character \\
String
\end{tabular} \\
\hline\(" \square "\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (d) & -1 & -2 & & & & & & & & & & & & & & & & & & & & & & \\
\hline ( m & & & & & & & & & & & & & & & & & & & & \(\triangle 3\) & \(\triangle 3\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(REF, REFP)}
1) When refreshing outputs \((Y)\)
" n " points are refreshed from the output of the device specified by \(\mathbb{C}\). ("n" must be a multiple of 8.)

* Refer to "Caution" for the head device number and the number of points.
- When this instruction is executed, the output latch memory is refreshed to the output status in the specified range.

2) When refreshing inputs ( \(X\) )
" n " points are refreshed from the input of the device specified by \(\qquad\) . ("n" must be a multiple of 8.)

* Refer to "Caution" for the head device number and the number of points.
- If the input information is turned ON approximately 10 ms (response delay time of the input filter) before the instruction is executed, the input image memory turns ON when the instruction is executed.
- The response delay time of the input filter can be changed.
\(\rightarrow\) For details, refer to "what should be understood before using the REF instruction" described later.


\section*{Cautions}
1) When setting the specified head device number "d", make sure that the least significant digit number is " 0 " such as "X000, X010, X020, ..." or "Y000, Y010, Y020, ...".
2) The FXo, FXos or FXon PLC does not support the instructions of pulse operation type. To execute pulse operation, make the instruction execution condition pulse type.
3) Some restrictions to applicable devices
©1: X000, X010, X020 ....Up to the final input number (The last digit number must be "0".)
©2: Y000, Y010, Y020 ....Up to the final output number (The last digit number must be " 0 ".)
© 3: Set a multiple of "8" to the number of refresh points "n", such as K8(H8), K16(H10), ..., K256 (H100). Any number other than the above generates an error.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ PLC } & \multicolumn{1}{c}{ n } \\
\hline FX3U, FX3UC, FX3G & K8(H8), K16(H10), .., K256(H100) \\
\hline FX1S, FX1N, FX2N, FX1NC, FX2NC & K8(H8), K16(H10), .., K256(H100) \\
\hline FX0, FX0S & K8(H8) or K16(H10) \\
\hline FX0N & K8(H8), K16(H10), .., K128(H80) \\
\hline FXU, FX2C & K8(H8), K16(H10), .., K256(H100) \\
\hline
\end{tabular}

\section*{Program examples}

\section*{1. When refreshing inputs}

Only X010 to X017 (8 points in total) are refreshed.
[Structured ladder]


REF(X000,X010,K8);
2. When refreshing outputs

Y000 to Y007, Y010 to Y017 and Y020 to Y027 (24 points in total) are refreshed.
[Structured ladder]
[ST]


\section*{What should be understood before using the REF instruction}

\section*{1. Changing the input filter}

The input filter value is determined by the contents of D8020 (initial value: 10 ms ).
Use the MOV instruction, etc. to adjust the value in D8020, which represents the input filter value.
\(\rightarrow\) For details, refer to "FX Structured Programming Manual (Device \& Common)."

\section*{2. Output response time}

After the REF instruction is executed, the output \((\mathrm{Y})\) sets the output signal to ON after the response time shown below.
\(\rightarrow\) For details, refer to the respective PLC Hardware Edition manuals.
1) Relay output type

The output contact is activated after the response time of the output relay.
- Y000 and higher: Approximately 10 ms
2) Transistor output type
a) For \(F^{\prime} X_{3}\) and \(F_{3} U C\) ( \(D, D S S\) ) PLCs
- Y000, Y001, Y002: \(5 \mu \mathrm{~s}\) or less (load current \(=10 \mathrm{~mA}\) or more, 5 to 24 V DC )
- Y003 and higher: 0.2 ms or less (load current \(=100 \mathrm{~mA}, 24 \mathrm{~V} \mathrm{DC}\) )
b) For FX3Uc-32MT-LT (-2) PLC
- Y000, Y001, Y002, Y003: \(5 \mu \mathrm{~s}\) or less (load current \(=10 \mathrm{~mA}\) or more, 5 to 24 V DC)
- Y004 and higher: 0.2 ms or less (load current \(=100 \mathrm{~mA}, 24 \mathrm{~V} D C)\)
c) For FX3G PLC (14-point, 24-point types)
- Y000, Y001: \(5 \mu\) s or less (load current \(=10 \mathrm{~mA}\) or more, 5 to \(24 \mathrm{~V} D C\) )
- Y002 and higher: 0.2 ms or less (load current \(=100 \mathrm{~mA}, 24 \mathrm{~V}\) DC)
d) For FX3G PLC (40-point, 60-point types)
- Y000, Y001, Y002: \(5 \mu\) s or less (load current \(=10 \mathrm{~mA}\) or more, 5 to \(24 \mathrm{~V} D C\) )
- Y003 and higher: 0.2 ms or less (load current \(=100 \mathrm{~mA}, 24 \mathrm{~V} D C\) )
e) For FX1s, FX1N, FX2N, FX1NC and FX2NC PLCs
- Y000, Y001: \(15 \mu \mathrm{~s}\) to \(30 \mu\) s or less
- Y002 and higher: 0.2 ms or less
f) For FXo, FXos, FXon, FXU and FX2C PLCs
- Y000 and higher: 0.2 ms or less
3. When using the REF instruction between FOR and NEXT instructions or between a label (with a lower step number) and CJ instruction (with a higher step number)
Inputs and outputs can be refreshed in a routine program even when the input information or immediate output is required in the middle of a routine program during control.
4. When using the input interrupt (I) function

When executing interrupt processing accompanied by I/O operations, I/O refresh can be executed in the interrupt routine to receive the latest input \((X)\) information and give the immediate output \((Y)\) of the operation result so that dispersion caused by the operation time is improved.

\subsection*{7.6.2 REFF}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

The digital input filter time of the inputs can be changed using this instruction or D8020.
Using this instruction, the status of inputs can be refreshed at an arbitrary step in the program for the specified input filter time, and then transferred to the image memory.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline REF & 16 bits & Continuous &  & REF(EN, n); \\
\hline REFP & 16 bits & Pulse &  & REFP(EN, n); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{ Input variable } & EN & Execution condition & Bit \\
\cline { 2 - 5 } & \(n\) & Digital input filter time (1 ms increment) & ANY16 \\
\hline Output variable & ENO & Execution state & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|c|}{System User} & Special Unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & c & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (n) & & & & & & & & & & & & & - & -1 & & & & & -2 & -2 & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}
1. 16-bit operation(REFF, REFFP)

The image inputs below are refreshed at the digital input filter time \([\mathrm{n} \times 1 \mathrm{~ms}\) ].
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ PLC } & \multicolumn{1}{c}{ Input } \\
\hline FX3U, FX3UC & \begin{tabular}{l} 
X000 to X017 \\
X000 to X007 in the FX3U-16M口, and FX3UC-16M \(\square\)
\end{tabular} \\
\hline FX2N, FX2NC & \begin{tabular}{l} 
X000 to X017 \\
X000 to X007 in the 16-input basic units
\end{tabular} \\
\hline FXU, FX2C & X000 to X007 \\
\hline
\end{tabular}



K0 to K60 (Filter constant from 0 to 60 ms )
- When the input turns ON " \(\mathrm{n} \times 1 \mathrm{~ms}\) " before the instruction is executed, the input image memory is set to ON. When the input turns OFF " \(\mathrm{n} \times 1 \mathrm{~ms}\) " before the instruction is executed, the input image memory is set to OFF.
- When the command input is ON, the REFF instruction is executed in each operation cycle.
- When the command input is OFF, the REFF instruction is not executed, and the input filter uses the set value of D8020 (which is the value used during input processing).

\section*{Cautions}

\section*{1. Function of the input filter}

The filter time of the digital filter can be changed in 1 ms units within the range from 0 to 60 ms using instructions. When the filter time is set to " 0 ", the input filter value is as follows.
1) For \(F_{3} X_{3}\) and \(F X_{3} u c\) PLCs
\begin{tabular}{c|c}
\hline Input number & Input filter value when set to "0" \\
\hline X 000 to \(\mathrm{X005}\) & \(5 \mu \mathrm{~s}^{* 2}\) \\
\hline \(\mathrm{X} 006, \mathrm{X} 007\) & \(50 \mu \mathrm{~s}\) \\
\hline X 010 to \(\mathrm{X} 017^{* 3}\) & \(200 \mu \mathrm{~s}^{* 3}\) \\
\hline
\end{tabular}
*1. X000 to X007 in the FX3U-16M \(\square\), and FX3Uc-16M \(\square\)
*2. When setting the input filter time to " \(5 \mu \mathrm{~s}\) ", perform the following actions.
- Make sure that the wiring length is 5 m or less.
- Connect a bleeder resistor of \(1.5 \mathrm{k} \Omega(1 \mathrm{~W}\) or more) to the input terminal, and make sure that the load current in the open collector transistor output of the external equipment is 20 mA or more including the input current of the main unit.
*3. The filter time is fixed to 10 ms in \(\mathrm{X010}\) to X 017 when the \(\mathrm{FX} 3 \mathrm{U}-16 \mathrm{M} \square\) or \(\mathrm{FX} 3 \mathrm{Uc}-16 \mathrm{M} \square\) is used.
2) For FX2N and FX2Nc PLCs
\begin{tabular}{c|c}
\hline Input number & Input filter value when set to "0" \\
\hline \(\mathrm{X000}, \mathrm{X001}\) & \(20 \mu \mathrm{~s}\) \\
\hline X 002 to \(\mathrm{X017}\) & \(50 \mu \mathrm{~s}\) \\
\hline
\end{tabular}
3) For FXU and FX2C PLCs
\begin{tabular}{c|c}
\hline Input number & Input filter value when set to "0" \\
\hline\(\times 000\) to X 007 & \(50 \mu \mathrm{~s}\) \\
\hline
\end{tabular}

\section*{2. Some restrictions to applicable devices}

41: Applicable to the FX3U and FX3uc PLCs only.
A2: Set the filter time within the range of \(\mathrm{KO}(\mathrm{HO})\) to \(\mathrm{K} 60(\mathrm{H} 3 \mathrm{C})[0\) to 60 ms ].

\section*{Program examples}

\section*{1. Relationship between the program and the filter time}
[Structured ladder]

[ST]
REFF(X010,K1);


REFF(M8000,K20);
\(\square\)

END

\section*{What should be understood before using REFF instruction}

Generally, a C-R filter of approximately 10 ms is provided for inputs in PLCs as countermeasures against chattering and noise at the input contacts.
A digital filter is provided for some inputs (*1). The digital filter value can be changed within the range from 0 to 60 ms using instructions.
1. How to change the digital filter (executing END instruction)

The digital filter initial value ( 10 ms ) is set in special data register D8020.
By changing this value using the MOV instruction, etc., the input filter value for X 000 to \(\mathrm{X} 017^{* 2}\) which is used during execution of the END instruction can be changed.

*1. Where a digital filter is used on an input terminal, refer to the descriptions on the functions and operations.

\section*{2. Instruction in which the digital filter is automatically changed}

Regardless of the change in the filter time executed by the REFF instruction, when the following functions and instructions are executed, the input filter value is automatically changed (as shown in the caution).
However, if the digital filter is used in any other functions or instructions than the ones listed, the digital filter uses the time set in D8020. As a result, the program will not run correctly if the ON or OFF duration of the corresponding input signal is less than the input filter time.
- Input of interrupt pointer specified in the input interrupt function
- Input used in a high speed counter
- Input used in the SPD instruction

\subsection*{7.6.3 MTR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction reads matrix input as 8-point input \(\times\) " n " output (transistor) in the time division method.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline MTR & 16 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ MTR } \\
EN & ENO- \\
- & d 1
\end{tabular} & \(\operatorname{MTR}(\mathrm{EN}, \mathrm{s}, \mathrm{n}, \mathrm{d} 1, \mathrm{~d} 2)\); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Variable} & Description & Data type \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s) & Head device \((X)\) number of matrix signal input X000, X010, X020, ..., final input X number (Only "0" is allowed in the least significant digit of device numbers) & Bit \\
\hline & ( m & Number of columns in matrix input (K2 to K8/H2 to H8) & ANY16 \\
\hline \multirow{3}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d1) & Head device \((\mathrm{Y})\) number of matrix signal output Y000, Y010, Y020, ..., final output Y number (Only "0" is allowed in the least significant digit of device numbers.) & Bit \\
\hline & (d2) & Head bit device (Y, M or S) number of ON output destination Y000, Y010, Y020, ..., final Y number, M000, M010, M020, ... , final M number or S000, S010, S020, ..., final S number (Only "0" is allowed in the least significant digit of device numbers.) & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Con stant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & \(\bullet\) & & & & & & & & & & & & & & & & & & & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & \(\bullet\) & & & & & & & & & & & & & & & & & & & & & & \\
\hline (d2) & & - & - & & & \(\bullet\) & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation(MTR)}

An input signal of 8 points \(\times\) " n " columns is controlled in the time division method using 8 inputs of the device specified by \(\Omega\) and " \(n\) " transistor outputs of the device specified by d1. Each column is read in turn, and then output to the device specified by (d2).


For each output, the I/O processing is executed immediately in turn in interrupt at every 20 ms under consideration of the input filter response delay of 10 ms .
The figure below shows an example of the FX3u series main unit (sink input / sink output). For the wiring, refer to the manual of the PLC used.


M8029
(Execution complete)

\section*{Cautions}

\section*{1. Number of occupied devices}
1) Eight input points are occupied from the input device number specified in \(s\).
2) " \(n\) " output points are occupied from the output device number specified in d1).

When specifying the output in (d2), make sure that " n " output numbers specified in d1 does not overlap the output specified in (d2).
2. Wiring

One diode of \(0.1 \mathrm{~A} / 50 \mathrm{~V}\) is required for each switch.

\section*{3. Output format}

Use the transistor output format.

\section*{Program examples}
\(\mathrm{n}=\) Three outputs \((\mathrm{Y} 020, \mathrm{Y} 021\) and Y 022 ) are set to ON in turn repeatedly.
Every time an output is set to ON, eight inputs in the 1st, 2nd and 3rd columns are received in turn repeatedly, and stored to M30 to M37, M40 to M47, and M50 to M57 respectively.
In this program example, the FX3U series main unit (sink input / sink output) is used. For the wiring, refer to the manual of the PLC used.
[Structured ladder]
[ST]

MTR(M0,X020,K3,Y020,M30);


1st column input is received.


M8029
(Execution complete)

\section*{Operation and cautions for MTR instruction}

\section*{1. Command input}
1) Setting the command input to normally ON

For the MTR instruction, set the command input to normally ON.


\section*{2. Input numbers used in MTR instruction}
1) Inputs available in MTR instruction

Use inputs X020 and later under normal conditions.
(X010 and later for 16-point type main unit)
2) When using the inputs X 000 to \(\mathrm{X017}\) (X000 to X007 for 16-point type main unit)

The receiving speed is higher. Because the output transistor recovery time is long and the input sensitivity is high, however, erroneous input pulses may be counted.
To prevent erroneous input pulses, connect pull-up resistors ( \(3.3 \mathrm{k} \Omega / 0.5 \mathrm{~W}\) ) to transistor outputs used in MTR instruction.
For pull-up resistors, use the power supply shown in the table below.
\begin{tabular}{l|l}
\hline & Power supply used for pull-up resistors \\
\hline AC power type PLC & Service power supply \\
\hline DC power type PLC & Power supply for driving PLC \\
\hline
\end{tabular}

The figure below shows an example of the FX3U series main unit (sink input / sink output).


\section*{3. ON/OFF duration of input signals}

Because 64 input points ( 8 rows \(\times 8\) columns) are received in a cycle of 80 or 160 ms , the ON/OFF duration of each input signal should be greater than or equal to the value shown below.

When inputs X000 to X017 *1 are used


When inputs X020 *2
and later are used

*1. X000 to X007 for 16-point type main unit
*2. X010 and later for 16-point type main unit

\subsection*{7.6.4 DHSCS}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction compares a value counted by a high speed counter with a specified value at each count, and immediately sets an external output \((\mathrm{Y})\) if the two values are equivalent each other.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DHSCS & 32 bits & Continuous & \begin{tabular}{lr} 
& \multicolumn{2}{c}{ DHSCS } \\
EN & ENO- \\
-s 1 & d \\
-s 2 & \\
\hline
\end{tabular} & DHSCS(EN, s1, s2, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{ Input variable } & EN & Execution condition & Bit \\
\cline { 2 - 5 } & s1 & \begin{tabular}{l} 
Data to be compared with the current value of a high-speed counter or \\
word device storing the data to be compared
\end{tabular} & ANY32 \\
\cline { 2 - 5 } & s2 & Device of a high speed counter & ANY32 \\
\hline \multirow{3}{*}{ Output variable } & EN0 & Execution state & Bit \\
\cline { 2 - 5 } & d & \begin{tabular}{l} 
Bit device to be set to ON when the compared two values are equivalent \\
to each other
\end{tabular} & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{8}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{8}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{Special Unit U \(\square \mathbf{I G} \square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Character String
} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & & \(\square . b\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & - & - & \(\bullet\) & - & \(\bullet\) & - & - & \(\triangle 3\) & -4 & & \(\bullet\) & - & - & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & & & & & & & - & & & & & & \(\bullet\) & & & & & \\
\hline (d) & & \(\bullet\) & - & & & \(\bullet\) & & ©1 & & & & & & & & & & & & - & & & & & -2 \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DHSCS)}

When the current value of a high speed counter of the device specified by s2 becomes the comparison value of the device specified by (for example, when the current value changes from "199" to "200" or from "201" to "200" if the comparison value is K200), the bit device specified by © is set to ON without regard to the operation cycle. This instruction is executed after the counting processing in the high speed counter.


\section*{Operation}

When the current value of the high speed counter C235 changes from "99" to "100" or from "101" to "100", Y010 is set to ON (output refresh).

*1. This defines K100.

\section*{Related instruction}

The following instructions can be combined with high speed counters.
\begin{tabular}{c|l}
\hline Instruction & \\
\hline DHSCS & High speed counter set \\
\hline DHSCR & High speed counter reset \\
\hline DHSZ & High speed counter zone compare \\
\hline DHCMOV & High speed counter move \\
\hline DHSCT & High speed counter compare with data table \\
\hline
\end{tabular}

\section*{Cautions}

\section*{1. Selection of the counter comparison method}

When the DHSCS instruction is used, the maximum frequency and total frequency of the high speed counter are affected.
Refer to the counting operation described below, and select according to the contents of control whether to use this instruction or general-purpose comparison instruction.
1) Case to select DHSCS instruction
- When the output should be given when the counting result becomes equivalent to the comparison value without regard to the scan time of the PLC.
2) Cases to select a general-purpose comparison instruction
- When the required frequency is beyond the counting performance.
- When counting is regarded as important, but the effect of the scan time can be ignored in operations according to the counting result.
- When the number of an instruction exceeds the allowable limit. For FX3U and FX3uc PLCs

*1. This defines CN251.
*2. This defines D100.
*3. This defines K100.
*4. This defines D100.
For \(F X_{0}, F X_{0 S}, F X_{0 n}, F X_{u}, F X_{2 C}, F X_{1 s}, F X_{1 N}, F X_{1 N C}, F X_{2 N}, F X_{2 N C}\) and FX3G PLCs

*1. This defines K100.
*2. This defines CN251.

\section*{2. Device specification range}

Only high speed counters can be specified as s2).
For details, refer to the following manual.
\(\rightarrow\) FX Structured Programming Manual (Device \& Common)

\section*{3. Some restrictions to applicable devices}

41: Applicable to the FX3U and FX3Uc PLCs only.
Not indexed (V, Z).
©2: Use interrupt pointer when using counter interrupt.
(Not available for the FX0, FX0S, FXon, FX1N, FX1s or FX3G PLC.)
\(\rightarrow\) For the counter interrupt using this instruction, refer to Section 8.6.
©3: Applicable to the FX3U, FX3UC and FX3G PLCs only.
44: Applicable to the FX3U and FX3uc PLCs only.

\section*{4. Specifying input and output variables}

When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
5. Precedence of DHSCS, DHSCR and DHSZ instructions to one particular high speed counter \(\rightarrow\) Refer to caution 6 in "Common cautions on using instructions for high speed counter" which is described later.
6. Reset operation by an external terminal
\(\rightarrow\) Refer to caution 5 in "Common cautions on using instructions for high speed counter" which is described later.

\section*{7. Other cautions on use}
\(\rightarrow\) Refer to caution in "Common cautions on using instructions for high speed counter" which is described later.

\section*{Program examples}

With regard to the current value of a counter, different outputs \((\mathrm{Y})\) are arbitrarily set to ON by two values.

[ST]
OUT_C_32(M8000,CC251,K2147483647);
DHSCS(M8000,VAR_01,CC251,Y010);
DHSCS(M8000,VAR_02,CC251,Y011);

\section*{Common cautions on using instructions for high speed counter}

DHSCS, DHSCR and DHSZ instructions are provided for high speed counters. This section explains common cautions for these instructions.

\section*{1. Limitation in the number of an instruction in a program}

DHSCS, DHSCR and DHSZ instructions can be used as many times as necessary in the same way as general instructions. However, the number of simultaneously driven instructions is limited.
\(\rightarrow\) Refer to Section 1.3.7.

\section*{2. Response frequency of high speed counters}

When DHSZ instruction is used, the maximum response frequency of every software counter and the total frequency are limited. For details, refer to the following manual.
\(\rightarrow\) FX Structured Programming Manual (Device \& Common)

\section*{3. Specification of output numbers (Y)}

When using the same instruction for high speed counter repeatedly or when driving two or more instructions for high speed counter at the same time, specify such output devices \((Y)\) whose high-order two digits are the same (in units of 8 devices).
1) When using devices of the same number (in units of 8 devices) Example: when using Y000, specify Y000 to Y007. When using Y010, specify Y010 to Y017.
2) When using two or more instructions for high speed counter and non-consecutive output ( Y ) numbers A program example is shown below:

*1. VER_01 is a global label and is defined as K100.
When C255 reaches K 100 , the output Y 000 is driven by interrupt. Y 010 is driven when END processing is executed.
If interrupt drive is required, use an output number in the range from Y001 to Y007 whose high-order two digits are equivalent.
4. Caution on the counting operation when the current value is changed

An instruction for the high speed counter gives the comparison result when a pulse is input to the input (X) of the high speed counter.
However, the comparison result is not given when the current value of the high speed counter is changed in the following method.
1) Change method (example)
a) Overwriting the contents of a word device used as the comparison value using DMOV instruction, etc.
b) Resetting the current value of a high speed counter in a program.
2) Operation

Even if the condition for setting the output to ON or OFF is given as the comparison result, the comparison result does not change when an instruction is simply driven.
5. Reset operation by an external terminal [M8025*1: DHSC (external reset) mode]

For a high speed counter equipped with an external reset terminal ( \(R\) ) such as C241, an instruction is executed and the comparison result is output at the rising edge of the reset input signal.
(The FXU PLC of V2.1 or later and produced February 1990 or later are compatible with this function. The FXo, FXos, FXon, FX1s, FX1n, FX1NC or FX3G is not compatible.)
1) Program

If an instruction for the high speed counter is used while M8025*1 is driven, the instruction is executed again when the current value of the high speed counter C241 is cleared by an external reset terminal. And the comparison result is output even if a counting input is not given.

2) Operation

When the external reset input X001 turns ON while the current value of C241 is "100", for example, the current value of C 241 is reset to " 0 ". And Y000 is reset at this time even if a counting input is not given. The above reset operation takes place as a basic function.

\section*{6. Priority order in operations among DHSCS, DHSCR and DHSZ instructions for the same high speed counter when the same comparison value is used.}
1) \(\mathrm{FX}_{3} \mathrm{u}\) and \(\mathrm{FX}_{3} u c\) PLCs

When the same comparison value is used for the same high speed counter in DHSCS, DHSCR and DHSZ instructions, high speed counter reset (self-reset) by DHSCR instruction is executed with the highest priority (as shown in the table below).
In this case, the comparison results do not change in DHSCS, DHSCR and DHSZ instructions whose comparison value is programmed to be the same as the comparison value for self-reset by DHSCR instruction. To change the comparison results, set the comparison value to "KO".
2) \(F X_{1 s}, F X_{1 N}, F X_{1 N C}, F X_{2 N}, F X_{2 N C}\) and \(F X_{3 G}\) PLCs

Comparison is executed in the programmed sequence without regard to the instructions.
\begin{tabular}{l|l|l|l}
\hline \multirow{2}{*}{\multicolumn{2}{|c}{ Program sequence }} & \multicolumn{2}{|c}{ Processing sequence } \\
\cline { 2 - 4 } & \multicolumn{1}{|c}{ FX3U•FX3UC } & \multicolumn{1}{|c}{ FX3G } & FX1N•FX1S•FX1NC•FX2N•FX2NC \\
\hline DHSCS (1) & DHSCR (6) (Self-reset) & DHSCS (1) & DHSCS (1) \\
\hline DHSCS (2) & DHSZ (4) & DHSCS (2) & DHSCS (2) \\
\hline DHSCR (3) & DHSCS (1) & DHSCR (3) & DHSCR (3) \\
\hline DHSZ (4) & DHSCS (2) & DHSZ (4) & (Not supported) \\
\hline DHSCR (5) & DHSCR (3) & DHSCR (5) & DHSCR (5) \\
\hline DHSCR (6) (Self-reset) & DHSCR (5) & DHSCR (6) (Self-reset) & DHSCR (6) (Self-reset) \\
\hline
\end{tabular}

*1. VER_01 is a global label and is defined as K500.
*2. VER_02 is a global label and is defined as K250.

\section*{Operation of \(\mathrm{FX}_{3} \mathrm{U}\) and FX 3 Cc PLCs}

*1. To change the comparison results by the instructions (1) to (3) and (5) in the previous page, change the comparison value "K500" in the instructions (1) to (3) and (5) in the previous page to "K0".
*2. To set Y005 to ON in the DHSZ instruction (4) in the previous page, set a value smaller than the comparison value "K500". However, due to the response delay at the output, the output may not operate within the short time before the counter's current value is reset to " 0 " (to K500 (K0)).
*1. Due to the response delay at the output, the output may not operate within the short time before the counter's current value is reset from " 0 " to " 1 ".

\subsection*{7.6.5 DHSCR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction compares the value counted by a high speed counter with a specified value at each count, and immediately resets an external output \((\mathrm{Y})\) when both values become equivalent to each other.
1. Format and operation, execution form


\section*{2. Set data}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Variable} & Description & Data type \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & s1 & Data to be compared with the current value of a high-speed counter or word device storing the data to be compared \({ }^{* 1}\) & ANY32 \\
\hline & (s2) & Device of a high speed counter & ANY32 \\
\hline \multirow[b]{2}{*}{Output variable} & EN0 & Execution state & Bit \\
\hline & (d) & Bit device to be set to ON when the compared two values are equivalent to each other & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|l|}{System User} & \multirow[t]{2}{*}{Special Unit U \(\square\) IG \(\square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{c} 
Character \\
String
\end{tabular}
"口"} & \multirow[t]{2}{*}{\begin{tabular}{c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & X & Y & M \(\mathbf{T}\) & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & - & - & - & - & - & - & - & \(\triangle 2\) & \(\triangle 3\) & & - & - & - & - & & & \\
\hline (s2) & & & & & & & & & & & & \(\bullet\) & & & & & & \(\bullet\) & & & & & \\
\hline (d) & & - & & & & -1 & & & & & & -4 & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DHSCR)}

When the current value of the high speed counter of the device specified by s2 becomes the comparison value of the device specified by (s1) (for example, when the current value changes from "199" to "200" or from " 201 " to " 200 " if the comparison value is K200), the bit device specified by \(\mathbb{d}\) is reset (set to OFF) regardless of the operation cycle. In this instruction, the comparison processing is executed after the counting processing in the high speed counter.


\section*{Operation}

When the current value of the high speed counter C255 changes (counts) from " 99 " to "100" or from "101" to "100", Y010 is reset (output refresh).
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{M8000}} & & \\
\hline & EN ENO & \multirow[t]{2}{*}{-} & \\
\hline \multirow[t]{3}{*}{RUN monitor} & \[
\begin{array}{r}
\text { CC235 }- \text { CCoil } \\
\text { K2,147,483,647 }- \text { CValue }
\end{array}
\] & & \\
\hline & DHSCR & & \\
\hline & \begin{tabular}{rr} 
Label \({ }^{* 1}\) - \({ }^{\text {EN }}\) & ENO \\
CN235-s2 & \(d\) \\
SN
\end{tabular} & Y Y010 & \(\mathrm{K} 100=\mathrm{CN} 235 \rightarrow \begin{aligned} & \text { Reset } \\ & \text { Y010 }\end{aligned}\) \\
\hline
\end{tabular}
*1. This defines K100.

\section*{Related instruction}

The following instructions can be combined with high speed counters.
\begin{tabular}{c|l}
\hline Instruction & \multicolumn{1}{|c}{ Instruction name } \\
\hline DHSCS & High speed counter set \\
\hline DHSCR & High speed counter reset \\
\hline DHSZ & High speed counter zone compare \\
\hline DHCMOV & High speed counter move \\
\hline DHSCT & High speed counter compare with data table \\
\hline
\end{tabular}

\section*{Cautions}

\section*{1. Selection of the counter comparison method}

When the DHSCS instruction is used, the maximum frequency and total frequency of the high speed counter are affected.
Refer to the counting operation described below, and select according to the contents of control whether to use this instruction or general-purpose comparison instruction.
1) Case to select DHSCR instruction
- When the output should be given when the counting result becomes equivalent to the comparison value without regard to the scan time of the PLC.
2) Cases to select a general-purpose comparison instruction
- When the required frequency is beyond the counting performance.
- When counting is regarded as important, but the effect of the scan time can be ignored in operations according to the counting result.
- When the number of an instruction exceeds the allowable limit. For FX3U and FX3uc PLCs

*2. This defines D100.
*3. This defines K1000.
*4. This defines D100.


*1. This defines K100.
*2. This defines CN251.

\section*{2. Device specification range}

Only high speed counters can be specified as s2.
For details, refer to the following manual.
\(\rightarrow\) FX Structured Programming Manual (Device \& Common)
3. Some restrictions to applicable devices

41: Applicable to the FX3U and FX3Uc PLCs only.
Not indexed.
42: Applicable to the FX3U, FX3UC and FX3G PLCs only.
43: Applicable to the FX3U and FX3uc PLCs only.
44: The same counter of the device specified by s2 can be used.
(See the program example.)

\section*{4. Specifying input and output variables}

When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
5. Precedence of DHSCS, DHSCR and DHSZ instructions to one particular high speed counter \(\rightarrow\) Refer to caution 6 in "Common cautions on using instructions for high speed counter" which is described in Section 7.6.4.

\section*{6. Reset operation by an external terminal}
\(\rightarrow\) Refer to caution 5 in "Common cautions on using instructions for high speed counter" which is described in Section 7.6.4.

\section*{7. Other cautions on use}
\(\rightarrow\) Refer to caution in "Common cautions on using instructions for high speed counter" which is described in Section 7.6.4.

\section*{Program examples}
1. Example of self-reset circuit

When the current value of C255 becomes "400", C255 is immediately reset. Its current value becomes " 0 ", and the output contact is set to OFF.
[Structured ladder]


\footnotetext{
*1. VER_01 is a global label and is defined as K400.
[ST]
OUT_C_32(M8000,CC255,K300);
DHSCR(M8000,VAR_01,CC255,CC255);
T]
}

\subsection*{7.6.6 DHSZ}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction compares the current value of a high speed counter with two values (one zone), and outputs the comparison result to three bit devices (refresh).
1. Format and operation, execution form

2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{ Input variable } & EN & Execution condition & \begin{tabular}{l} 
Data to be compared with the current value of a high-speed counter or word \\
device storing the data to be compared (Comparison value 1)
\end{tabular} \\
\cline { 2 - 5 } & s1 & ANY32 \\
\cline { 2 - 5 } & s2 & \begin{tabular}{l} 
Data to be compared with the current value of a high-speed counter or word \\
device storing the data to be compared (Comparison value 2)
\end{tabular} & ANY32 \\
\cline { 2 - 5 } & S & Device of a high speed counter & ANY32 \\
\hline \multirow{3}{*}{ Output variable } & EN0 & Execution state & Bit \\
\cline { 2 - 5 } & dead device to which the comparison result is output based on upper and & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Data type} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|l|}{System User} & \multirow[t]{2}{*}{Special Unit U \(\square\) IG \(\square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{Character String
} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X} \mathbf{Y}\) & Y & M T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & -2 & \(\triangle 3\) & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & - & - & - & - & \(\bullet\) & - & - & -2 & -3 & & - & - & - & \(\bullet\) & & & \\
\hline (S) & & & & & & & & & & & & \(\bullet\) & & & & & & \(\bullet\) & & & & & \\
\hline (d) & & \(\bullet\) & & & - & -1 & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DHSZ)}

The current value of the high speed counter of the device specified by \(s\) is compared with two comparison points (comparison value 1 and comparison value 2). Based on the comparison result, "smaller than the lower comparison value", "inside the comparison zone" or "larger than the upper comparison value", one among the devices specified by \((d)\) is set to ON regardless of the operation cycle.
In this instruction, the comparison processing is executed after the count processing in the high speed counter.

*1. This defines the comparison value 1 .
*2. This defines the comparison value 2.

\section*{Comparison points}

Make sure that the comparison value 1 and the comparison value 2 have the following relationship:
(s1) \(\leq\) s2
Operation
When the current value of the high speed counter C251 changes (counts) as shown below, the comparison result is output to one of the outputs Y000, Y001 or Y002.

1. This defines K1000.
*2. This defines K2000.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Comparison pattern} & \multirow[b]{2}{*}{Current value of C251} & \multicolumn{3}{|c|}{Change of output contact (Y)} \\
\hline & & Y000 & Y001 & Y002 \\
\hline \multirow{3}{*}{(s1) s} & 1000> s & ON & OFF & OFF \\
\hline & \(999 \rightarrow 1000\) & \(\mathrm{ON} \rightarrow\) OFF & \(\mathrm{OFF} \rightarrow \mathrm{ON}\) & OFF \\
\hline & \(999 \leftarrow 1000\) & OFF \(\rightarrow\) ON & ON \(\rightarrow\) OFF & OFF \\
\hline \multirow{5}{*}{(s1) \(\leq\) S \(\leq\) s2} & \(999 \rightarrow 1000\) & ON \(\rightarrow\) OFF & OFF \(\rightarrow\) ON & OFF \\
\hline & \(999 \leftarrow 1000\) & \(\mathrm{OFF} \rightarrow \mathrm{ON}\) & ON \(\rightarrow\) OFF & OFF \\
\hline & \(1000 \leq\) S \(\leq 2000\) & OFF & ON & OFF \\
\hline & \(2000 \rightarrow 2001\) & OFF & ON \(\rightarrow\) OFF & \(\mathrm{OFF} \rightarrow \mathrm{ON}\) \\
\hline & \(2000 \leftarrow 2001\) & OFF & \(\mathrm{OFF} \rightarrow \mathrm{ON}\) & \(\mathrm{ON} \rightarrow\) OFF \\
\hline \multirow{3}{*}{(s) \(<\) s2} & \(2000 \rightarrow 2001\) & OFF & \(\mathrm{ON} \rightarrow\) OFF & \(\mathrm{OFF} \rightarrow \mathrm{ON}\) \\
\hline & \(2000 \leftarrow 2001\) & OFF & OFF \(\rightarrow\) ON & \(\mathrm{ON} \rightarrow\) OFF \\
\hline & (s)>2000 & OFF & OFF & ON \\
\hline
\end{tabular}

\section*{Related instruction}

The following instructions can be combined with high speed counters.
\begin{tabular}{c|l}
\hline Instruction & \multicolumn{1}{c}{ Instruction name } \\
\hline DHSCS & High speed counter set \\
\hline DHSCR & High speed counter reset \\
\hline DHSZ & High speed counter zone compare \\
\hline DHCMOV & High speed counter move \\
\hline DHSCT & High speed counter compare with data table \\
\hline
\end{tabular}

\section*{Cautions}

\section*{1. Selection of the counter comparison method}

When the DHSCS instruction is used, the maximum frequency and total frequency of the high speed counter are affected.
Refer to the counting operation described below, and select according to the contents of control whether to use this instruction or general-purpose comparison instruction.
1) Case to select DHSCS instruction
- When the output should be given when the counting result becomes equivalent to the comparison value without regard to the scan time of the PLC.
2) Cases to select a general-purpose comparison instruction
- When the required frequency is beyond the counting performance.
- When counting is regarded as important, but the effect of the scan time can be ignored in operations according to the counting result.
- When the number of an instruction exceeds the allowable limit. For FX3U and FX3uc PLCs

*1. This defines CN251
*2. This defines D100.
*3. This defines K10000.
*4. This defines D100
*5. This defines K10000.
*6. This defines D100
*7. This defines K20000.
*8. This defines D100
*9. This defines K20000.
*10. This defines D100.


*1. This defines K10000.
*2. This defines CN251.
*3. This defines K10000.
*4. This defines CN251.
*5. This defines K20000.
*6. This defines CN251.
*7. This defines K20000.
*8. This defines CN251.

\section*{2. Device specification range}

Only high speed counters can be specified as s2.
For details, refer to the following manual.
\(\rightarrow\) FX Structured Programming Manual (Device \& Common)

\section*{3. Some restrictions to applicable devices}

A1: Applicable to the FX3U and FX3Uc PLCs only. Not indexed (V, Z).
©2: Applicable to the FX3U, FX3UC and FX3G PLCs only.
43: Applicable to the FX3U and FX3UC PLCs only.
4. Specifying input and output variables

When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
1) DHSZ instruction executes comparison and outputs the result only when a counting pulse is input to a high speed counter.
(When s1 is "1000" and s2) is "1999", the output (d) is set to ON as soon as the current value of C235 changes from "999" to "1000" or from "1999" to "2000".)
2) Because the comparison result cannot be obtained when restoring the power or when the PLC mode switches from STOP to RUN, the result is not output even if the comparison condition is provided.
\(\rightarrow\) For details, refer to "Program in which comparison result is set to ON when power is turned ON [ZCP] instruction" that is described later.
7. Precedence of DHSCS, DHSCR and DHSZ instructions to one particular high speed counter \(\rightarrow\) Refer to caution 6 in "Common cautions on using instructions for high speed counter" which is described in Section 7.6.4.
8. Reset operation by an external terminal
\(\rightarrow\) Refer to caution 5 in "Common cautions on using instructions for high speed counter" which is described in Section 7.6.4.

\section*{9. Number of occupied devices}
1) The comparison value occupies two devices from (s1) or (s2) respectively.
2) The output occupies three devices from (d).

\section*{Program in which comparison result is set to ON when power is turned ON [ZCP] instruction}

DHSZ instruction outputs the comparison result only when a counting pulse is input. Even if the current value of C235 is "0", Y010 remains OFF at the time of startup.
For initializing Y010, compare the current value of C235 with K1000 and K1200 and drive Y010 by DZCPP instruction (for general zone comparison) as pulse operation only at the time of startup.
Refer to the program example shown below.

\section*{Explanation of operation}

The outputs Y010 to Y012 are as shown below.
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{Y} 010=\mathrm{ON}\) & \(\mathrm{Y} 011=\mathrm{ON}\) & \(\mathrm{Y} 012=\mathrm{ON}\) \\
\hline 0 & \multicolumn{2}{c|}{\begin{tabular}{l}
1,000 \\
Current value of C235
\end{tabular}} \\
\hline 0
\end{tabular}

\section*{Program examples}
[Structured ladder]


Y010 to Y012 are reset.

Immediately after start, comparison is executed only once.
K 1000 > CN235 :Y010 ON
\(\mathrm{K} 1000 \leq \mathrm{CN} 235 \leq \mathrm{K} 1200\) :Y011 ON
K1200 < CN235 :Y012 ON

Immediately after start, comparison is executed by interrupt when each pulse is input from X000.
K1000 > CN235
Y010 ON
\(\mathrm{K} 1000 \leq \mathrm{CN} 235 \leq \mathrm{K} 1200\) :Y011 ON
K1200 < CN235 :Y012 ON
*1. VER_01 is a global label and is defined as K1000.
*2. VER_02 is a global label and is defined as K1200.
*3. VER_03 is a global label and is defined as CN235.
*4. VER_04 is a global label and is defined as Y010.
*5. VER_05 is a global label and is defined as K1000.
*6. VER_06 is a global label and is defined as K1200.
[ST]
RST(NOT X010,);
ZRST(NOT X010,Y010,Y012);
OUT_C_32(M8000,CC235,K999 …);
DZCPP(X010,VAR_01,VAR_02,VAR_03,VAR_04);
DHSZ(X010,VAR_05,VAR_06,CC235,Y010);

\section*{Timing chart}

In the part 1) in the timing chart, Y010 remains OFF if the current value of a high speed counter (C235 in the example below) is " 0 " when restoring the power.
1) For initializing Y010, the current value of \(C 235\) is compared with \(K 1000\) and \(K 1200\), and \(Y 010\) is driven using the DZCPP instruction (for general zone comparison) as pulse operation only in RUN.
2) The comparison result in Y 010 is latched until an input pulse is input and the comparison output is driven by the DHSZ instruction.
3) According to the current value of the counter, the DHSZ instruction drives the output \({ }^{(A)}\), (B) or (C).


\section*{Table high speed comparison mode (M8130)}

This section explains the table high speed comparison mode (high speed pattern output) of the DHSZ instruction.
When two or more outputs should be activated at one time, use the DHSCT instruction which can change up to 16 outputs.
(Valid for the FXU PLC, V3.07 or later)
1. Set data
\begin{tabular}{c|l|c}
\hline Operand type & \multicolumn{1}{c|}{ Description } & Data type \\
\hline s1 & Head word device number storing the data table (only data register D) & ANY32 \\
\hline s2 & Number of lines in the table (only K or H) ... K1 to K128 or H1 to H80 & ANY32 \\
\hline s & Device number of a high speed counter & ANY32 \\
\hline d & Special auxiliary relay for declaring the table high speed comparison mode & Bit \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. 32-bit operation (DHSZ)

When the special auxiliary relay M8130 for declaring the table high speed comparison mode is specified as (d) in the DHSZ instruction, the special function shown below is provided.


\section*{Comparison table}
\begin{tabular}{c|c|c|c}
\hline \begin{tabular}{c} 
Comparison data \\
(32 bits)
\end{tabular} & \begin{tabular}{c} 
Output (Y) \\
number
\end{tabular} & SET/RST & Table counter (D8130) \\
\hline\((s 1+1, s 1)\) & \(s 1+2\) & \(s 1+3\) & 0 \\
\(\downarrow\)
\end{tabular}
1) Specify the head number for the comparison table as \(s\) s1

Because one line in the comparison table uses four devices, s2 \(\times 4\) devices are occupied from \(s 1\).
2) Specify the number of lines in the comparison table as s2.

The created table starts from the head register \(\$ 1\), and has the number of lines specified in \(s 2\).
3) Comparison data

Make sure that the comparison data is 32 bits.
4) Output (Y) number

Specify each digit of the \((Y)\) number in hexadecimal form.
Example: When specifying Y010, specify "H10".
When Specifying Y020, specify "H2O".
5) Specification of set and reset

These set and reset are directly controlled as interrupt.
\begin{tabular}{l|c}
\hline & \begin{tabular}{c} 
Contents of \\
setting
\end{tabular} \\
\hline Set (ON) & \(\mathrm{K} 1 / \mathrm{H} 1\) \\
\hline Reset (OFF) & \(\mathrm{K} 0 / \mathrm{H} 0\) \\
\hline
\end{tabular}
2. Operation


*1. This defines K123.
*2. This defines D200.
*3. This defines K234.
*4. This defines D204.
*5. This defines K345.
*6. This defines D208.
*7. This defines D456.
*8. This defines D212.
*9. This defines D567.
*10.This defines D216.
*11.This defines D200.
*12. This defines K5.

Comparison table
\begin{tabular}{c|c|c|c}
\hline \begin{tabular}{c} 
Comparison \\
data
\end{tabular} & \begin{tabular}{c} 
Output (Y) \\
number
\end{tabular} & SET/RST & Table counter \\
\hline D201, D200 & D 202 & D 203 & 0 \\
K123 & H10 & K1 & \(\downarrow\) \\
\hline D205, D204 & D 206 & D 207 & 1 \\
K234 & H10 & K0 & \(\downarrow\) \\
\hline D209, D208 & D 210 & D 211 & 2 \\
K345 & H11 & K1 & \(\downarrow\) \\
\hline D213, D212 & D 214 & D 215 & 3 \\
K456 & H11 & K0 & \(\downarrow\) \\
\hline D217, D216 & D 218 & D 219 & 4 \\
K567 & H11 & K1 & \begin{tabular}{l}
\(\downarrow\) \\
\end{tabular} \\
\hline
\end{tabular}
1) When this instruction is executed, the top table in the data table is set as the comparison target data.
2) When the current value of the high speed counter C251 is equivalent to the comparison target data table, the output ( Y ) number
 specified in the comparison data table is set or reset.
This output processing is directly executed without regard to completion of output refresh by END instruction.
3) "1" is added to the current value of the table counter D8130.
4) The comparison target data table is transferred to the next table.
5) The step 2) and 3) are repeated until the current value of the table counter D8130 becomes "4". When the current value becomes " 4 ", the program execution returns to the step 1), and the table counter D8130 is reset to "0".
At this time, the complete flag M8131 turns ON.
6) When the command contact is set to OFF, execution of the instruction is stopped and the table counter D8130 is reset to " 0 ".

\section*{Cautions}
1. Limitation in the number of DHSZ instruction

This instruction can be programmed only once in a program.
With regard to the DHSCS, DHSCR, DHSZ and DHSCT instructions used for other purposes, a limited number of instructions including the DHSZ instruction can be driven at one time.
2. When the command input is set to OFF in the middle of execution

Execution of the instruction is aborted, and the table counter D8130 is reset to K0.
However, outputs which have been set or reset remain in the current status.

\section*{3. Output start timing}

After the DHSZ instruction is first executed, creation of the table is completed by END instruction. After that, the DHSZ instruction becomes valid.
Accordingly, the output is activated from the second scan.

\section*{4. Current value of a high speed counter}

Be sure to execute the DHSZ instruction from a point where the current value of the high speed counter (regarded as the operation target) is smaller than the value in the first line in the comparison table.

\section*{Frequency control mode (DHSZ, DPLSY) (M8132)}

When the special auxiliary relay M8132 for declaring the frequency control mode is specified as \(\mathbb{d}\) in the DHSZ instruction, the special function shown below is provided if DPLSY instruction is combined.
At this time, only a data register D can be specified as \(\mathrm{sin}^{1}\), and a constant K or H can be specified as s2).
The available range is limited to " \(1 \leq \mathrm{K}, \mathrm{H} \leq 128\) ".
A high speed counter can be specified as \(S\).
This function is different from the zone comparison described above.
PLSY instruction is as shown on the next page, and only the pulse output can be changed by users.
(Valid for the FXU PLC, V3.07 or later)

\section*{1. Control example}

Example of table configuration and data setting
\begin{tabular}{|c|c|c|c|c|}
\hline Comparison data & Frequency & Table counter (D8131) & & \multirow{3}{*}{Head device (32 bits) specified as s1} \\
\hline \[
\begin{gathered}
\text { D 301, D } 300 \\
\text { K } 20
\end{gathered}
\] & \[
\begin{gathered}
\text { D 302, D } 303 \\
\text { K300 }
\end{gathered}
\] & \[
\begin{aligned}
& 0 \\
& \downarrow
\end{aligned}
\] & \multirow[t]{5}{*}{\(\stackrel{\downarrow}{\leftarrow}\)} & \\
\hline \[
\begin{gathered}
\text { D 305, D } 304 \\
\text { K600 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { D 306, D } 307 \\
\text { K500 }
\end{gathered}
\] & 1
\(\downarrow\) & & \\
\hline \[
\begin{gathered}
\text { D 309, D } 308 \\
\text { K700 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D 310, D } 311 \\
\text { K200 }
\end{gathered}
\] & \(\stackrel{2}{\downarrow}\) & & Number of lines specified as s2 \\
\hline \[
\begin{gathered}
\hline \text { D 313, D } 312 \\
\text { K800 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D 314, D } 315 \\
\text { K100 }
\end{gathered}
\] & 3
\(\downarrow\) & & \\
\hline \[
\begin{gathered}
\text { D 317, D } 316 \\
\text { K } 0
\end{gathered}
\] & \[
\begin{gathered}
\text { D 318, D } 319 \\
\text { K } 0
\end{gathered}
\] & 4
\(\downarrow\) & & \\
\hline
\end{tabular}


\section*{Output pulse characteristics}

1) Write prescribed data in advance to data registers constructing the table as shown in this program example.
2) The output frequency of the DPLSY instruction remains in the value (D303, D302) until the current value of a high speed counter specified in s becomes equivalent to (D301, D300). (D302 specifies low-order 16 bits. D303 specifies high-order 16 bits, but is always " 0 ".)
3) The operation in the second line is started after that, and then the operation in each line is executed in turn.
4) When the operation in the last line is completed, the complete flag M8133 turns ON. The program execution returns to the first line, and the operation is repeated.
5) For stopping the operation in the last line, set the frequency in the last table to K0.
6) When the command input is set to OFF, the pulse output turns OFF and the table counter D8131 is reset.
7) After DHSZ instruction is first executed, creation of the table is completed at the END instruction. The DHSZ instruction becomes valid after that.
8) Accordingly, the contact of PLS M10 is used so that the DPLSY instruction is executed from the second scan after the command input has been set to ON.

Data can be written to the table in a program as shown in this example or directly using keys in peripheral equipment.
1) M8132: This is the special auxiliary relay for declaring the frequency control mode.
2) D8132: In the frequency control mode, the frequency set in the table is received by D8132 sequentially according to the table counter D8131 count.
3) D8134 (low-order), D8135 (high-order): In the frequency control mode, the comparison data in the table is received sequentially according to the table counter count.

\section*{Cautions}
1) DHSZ instruction can be used only once.
2) With regard to the DHSCS, DHSCR, DHSZ and DHSCT instructions for other purposes, a limited number of instructions including the DHSZ instruction can be driven at one time.
3) Because the table is created when the END instruction is executed, it is necessary to delay execution of the DPLSY instruction until creation of the table is completed.
4) Do not change the data table while the DHSZ instruction is driven.
5) In the frequency control mode, simultaneous output to Y000 to Y001 is not permitted.

\subsection*{7.6.7 SPD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction counts the input pulse for a specified period of time as interrupt input.
The function of this instruction varies depending on the version.
1. Format and operation, execution form

2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Device of pulse input (X) & \multicolumn{2}{|l|}{Bit} \\
\hline & (s2) & Time data (ms) or word device storing the data & ANY16 & ANY32 \\
\hline \multirow[b]{2}{*}{Output variable} & EN0 & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Head word device storing the pulse density data & ARRAY [0..2] OF ANY16 & ARRAY [0..2] OF ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{Special Unit} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
"口"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & -1 & & & & & & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline (s2) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & -2 & -3 & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & & & & & & & & & & \(\bullet\) & - & - & -2 & & - & \(\bullet\) & - & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (SPD)}

The input pulse specified by s1 is counted only for the period of "time specified by multiplied by 1 ms ." The measured value is stored in \((d\), the current value is stored in \(\mathbb{d}+1\), and the remaining time is stored in \((d)+2\) (ms).
By repeating this operation, the measured value d will store the pulse density (which is proportional to the rotation speed).

*1. This defines the device that stores the pulse density data.
1) Timing chart

Command
input
 The command contact is set to ON.
(s1)

(d) +1 counts "OFF to ON" operation of s1. (s2) ms later, the counting result is stored to (d). Accompanied by this operation, d +1 is reset, and then counting of the "OFF to ON" operation of s1 is started again.
 (d) +2 is used to measure the remaining time.
(d) +2

Remaining time (ms)
2) The measured value \((d\) is in proportion to the number of rotations as shown below.


\section*{2. 32-bit operation (DSPD) [FX3U, FX3uc Ver.2.20 or later]}

The input pulse specified by \(s 1\) is counted only for the period of "time specified by s2 multiplied by 1 ms ." The measured value is stored in [ \((d+1,(d)\) ], the current value is stored in [ \((d)+3,(d)+2]\), and the remaining time is stored in [ \((d)+5,(d)+4](\mathrm{ms})\).
By repeating this operation, the measured value [ \((d)+1, ~ d]\) will store the pulse density (which is proportional to the rotation speed).

*1. This defines the device that stores the pulse density data.
1) Timing chart

[(d) +3 , d +2 ] counts "OFF to ON" operation of (s1). [(s2) +1 , s2) \(] \mathrm{ms}\) later, the counting result is stored to [(d) +1 , d)].
Accompanied by this operation, [d \(+3,(d)+2]\) is reset, and then counting of the "OFF to ON" operation of s1 is started again.

[(d) +5, d +4 ] is used to measure the remaining time.
2) The value \([d+1,(d]\) is in proportion to the number of rotations as shown below.


Proximity switch
"n" pulses/rotation

\([\mathrm{s} 2)+1,(\mathrm{~s} 2)]\) (ms).

\section*{Cautions}
1. Input specifications of the input specified by \(s 1\)
1) s1 can specify the following ranges.

FX3U, FX3UC, and FX3G PLCs: X000 to X007
FX1s, FX1N, FX2N, FX1NC and FX2Nc PLCs: X000 to X005
FXU and FX2C PLCs: X000 to X005
2) An input device \(\mathrm{X000}\) to \(\mathrm{X007}\) ( \(\mathrm{X000}\) to X 005 ) specified by s1 cannot overlap the following functions or instructions:
- High speed counter
- Input interrupt
- Pulse catch
- Pulse width measurement
- DSZR
- DVIT
- ZRN
3) For one input, this instruction can be used only once.
4) The maximum input frequency is shown below:
\begin{tabular}{l|c|c|c}
\hline \multirow{2}{*}{ Used input number } & \multirow{2}{*}{ FX3UC PLC } & \multicolumn{2}{|c}{ FX3U PLC } \\
\cline { 3 - 3 } & & Main unit & FX3U-4HSX-ADP \\
\hline X000 to \(\mathrm{X005}\) & \(100 \mathrm{kHz}^{* 1}\) & \(100 \mathrm{kHz}{ }^{* 1}\) & \multirow{2}{*}{200 kHz} \\
\hline X006 to \(\mathrm{X007}\) & 10 kHz & 10 kHz & \\
\hline
\end{tabular}
*1. When receiving pulses within the response frequency range of 50 k to 100 kHz , perform the following actions:
- Make sure that the wiring length is 5 m or less.
- Connect a bleeder resistor of \(1.5 \mathrm{k} \Omega\) ( 1 W or more) to the input terminal, and make sure that the load current in the open collector transistor output of the external equipment is 20 mA or more.
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Used input number } & \multicolumn{1}{c}{ FX3G PLC } \\
\hline X000, X001, X003, X004 & 60 kHz \\
\hline X002, X005, X006, X007 & 10 kHz \\
\hline \multicolumn{2}{c}{ Used input number } \\
\hline X000, X001 & 60 kHz \\
\hline X002, X003, X004, X005 & 10 kHz \\
\hline \multicolumn{1}{c}{ Used input number } & \multicolumn{1}{c}{\(\quad\) FXU and FX2C PLCs } \\
\hline X000, X002, X003 & 10 kHz \\
\hline X001, X004, X005 & 7 kHz \\
\hline
\end{tabular}

\section*{2. Specifying input and output variables}

When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.

\section*{3. Occupied devices}
1) When using the 16 -bit operation Three devices are occupied from a device specified in \(\mathbb{d}\).
2) When using the 32-bit operation

Six devices are occupied from a device specified in \((d\).

\section*{4. Restrictions to devices}

41: X000 to X007 (X005) can be specified.
Refer to "Cautions".
42: Applicable to the FX3U, FX3UC and FX3G PLCs only.
A3: Applicable to the FX3U and FX3UC PLCs only.

\subsection*{7.6.8 PLSY}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction generates a pulse signal.
1. Format and operation, execution form

2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Frequency data ( Hz ) or the word device storing the data & ANY16 & ANY32 \\
\hline & (s2) & Pulse quantity data or the word device storing the data & ANY16 & ANY32 \\
\hline \multirow{2}{*}{Output variable} & EN0 & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Bit device ( Y ) from which pulses are output & \multicolumn{2}{|l|}{Bit} \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
UपIG—
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(1 \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & \(\pm 2\) & \(\triangle 3\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & - & - & \(\bullet\) & - & - & - & - & -2 & -3 & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & A1 & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (PLSY)}

A pulse train of frequency specified by \(s 1\) is output in the quantity specified by s2 from the output (Y) specified by d.


For setting (s1), (s2) and (d), refer to the "cautions".

\section*{2. 32-bit operation (DPLSY)}

A pulse train of frequency specified by \(s 1\) is output in the quantity specified by s2 from the output (Y) specified by d.

*1. This defines the frequency data.
*2. This defines the pulse quantity data.
For setting (s1), s2) and (d), refer to the "cautions".

\section*{Related devices}
1. Instruction execution complete flag

The instruction execution complete flag M8029 used for PLSY instruction can be used also for other instructions. When using other instructions, setting the M8029 flag to ON or OFF, or using two or more PLSY instructions, be sure to use each M8029 flag just after an instruction to be monitored.
For the method of using the instruction execution complete flag, refer to the following manual.
\(\rightarrow\) FX Structured Programming Manual (Device \& Common)
\begin{tabular}{c|c|c}
\hline Device & Name & \multicolumn{1}{c}{ Description } \\
\hline M8029 & \begin{tabular}{c} 
Instruction execution \\
complete
\end{tabular} & \begin{tabular}{l} 
ON : Generation of specified number of pulses is completed. \\
OFF : Generation of pulses is paused before the specified number of pulses is reached or the \\
continuous pulse generation operation is stopped.
\end{tabular} \\
\hline
\end{tabular}

*1. This defines K1000.
*2. This defines K0.


Command


Changes by DPLSY instruction corresponding to the command input 2.
2. Monitoring the current number of generated pulses

The number of pulses output from Y 000 or Y 001 is stored in the following special data resistors.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Device} & \multirow[b]{2}{*}{Description} & \multirow[b]{2}{*}{Contents of data} \\
\hline High order & Low order & & \\
\hline D8141 \({ }^{* 1}\) & D8140*1 & Accumulated number of pulses output from Y000 & Accumulated number of pulses output from Y000 by PLSY and PLSR instructions \\
\hline D8143*1 & D8142*1 & Accumulated number of pulses output from Y001 & Accumulated number of pulses output from Y001 by PLSY and PLSR instructions \\
\hline D8137 \({ }^{*}\) & D8136 \({ }^{*}\) & Total accumulated number of pulses output from Y000 and Y001 & Total accumulated number of pulses output from Y000 and Y001 by PLSY and PLSR instructions. \\
\hline
\end{tabular}
*1. The FXo, FX0s, FXon, FXU or FX2C PLC is not compatible with this function.
*2. The FXO, FXos or FXON PLC is not compatible with this function.
The FXU PLC of V3.07 or later is compatible.
The contents of each data register can be cleared using the following program.

*3. This defines KO.
*4. This defines the low order devices in the table above.

\section*{3. How to stop the pulse output}
- When the command input is set to OFF, the pulse generation is immediately stopped. When the command input is set to ON again, pulse generation operation restarts from the beginning.
- When the special auxiliary relays \((M)\) shown below are set to ON, the pulse output is stopped.
\begin{tabular}{c|c|c|l}
\hline \multicolumn{3}{c|}{ Device } & \multirow{2}{*}{ Description } \\
\cline { 1 - 2 } FX3U, FX3UC & FX3G & FX1S, FX1N, FX1NC & \\
\hline M8349 & M8145, M8349 & M8145 & Immediately stops pulse output from Y000. \\
\hline M8359 & M8146, M8359 & M8146 & Immediately stops pulse output from Y001. \\
\hline
\end{tabular}

To restart pulse output, set the device corresponding to the output signal to OFF, and then drive the pulse output instruction again.

\section*{Cautions}
1. When a word device is specified as \(\$ 1\) or \(s 2\)

When the value of the word device is changed while the instruction is executed, the following operation results.
- When the data in s1 is changed, the output frequency changes accordingly.
- When the data in s2 is changed, the change (new value) becomes valid the next time the instruction is driven.

\section*{2. Frequency \(s 1\)}

When using transistor outputs in the main unit, set the output frequency specified by \({ }^{s 11}\) as follows.
- FX3u and FX3uc PLCs
\[
\begin{aligned}
&: 16 \text {-bit instruction } \rightarrow 1 \text { to } 32,767 \mathrm{~Hz} \\
& \text { 32-bit instruction } \rightarrow 1 \text { to } 200,000 \mathrm{~Hz} \text { (When using special high speed output } \\
& \text { adapter) } \\
& \rightarrow 1 \text { to } 100,000 \mathrm{~Hz} \text { (When using main unit) }
\end{aligned}
\]
- FX3G PLC : 16-bit instruction \(\rightarrow 1\) to \(32,767 \mathrm{~Hz}\) 32-bit instruction \(\rightarrow 1\) to \(100,000 \mathrm{~Hz}\)
- FX2N and FX2NC PLCs : 2 to \(20,000 \mathrm{~Hz}\)
- FX1NC PLC : 1 to \(10,000 \mathrm{~Hz}\)
- FX1s and FX1N PLCs : 16-bit instruction \(\rightarrow 1\) to \(32,767 \mathrm{~Hz}\) 32-bit instruction \(\rightarrow 1\) to \(100,000 \mathrm{~Hz}\)
- FXo, FXos and FXon PLCs : 10 to \(2,000 \mathrm{~Hz}\)
- FXU and FX2C PLCs : 1 to \(1,000 \mathrm{~Hz}\)

\section*{3. Specifying input and output variables}

When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
4. Pulse quantity \(s 2\)

The pulse quantity can be set in the range from 1 to 32767 (PLS) for 16-bit instructions and from 1 to \(2,147,483,647\) (PLS) for 32-bit instructions. If set to zero, pulse generates infinitely.

\section*{5. Pulse output}
1) Only a transistor output on the main unit or the following special high speed output adapters \({ }^{* 1}\) can be specified in \((d)\).
- FX3U, FX3UC and FX3G : Y000, Y001
- FX1S, FX1N, FX2N, FX1NC and FX2NC PLCs : Y000, Y001
- FXo, FXos and FXon PLCs : Y000
- FXU and FX2C PLCs : Valid for all Y

When using the PLSY instruction with a relay output type FX3U PLC, a special high speed output adapter is required.
*1. Special high speed output adapters can be connected only to the FX3U PLC.
2) The duration of the ON/OFF pulses is \(50 \%(O N=50 \%\), \(\mathrm{OFF}=50 \%\) )
3) The pulse output is controlled by the dedicated hardware not affected by the sequence program (operation cycle).
4) If the command input is set to OFF during continuous pulse output, the output from the device specified by \((d)\) turns OFF.

\section*{6. Restrictions to target devices}

A1: Refer to item 1 of "Cautions".
A2: Applicable only to the FX3U, FX3UC and FX3G PLCs.
43: Applicable only to the FX3u and FX3uc PLCs.
(Special high speed output adapters can be connected only to the FX3U PLC.)

\section*{7. Handling of pulse output terminals in the main units}

The outputs Y000 and Y001 are the high speed response type.
When using a pulse output instruction or positioning instruction, adjust the load current of the open collector transistor output.

When the load is smaller, connect a dummy resistor in parallel to the outside of a used output terminal (Y000 or Y001) as shown in the circuit diagram below so that the specified current shown below flows in the output transistor.
1) For \(F X_{3} u, F X_{3} \cup C\) and \(F X_{3}\) PLCs Operating voltage range : DC5 to 24 V Operating current range : 10 to 160 mA Output frequency : 100 kHz or less

2) For FX2N and FX2NC PLCs

Operating voltage range: DC5V Operating current range : 0.1 A Output frequency \(: 20 \mathrm{kHz}\) or less
3) For FX1nc PLC Operating voltage range : DC5V Operating current range : 10 to 100 mA Output frequency : 10 kHz or less
4) For FX1s and FX1n PLCs

Even without connecting a dummy resistor, a pulse output of 100 kHz or less can be generated under 5 to 24 VDC ( 10 to 100 mA ).
5) For FXo, FXos, FXon, FXu and FX2C PLCs

Have a current of about 100 mA flow for the FX2C PLC and a current of about 200 mA flow for the FX0, FXos, FXoN and FXu PLCs and extension.

Operating voltage range : DC12 to 24 V
Operating current range : 0.1 A
Output frequency \(: 10 \mathrm{kHz}\) or less

Operating voltage range : DC12 to 24 V
Operating current range : 50 to 100 mA
Output frequency : 10 kHz or less

\section*{8. Cautions on using special high speed output adapters (FX3U PLC)}
1) Outputs of special high speed output adapters work as differential line drivers.
2) Set the pulse output type setting switch in a special high speed output adapter to the "pulse train + direction" (PLS - DIR) side.
If the switch is set to the "forward rotation pulse train - reverse rotation pulse train" (FP - RP) side, normal operation is disabled. The pulse output destination changes depending on the PLC output status as shown in the table below.
\begin{tabular}{c|c|l}
\hline \begin{tabular}{c} 
Pulse output \\
destination
\end{tabular} & \begin{tabular}{c} 
Output affecting \\
operation
\end{tabular} & \multicolumn{1}{c}{ Operation } \\
\hline\((\mathrm{Y}=\) Y000 & Y004 & \begin{tabular}{l} 
While Y004 is ON, pulses are output from Y000 in the high speed output adapter. \\
While Y004 is OFF, pulses are output from Y004 in the high speed output adapter.
\end{tabular} \\
\hline\((d=\) Y001 & Y005 & \begin{tabular}{l} 
While Y005 is ON, pulses are output from Y001 in the high speed output adapter. \\
While Y005 is OFF, pulses are output from Y005 in the high speed output adapter.
\end{tabular} \\
\hline
\end{tabular}
3) Set the pulse output type setting switch while the PLC is in STOP or while the power is OFF. Do not manipulate the pulse output type setting switch while pulses are being output.
4) When special high speed output adapters are connected, the same output numbers in the main unit are assigned as shown in the table below.
Only wire the appropriate terminals. (Use either one only. Do not connect to the other terminal.)
Outputs of special high speed output adapters and main units operate as follows.
Assignment of output numbers in special high speed output adapters
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Status of output type setting switch} & \multirow{3}{*}{Signal name} & \multirow[t]{3}{*}{Setting name in each positioning instruction} & \multicolumn{4}{|c|}{Output number} \\
\hline & & & \multicolumn{2}{|r|}{1st unit} & \multicolumn{2}{|r|}{2nd unit} \\
\hline & & & 1st axis & 2nd axis & 3rd axis & 4th axis \\
\hline \multirow{2}{*}{"FP - RP" side} & Forward rotation pulse train (FP) & Pulse output destination & Y000 & Y001 & Y002 & Y003 \\
\hline & Reverse rotation pulse train (RP) & Rotation direction signal & Y004 & Y005 & Y006 & Y007 \\
\hline \multirow{2}{*}{"PLS - DIR" side} & Pulse train & Pulse output destination & Y000 & Y001 & Y002 & Y003 \\
\hline & Direction & Rotation direction signal & Y004 & Y005 & Y006 & Y007 \\
\hline
\end{tabular}

\section*{Output operation}
\begin{tabular}{l|l}
\hline & \multicolumn{1}{c}{ Output operation } \\
\hline Relay output type main unit & \begin{tabular}{l} 
While instruction is activated, relevant output is ON. (LED is also ON.) \\
Use special high speed output adapter.
\end{tabular} \\
\hline Special high speed output adapter & \begin{tabular}{l} 
Operated (ON/OFF) \\
Set the output frequency to "200 kHz" or less.
\end{tabular} \\
\hline Transistor output type main unit & \begin{tabular}{l} 
Operated (ON/OFF) \\
Set the output frequency to "100 kHz" or less.
\end{tabular} \\
\hline
\end{tabular}

\section*{9. Others}
1) When using the same output relay (Y000 or Y001) in several instructions.

While a pulse output monitor (BUSY/READY) flag is ON a pulse output instruction and positioning instruction for the same output relay cannot be executed.
While a pulse output monitor flag is ON even after the instruction drive contact is set to OFF, a pulse output instruction or positioning instruction for the same output relay cannot be executed.
Before executing such an instruction, wait until the pulse output monitor flag turns OFF and one or more operation cycles pass.
(Only the FX3U, FX3UC, FX3G, FX1N, FX1NC and FX1s PLCs are compatible with the pulse output monitor flags.)
\begin{tabular}{c|c|c|c}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Pulse output destination \\
device
\end{tabular}} & FX3U, FX3UC & FX3G & FX1N, FX1NC, FX1S \\
\cline { 2 - 4 } & M8340 & M8340, M8147 & M8147 \\
\hline Y000 & M8350 & M8350, M8148 & M8148 \\
\hline Y001 & &
\end{tabular}
2) "Frequency control mode" in which DHSZ and DPLSY instructions are combined can be used only once in a program.

\section*{Program examples (When outputting pulses without any limitation)}

When the device specified by s2 is set to K0, pulses are output without any limitation.
[Structured ladder]

*1. VAR_01 is a global label and is defined as K1000.
*2. VAR_02 is a global label and is defined as K0.

\section*{[ST]}

DPLSY(X000,VAR_01,VAR_02,Y000);

\subsection*{7.6.9 PWM}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction outputs pulses with a specified period and ON duration.
1. Format and operation, execution form


\section*{2. Set data}
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & s1 & Pulse width \((\mathrm{ms})\) data or word device storing the data & ANY16 \\
\cline { 2 - 5 } & s2 & Period data \((\mathrm{ms})\) or word device storing the data & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Device \((Y)\) from which pulses are to be output \\
\cline { 2 - 5 } & & & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|l|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Cons \\
tant
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & - & - & - & \(\Delta 2\) & \(\triangle 3\) & - & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & - & \(\bullet\) & \(\bullet\) & - & - & - & - & -2 & \(\triangle 3\) & - & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & & & \\
\hline (d) & & -1 & & & & & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (PWM)}

Pulses whose ON pulse width (ms) is specified by s 1 ) are output in periods (ms) specified by s2) to the device specified by \(s 1\)

- Specify the pulse width "t" in s1.

Allowable setting range: 0 to \(32,767 \mathrm{~ms}\)
- Specify the period "T0" in s2 Allowable setting range: 1 to \(32,767 \mathrm{~ms}\)
- Specify the output \((\mathrm{Y})\) number from which pulses are to be output in \(\mathbb{C}\). Allowable setting range: Refer to "Cautions".

\section*{Cautions}
1. Setting the pulse width and period

Make sure that the pulse width \(s 1\) and period s2 satisfy the relationship " \(s 1 \leq s 2\) ".

\section*{2. Pulse output}
1) Only the following outputs can be specified in \((d)\) according to the system configuration.
- For FX3U, FX3UC and FX3g PLCs
- When using special high speed output adapters**: Y000, Y001, Y002*2, Y003*2
- When using transistor outputs on the main unit (that is, when not using special high speed output adapters): Y000, Y001, Y002*3
*1. Special high speed output adapters can be connected only to the FX3U PLC.
When using the PWM instruction with a relay output type FX3U PLC, a special high speed output adapter is required.
*2. When specifying Y002 or Y003 on a special high speed output adapter, a second special high speed output adapter is required.
*3. "Y002" cannot be used for the 14- or 24-type FX3G PLC.
- For FX1S, FX1N, FX2N, FX1NC and FX2NC PLCs

Only Y000 or Y001 is valid (transistor output).
- For FXo, FXos and FXon PLCs

Only Y001 is valid (transistor output).
- For FXU and FX2C PLCs

All Ys are valid (transistor output).
2) The pulse output is controlled by interrupt processing not affected by the sequence program (operation cycle).
3) If the command input is set to OFF, the output from the device specified by d turns OFF.
4) While a pulse output monitor (BUSY/READY) flag is ON, a pulse output or positioning instruction for the same output relay cannot be executed.
While a pulse output monitor flag is ON even after the instruction derive contact is set to OFF, a pulse output or positioning instruction for the same output relay cannot be executed.
Before executing a pulse output or positioning instruction, wait until the pulse output monitor flag turns OFF and one or more operation cycles pass.
(Only the \(\mathrm{FX}_{3} \mathrm{C}, \mathrm{FX} 3 \cup \mathrm{C}\) and \(\mathrm{FX}_{3}\) PLCs are compatible with the pulse output monitor flags.)
\begin{tabular}{c|c}
\hline Pulse output destination device & Pulse output monitor flag \\
\hline Y000 & M8340 \\
\hline Y001 & M8350 \\
\hline Y002 & M8360 \\
\hline Y003 & M8370 \\
\hline
\end{tabular}

\section*{3. Restrictions to target devices}

A1: Refer to item 1 of "Cautions".
A2: Applicable only to the \(F_{3} X_{3}, F X_{3} U C\) and \(F X_{3 G}\) PLCs.
©3: Applicable only to the FX3U and FX3uc PLCs.
("Y002" cannot be used for the 14- or 24-type FX3G PLC.)
(Special high speed output adapters can be connected only to the FX3U PLC.)

\section*{4. Cautions on using special high speed output adapters}
\(\rightarrow\) Refer to item 7 in 7.6.9 "Cautions".

\section*{Program examples}

When the contents of D10 are changed in the range from " 0 " to " 50 " in the program example shown below, the average output from Y000 will be in the range from 0 to \(100 \%\).
When the contents of D10 exceed " 50 ", it becomes an error.
In this program example, the \(\mathrm{FX}_{3} \mathrm{U}\) series main unit (sink output) is used. For wiring details, refer to the manual of the PLC used.
[Structured ladder]

[ST]
PWM(X0,D10,K50,Y000);

\section*{Example of smoothing circuit}


\subsection*{7.6.10 PLSR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This pulse output instruction has the acceleration/deceleration function.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline PLSR & 16 bits & Continuous & \begin{tabular}{lr}
\multicolumn{2}{c}{ PLSR } \\
EN & ENO-_ \\
-s 1 & d \\
-s 2 & \\
-s 3 & \\
\hline
\end{tabular} & PLSR(EN, s1, s2, s3, d); \\
\hline DPLSR & 32 bits & Continuous & \begin{tabular}{lr}
\multicolumn{2}{c}{ DPLSR } \\
- & ENO- \\
-s 1 & d \\
-s 2 & \\
-s 3 & \\
\hline
\end{tabular} & DPLSR(EN, s1, s2, s3, d); \\
\hline
\end{tabular}

\section*{2. Set data}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|c|}{Data type} \\
\hline & & & 16-bit operation & \[
\begin{gathered}
\text { 32-bit } \\
\text { operation }
\end{gathered}
\] \\
\hline \multirow{4}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Maximum frequency data ( Hz ) or the word device storing the data & ANY16 & ANY32 \\
\hline & (s2) & Total number of output pulses (PLS) or word device storing the data & ANY16 & ANY32 \\
\hline & (53) & Acceleration/deceleration time (ms) data or word device storing the data & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Device ( Y ) from which pulses are to be output & \multicolumn{2}{|l|}{Bit} \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit Specification} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square \mathbf{I G} \square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\) \\
\(\square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & Dᄆ.b & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & -2 & \(\triangle 3\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & - & -2 & -3 & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s3) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & - & -2 & \(\triangle 3\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & -1 & & & & & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (PLSR)}

Pulses are output from output \((Y)\) specified by \((d)\) by the number of output pulses specified by s2 with acceleration/deceleration to the maximum frequency specified by \(s 1\) over the time (ms) specified by s3).


Refer to "Cautions" for setting s1, s2, s3 and (d).


\section*{2. 32-bit operation (DPLSR)}

Pulses are output from output \((Y)\) specified by \((d)\) by the number of output pulses specified by s2 with acceleration/deceleration to the maximum frequency specified by s 1 over the time (ms) specified by s 3 .
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Command input} & DPLSR & \\
\hline & EN ENO & \\
\hline Label \(1{ }^{* 1}\) & & -Output number \\
\hline Label 2 * & & (Y000,Y001) \\
\hline Label 3 *3 & & \\
\hline
\end{tabular}
*1. This defines the maximum frequency \((\mathrm{Hz})\).
*2. This defines the total number of output pulses (PLS).
*3. This defines the acceleration/deceleration time (ms).
Refer to "Cautions" for setting (s1), s2), s3) and (d).

\section*{3. Pulse output specifications}
- Simple positioning (with the acceleration/deceleration function) The operation pattern is as shown below:

- Output processing

The pulse output is controlled by the dedicated hardware regardless of the operation cycle.
- Data change while the instruction is executed

Even if operands are overwritten while the instruction is executed, such changes are not reflected immediately. The changes become valid the next time the instruction is driven.

\section*{Related devices}
1. Instruction execution complete flag
\begin{tabular}{c|c|cc}
\hline Device & Name & \\
\hline M8029 & \begin{tabular}{c} 
Instructionexecution \\
complete
\end{tabular} & \begin{tabular}{c} 
OFF :The command input is OFF, or pulses are being output. (This flag does not turn ON if the pulse \\
output is interrupted in the middle of output.) \\
ON : Output of the number of pulses set in s2) is completed.
\end{tabular} \\
\hline
\end{tabular}
2. Monitoring the number of generated pulses

The number of pulses output from Y000 or Y001 is stored in the following special data registers:
\begin{tabular}{c|c|c|l}
\hline \multicolumn{2}{c|}{ Device } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Contents of data } \\
\cline { 1 - 2 } \begin{tabular}{c} 
High \\
order
\end{tabular} & \begin{tabular}{c} 
Low \\
order
\end{tabular} & \begin{tabular}{c} 
Accumulated number of pulses \\
output from Y000
\end{tabular} & \begin{tabular}{l} 
Accumulated number of pulses output from Y000 by PLSY and PLSR \\
instructions
\end{tabular} \\
\hline D8141 & D8140 & \begin{tabular}{c} 
Accumulated number of pulses \\
output from Y001
\end{tabular} & \begin{tabular}{l} 
Accumulated number of pulses output from Y001 by PLSY and PLSR \\
instructions
\end{tabular} \\
\hline D8143 & D8142 & \begin{tabular}{c} 
Actal accumulated number of \\
D8137
\end{tabular} & D8136 \\
\hline \begin{tabular}{l} 
Total accumulated number of pulses output from Y000 and Y001 by PLSY and \\
pulses output from Y000 and Y001
\end{tabular} & PLSR instructions
\end{tabular}

The contents of each data register can be cleared using the following program.

*1. This defines K0.
*2. This defines the low order device in the table above.

\section*{3. How to stop the pulse output}
- When the command input is set to OFF, the pulse generation is immediately stopped. When the command input is set to ON again, pulse generation operation restarts from the beginning.
- When the special auxiliary relays \((M)\) shown below are set to \(O N\), the pulse output is stopped.
\begin{tabular}{c|c|c|l}
\hline \multicolumn{3}{c|}{ Device } & \multirow{2}{*}{ Description } \\
\cline { 1 - 2 } FX3U, FX3UC & FX3G & FX1S, FX1N, FX1NC & \\
\hline M8349 & M8145, M8349 & M8145 & Immediately stops pulse output from Y000. \\
\hline M8359 & M8146, M8359 & M8146 & Immediately stops pulse output from Y001. \\
\hline
\end{tabular}

To restart pulse output again, set the device corresponding to the output number to OFF, and then drive the pulse output instruction again.

\section*{Cautions}
1. Maximum frequency s 1

When using transistor outputs on the main unit, set the maximum frequency specified by \(s 1\) as follows.
- For FX3U and FX3Uc PLCs: 10 to \(100,000 \mathrm{~Hz}\) or less \((200,000 \mathrm{~Hz}\) or less when using special high speed adapter.)
- For FX3g PLC : 10 to \(100,000 \mathrm{~Hz}\) or less
- For FX2N and FX2NC PLCs : 10 to \(20,000 \mathrm{~Hz}\)
- For FX1s and FX1n PLC
: 10 to \(100,000 \mathrm{~Hz}\)
- For FX1nc PLC
: 10 to \(10,000 \mathrm{~Hz}\)

\section*{2. Total number of output pulses \({ }^{\text {s2 }}\)}

Set the total number of output pulses specified by s2 as follows.
- For FX3U and FX3Uc PLCs : 16-bit instruction \(\rightarrow 1\) to 32,767 PLS

32-bit instruction \(\rightarrow 1\) to \(2,147,483,647\) PLS
- For FX3G PLC : 16-bit instruction \(\rightarrow 110\) to 32,767 PLS

32-bit instruction \(\rightarrow 110\) to \(2,147,483,647\) PLS
- For FX2N and FX2NC PLCs : 16-bit instruction \(\rightarrow 110\) to 32,767 PLS

32-bit instruction \(\rightarrow 110\) to \(2,147,483,647\) PLS
When setting a value less than "110", the operation is as follows.
PLC version V3.00 or before : The pulses are not generated normally.
PLC version V3.00 or later : One tenth of the maximum frequency is generated. If the maximum frequency is 100 Hz or less, " 10 Hz " is generated.
- For FX1s, FX1N and FX1Nc PLCs : 16-bit instruction \(\rightarrow 110\) to 32,767 (PLS)

32-bit instruction \(\rightarrow 110\) to 999,999 (PLS)
When setting a value less than "110", the pulses are not generated normally.
3. Acceleration/deceleration time s3

Set the acceleration/deceleration time specified by s3 as follows.
For FX3u, FX3UC and FX3G PLCs: 50 to 5000 (ms)
For FX2N and FX2Nc PLCs: 5000 (ms) or less Follow, however, the conditions a) through d).
a) Make the acceleration/deceleration time be 10 times or more the PLC's maximum scan time (value of D8012 or greater). If set to less than 10 times, the acceleration/deceleration timing becomes instable.
b) The following equation defines the allowable minimum that can be set as the acceleration/ deceleration time.
(s3) \(\geq \frac{90000}{\text { s } 1 \text { ) }} \times 5\)
If setting a value less than the equation indicates, the error in the acceleration time becomes large. If set to less than " \(90000 /\) s1 , operation takes place while rounding it up to " \(90000 /\) s1)".
c) The following equation defines the allowable maximum that can be set as the acceleration/ deceleration time.
s3) \(\leq \frac{\mathrm{s} 2}{\mathrm{~s} 1} \times 818\)
d) The number of speed changes (steps) for the acceleration/deceleration is fixed to "10 times" as shown in the previous page.

If unable to set the PLC to these conditions, lower the maximum frequency specified by \({ }_{\text {sid }}\).
- For FX1s, FX1n and FX1nc PLCs: 50 to 5000(ms)

\section*{4. Pulse output}
- Only a transistor output on the main unit or Y000 or Y001 on a special high speed output adapter \({ }^{* 1}\) can be specified in (d).
*1. Special high speed output adapters can be connected only to the FX3U PLC.
When using the PLSR instruction with a relay output type FX3U PLC, a special high speed output adapter is required.
- The duration of the ON/OFF pulses is \(50 \%\) ( \(O N=50 \%\), OFF \(=50 \%\) )
- The pulse output is controlled by the dedicated hardware not affected by the sequence program (operation cycle).
- If the command input is set to OFF during continuous pulse output, the output from the device specified by (d) turns OFF.

\section*{5. Specifying input and output variables}

When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.

\section*{6. Restrictions to target devices}

A1: Refer to item 4 in "Cautions".
A2: Applicable only to the FX3u, FX3UC and FX3G PLCs.
43: Applicable only to the FX3U and FX3uc PLCs.
(Special high speed output adapters can be connected only to the FX3U PLC.)
7. Handling of pulse output terminals in the main units of the \(F X_{3} u, F X_{3} u c\) and \(F X_{3 G}\) PLCs. \(\rightarrow\) Refer to item 6 in 7.6.8 "Cautions".
8. Cautions on using special high speed output adapters
\(\rightarrow\) Refer to item 7 in 7.6.8 "Cautions".

\section*{9. Others}
1) When using the same output relay (Y000 or Y001) in several instructions.

While a pulse output monitor (BUSY/READY) flag is ON a pulse output instruction and positioning instruction for the same output relay cannot be executed.
While a pulse output monitor flag is ON even after the instruction drive contact is set to OFF, a pulse output instruction or positioning instruction for the same output relay cannot be executed.
Before executing such an instruction, wait until the pulse output monitor flag turns OFF and one or more operation cycles pass.
(Only the FX3U, FX3UC, FX1N, FX1NC and FX1s PLCs are compatible with the pulse output monitor flags.)
\begin{tabular}{c|c|c|c}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Pulse output destination \\
device
\end{tabular}} & FX3U, FX3UC & FX3G & FX1N, FX1N, FX1S \\
\cline { 2 - 4 } & M8340 & M8340, M8147 & M8147 \\
\hline Y000 & M8350 & M8350, M8148 & M8148 \\
\hline Y001 & &
\end{tabular}
2) Minimum frequency for \(F X_{1 s}\) and FX1n PLCs

The output frequency of the PLSR instruction ranges from 10 to \(100,000 \mathrm{~Hz}\).
If the maximum speed or the speed during acceleration or deceleration goes out of this range, the value is automatically rounded up or down to a value within the range.
Note, however, that the following equation defines the minimum output frequency actually generated.

- Note that the frequency after the first step acceleration or the final frequency after deceleration does not go below the value calculated by the above equation.
[Example] Maximum speed: \(50000 \mathrm{~Hz} \quad\) Acceleration/deceleration time: 100 ms
\[
\sqrt{50000 \div(2 \times(100 \div 1000))}=500 \mathrm{~Hz}
\]

When setting 50000 Hz into the maximum frequency \(\mathbf{S S}_{1-}\).
\(\rightarrow\) The actual output frequency is " 500 Hz " at the first step of acceleration and the last step of deceleration.


\subsection*{7.7 Handy Instruction}

\subsection*{7.7.1 IST}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline O & O & O & O & O & O & O & O \\
\hline
\end{tabular}

\section*{Outline}

This is a command for controlling the initial state and special auxiliary relay automatically in a program by stepladder.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline IST & 16 bits & Continuous & \begin{tabular}{lr}
\hline \multicolumn{2}{c|}{ IST } \\
-EN & \(\mathrm{ENO}-\) \\
s & \(\mathrm{d} 1-\) \\
& d 2
\end{tabular} & IST(E, s, d1, d2); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Beginning bit device of operation mode changeover switch
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|r|}{Digit designation} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character string \\
\(11 \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & c & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & -1 & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & -2 & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline (d2) & & & & & & -2 & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}
©: Refer to "Cautions".

\section*{Function and operation explanation}

- In \(S\), designate beginning input of operation mode.

Selection switch for operation mode occupies 8 points from the beginning device designated in \(\mathbb{S}\), and the following switch functions are assigned individually.
As shown in the table below, when X020 is assigned, X020 to X024 must be set in rotary switch so as not to be turned ON simultaneously.
Wiring is not needed for switches not in use, but such switches cannot be used in other applications because they are occupied by IST command.
\begin{tabular}{c|c|l}
\hline Source & \begin{tabular}{c} 
Device No. \\
(example)
\end{tabular} & \multicolumn{1}{|c}{ Switch function } \\
\hline\(s\) X & X020 & Individual operation \\
\hline\(s+1\) & X021 & Return to home position \\
\hline\(s+2\) & X022 & Stepping \\
\hline\(s+3\) & X023 & One-cycle operation \\
\hline
\end{tabular}
\begin{tabular}{c|c|l}
\hline Source & \begin{tabular}{c} 
Device No. \\
(example)
\end{tabular} & \multicolumn{1}{|c}{ Switch function } \\
\hline X +4 & X024 & Continuous operation \\
\hline\(\checkmark+5\) & X025 & Return home start \\
\hline\(s+6\) & X026 & Automatic start \\
\hline\(s+7\) & X027 & Stop \\
\hline
\end{tabular}
- In (d1) , designate minimum number of practical state (for automatic mode).
- In (d2), designate maximum number of practical state (for automatic mode).

\section*{1. Control of device by switch operation (occupied device)}

When command input is turned ON, next device is automatically changed over and controlled. No change if command input is turned OFF.
\begin{tabular}{c|l}
\hline Device No. & \multicolumn{1}{|c}{ Operation function } \\
\hline M8040 & Transfer ban \\
\hline M8041*1 & Transfer start \\
\hline M8042 & Start pulse \\
\hline M8043*1 & Return home end \\
\hline M8045 & All output reset ban \\
\hline M8047² & STL monitor valid \\
\hline
\end{tabular}
\begin{tabular}{c|l}
\hline Device No. & \multicolumn{1}{c}{ Operation function } \\
\hline S0 & Initial state of individual operation \\
\hline S1 & Initial state of return to home position \\
\hline S2 & Initial state of automatic operation \\
\hline
\end{tabular}
*1. Cleared when changed from RUN to STOP
*2. Process during END command execution
The following states should not be programmed as general states.
\begin{tabular}{c|l}
\hline Device No. & \multicolumn{1}{c}{ Operation function } \\
\hline S0 to S9 & \begin{tabular}{l} 
Occupied for initial state. \\
\\
\\
S0 to S2 can be used for individual operation, return to home position, or automatic operation as specified \\
above. \\
S3 to S9 can be used freely.
\end{tabular} \\
\hline S10 to S19 & Occupied for return to home position. \\
\hline
\end{tabular}

If return home end (M8043) is not ON, all outputs are OFF if changed over to individual (X020), return to home position (X021), or automatic (X022, X023, X024).
Automatic operation can be resumed after returning to home position completely.
\(\rightarrow\) Before introduction, refer to "IST command introduction examples (examples of work transfer mechanism)" given below.

\section*{Cautions}
1. Devices designated in \(s\) and switches to be used

Not all mode selection switches are used.
Vacant numbers (not usable in other applications) are designated in switches not in use.
2. Program sequence of IST command and STL command
- IST command must be programmed prior to a series of STL circuits such as states S0 to S2.
3. State to be used in operation for return to home position

Use S10 to S19 for state for return to home position.
In final state for return to home position, after setting M8043, terminate by self-resetting.
4. Limit times of use of command

IST command can be programmed only once in the program.
5. Object devices are restricted.

A1: \(F X_{3} \cup, F X_{3} \cup c\) PLCs only are applicable.
However, index modifier (V, \(Z\) ) is not applicable.
42: The device range is limited as follows by the PLC.
S20 to S899, 1000 to S4095 (FX3U, FX3UC, FX3G PLCs)
S20 to S899 (FX2N, FX2Nc PLCs) (FXu, FX2C PLCs)
S20 to S999 (FX1N, FX1NC PLCs)
S20 to S127 (FX1s PLC) (FXon PLC)
S20 to S63 (FXo, FXos PLCs)

\section*{IST command equivalent circuit}

Detail of special auxiliary relay (M) or initial state (S0 to S9) controlled automatically by IST command is as shown in the following equivalent circuit. (Read as reference knowledge.)
This equivalent circuit cannot create program.
1. Equivalent circuit

*1. Equivalent circuit is presented for explanation, and it cannot be actually programmed as shown herein.

\section*{2. Changeover of operation mode}

When the modes are changed over in individual, return home, and automatic modes, unless the machine is at home position, all outputs and former states are reset in batch. (When M8045 is driven, all outputs \({ }^{* 1}\) are not reset.)


If changed over from automatic to return home during action of S2, the states other than initial state and outputs are not reset.
*1. All outputs: outputs not driven from the state of the device designated in S (Y), and outputs driven by OUT, SET commands from the state of the device designated in s (Y).

\section*{IST command introduction examples (examples of work transfer mechanism)}

\section*{1. Operation mode}


Mechanism for transferring the work from point \(A\) to point \(B\) by robot hand

\begin{tabular}{c|l|l}
\hline \multicolumn{2}{c|}{ Operation mode } & \multicolumn{1}{c}{ Operation content } \\
\hline \multirow{3}{*}{ Manual } & \(\begin{array}{l}\text { Individual } \\
\text { operation: }\end{array}\) & Mode for turning ON/OFF each load by individual pushbutton. \\
\cline { 2 - 3 } & \(\begin{array}{l}\text { Return to home } \\
\text { position: }\end{array}\) & Mode for returning machine to home position automatically when return home pushbutton is pressed. \\
\hline \multirow{3}{*}{ Automatic } & Stepping: & \(\begin{array}{l}\text { One-cycle } \\
\text { operation: }\end{array}\) \\
\cline { 2 - 3 } & To advance process by process every time start button is pressed. \\
\cline { 2 - 3 } & \(\begin{array}{l}\text { Continuous } \\
\text { operation: }\end{array}\) & \(\begin{array}{l}\text { When start button is pressed at home position, the machine is operated by one cycle automatically and } \\
\text { stops at home position. If stop button is pressed on the way, the process stops immediately, and start button } \\
\text { is pressed, the operation is resumed from the stopped position, and stops automatically at home position. }\end{array}\) \\
\hline
\end{tabular} \(\left.\begin{array}{l}\text { When start button is pressed at home position, continuous repeating operation is started. When stop button } \\
\text { is pressed, the machine operates to home position, and then stops. }\end{array}\right]\)

\section*{2. Transfer mechanism}


The home position is the upper left corner, and the work is sequentially transferred from left to right in the sequence of descend, clamp, ascend, right move, descend, unclamp, ascend, and left move. Solenoid valve of double solenoid (two inputs: drive/non-drive) is used for descend/ascend, left move/right move, and solenoid of single solenoid (active only while energized) is used for clamp.

\section*{3．Assignment of mode select inputs}

In order to use IST command，inputs of the following serial numbers must be assigned in the mode inputs． If the numbers are not serial，or modes are partly omitted，the array is modified by using auxiliary relays as shown below，which is used as the mode designation beginning input．
－X020：Individual operation
－X021：Return to home position
－X022：Stepping
－X023：One－cycle operation
－X024：Continuous operation
－X025：Return home start
－X026：Automatic start
－X027：Stop

（Example）X030：Individual operation X035：Return to home position X033：Stepping
X040：One－cycle operation
X032：Continuous operation
X034：Return home start
X026：Automatic start
X041：Stop
（Example）X030：Return to home position
X031：Continuous operation
（Example）X030：Individual operation X031：Continuous operation X032：Common for automatic start and return home start X033：Stop


In this example，M0 is used as the mode designation beginning input．


\section*{4. Special auxiliary relays for IST command(M)}

Auxiliary relays (M) used in IST command are divided into those controlled automatically by the command depending on the circumstances, and others that must be controlled by the program depending on the operation preparation or purpose of control.
1) Those controlled automatically by IST command
a) M8040: Transfer ban

When this auxiliary relay is put in action, transfer of all states is banned.
individual : Always M8040 is active.
Return home, one-cycle: When stop button is pressed, the operation is held until start button is pressed.
Stepping : Always M8040 is active. However, only when start button is pressed, the operation is stopped, and is transferred.
Other : Operation is held when PLC is changed from STOP to RUN, and is canceled when start button is pressed. In transfer ban state, the output in the state continues to operate.
b) M8041: Transfer start

This is the auxiliary relay required as transfer condition from initial state S 2 to next state.
Individual, return home : Not active.
Stepping, one-cycle : Active only while start button is pressed.
Continuous : Operation is held when start button is pressed, and canceled when stop button is pressed.
c) M8042: Start pulse

Active momentarily only when start button is pressed.
d) M8047: STL monitor valid

M8047 is turned ON when IST command is used.
STL monitor is valid when M8047 is ON, and active state numbers (S0 to S899) are stored in the special auxiliary relays D8040 to D8047 in numerical order.
As a result, up to eight operation state numbers can be monitored.
If any one of these states is active, the special auxiliary relay M8046 operates.
2) Those driven by sequence program
\(\rightarrow\) For detail of these controls, see next page.
a) M8043: Return home end

In the return home mode, when the machine reaches the home position, operate this special auxiliary relay \((\mathrm{M})\) from the user side program.
b) M8044: Home position condition

You can drive this special auxiliary relay by detecting the home position condition of the machine. The signal is valid in all modes.
c) M8045: All output reset ban

When the modes are changed over in individual, return home, and automatic modes, unless the machine is at home position, all outputs and operation states are reset. However, when the M8045 is driven, only the operation states are reset.

\section*{5. Program examples}
1) Circuit diagram

In the sequence circuit shown below, other portions than the shaded area are routine circuits. You can program the shaded area circuit according to the content of the control.
a) Initial circuit

During operation of the machine, the operation can be changed over freely within the "automatic operation' mode (stepping/one-cycle/continuous).
During operation of the machine, if changed over among "individual operation"/ "return home"/ "automatic operation", for safety precaution, all outputs are once reset, and the mode after changeover is valid.
(You cannot reset when all outputs reset ban M8045 is turned ON.)
[Structured ladder]
The home position status is detected, and used as the condition for start of transfer to automatic operation.
[ST]
M8044:= X004 AND X002 AND NOT Y001; IST(M8000, X020, S20, S27);

b) Individual operation

Program is not required when individual mode is not available.
[Structured ladder]


\section*{[ST]}

SET(X012, Y001);
RST(X007, Y001);
Y002:= X005 AND NOT Y000;
Y000:= X010 AND NOT Y002;
Y004:= X006 AND X002 AND NOT Y003;
Y003:= X011 AND X002 AND NOT Y004;
c) Return to home position

Program is not required when return home mode is not available. However, before automatic operation, return home end M8043 must be once set.
[Structured ladder]

d) Automatic operation (stepping/one-cycle/continuous)
[Structured ladder]

[Structured ladder]


\section*{[ ST ]}

STL(TRUE, S2);
IF(M8041 AND M8044) THEN SET(TRUE, S20);
STL(TRUE, S20);
OUT(TRUE, Y000);
SET(X001, S21);
STL(TRUE, S21);
SET(TRUE, Y001);
OUT_T(TRUE, TC0, K10);
SET(TSO, S22);
STL(TRUE, S22);
OUT(TRUE, Y002);
SET(X002, S23);
STL(TRUE, S23);
OUT(TRUE, Y003);
SET(X003, S24);
STL(TRUE, S24);
OUT(TRUE, Y000);
SET(X001, S25);
STL(TRUE, S25);
RST(TRUE, Y001);
OUT_T(TRUE, TC1, K10);
SET(TS1, S26);
STL(TRUE, S26);
OUT(TRUE, Y002);
SET(X002, S27);
STL(TRUE, S27);
OUT(TRUE, Y004);
OUT(X004, S2);


\subsection*{7.7.2 SER}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\Delta\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This is a command for searching same data and maximum value, minimum value from the table of data.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline SER & 16 bits & Continuous &  & SER(E, s1, s2, n, d); \\
\hline SERP & 16 bits & Pulse & \begin{tabular}{lr} 
& \multicolumn{2}{c|}{ SERP } \\
EN & ENO- \\
s1 & d \\
s2 & \\
-n & \\
\hline
\end{tabular} & SERP(EN, s1, s2, n, d); \\
\hline DSER & 32 bits & Continuous & \begin{tabular}{lr} 
& \multicolumn{2}{c|}{ DSER } \\
EN & ENO- \\
-s 1 & d \\
s2 & \\
-n & \\
\hline
\end{tabular} & DSER(EN, s1, s2, n, d); \\
\hline DSERP & 32 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c}{ DSERP } \\
EN & ENO- \\
-s 1 & d \\
-s 2 & \\
n & \\
\hline
\end{tabular} & DSERP(EN, s1, s2, n, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & \begin{tabular}{l}
32-bit \\
operation
\end{tabular} \\
\hline \multirow{4}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Beginning device for searching same data, maximum value, minimum value & ANY16 & ANY32 \\
\hline & (s2) & Value for searching same data, maximum value, minimum value, or its storage destination device & ANY16 & ANY32 \\
\hline & ( n & The number for searching same data, maximum value, minimum value & \multicolumn{2}{|l|}{ANY16} \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Beginning device for storing the numbers after searching same data, maximum value, minimum value & \[
\begin{aligned}
& \text { ARRAY [1..5] } \\
& \text { OF ANY16 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ARRAY [1..5] } \\
& \text { OF ANY32 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{3．Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character string \\
＂\(\square "\)
\end{tabular}} & \multirow[t]{2}{*}{Pointer} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T C & S & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline （s1） & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & － & － & A1 & －2 & & & \(\bullet\) & & & & & \\
\hline （s2） & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & － & － & A1 & 42 & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline （d） & & & & & & & & & \(\bullet\) & \(\bullet\) & － & \(\bullet\) & － & － & A1 & 42 & & & \(\bullet\) & & & & & \\
\hline （ n & & & & & & & & & & & & & & \(\bullet\) & －1 & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}
© ：Refer to＂Cautions＂．

\section*{Function and operation explanation}

\section*{1．16－bit operation}

In \(n\) pieces of data beginning from the device designated in s1 ，same data as the device designated in s2 is searched，and the result is stored in the device designated in（d）．

＊1．This is to define the beginning device for storing the numbers after searching same data，maximum value，minimum value．
1）Content and result of searched data

In five devices beginning from the device designated in（d）the number of same data，initial／final position，and positions of maximum value and minimum value are stored．
b）When same data is not found
In five devices beginning from the device designated in（d）the number of same data，initial／final position，and positions of maximum value and minimum value are stored．
However， 0 is stored in three devices beginning from the device designated in \(\mathbb{C}\)（number of same data，initial／final position）．

\section*{a）When same data is found}
2) Operation examples
a) Examples of composition of search result table and data
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Searched device \\
s1
\end{tabular}} & \multirow[t]{2}{*}{Value of s1 of searched data (ex.)} & \multirow[t]{2}{*}{Value of s2 of comparative data (ex.)} & \multirow[b]{2}{*}{Position of data} & \multicolumn{3}{|c|}{Search result} \\
\hline & & & & Maximum value (d) +4 & Coincide & Minimum value (d) +3 \\
\hline (s1) & K100 & \multirow{10}{*}{K100} & 0 & & \(\checkmark\) (Initial) & \\
\hline (s1) +1 & K111 & & 1 & & & \\
\hline (s1) +2 & K100 & & 2 & & \(\checkmark\) & \\
\hline (s1) +3 & K 98 & & 3 & & & \\
\hline (s1) +4 & K123 & & 4 & & & \\
\hline (s1) +5 & K 66 & & 5 & & & \(\checkmark\) \\
\hline (s1) +6 & K100 & & 6 & & \(\checkmark\) (Final) & \\
\hline (s1) +7 & K 95 & & 7 & & & \\
\hline (s1) +8 & K210 & & 8 & \(\checkmark\) & & \\
\hline (s1) +9 & K 88 & & 9 & & & \\
\hline
\end{tabular}
b) Search result table
\begin{tabular}{l|c|l}
\hline \multicolumn{1}{c|}{ Device No. } & Content & \multicolumn{1}{c}{ Search result item } \\
\hline d & 3 & Number of same data \\
\hline d +1 & 0 & Position of same data (initial) \\
\hline d +2 & 6 & Position of same data (final) \\
\hline (d) +3 & 5 & Final position of minimum value \\
\hline d +4 & 8 & Final position of maximum value \\
\hline
\end{tabular}

\section*{2. 32-bit operation(DSER, DSERP)}

In \(n\) pieces of data beginning from the device designated in s1 , same data as the device designated in s2 is searched, and the result is stored in the device designated in \(\mathbb{d}\).

*1. This is to define the beginning device for searching same data, maximum value, minimum value.
*2. This is to define the value of searching same data, maximum value, minimum value, or its storing destination device.
1) Content and result of searched data
a) When same data is found

In five points of 32-bit data beginning from the device designated in \((d\), the number of same data, initial/final position, and positions of maximum value and minimum value are stored.
b) When same data is not found

In five points of 32 -bit data beginning from the device designated in \(\mathbb{d}\), the number of same data, initial/final position, and positions of maximum value and minimum value are stored.
However, 0 is stored in three points of 32-bit data beginning from the device designated in d (number of same data, initial/final position).
2) Operation examples
a) Examples of composition of search result table and data
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Searched device
\[
\text { s1) }+1
\]} & \multirow[t]{2}{*}{Value of s1 of searched data (ex.)} & \multirow[t]{2}{*}{Comparative data s2} & \multirow[b]{2}{*}{Position of data} & \multicolumn{3}{|c|}{Search result} \\
\hline & & & & Maximum value (d) +4 & Coincide (d) & Minimum value (d) +3 \\
\hline [s1 \({ }^{+1, s 1}\), & K100000 & \multirow{10}{*}{K100000} & 0 & & \(\checkmark\) (Initial) & \\
\hline [s1 \(+3, s^{\text {s }}\) + +2\(]\) & K110100 & & 1 & & & \\
\hline [s1 \({ }^{+5,(s 1)^{+4]}}\) & K100000 & & 2 & & \(\checkmark\) & \\
\hline [s1) \(+7, s^{\text {s }}\) +6] & K 98000 & & 3 & & & \\
\hline [s1) \(+9, s^{\text {s }}\) + +8\(]\) & K123000 & & 4 & & & \\
\hline [s1] +11, s1 +10\(]\) & K 66000 & & 5 & & & \(\checkmark\) \\
\hline [s1) \(+13, s^{\text {s }}\) + +12\(]\) & K100000 & & 6 & & \(\checkmark\) (Final) & \\
\hline [s1) \(+15, s^{\text {s }}\) +14] & K 95000 & & 7 & & & \\
\hline [s1) \(+17, s^{\text {s }}\) + \({ }^{\text {d6 }}\) & K910000 & & 8 & \(\checkmark\) & & \\
\hline [s1 \({ }^{+19,(s 1)+18]}\) & K910000 & & 9 & \(\checkmark\) & & \\
\hline
\end{tabular}
b) Search result table
\begin{tabular}{|c|c|c|}
\hline Device No. & Content & Search result item \\
\hline [(d) +1, (d)] & 3 & Number of same data \\
\hline [(d) +3, d +2 ] & 0 & Position of same data (initial) \\
\hline [(d) +5, (d) +4 ] & 6 & Position of same data (final) \\
\hline [(d) +7, (d) +6] & 5 & Final position of minimum value \\
\hline [(d) +9, (d) +8 ] & 9 & Final position of maximum value \\
\hline
\end{tabular}

\section*{Cautions}
1. Comparison of magnitude

To be calculated algebraically. \((-10<2)\)
2. When minimum value and maximum value are present in a plurality

If there are a plurality of minimum value and maximum value in the data, the latter position is stored individually.

\section*{3. Number of bits occupied}

The search result occupies the following number of devices when this command is driven.
Please be careful not to overlap with the devices used in the control of the machine.
1) In the case of 16 -bit operation A total of five points will be occupied, that is, \(d,(d+1, ~ d+2,(d+3,(d+4\).
2) In the case of 32-bit operation A total of ten points will be occupied, that is, (d+1, d \()\), (d+3, (d+2), (d+5, (d)+4), (d \(+7,(d+6)\), (d +9 , (d +8 ).

\section*{4. Designation of input and output variables}

When handling array data or 32-bit data in structured program, you cannot designate the 16-bit device directly unlike simple project. Please use the label when handling array data or 32-bit data.
However, with the 32-bit counter, you can designate the 32-bit data directly because it is a device of 32 bits long.
When designating a device, use the global label.

\section*{5. FXu PLC supports the command by V3.07 or higher.}
6. Object devices are limited.
©1: FX3U, FX3Uc, FX3G PLCs only are applicable.
A2: \(\mathrm{FX}_{3}\), \(\mathrm{FX}_{3} \cup \mathrm{C}\) PLCs only are applicable.

\subsection*{7.7.3 ABSD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This is a command for creating multiple output patterns corresponding to the present value of the counter.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline ABSD & 16 bits & Continuous & \begin{tabular}{lr}
\multicolumn{2}{c}{ ABSD } \\
-EN & ENO \\
-s 1 & d \\
-s 2 & \\
-n & \\
\end{tabular} & ABSD (EN, s1, s2, n, d); \\
\hline DABSD & 32 bits & Continuous & \begin{tabular}{lr}
\multicolumn{2}{c}{ DABSD } \\
-EN & ENO \\
-s 1 & d \\
-s 2 & \\
n & \\
\hline
\end{tabular} & DABSD(EN, s1, s2, n, d); \\
\hline
\end{tabular}

\section*{2. Set data}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow{4}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Beginning device for storing table data (rise point, fall point) & ANY16 & ANY16 \\
\hline & (s2) & Counter for present value monitor to compare with table data & ANY16 & ANY16 \\
\hline & ( n & Number of lines of table and number of points of bit device to be output & \multicolumn{2}{|l|}{ANY16} \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Beginning bit device to be output & \multicolumn{2}{|l|}{Bit} \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|l|}{} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{c}
\begin{tabular}{c} 
Character \\
string
\end{tabular} \\
\hline\(" \square "\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & -2 & \(\Delta 3\) & & & - & & & & & \\
\hline (s2) & & & & & & & & & & & & & - & & & & & & \(\bullet\) & & & & & \\
\hline (d) & & \(\bullet\) & \(\bullet\) & & & - & A1 & & & & & & & & & & & & - & & & & & \\
\hline ( m & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{IST command equivalent circuit}
1. 16-bit operation(ABSD)

This is an example for explaining the ON/OFF control of the output by one revolution of table ( 0 to 360 degrees).
(Rotation angle signal one degree per pulse)
Data table (occupying \(n\) lines \(\times 2\) points) of \(n\) lines from the device designated in s1) is compared with the present value of the counter of the device designated in s2), and outputs of \(n\) points continuous from the device designated in are controlled to be ON/OFF during one revolution.


Rotation angle signal one degree per pulse
1) Write the following data in s1 to \(s 1+2 n+1\), preliminarily by using transfer command.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Rise point} & \multicolumn{2}{|r|}{Fall point} & \multirow[b]{2}{*}{Object output} \\
\hline & Data value (example) & & Data value (example) & \\
\hline (s1) & 40 & (s1) +1 & 140 & (d) \\
\hline (s1) +2 & 100 & (s1) +3 & 200 & (d) +1 \\
\hline (s1) +4 & 160 & (s1) +5 & 60 & (d) +2 \\
\hline (s1) +6 & 240 & (s1) +7 & 280 & (d) +3 \\
\hline \(\vdots\) & & \(\vdots\) & & \(\vdots\) \\
\hline (s1) \(+2 n\) & & (s1) \(+2 n+1\) & & (d) \(+\mathrm{n}-1\) \\
\hline
\end{tabular}

For example, rise point data is stored in even-number device, and fall point data in odd-number device, by 16 -bit data.
2) Output pattern

When command input is turned ON, n points are changed as follows, starting from the device designated in d.
Rise point and fall point may be individually changed by rewriting data in sis to \(s 1+\mathrm{n} \times 2\).


\section*{2. 32-bit operation(DABSD)}

This is an example for explaining the ON/OFF control of the output by one revolution of table ( 0 to 360 degrees).
(Rotation angle signal one degree per pulse)
Data table (occupying \(n\) lines \(\times 4\) points) of \(n\) lines from the device designated in (si) is compared with the present value of the counter of the device designated in \(\$_{2}\), and outputs of \(n\) points continuous from the device designated in \((d\) are controlled to be ON/OFF.


Rotation angle signal one degree per pulse
1) Write the following data in \((s 1, s(s 1)+1)\) to \((s 1)+4 n+2, s 1+4 n+3)\), preliminarily by using transfer command.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Rise point} & \multicolumn{2}{|l|}{Fall point} & \multirow[b]{2}{*}{Object output} \\
\hline & Data value (example) & & Data value (example) & \\
\hline [s1 \({ }^{+1, s 1}\) ] & 40 & \(\left[s 1{ }^{+3, s 1}+2\right]\) & 140 & (d) \\
\hline  & 100 & \(\left[s^{1}{ }^{+7, s 1}{ }^{+6}\right]\) & 200 & (d) +1 \\
\hline [s1 \({ }^{\left.+9, s s^{2}+8\right]}\) & 160 & [s1 \({ }^{\text {c }}\) +11, \(\left.s 1{ }^{\text {d }}+10\right]\) & 60 & (d) +2 \\
\hline [s1 \({ }^{\text {c }}\) +13, s1 \({ }^{\text {a }}\) +12] & 240 & \(\left[s 1{ }^{\text {d }}+15, s 1{ }^{\text {d }}\right.\) +14] & 280 & (d) +3 \\
\hline \(\vdots\) & & \(\vdots\) & & : \\
\hline \(\left.\left[s^{1}\right)^{+4 n+1, s 1}{ }^{+4 n}\right]\) & & \(\left.[s]^{+4 n+3, s 1}+4 n+2\right]\) & & (d) \(+\mathrm{n}-1\) \\
\hline
\end{tabular}

For example, rise point data is stored in even-number device, and fall point data in odd-number device, by 32-bit data.
2) Output pattern

When command input is turned ON, n points are changed as follows, starting from the device designated in (d.
Rise point and fall point may be individually changed by rewriting data in (s1 +1 , s1) to \((s 1)+(n \times 2)+3, s 1)+(n \times 2)+2)\).


\section*{Cautions}

\section*{1. Designation of high speed counter}

DABSD command can designate a high speed counter in the device designated in s2.
In this case, as compared with the counter present value, the output pattern may have a response delay due to scan cycle.
When using \(\mathrm{FX}_{3}\), FX3uc PLCs, the response may be enhanced by using table high speed comparison function by DHSZ command or by using DHSCT command.
2. When designating the digits of bit device in

1) Device No.

Designate a multiple of \(16(0,16,32,64, \ldots)\).
2) Number of digits
- K4 only in the case of ABSD (16-bit operation)
- K8 only in the case of DABSD (32-bit operation)

\section*{3. Other cautions}
- The number of output points of the object is determined by the value of \(n .(1 \leq n \leq 64)\)
- The output is not changed if the command input is turned OFF.
4. FXu PLC does not support 32-bit command at V2.30 or lower.
5. Object devices are limited.

A1: FX3U, FX3UC PLCs only are applicable.
However, index modifier \((V, Z)\) is not applicable.

A3: FX3u, FX3uc PLCs only are applicable.

\subsection*{7.7.4 INCD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This is a command for creating multiple output patterns by using a pair of counters.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline INCD & 16 bits & Continuous &  & INCD(EN, s1, s2, n, d); \\
\hline
\end{tabular}

\section*{2. Set data}
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & Data type \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & s1 & Beginning word device for storing the set value & ANY16 \\
\cline { 2 - 4 } & s2 & Beginning device of counter for present value monitor (2 points occupied) & ANY16 \\
\cline { 2 - 5 } & n & Number of bit devices to be output & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Beginning bit device to be output (n points occupied) \\
\cline { 2 - 5 } & & &
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{c} 
Character \\
string
\end{tabular}
" \(\square "\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & c & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) \G \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & \(\bullet\) & -2 & -3 & & & - & & & & & \\
\hline (s2) & & & & & & & & & & & & & - & & & & & & \(\bullet\) & & & & & \\
\hline (d) & & - & - & & & - & -1 & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(INCD)}

Data table ( \(n\) lines \(\times 1\) point occupied) of \(n\) lines from the device designated in s1) is compared with the present value of the counter of the device designated in s2, and by resetting when coinciding, outputs are sequentially controlled to be ON/OFF.


\section*{Operation}

1) Timing chart

Write the following data beforehand by using transfer command.

2) MO output is turned ON when command contact is turned ON .
3) Output (MO) is reset when the present value of C0 reaches comparative value D300, and the count value of the process counter C 1 is incremented by +1 , and the present value of the counter C 0 is also reset.
4) Next output M1 is turned ON.
5) Output M1 is compared with comparative value D301 of C0 present value, and when reaching the comparative value, the count value of the process counter C 1 is incremented by +1 , and the present value of the counter CO is also reset.
6) Similarly compared up to the number of points designated in \(n(K 4)\). ( \(1 \leq n \leq 64\) )
7) When the final process designated in \(n\) is over, execution complete flag M8029 is turned ON for one operation period.
M8029 is a command execution complete flag used by a plurality of commands, and is used as the contact right after the command, and then you can set up a complete flag exclusively for this command.
8) Repeat outputs by returning to the beginning.

\section*{Cautions}
1. When designating the digits of bit device in the device designated in s1

Designate a multiple of \(16(0,16,32,64, \ldots)\) in the device number.
2. Object devices are limited.

A1: FX3U, FX3Uc PLCs only are applicable.
However, index modifier ( \(\mathrm{V}, \mathrm{Z}\) ) is not applicable.
42: \(F_{3} \mathrm{FX}_{3}, \mathrm{FX}_{3} \cup \mathrm{C}, \mathrm{FX}_{3 \mathrm{G}}\) PLCs only are applicable.
A3: FX3U, FX3Uc PLCs only are applicable.

\subsection*{7.7.5 TTMR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This is used when adjusting the timer setting time by pushbutton.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[t]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline TTMR & 16 bits & Continuous & \[
\] & TTMR(EN, n, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & \(\square\) & Multiplying factor number to be applied to teaching data & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Device for storing teaching data (2 points occupied) & ANY16 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character string \\
\({ }^{11} \square\) \(\square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (d) & & & & & & & & & & & & & & - & -1 & & & & - & & & & & \\
\hline ( \({ }^{\text {a }}\) & & & & & & & & & & & & & & - & -1 & & & & & - & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{This is a command for measuring the ON duration of TTMR command.}
2-

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(TTMR)}

The pushing duration of command input (pushbutton) is measured in the unit of seconds, and is multiplied by multiplying factor \(\left(10^{n}\right)\), and transferred to the device designated in \(\mathbb{d}\).



The time to be transferred to the device designated in \((d\) depends on the multiplying factor of \(n\), supposing the pushing duration to be \(\tau 0\) ( 1 sec unit), and the value of the device actually designated in \((d)\) is as follows.
\begin{tabular}{c|c|c}
\hline n & Multiplying factor & d \\
\hline K0 & \(\tau 0\) & (d) \(\times 1\) \\
\hline K1 & \(10 \tau 0\) & (d) \(\times 10\) \\
\hline K2 & \(100 \tau 0\) & (d) \(\times 100\) \\
\hline
\end{tabular}

\section*{Related command}

You can use such a convenient command.
\begin{tabular}{c|l}
\hline Command & \multicolumn{1}{c}{ Content } \\
\hline HOUR & \begin{tabular}{l} 
The command to issue the ON time of HOUR command by the time added and designated in 1 \\
hour unit.
\end{tabular} \\
\hline
\end{tabular}

\section*{Cautions}
1. When command contact is turned OFF

The present value \((\mathbb{d}+1\) ) of the pushing duration is reset, and the teaching time \(\mathbb{d}\) is not changed.
2. Number of bits occupied

Two devices are occupied starting from the device (teaching time) designated in © .
Be careful not to overlap with the device used in control of the machine.
- (d) Teaching time
- d +1 : Present time of pushing duration

\section*{3. Object devices are limited.}

A1: FX3U, FX3Uc PLCs only are applicable.

\section*{Program examples}

Write teaching time in ten data registers.
Set values should be preliminarily written in D400 to D409.


\subsection*{7.7.6 STMR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This is the command for creating the off-delay timer, one-shot timer or flicker timer easily.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline STMR & 16 bits & Continuous & \begin{tabular}{lr} 
& \multicolumn{2}{c}{ STMR } \\
- EN & ENO- \\
-s & \(\mathrm{d}-\) \\
-m & \\
\hline
\end{tabular} & STMR(EN, s, m, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & s & Timer to be used [100ms timer] & ANY16 \\
\cline { 2 - 5 } & m & Set value of timer & Execution state \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Beginning bit device to be output [4 points occupied] & ANY16 \\
\cline { 2 - 5 } & d & &
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character string \\
" \(\square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M T & T C & S & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & \(\bullet\) & & & & & & & - & & & & & \\
\hline (m) & & & & & & & & & & & & & & \(\bullet\) & -2 & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & \(\bullet\) & & & - & ©1 & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(STMR)}

The value designated in \(m\) is determined as the set value for the timer of the device designated in \(\triangle\), and is issued to four points from the device designated in \(\mathbb{d}\).
Create the program depending on the application by referring to the following example.


Off-delay timer, one-shot timer
When T10 is assigned in \(\mathrm{s}, \mathrm{K} 100\) in m, and M0 in \((d)\)

- MO[ \(\mathbb{d}]\) : This is an off-delay timer for turning OFF with set time delay of the timer after the command contact is turned OFF.
- M1[ \(\mathbb{d}+1]\) : This is a one-shot timer for turning OFF after the timer set time by turning ON after the command contact is changed from ON to OFF.
- M2[ \(d+2]\) : Occupied. To be used for flicker application.
- M3[ \(\mathbb{d}+3]\) : Occupied.


Flicker
The flicker is issued to \(\quad d+1\), \((d+2\) by preparing the program for turning OFF this command by the bcontact of (d)+3 as shown below.
(d) and (d)+3 are occupied.

- MO[ \(\mathbb{d}]\) : Occupied. (To be used in off-delay timer application. See previous page.)
- M1[ \(\mathbb{d}+1]\) : This is the flicker (a-contact) for repeating ON/OFF at timer time intervals.
- M2[ \(d+2]\) : This is the flicker (b-contact) for repeating ON/OFF at timer time intervals.
- M3[ \((\mathrm{d}+3]\) : Occupied.


\section*{Cautions}
1. Handling of designated timer

The timer number designated by this command cannot be used in overlap with other general circuit (OUT command, etc.).
If overlapped, the timer does not operate correctly.
2. Number of bits occupied

Four devices are occupied from the one designated in (d).
Be careful not to overlap with the device used in control of the machine.
\begin{tabular}{l|l|l}
\hline \multirow{2}{*}{ Device } & \multicolumn{2}{|c}{ Function } \\
\cline { 2 - 3 } & \multicolumn{1}{|c}{\begin{tabular}{c} 
Off-delay timer \\
One-shot timer
\end{tabular}} & \multicolumn{1}{c}{ Flicker } \\
\hline (d) & Off-delay timer & Occupied \\
\hline (d) +1 & One-shot timer & Flicker(a-contact) \\
\hline (d) +2 & Occupied & Flicker(b-contact) \\
\hline (d) +3 & Occupied & Flicker(b-contact) \\
\hline
\end{tabular}

\section*{3. When command contact is turned OFF}
\((d)(d)+1\), and \(\subset d+3\) are turned OFF after the set time. The timers designated in \((d)+2\) and \(\circlearrowleft\) are reset immediately.
4. Object devices are limited.
©1: \(\mathrm{FX}_{3}\), \(\mathrm{FX}_{3}\) uc PLCs only are applicable.
However, index modifier \((\mathrm{V}, \mathrm{Z})\) is not applicable.
©2: \(\mathrm{FX}_{3} \mathrm{U}, \mathrm{FX}_{3} \cup \mathrm{C}\) PLCs only are applicable.

\subsection*{7.7.7 ALT}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This is the command for inverting the bit device (ON to OFF, OFF to ON) when the input is turned ON.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline ALT & 16 bits & Continuous &  & ALT(EN, d); \\
\hline ALTP & 16 bits & Pulse &  & ALTP(EN, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & Data type \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Bit \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Bit device to be output alternately \\
\cline { 2 - 4 } & d & & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & Real number & Character string & Pointer \\
\hline & \(\mathbf{X}\) & Y & T & C & S & & D. \({ }^{\text {b }}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & E & " \(\square\) " & P \\
\hline (d) & & \(\bullet\) & & & \(\bullet\) & & 41 & & & & & & & & & & & & - & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(ALT, ALTP)}

Alternate output (one stage)
Every time the command input is changed from OFF to ON, the bit device designated in \(d\) is inverted from ON to OFF, from OFF to ON.


\section*{Frequency dividing output (alternate output (two stages))}

By combining and using a plurality of ALTP commands, the frequency can be divided and issued in multiple stages.


First stage


\section*{Cautions}

\section*{1. When using ALT command (continuous execution form)}

When programmed by ATL command, the operation is inverted in every operation period. When inverting by ON/OFF switching of command, use the ALTP command (pulse execution form) or execute the command contact by LDP (pulse execution form).
2. FXo, FXos, FXon PLCs do not support the command of pulse execution form.

In the case of pulse execution form, convert the command execution form into pulses.

\section*{3. Object devices are limited.}

A1: FX3U, FX3UC PLCs only are applicable.
However, index modifier ( \(\mathrm{V}, \mathrm{Z}\) ) is not applicable.

\section*{Program examples}

\section*{1. Start/stop by one input}
1) By pressing pushbutton \(X 000\), the start output \(Y 001\) is put in action.
2) By pressing pushbutton X000 again, the stop output Y000 is put in action.
[Structured ladder]


\section*{[ST]}

ALTP(X000, MO);
OUT(NOT MO, YOOO);
OUT(M0, Y001);

\section*{2. Flicker operation}
1) When the input \(X 006\) is turned ON , the contact of timer T 2 operates momentarily in every 5 seconds.
2) Every time the contact of T 2 is turned ON , the output Y 007 is alternately turned ON/OFF.
[Structured ladder]


\[
\begin{aligned}
& \text { OUT_T X006 AND NOT TS2, } \\
& \text { Y007:= ALT(X006 AND TS2); }
\end{aligned}
\]
3. Alternate output operation using auxiliary relay (M) (same operation as ALT command)

The following circuit shows an example of alternate operation by using the basic command and auxiliary relay \((\mathrm{M})\) in the same operation as ALT command.
1) When the \(X O O 0\) is turned on, MO is turned \(O N\) for one operation period only.
2) When MO is turned ON for the first time, the YOOO operates by self-holding, and when turned ON second time, the self-holding function is canceled.
[Structured ladder]
[ST]


OUT(X000 AND NOT M1, M0);
OUT(X000);
OUT((M0 OR NOT Y000) OR (NOT M0 AND Y000), Y000));

\subsection*{7.7.8 RAMP}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{Outline}

This is a command for obtaining data changing \(n\) times when designated between the beginning (initial value) and the end (target value).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline RAMP & 16 bits & Continuous & \begin{tabular}{lr}
\multicolumn{2}{c}{ RAMP } \\
- EN & ENO- \\
-s 1 & d \\
-s 2 & \\
-n & \\
\end{tabular} & RAMP(EN, s1, s2, n, d); \\
\hline
\end{tabular}

\section*{2. Set data}
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
\multirow{2}{*}{} \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & s1 & Device storing initial value of ramp, setting of target value & ANY16 \\
\cline { 2 - 5 } & s2 & Device storing initial value of ramp, setting of target value & ANY16 \\
\cline { 2 - 5 } & n & Number of transfer scan times of ramp & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & device storing data of present value of ramp (2 points occupied) & ANY16(0..1) \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Cons \\
tant
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{Character string
} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & c & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & & & \(\bullet\) & -1 & & & & \(\bullet\) & & & & & \\
\hline (s2) & & & & & & & & & & & & & & \(\bullet\) & -1 & & & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & & & & & & & - & -1 & & & & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & \(\bullet\) & -1 & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(RAMP)}

The starting value and the desired end value are designated in s1 and s2 , and when the command input is turned ON , the value equally divided by the number of times designated in n is added to sis sequentially in every operation period, and the sum is stored in the device designated in d.
This command and the analog output are combined, and the cushion start/stop command can be issued.

1) When s1 \(<\) s2

2) When s1 \(>\) s2

- In \(\mathbb{d}+1\), scan times ( 0 to \(n\) times) is stored.
- The time from start till end is scanned by operation period \(\times \mathrm{n}\) times.
- When the command input is turned OFF in the midst of operation, the execution is interrupted (present value data of \(d\) is held, and \((d+1\) scan times is cleared), and when turned ON again, \(d\) is cleared, and the operation is resumed from s1.
- After completion of transfer, the command execution complete flag M8029 is active, and the value of (d) returns to the value of ©1 .


\section*{2. Operation of mode flag (M8026)}

In \(\mathrm{FX}_{3} \mathrm{U}, \mathrm{FX} 3 \mathrm{C}, \mathrm{FX} 2 \mathrm{~N}, \mathrm{FX} 2 \mathrm{NC}, \mathrm{FX} 2 \mathrm{C}, ~ \mathrm{FXU}\) (V1.20 or higher) PLCs, by ON/OFF switching of mode flag M8026, the content of \((d+1\) is changed as follows.
FX3G, FX1s, FX1N, FX0, FXos, FXon PLCs operate same as when the M8026 is turned ON.
FXu (V1.1 or lower) PLC operates same as when the M8026 is turned OFF.
1) In the case of M8026=OFF

2) In the case of \(\mathrm{M} 8026=\mathrm{ON}\)


\section*{Related devices}
\(\rightarrow\) As for the method of using the command execution complete flag, see paragraph 1.3.4.
\begin{tabular}{c|l|lc}
\hline Device & \multicolumn{1}{|c}{ Name } & \multicolumn{1}{c}{ Content } \\
\hline M8029 & \begin{tabular}{l} 
Command \\
execution \\
complete
\end{tabular} & After n operation periods, when becoming \(\subset(d)=(s 2)\), the device is turned ON. \\
\hline M8026*1 & RAMP mode & See the Operation of mode flag (M8026) explained above. \\
\hline
\end{tabular}
*1. Cleared when changed from RUN to STOP (applicable only in FX3U, FX3UC, FX2N, FX2NC, FX2C, FXU PLCs).

\section*{Cautions}
1. When designating power failure hold device (keep region) in the device designated in \(₫\) When desired to keep the PLC in RUN (start) state while the command input is ON, the device designated in (d) should be cleared beforehand.
2. Object devices are limited.
©1: \(\mathrm{FX}_{3 \mathrm{u}}, \mathrm{FX}_{3 \mathrm{uc}}, \mathrm{FX}_{3 \mathrm{G}}\) PLCs only are applicable.

\subsection*{7.7.9 ROTC}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This is a command suited for turning the table by a shortcut route depending on the demanding window when putting on or taking out articles on the rotary table.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline ROTC & 16 bits & Continuous &  & ROTC(EN, s, m1, m2, d); \\
\hline
\end{tabular}

\section*{2. Set data}
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
\multirow{2}{*}{ variable }
\end{tabular}} & EN & Execution condition & Bata register for counting (3 points occupied) \\
\cline { 2 - 4 } & s & Number of divisions & Number of low speed sections \\
\cline { 2 - 4 } & m2 & Execution state & ANY16 \\
\cline { 2 - 4 } \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Beginning bit device to be driven (8 points occupied) & ANY16 \\
\cline { 2 - 4 } & d & & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character string \\
\({ }^{*} \square^{*}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & \(\mathbf{Y}\) & M & T & c & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & - & -2 & & & & \(\bullet\) & & & & & \\
\hline (m1 & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (m2) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & \(\bullet\) & - & & & \(\bullet\) & -1 & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(ROTC)}

As shown below, in order to put on or take out articles on the rotary table divided into m 1 sections (=10), depending on the demanding window, the table is controlled and moved by a shortcut route in the condition designated in m 2 or \(\circlearrowleft\) and (d).

1) Designation register of call condition s
\begin{tabular}{l|l|l}
\hline s & Register for counting & \multirow{3}{*}{ To be set preliminarily by transfer command } \\
\hline s +1 & Setting of calling window number & \\
\hline s +2 & Setting of calling article number & \\
\hline
\end{tabular}
2) Designation bit of calling condition (d)
\begin{tabular}{l|l|l}
\hline d \(:\) & Phase A signal & \\
\hline d +1 & Phase B signal & \\
\hline d +2 & 0 point detection signal & \multirow{3}{*}{ Internal contact circuit to be driven is preliminarily composed } \\
\cline { 1 - 2 } (d +3 & High speed normal rotation & \\
\hline d +4 & Low speed normal rotation & \\
\hline d +5 & Stop & \\
\hline d +6 & Low speed reverse rotation & \\
\hline d +7 & High speed reverse rotation & \\
\hline
\end{tabular}

\section*{Operation condition}

The condition necessary for using this command is as shown in the example below.
1) Rotation detection signal: \(X \rightarrow\) d
a) Please install two-phase switch (X000, X001) for detecting normal rotation/reverse rotation of table, and switch X002 for operating when article number 0 comes to window number 0 .
b) Create sequence program as shown in the example below.


By X000 to X002, you can exchange with internal contacts of d to d +2.
Beginning device number for designating \(\times\) or \((d)\) is arbitrary.
2) Designation of register for counting: \((\)is a counter for counting article of which number is coming to window number 0.
3) Designation register of calling condition: \(\qquad\) +1 , \(\qquad\) +2
a) In \(S+1\), you can set the window number desired to be called.
b) In \(\subseteq+2\), you can set the article number desired to be called.
4) Division number \(m 1\) and low speed period \(m 2\)

To designate division number m 1 of table and low speed operation section m 2 .
When the above condition is designated, the output of normal/reverse rotation, high speed/low speed/stop will be obtained in the output of \((d+3\) to \(\square+7\) designated in the beginning device \((d)\) of the command.

\section*{Cautions}

\section*{1. Operation by ON/OFF of command input}
- When this command is driven by turning ON the command input, results of \(\mathbb{d}+3\) to \(\mathbb{d}+7\) will be obtained automatically.
- By turning OFF the command input, \((d+3\) to \(\mathbb{d}+7\) are turned OFF.

\section*{2. Operation of plural times in one division section of article of rotation detection signal (d) to (d +2 )}

For example, rotation detection signal ( \((d\) to \(\square+2\) ) operates 10 times in one division section of article, setting of division number, setting of calling window number, and setting of article number should be all multiplied by 10.
As a result, the set value of low speed section can be set in an intermediate value of division number.

\section*{3. 0 point detection signal \(d\)}

When the command input is ON and 0 point detection signal (M2) is turned ON, the content of register for counting \(s\) is cleared to 0 . You must start operation by executing this clearing operation beforehand.
4. Object devices are limited.
©1: FX3U, FX3UC PLCs only are applicable.
However, index modifier ( \(\mathrm{V}, \mathrm{Z}\) ) is not applicable.
A2: \(\mathrm{FX}_{3} \cup\), \(\mathrm{FX}_{3} \cup \mathrm{C}\) PLCs only are applicable.

\subsection*{7.7.10 SORT}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\Delta\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This command reshuffles the data table composed of data (columns) and group data (rows) in the ascending order in column unit on the basis of designated group data (rows). In this command, the group data (rows) is stored in continuous devices. Similarly, in SORT2 command, data (columns) is stored in continuous devices, so that the data (columns) may be added easily, and reshuffling is applicable in both ascending order and descending order.
\(\rightarrow\) As for SORT2 command, see paragraph 7.13.7.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline SORT & 16 bits & Continuous &  & SORT(EN, s, m1, m2, n, d); \\
\hline
\end{tabular}

\section*{2. Set data}
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{l|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & s & Beginning device storing data table (m1xm2 points occupied) & ANY16 \\
\cline { 2 - 4 } & m 2 & Number of data (columns) & Number of group data (rows) \\
\cline { 2 - 5 } & n & Row of group data (rows) as basis of reshuffling & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & ANY16 \\
\cline { 2 - 5 } & d & Beginning device storing arithmetic results (m1 \(\times \mathrm{m} 2\) points occupied) & ANY16 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real number \\
E
\end{tabular}} & \multirow[t]{2}{*}{Character
string} & \multirow[t]{2}{*}{Pointer} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & - & -1 & & & & & & & & & \\
\hline (m1) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (m2) & & & & & & & & & & & & & & & & & & & & - & - & & & \\
\hline (s3) & & & & & & & & & & & & & & \(\bullet\) & -1 & & & & & & & & & \\
\hline ( m & & & & & & & & & & & & & & - & -1 & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}
©: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(SORT)}

This command reshuffles the data table (reshuffling origin) composed of ( \(\mathrm{m} 1 \times \mathrm{m} 2\) ) points from the device designated in \(S\) in the ascending order in data columns on the basis of \(n\) rows of group data, and stores in the data table (after reshuffling) of ( \(\mathrm{m} 1 \times \mathrm{m} 2\) ) points from the device designated in (d).
\(\rightarrow\) As for operation examples, see next page.


Command execution complete flag
M8029
MOO Command execution complete flag of SORT command
- The data table composition is explained in an example of \(m 1=K 3, m 2=K 4\) at the reshuffling origin. After reshuffling, replace \(s\) with \((d)\) in data table composition.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Row
\begin{tabular}{r} 
Rumber \\
num
\end{tabular}
Column
number}} & \multicolumn{4}{|c|}{Group number m2 (in the case of m2=K4)} \\
\hline & & 1 & 2 & 3 & 4 \\
\hline & & Management number & Height & Weight & Age \\
\hline \multirow[t]{3}{*}{In the case of data number m1=3} & 1 & (s) & (s) +3 & (s) +6 & (S) +9 \\
\hline & 2 & (s) +1 & (s) +4 & (s) +7 & (s) +10 \\
\hline & 3 & (s) +2 & (s) +5 & (s) +8 & (s) +11 \\
\hline
\end{tabular}
- When the command input is turned ON, the data arraying is started, and after m1 scan, the data arraying is completed, and the command execution complete flag M8029 is turned ON.
\(\rightarrow\) As for the method of using the command execution complete flag, see paragraph 1.3.4.

\section*{2. Operation examples}

When the following reshuffling origin data is executed in "n=K2 (row number 2)" and "n=K3 (row number 3)", the operation is as follows.
When a serial number such as management number is entered in the first row, it is convenient because you can judge the original column number by its content.

Reshuffling origin data
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Column number} & \multirow[t]{3}{*}{Row number} & \multicolumn{4}{|c|}{Group number m2 (in the case of m2=K4)} \\
\hline & & 1 & 2 & 3 & 4 \\
\hline & & Management number & Height & Weight & Age \\
\hline \multirow{10}{*}{In the case of data number \(\mathrm{m} 1=5\)} & \multirow[t]{2}{*}{1} & (s) & (s) +5 & (s) +10 & (s)+15 \\
\hline & & 1 & 150 & 45 & 20 \\
\hline & \multirow[t]{2}{*}{2} & (s) +1 & (s) +6 & (s) +11 & (s) +16 \\
\hline & & 2 & 180 & 50 & 40 \\
\hline & \multirow[t]{2}{*}{3} & (s) +2 & (s) +7 & (s) +12 & (s) +17 \\
\hline & & 3 & 160 & 70 & 30 \\
\hline & \multirow[t]{2}{*}{4} & (s) +3 & (s) +8 & (s) +13 & (s) +18 \\
\hline & & 4 & 100 & 20 & 8 \\
\hline & \multirow[t]{2}{*}{5} & (s) +4 & (s) +9 & (s) +14 & (s) +19 \\
\hline & & 5 & 150 & 50 & 45 \\
\hline
\end{tabular}
1) Reshuffling results when command is executed in \(n=K 2\) (row number 2)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Row number \\
Column number
\end{tabular}} & 1 & 2 & 3 & 4 \\
\hline & Management number & Height & Weight & Age \\
\hline \multirow{2}{*}{1} & s3 & (s3) +5 & (s3) +10 & (s3) +15 \\
\hline & 4 & 100 & 20 & 8 \\
\hline \multirow[t]{2}{*}{2} & (s3) +1 & (53) +6 & (s3) +11 & (s3) +16 \\
\hline & 1 & 150 & 45 & 20 \\
\hline \multirow[t]{2}{*}{3} & (s3) +2 & (s3) +7 & (s3) +12 & (s3) +17 \\
\hline & 5 & 150 & 50 & 45 \\
\hline \multirow[t]{2}{*}{4} & (s3) +3 & (s3) +8 & (s3) +13 & (s3) +18 \\
\hline & 3 & 160 & 70 & 30 \\
\hline \multirow[t]{2}{*}{5} & (53) +4 & (s3) +9 & (s3) +14 & (s3) +19 \\
\hline & 2 & 180 & 50 & 40 \\
\hline
\end{tabular}
2) Reshuffling results when command is executed in \(n=K 3\) (row number 3 )
\begin{tabular}{|c|c|c|c|c|}
\hline Row
number & 1 & 2 & 3 & 4 \\
\hline Column number & Management number & Height & Weight & Age \\
\hline \multirow[t]{2}{*}{1} & (s3) & (s3) +5 & (s3) +10 & (s3) +15 \\
\hline & 4 & 100 & 20 & 8 \\
\hline \multirow[t]{2}{*}{2} & (s3) +1 & (s3) +6 & (s3) +11 & (s3) +16 \\
\hline & 1 & 150 & 45 & 20 \\
\hline \multirow[t]{2}{*}{3} & (s3) +2 & (s3) +7 & (s3) +12 & (s3) +17 \\
\hline & 2 & 180 & 50 & 40 \\
\hline \multirow[t]{2}{*}{4} & (53) +3 & (s3) +8 & (s3) +13 & (s3) +18 \\
\hline & 5 & 150 & 50 & 45 \\
\hline \multirow[t]{2}{*}{5} & (s3) +4 & (s3) +9 & (s3) +14 & (s3) +19 \\
\hline & 3 & 160 & 70 & 30 \\
\hline
\end{tabular}

\section*{Related devices}
\(\rightarrow\) As for the method of using the command execution complete flag, see paragraph 1.3.4.
\begin{tabular}{c|c|l}
\hline Device & Name & \multicolumn{1}{c}{ Content } \\
\hline M8029 & \begin{tabular}{c} 
Command execution \\
complete
\end{tabular} & To be ON when data arraying is complete. \\
\hline
\end{tabular}

\section*{Cautions}
1) Do not change the content of operand or data during operation.
2) When resuming the execution, once turn OFF the command input.
3) Limit of number of times of use of command Usable only once in the program.
4) When designating same device in \(s\) and (d)

The original data is rewritten in the data sequence after reshuffling.
In particular, never change the content of the device designated in \(S\) until the completion of execution.
5) FXU PLC supports the command by V3.07 or higher.
6) Object devices are limited.

A1: FX3u, FX3uc PLCs only are applicable.

\subsection*{7.8 External FX I/O Device}

\subsection*{7.8.1 TKY}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This is a command for setting data in the timer or counter by the input of numeric keys 0 to 9 .
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{3}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & & ST \\
\hline TKY & 16 bits & Continuous & \begin{tabular}{lr}
\hline \multicolumn{2}{c|}{ TKY } \\
-EN & ENO \\
s & d 1 \\
& d 2
\end{tabular} & TKY(EN, s, d1, d2); & \\
\hline DTKY & 32 bits & Continuous & \begin{tabular}{lr}
\hline \multicolumn{2}{c|}{ DTKY } \\
-EN & \(\mathrm{ENO}-\) \\
s & \(\mathrm{d} 1-\) \\
& d 2
\end{tabular} & DTKY(EN, s, d1, d2); & \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & \begin{tabular}{l}
32-bit \\
operation
\end{tabular} \\
\hline Inpu & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline variable & (s) & Beginning bit device for entering numeric keys (10 points occupied) & \multicolumn{2}{|l|}{Bit} \\
\hline \multirow{3}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d1) & Word device for storing data & ANY16 & ANY32 \\
\hline & (d2) & Beginning bit device for turning ON key pushing information (11 points occupied) & \multicolumn{2}{|l|}{Bit} \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & \multirow[t]{2}{*}{Special unit U \(\square\) IG} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character string \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & \(\bullet\) & - & \(\bullet\) & & - & 41 & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & \(\bullet\) & - & - & - & - & - & -2 & -2 & - & \(\bullet\) & - & & & & & \\
\hline (d2) & & \(\bullet\) & \(\bullet\) & & \(\bullet\) & -1 & & & & & & & & & & & & - & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(TKY)}

By pressing key from the input for connecting the numeric keys (device designated in s), the entered numerical value is stored in the device designated in (d1), and the key pushing information and key sense output are issued to the device designated in (d2).
1) Entered numerical value
- If more than 9,999 , the value overflows from the higher digits.
- The entered numerical value is stored in the BIN (binary) value.
- In the diagram of next page, when numeric keys are pressed in the sequence of \(1,2,3,4\), then " 2,130 " is stored in the device designated in (d1).
2) Key pushing information
- Key pushing information of (d2 to (d2) +9 is turned ON/OFF depending on the pushed key.
- Key sense output of (d2)+10 is ON when either key is being pushed.


The diagram below shows an example of FX3u PLC (sync input). As for the wiring, see the manual of each PLC.



Key sense output
2,130 is stored in (d1) .

\section*{2. 32-bit operation(DTKY)}

By pressing key from the input for connecting the numeric keys (device designated in \(s\) ), the entered numerical value is stored in the device designated in (d1), and the key pushing information and key sense output are issued to the device designated in (d2).
1) Entered numerical value
- If more than \(99,999,999\), the value overflows from the higher digits.
- The entered numerical value is stored in the BIN (binary) value.
2) Key pushing information
- Key pushing information of (d2 to d2 +9 is turned ON/OFF depending on the pushed key.
- Key sense output of (d2)+10 is ON when either key is being pushed.
\begin{tabular}{|c|c|c|}
\hline Command input & DTKY & \\
\hline \multirow[t]{4}{*}{Beginning bit device for entering numeric key} & EN ENO & \\
\hline & \(\mathrm{s} \quad \mathrm{d} 1\) & -Label \({ }^{* 1}\) \\
\hline & d2 & -Beginning bit device \\
\hline & & for turning ON key pushing information \\
\hline
\end{tabular}
*1.To define the word device for storing data.
As for numeric key connection example and key pushing information, see the above explanation of 16-bit operation (TKY).

\section*{Cautions}
1. When keys are pressed simultaneously

When plural keys are pressed, only the first pressed key is valid.
2. When command contact is turned OFF

If turned OFF, the content of (d1) is not changed, but all of (d2) to (d2) +10 are turned OFF.
3. Number of bits occupied
1) When a numeric key is connected, 10 points are occupied from \(s\). When numeric key is not connected (not used), the devices are occupied and cannot be used in other applications.
2) A total of 11 points are occupied from the beginning device (d2 for output of key pushing information. Be careful not to overlap with the device used in control of machine.
- (d2) to (d2) +9 : Turned ON corresponding to the input of numeric keys 0 to 9 .
- (d2 +10 : Kept ON while any one of 0 to 9 is being pressed (key sense output).
4. Limit of number of times of use of command

Only one of TKY command and DTKY command can be used in the program.
If desired to use plural times, you can program by the index modifier \((\mathrm{V}, \mathrm{Z})\) function.

\section*{5. Designation of input and output variables}

When handling 32-bit data in a structured program, you cannot designate 16-bit device directly unlike in simple project. When handling 32 -bit data, please use the label. However, the 32 -bit counter is a device of 32 bits long, and the device can be designated directly. When designating the device, please use the global label.
6. Object devices are limited.

A1: FX3U, FX3UC PLCs only are applicable. However, index modifier \((V, Z)\) is not applicable.
A2: \(F X_{3} \cup, F X_{3} \cup c\) PLCs only are applicable.

\section*{Program examples}

This is an explanation of an example in which the input X000 is the beginning, and numeric keys 0 to 9 are connected.

\section*{1. Program}
[Structured ladder]

[ST]
TKY(X030, X000, D0, M10);

\section*{2. Wiring diagram}

This wiring diagram is an example of FX3U PLC (sync input). As for the actual wiring connection, see the manual of the PLC.


\section*{3. Timing chart}
1) When numeric keys are pressed in the sequence of \(1,2,3,4\), the content of DO is 2,130 .
Numerical value more than 9,999 overflows sequentially from the upper digits. (The actual content of DO is BIN data.)
2) When X 002 is pressed, M12 is set (ON) until other key is pressed. It is the same when other key is pressed. Thus, depending on the operation of input X000 to X011, operation of M10 to M19 is carried out.
3) When any key is pressed, the key sense output M20 is kept ON while being pressed.


Key sense output

\subsection*{7.8.2 HKY}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This is a command for setting the input data of numerical value ( 0 to 9 ) or operation condition (function keys A to \(F\) ), by the input of keys from 0 to \(F\) ( 16 keys).
When the extension function is turned \(O N\), the key input is entered in hexadecimal notation by keys 0 to \(F\).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline HKY & 16 bits & Continuous &  & \(\operatorname{HKY}(E N, s, d 1, d 2, d 3) ;\) \\
\hline DHKY & 32 bits & Continuous & \begin{tabular}{lr}
\multicolumn{2}{c|}{ DHKY } \\
-EN & \(\mathrm{ENO}-\) \\
-s & \(\mathrm{d} 1-\) \\
& \(\mathrm{d} 2-\) \\
& \(\mathrm{d} 3-\) \\
\hline
\end{tabular} & DHKY(EN, s, d1, d2, d3); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow[t]{2}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & S & Beginning device for entering 16 keys (X) [4 points occupied]. & \multicolumn{2}{|l|}{Bit} \\
\hline \multirow{4}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d1) & Beginning device for sending output (Y) [4 points occupied] & \multicolumn{2}{|l|}{Bit} \\
\hline & (d2) & Device for storing numerical value entered from 16 keys & ANY16 & ANY32 \\
\hline & (d3) & Beginning bit device for turning ON key pushing information [8 points occupied] & Bit & \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|r|}{Digit designation} & \multicolumn{5}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character string \\
\({ }^{11} \square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & - & & & & & & & & & & & & & & & & & & & - & & & & & \\
\hline (d1) & & \(\bullet\) & & & & & & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline (d2) & & & & & & & & & & & & - & - & - & & -2 & -2 & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & \\
\hline (d3) & & \(\bullet\) & & & & \(\bullet\) & A1 & & & & & & & & & & & & & - & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(HKY)}

The numerical value scanned by the signals of the input for connecting 16 keys ( 0 to F ) (device designated in (S) and the row output (device designated in (d1) and by pressing keys 0 to 9 is stored in the device designated in (d2), and the key sense output is issued to the device designated in (d3).
When any one of keys \(A\) to \(F\) is pressed, the key pushing information corresponding to the key (device designated in (d3) is turned ON, and the key sense output (device designated in (d3) is issued.

1) Numerical value input by keys 0 to 9

If more than 9,999, the value overflows from the higher digits.
- The entered numerical value is stored in d2 as BIN (binary) value.
- The key sense output (d3)+7 is turned ON by pressing any one of keys 0 to 9 .
2) Key pushing information of keys \(A\) to \(F\)
- To turn ON 6 points from (d3) corresponding to any one of keys A to F.
- The key sense output (d3)+6 is turned ON by pressing any one of keys A to F.
\begin{tabular}{c|c}
\hline Key & Key pushing information \\
\hline A & (d3) \\
\hline B & (d3 +1 \\
\hline C & (d3) +2 \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline Key & Key pushing information \\
\hline\(D\) & (d3 +3 \\
\hline\(E\) & (d3) +4 \\
\hline\(F\) & (d3 +5 \\
\hline
\end{tabular}

\section*{2. 32-bit operation(DHKY)}

The numerical value scanned by the signals of the input for connecting 16 keys ( 0 to F ) (device designated in (s) and the row output (device designated in (d1) and by pressing keys 0 to 9 is stored in the device designated in (d2), and the key sense output is issued to the device designated in (d3).
When any one of keys \(A\) to \(F\) is pressed, the key pushing information corresponding to the key (device designated in (d3) is turned ON, and the key sense output (device designated in (d3) is issued.

*1.To define the device for storing the numerical value entered from 16 keys.
1) Numerical value input by keys 0 to 9
- If more than 99,999,999, the value overflows from the higher digits.
- The entered numerical value is stored in (d2 +1, d2) as BIN (binary) value.
- The key sense output (d3)+7 is turned ON by pressing any one of keys 0 to 9 .
2) Key pushing information of keys \(A\) to \(F\)

As for the key pushing information, refer to the previous page on 16-bit operation (HKY).

\section*{Extension function}

When the extension function is validated by turning ON the M8167, the hexadecimal key pushing data of 0 to \(F\) is stored in BIN.
Except for the following, this is same as the "function and operation explanation" given above.
FXU PLC: V2.30 or lower has no extension function.
1. 16-bit operation(HKY)

Hexadecimal data entered by keys 0 to F is directly written into the device designated in (d2).
1) Numerical value input by keys 0 to \(F\)
- If more than FFFF, the value overflows sequentially from the upper digits.
- Example:

In the case of input of \(1 \rightarrow 2 \rightarrow 3 \rightarrow B \rightarrow F\), "23BF" is stored in BIN in the device designated in (d2). That is, 1 overflows at the time of input of \(F\).


\section*{2. 32-bit operation(DHKY)}

Hexadecimal data entered by keys 0 to F is directly written into the device designated in (d2).
1) Numerical value input by keys 0 to \(F\)
- If more than FFFFFFFFF, the value overflows sequentially from the upper digits.
- Example:

In the case of input of \(9 \rightarrow 2 \rightarrow 3 \rightarrow \mathrm{~B} \rightarrow \mathrm{~F} \rightarrow \mathrm{~A} \rightarrow \mathrm{~F}\), "923BFAF" is stored in BIN.

*1.To define the device for storing the numerical value entered from 16 keys.

\section*{Related devices}
\(\rightarrow\) As for the method of using the command execution complete flag, see paragraph 1.3.4.
\begin{tabular}{c|c|l}
\hline Device & Name & \multicolumn{1}{c}{ Content } \\
\hline M8167 & Function extension flag & \begin{tabular}{l} 
HEX data handling function of HKY command \\
OFF : numeric key + function key \\
ON : hexadecimal key
\end{tabular} \\
\hline M8029 & \begin{tabular}{c} 
Command execution \\
complete
\end{tabular} & \begin{tabular}{l} 
OFF : During scanning from (d1) to (d1) +3, or command not executed \\
ON : To be turned ON after one-cycle operation of d1 \\
F). to d1 +3 output (key scan of 0 to
\end{tabular} \\
\hline
\end{tabular}

\section*{Cautions}

\section*{1. Limit of number of times of use of command}

Only one of HKY command and DHKY command can be used in the program.
If desired to use plural times, you can program by the index modifier \((\mathrm{V}, \mathrm{Z})\) function.

\section*{2. When keys are pressed simultaneously}

When plural keys are pressed, only the first pressed key is valid
3. When command contact is turned OFF

If turned OFF, the content of (d2) is not changed, but all of (d3) to (d3)+7 are turned OFF.
4. Number of bits occupied
1) To occupy 4 points for connecting 16 keys from the beginning device \(s\) of input \((X)\).
2) To occupy 4 points for connecting 16 keys from the beginning device d 1 of output \((\mathrm{Y})\).
3) To occupy 8 points from beginning device (d3 for output of key pushing information. Be careful not to overlap with the device used in control of the machine.
- (d3) to (d3) +5 : Key pushing information of keys \(A\) to \(F\)
- (d3) +6 : Key sense output of keys \(A\) to \(F\).
- (d3) +7 : Key sense output of keys 0 to 9

\section*{5. Intake timing of key input}

HKY and DHKY commands are executed simultaneously with the operation period of PLC.
At the end of a series of key scan, a time of 8 scans is needed.
To prevent intake error due to filter delay of key input, you can utilize the function of "constant scan mode" or "timer interruption."
6. Output format

Select and use the PLC of transistor output type.

\section*{7. Designation of input and output variables}

When handling 32-bit data in a structured program, you cannot designate 16-bit device directly unlike in simple project. When handling 32-bit data, please use the label. However, the 32-bit counter is a device of 32 bits long, and the device can be designated directly. When designating the device, please use the global label.
8. Object devices are limited.
©1: FX3U, FX3UC PLCs only are applicable. However, index modifier ( \(\mathrm{V}, \mathrm{Z}\) ) is not applicable.
A2: \(\mathrm{FX}_{3}\), FX3Uc PLCs only are applicable.

\section*{Program examples}
[Structured ladder]


\section*{[ST]}

HKY(X004, X000, Y000, D0, M0);

The wiring diagram below is an example of basic unit (sync input/sync output) of FX3U series. For the actual wiring connection, see the manual of the PLC.


\subsection*{7.8.3 DSW}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This is a command for reading in the set value of digital switch.
You can read in the data of 4 digits and 1 set ( \(n=K 1\) ), or 4 digits and 2 sets ( \(n=K 2\) ).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DSW & 16 bits & Continuous &  & DSW(EN, s, n, d1, d2); \\
\hline
\end{tabular}

\section*{2. Set data}
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Beginning device for connecting digital switch (X) (4Xn points occupied) \\
\cline { 2 - 5 } & s & Bit \\
\cline { 2 - 5 } & n & Number of sets of digital switch (4 digits/1 set) [n=1 or 2] & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Beginning device of output of strobe signal (Y) (4 points occupied) \\
\cline { 2 - 5 } & (d2 & Device for storing numerical value of digital switch (n points occupied) & ANY16 \\
\cline { 2 - 5 } & d2 & & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{5}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square \mathbf{I G} \square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real number \\
E
\end{tabular}} & \multirow[t]{2}{*}{Character string} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & \(\bullet\) & & & & & & & & & & & & & & & & & & & - & & & & & \\
\hline (d) & & \(\bullet\) & & & & & & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline (d2) & & & & & & & & & & & & - & - & - & - & -1 & -2 & & - & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}
1. 16-bit operation(DSW)

The value of digital switch connected to the device designated in \(s\) is processed by time division (entered sequentially from the first digit by output signals at 100 ms intervals), and stored in the device designated in (d2).

1) Data (d1)
- You can read up to 4 digits from 0 to 9,999.
- Data is stored in BIN (binary value).
- First set is stored in (d2), and second set in (d2) +1 .
2) Designation of number of sets \(n\)
- When using 4 digits and 1 set \(\times 1\) ( \(n=K 1\) ) Digital switch of 4 digits in BCD connected to \(\leftrightarrows\) to \(\circlearrowleft+3\) is sequentially read in by strobe signals (d1) to (d1) +3 , and stored in (d2) as BIN value.
- When using 4 digits and 1 set \(\times 2\) ( \(n=K 2\) ) Digital switch of 4 digits in BCD connected to \(s\) to \(s+3\) is sequentially read in by strobe signals (d1) to (d1) +3 , and stored in (d2) as BIN value.
- Digital switch of 4 digits in BCD connected to \(\subseteq+4\) to \(\circlearrowleft+7\) is sequentially read in by strobe signals (d1) to (d1) +3 , and stored in (d2) +1 as BIN value.

\section*{Related devices}
\(\rightarrow\) As for the method of using the command execution complete flag, see paragraph 1.3.4.
\begin{tabular}{c|c|c}
\hline Device & Name & \multicolumn{1}{c}{ Content } \\
\hline M8029 & \begin{tabular}{c} 
Command execution \\
complete
\end{tabular} & \begin{tabular}{l} 
OFF : Scan continuous or command not executed from (d1) to d1) +3. \\
ON : ON after one-cycle operation of d1) to (d1) +3 output (scan of 1 to 4 digits)
\end{tabular} \\
\hline
\end{tabular}

\section*{Cautions}
1. When command contact is turned OFF

If turned OFF, the content of (d2 is not changed, but all of (d1) to (d1) +3 are turned OFF.
2. Number of bits occupied
1) When 4 digits and 2 sets ( \(n=K 2\) ) are used, 2 points are occupied from (d2).
2) \(S\) occupies 4 points in the case of 4 digits and 1 set, and occupies 8 points in the case of 4 digits and 2 sets.

\section*{3. When connecting a digital switch of less than 4 digits}

The wiring of strobe signal <output for digit designation> (d1) is not needed in the digit not in use, but the output for digit not in use is occupied by this command, and cannot be used in other application. The output not in use must be always kept vacant.
4. We recommend to use the transistor output type.

To take in the values of digital switch continuously, you must use the PLC of transistor output.
\(\rightarrow\) As for the relay output type, refer to the "Method of using by relay output type" shown later.

\section*{5. Digital switch}

Use the digital switch of BCD output.
6. Object devices are limited.

A1: \(F X_{3 \cup}, F X_{3} \cup C, F X_{3 G}\) PLCs only are applicable.
A2: FX3u, FX3uc PLCs only are applicable.

\section*{Program examples}

This is an example of explaining connection of digital switch starting from the input X 010 and starting from the digit designation output Y010.

\section*{1. Program}
[Structured ladder]
\begin{tabular}{|c|c|c|}
\hline X000 & DSW & \\
\hline EN & ENO & \\
\hline X10-s & & \(1-\mathrm{Y} 10\) \\
\hline K1-n & & 2-D0 \\
\hline
\end{tabular}
[ST]
DSW(X000, X10, K1, Y10, D0);

\section*{2. Wiring diagram}

This wiring connection diagram is an example of basic unit of FX3U series (sync input/sync output). As for the actual wiring, see the manual of the PLC.


\section*{3. Timing chart}


Y010 to Y013 are turned ON sequentially in every 100 ms while X 000 is being turned ON, and when operation of one cycle is over, the execution complete flag M8029 is set up.

\section*{4. Method of using by relay output type}

You can also use the relay output type PLC by providing with "digital switch reading input."
When pushbutton (X000) is pressed, the DSW performs a series of operations. In the case of this program, if Y010 to Y013 are relay outputs, there is no problem in relay contact life.
[Structured ladder]

1) DSW is operating while the \(M 0\) (digital switch reading input) is being \(O N\).
2) DSW continues to operate until operation of one cycle is over and execution complete flag (M8029) is set up.

IF(LDP(TRUE, X000)) THEN SET(TRUE, M0); DSW(M0, X010, K1, Y010, D0); RST(M8029, M0);

\subsection*{7.8.4 SEGD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This is a command for lighting up the 7 -segement display unit ( 1 digit) by decoding the data.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline SEGD & 16 bits & Continuous & \begin{tabular}{lr}
-2 & SEGD \\
-s & d \\
& \(\mathrm{d}-\)
\end{tabular} & SEGD(EN, s, d); \\
\hline SEGDP & 16 bits & Pulse &  & SEGDP(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & s & Beginning word device to be decoded & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Word device for storing 7-segment display data & ANY16 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character string \\
\({ }^{11} \square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M \(\mathbf{T}\) & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & -1 & -1 & - & & \(\bullet\) & - & \(\bullet\) & & & \\
\hline (d) & & & & & & & & \(\bullet\) & - & - & \(\bullet\) & - & - & -1 & A1 & - & \(\bigcirc\) & - & & & & & \\
\hline
\end{tabular}
© : Refer to "Cautions".

\section*{Function and operation explanation}
1. 16-bit operation(SEGD, SEGDP)

0 to F (hexadecimal) of lower 4 bits (1 digit) of the device designated in \(\checkmark\) are decoded into 7-segment display data, and stored in lower 8 bits of the device designated in \(\mathbb{d}\).
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Command input} & \multicolumn{2}{|r|}{SEGD} & \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\(\begin{array}{lr}\text { EN } & \text { ENO } \\ \text { s }\end{array}\)}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Beginning word device to be decoded}} & & \\
\hline & & & \\
\hline
\end{tabular}
2. 7-segement decoding table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{(s)} & \multirow[t]{2}{*}{Composition of 7 segments} & \multicolumn{11}{|c|}{(d)} & \multirow[b]{2}{*}{Display data} \\
\hline Hexadecimal & b3 & b2 & b1 & b0 & & B15 & \(\cdots\) & B8 & B7 & B6 & B5 & B4 & B3 & B2 & B1 & B0 & \\
\hline 0 & 0 & 0 & 0 & 0 & \multirow{16}{*}{} & - & & - & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & [1] \\
\hline 1 & 0 & 0 & 0 & 1 & & - & & - & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & I \\
\hline 2 & 0 & 0 & 1 & 0 & & - & & - & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & E1 \\
\hline 3 & 0 & 0 & 1 & 1 & & - & & - & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & Э \\
\hline 4 & 0 & 1 & 0 & 0 & & - & & - & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & I \\
\hline 5 & 0 & 1 & 0 & 1 & & - & & - & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & E \\
\hline 6 & 0 & 1 & 1 & 0 & & - & & - & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & E \\
\hline 7 & 0 & 1 & 1 & 1 & & - & & - & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 17 \\
\hline 8 & 1 & 0 & 0 & 0 & & - & & - & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & E1 \\
\hline 9 & 1 & 0 & 0 & 1 & & - & & - & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 「1 \\
\hline A & 1 & 0 & 1 & 0 & & - & & - & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & \(\stackrel{F}{1}\) \\
\hline B & 1 & 0 & 1 & 1 & & - & & - & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & İ \\
\hline C & 1 & 1 & 0 & 0 & & - & & - & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
\hline D & 1 & 1 & 0 & 1 & & - & & - & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & I \\
\hline E & 1 & 1 & 1 & 0 & & - & & - & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & E \\
\hline F & 1 & 1 & 1 & 1 & & - & & - & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & \(F^{\square}\) \\
\hline
\end{tabular}

B0 is the beginning of bit device or the lowest bit of the word device.

\section*{Cautions}
1) Number of bits occupied

Lower 8 bits from the output of the device designated in \((d)\) are occupied, and the upper 8 bits are not changed.
2) Object devices are limited.

A1: FX3U, FX3Uc PLCs only are applicable.

\subsection*{7.8.5 SEGL}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This is a command for controlling the 7 -segment display unit with latch of 4 digits and 1 set or 4 digits and 2 sets.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline SEGL & 16 bits & Continuous &  & SEGL(EN, s, n, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & S & \begin{tabular}{l}
Beginning word device for BCD conversion \\
- \(n=K(H) 0\) to \(K(H) 3: 1\) point occupied \\
- \(n=K(H) 4\) to \(K(H) 7: 2\) points occupied
\end{tabular} & ANY16 \\
\hline & n & Parameter & ANY16 \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & \begin{tabular}{l}
Beginning device to be output (Y) \\
- \(n=K(H) 0\) to \(K(H) 3: 8\) points occupied \\
- \(n=K(H) 4\) to \(K(H) 7: 12\) points occupied
\end{tabular} & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & \multirow[t]{2}{*}{Special unit U \(\square\) IG \(\square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character string \\
\({ }^{11} \square\) \\
\(\square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & - & - & A1 & -2 & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & \(\bullet\) & & & & & & & & & & & & & & & & & - & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(SEGL)}

The 4-digit numerical value of the device designated in \(s\) is converted into BCD data, and is sequentially divided in time digit by digit, and is sent into the 7 -segment display unit with BCD decoder.


\section*{When using 4 digits and 1 set(n=K0 to K3)}
\(\rightarrow\) As for selection of " n ", see the second item below.
1) Data and strobe signal

The 4-digit numerical value of \(\subseteq\) s is converted from BIN to BCD, and is issued sequentially by time division digit by digit from (d) to \((d)+3\).
The strobe signal output ( \((\square+4\) to \((d+7\) ) is also issued sequentially by time division, and the 7segment display of 4 digits and 1 set is latched.
2) In \(\subseteq\), BIN data in a range of 0 to 9,999 is valid.
3) Connection example of 7 -segment display unit

The following diagram show an example of \(\mathrm{FX}_{3} \mathrm{U}\) series basic unit (sync output). As for the actual wiring, see the manual of the PLC.


\section*{When using 4 digits and 2 sets( \(\mathrm{n}=\mathrm{K} 4\) to K 7 )}
\(\rightarrow\) As for selection of " \(n\) ", see the item below.
1) Data and strobe signal
a) 4 digits, first set

The 4-digit numerical value of \(s\) is converted from BIN to BCD, and is issued sequentially by time division digit by digit from (d) to (d) +3 .
The strobe signal output ( \((\square+4\) to \(\triangle+7\}\) is also issued sequentially by time division, and the 7segment display of 4 digits and 1 set is latched.
b) 4 digits, second set

The 4-digit numerical value of \(s+1\) is converted from BIN to BCD, and is issued sequentially by time division digit by digit from \((d)+10\) to \((d)+13\).
The strobe signal output \((\square+4\) to \((d+7)\) is also issued sequentially by time division, and the 7segment display of 4 digits and 2 sets is latched. (The strobe signal output ( \((d+4\) to \((d)+7\) ) is common in each set.)
2) In \(s\) and \(\subseteq+1\), BIN data in a range of 0 to 9,999 is valid.
3) Connection example of 7-segment display unit

The following diagram show an example of \(F X_{3} U\) series basic unit (sync output). As for the actual wiring, see the manual of the PLC.


\section*{Related devices}
\(\rightarrow\) As for the method of using the command execution complete flag, see paragraph 1.3.4.
\begin{tabular}{c|c|l}
\hline Device & Name & \multicolumn{1}{c}{ Content } \\
\hline M8029 & \begin{tabular}{c} 
Command execution \\
complete
\end{tabular} & To be turned ON when output of 4 digits is over. \\
\hline
\end{tabular}

\section*{Cautions}

\section*{1. Time for updating 7 -segement 4 -digit display}

The time for updating the display of 4 digits ( 1 set or 2 sets) is required by 12 times of the scan time (operation time).
2. Operation when command input is turned OFF

While the command input is ON, the operation is repeated, but once the command contact is turned OFF during operation, the operation is interrupted, and when turned ON again, the operation is resumed from the beginning.
3. Number of bits occupied

When using 4 digits and 1 set : 1 point is occupied from the beginning device designated in \(\subseteq\).
8 points are occupied from the beginning device designated in \(\mathbb{C}\). If the number of digits is smaller, the remainder cannot be used in other application.
When using 4 digits and 2 sets: 2 points are occupied from the beginning device designated in s . 12 points are occupied from the beginning device designated in \(\subset\). If the number of digits is smaller, the remainder cannot be used in other application.

\section*{4. Scan time (operation period) and display timing}

SEGL command is executed in synchronism with the scan time (operation period) of the PLC.
For a series of display, the scan time of the PLC is required by 10 ms or more.
If less than 10 ms , you can operate in the scan time of 10 ms or more by using the constant scan mode.

\section*{5. Output format of PLC}

Use the PLC of transistor output type.
6. Object devices are limited.

41: \(\mathrm{FX}_{3 \mathrm{U},} \mathrm{FX} 3 \cup \mathrm{C}, \mathrm{FX} 3 \mathrm{PLCs}\) only are applicable.
42: FX \({ }_{3}\), \(\mathrm{FX}_{3} \mathbf{4}\) PLCs only are applicable.

\section*{Selection procedure of 7－segment display unit}

You can select the 7－segment display unit depending on the electrical content by referring to the example below．
\(\rightarrow\) As for the actual wiring，see the hardware manual of the PLC main body．
1．Check points by 7 －segment specification
1）Check if the data input，and input voltage and current characteristics of strobe signal are satisfying the output specification of the PLC or not．
－Check if the input signal voltage（Lo）is about 1.5 V or less．
－Check if the input voltage is DC 5 V to DC 30 V ．
2）Check if the BCD decoding or latching function is provided or not．

\section*{Selection procedure of parameter \(\mathbf{n}\) by specification of 7－segment display}

The value to be set in parameter \(n\) varies with the signal logic of 7 －segment display．
Select in the following procedure．
A check column is provided in the final line of the table．Check the corresponding positive or negative logic， and select the parameter accordingly．

1．Role of parameter \(n\)
Parameter n is a number selected depending on the logic（positive or negative）of 7－segment data input，the logic（positive or negative）of strobe signal，or control of 4 digits and 1 set or control of 2 sets．

2．Check the output logic of the PLC
The transistor output of the PLC is available in two types，sync output and source output．The specification is different as shown below．
\begin{tabular}{|c|c|c|}
\hline Logic & Negative logic & Positive logic \\
\hline Output format & Sync output［－common］ & Source output［＋common］ \\
\hline Output circuit &  &  \\
\hline Explanation & \begin{tabular}{l}
Because of transistor output（sync），when the internal logic is 1 （ON output），the output is LOW level（ 0 V ）． \\
This is called the negative logic．
\end{tabular} & \begin{tabular}{l}
Because of transistor output（source），when the internal logic is 1 （ON output），the output is HIGH level（ \(\mathrm{V}+\) ）． \\
This is called the positive logic．
\end{tabular} \\
\hline Logic check & & \\
\hline
\end{tabular}

3．Check the logic of the 7 －segment display unit．
1）Data input
\begin{tabular}{|c|c|c|}
\hline Logic & Negative logic & Positive logic \\
\hline Timing chart & \begin{tabular}{l}
（d） 1 \\
（d）\(+1 \quad 2\) \(\qquad\) \\
（d）\(+2 \quad 4\) \(\qquad\) \\
（d）\(+3 \quad 8\) \(\qquad\) \\
7－segment display
\end{tabular} &  \\
\hline Explanation & Becoming BCD data at LOW level & Becoming BCD data at HIGH level \\
\hline Logic check & & \\
\hline
\end{tabular}
2) Strobe signal
\begin{tabular}{|c|c|c|}
\hline Logic & Negative logic & Positive logic \\
\hline Timing chart & \begin{tabular}{l}
(d) \\
1 \(\qquad\) H \\
(d) +3 \\
8 \(\qquad\) \\
(d) +4 to \\
d \(\square\) H H \\
Strobe display change
\end{tabular} & \begin{tabular}{l}
\(\begin{array}{ccc}\text { (d) } & 1 & H \\ \vdots & \vdots \\ \text { (d) }+3 & 8\end{array}\) \\
(d) +4 to \(d\) +7 \\
Strobe display change
\end{tabular} \\
\hline Explanation & Data latched at LOW level is held & Data latched at HIGH level is held \\
\hline Logic check & & \\
\hline
\end{tabular}

\section*{4. Selection of parameter \(\mathbf{n}\)}

Select by referring to the table below depending on the positive or negative logic of the PLC side, and the positive or negative logic of the 7-segment display side.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PLC output logic} & \multirow{2}{*}{Data input} & \multirow{2}{*}{Strobe signal} & \multicolumn{2}{|c|}{Parameter n} \\
\hline & & & 4 digits \(\times 1\) set & 4 digits \(\times 2\) sets \\
\hline \multirow{4}{*}{Negative logic} & \multirow[b]{2}{*}{Negative logic (coinciding)} & Negative logic (coinciding) & 0 & 4 \\
\hline & & Positive logic (not coinciding) & 1 & 5 \\
\hline & \multirow[b]{2}{*}{Positive logic (not coinciding)} & Negative logic (coinciding) & 2 & 6 \\
\hline & & Positive logic (not coinciding) & 3 & 7 \\
\hline \multirow{4}{*}{Positive logic} & \multirow{2}{*}{Positive logic (coinciding)} & Positive logic (coinciding) & 0 & 4 \\
\hline & & Negative logic (not coinciding) & 1 & 5 \\
\hline & \multirow{2}{*}{Negative logic (not coinciding)} & Positive logic (coinciding) & 2 & 6 \\
\hline & & Negative logic (not coinciding) & 3 & 7 \\
\hline
\end{tabular}
5. Explanation of selection method of parameter \(\mathbf{n}\) by exemplary cases

When the following 7 -segment display is connected, \(n=1\) in the case of 4 digits \(\times 1\) set, and \(n=5\) in the case of 4 digits \(\times 2\) sets.
1) Transistor output of PLC
- Sync output = negative logic
- Source output = positive logic
2) 7-segment display
- Data input = negative logic
- Strobe signal = positive logic
\begin{tabular}{c|c|c|c|c}
\hline \multirow{2}{*}{ PLC output logic } & \multirow{2}{*}{ Data input } & \multirow{2}{|c}{ Strobe signal } & \multicolumn{2}{|c}{ Parameter n } \\
\cline { 3 - 5 } & & & 4 digits \(\times \mathbf{1}\) set & 4 digits \(\times \mathbf{2}\) sets \\
\hline \multirow{3}{*}{ Negative logic } & \multirow{2}{*}{ Negative logic (coinciding) } & Negative logic (coinciding) & 0 & 4 \\
\cline { 3 - 5 } & & Positive logic (not coinciding) & 1 & 5 \\
\cline { 2 - 5 } & \multirow{2}{*}{ Positive logic (not coinciding) } & Negative logic (coinciding) & 2 & 6 \\
\cline { 3 - 5 } & & Positive logic (not coinciding) & 3 & 7 \\
\hline
\end{tabular}

\subsection*{7.8.6 ARWS}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction enters data by arrow switches for digit move and increase and decrease of numerical value of each digit.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline ARWS & 16 bits & Continuous & \begin{tabular}{lr|r}
\hline \multicolumn{2}{|c|}{ ARWS } & \\
EN & ENO & - \\
-s & d 1 & - \\
n & d 2 & -
\end{tabular} & ARWS(EN, s, n, d1, d2); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s) & Head bit device to be entered [4 points occupied] & Bit \\
\hline & ( \({ }^{\text {a }}\) & Digit number specification of 7-segment display. & ANY16 \\
\hline \multirow{3}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Word device in which BCD converted data is stored & ANY16 \\
\hline & (d2) & Head bit device (Y) for connecting 7-segment display unit [8 points occupied] & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{8}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{8}{|c|}{System user} & \multicolumn{4}{|r|}{Digit designation} & \multicolumn{4}{|r|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Cons \\
tant
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
"口"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & & Dᄆ.b & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & \(\bullet\) & \(\bullet\) & - & & & - & & -1 & & & & & & & & & & & & - & & & & & \\
\hline (d) & & & & & & & & & & & & & \(\bullet\) & - & - & -2 & 42 & - & \(\bigcirc\) & - & & & & & \\
\hline (d2) & & \(\bullet\) & & & & & & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline ( n & & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}
© : Refer to "Cautions".

\section*{Function and operation explanation}

Four arrow switches are connected to the input of the device specified by \(s\), the 7-segment display unit with BCD decoder is connected to the output of the device specified by (d2), and the numeric value is entered in the device specified by (d1).

\section*{1. 16-bit operation (ARWS)}

In the device specified by (d1), 16-bit BIN value of 0 to 9,999 is stored, but for the convenience of explanation, BCD converted value is expressed.
When the command input is ON, then ARWS instruction operates as follows.


\section*{Content of display and operation unit}

1) Digit specification \(n\) of 7 -segment display unit with \(B C D\) decoder In the following explanation of operation, four digits ( \(10^{3}\) digits) are supposed.
2) Operation of digit select switch \((s+2, \sigma+3)\)
- Operation when carry-down switch \(s+2\) is ON

Every time the switch is pressed, the digit specification changes in the sequence of \(10^{3} \rightarrow 10^{2} \rightarrow 10^{1} \rightarrow\) \(10^{0} \rightarrow 10^{3}\).
- When carry-over switch \(\triangle+3\) is ON

Every time the switch is pressed, the digit specification changes in the sequence of \(10^{3} \rightarrow 10^{0} \rightarrow 10^{1} \rightarrow\) \(10^{2} \rightarrow 10^{3}\).
3) Operation of LED for selected digit display (d2 +4 to (d2) +7 ) The specified digit is displayed by LED by strobe signals (d2) +4 to (d2) +7 .
4) Operation of data change switch of digit unit ( \(s, s+1\) ) Data changes in the digit specified by the "digit select switch."
- Operation when increment input is ON

Every time the switch is pressed, the content of (d1) changes in the sequence of \(0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots \rightarrow 8\) \(\rightarrow 9 \rightarrow 0 \rightarrow 1\).
- Operation when decrement input is ON

Every time the switch is pressed, the content of (d1) changes in the sequence of \(0 \rightarrow 9 \rightarrow 8 \rightarrow 7 \ldots \rightarrow\) \(1 \rightarrow 0 \rightarrow 9\).
The content can be displayed in 7 -segment display unit.
Thus, by a series of operations, desired numeric values can be written into (d1 while observing the 7segment display unit.

\section*{Cautions}
1. Setting of parameter \(n\)

Refer to the parameter setting of SEGL instruction. However, the setting range is 0 to 3 .
2. Output format of PLC

Use the PLC of transistor output type.
3. Scan time (operation period) and display timing

ARWS instruction is executed in synchronism with the scan time (operation cycle) of the PLC.
To execute a series of displays, 10 ms or more is needed in the scan time of the PLC. If less than 10 ms , you must use the constant scan mode and operate in scan time of 10 ms or more.
4. Number of bits occupied in device
1) The input of the device specified by \(s\) occupies 4 bits.
2) The output of the device specified by (d2) occupies 8 bits.
5. Limit of times of use of instruction

ARWS instruction can be used only once in the program. When using this instruction two or more times, use index function to program.

\section*{6. Object devices are limited.}

A1: FX3U FX3UC PLCs only are applicable.
However, index modifier \((V, Z)\) is not applicable.
A2: \(\mathrm{FX}_{3}\), FX3uc PLCs only are applicable.

\section*{Program example}
1. When changing the timer setting and displaying the current value
1) Specify the timer number by 3-digit digital switch

2) Setting of constant value of timer by arrow switch


\section*{Operation explanation}
- When writing in

Press the X003 by setting the numeric value while observing the 7-segment display by the arrow switch.

\section*{Program}


From previous page

\section*{[ST]}

OUT_T(XOOO, TC0, D300);
OUT_T(XOOO, TC1, D301);
\(\zeta\)
OUT_T(X00O, TC99, D399);
M0:= X000;
M1:= X001;
M2:= X002;
M3:= NOT M8000;
ALTP(X004, M100);
Y014:= NOT M100;
Y015= M100;
IF(Y014 AND X003) THEN DSW (TRUE, X010, K1, Y010, Z);
SEGL(Y014, T0Z, K1, Y000);
MOVP(Y015, D300Z, D511);
ARWS(Y015, M0, K1, D511, Y000);
IF(Y015 AND X003) THEN MOVP(TRUE, D511, D300Z);


\subsection*{7.8.7 ASC}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts the 1-byte alphanumeric character string into ASCII code.
This is used when selecting and displaying plural messages in the external display unit.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline ASC & 16 bits & Continuous &  & ASC(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & s & \begin{tabular}{l} 
1-byte alphanumerics of 8 characters entered from personal \\
computer
\end{tabular} & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Head device for storing ASCII code & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{5}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Cons \\
tant
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{Character String
"} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & & & & & & & & & & & -*1 & \\
\hline (d) & & & & & & & & & & & & - & - & - & - & \(\Delta 1\) & -1 & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}
*1. In ASC instruction, double quotation marks (") are not needed before and after the character string specified by \(\triangle\).
A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (ASC)}

1-byte alphanumeric character string specified by \(S\) is converted into ASCII code, and transferred sequentially to the device specified by \((d\).
- In the device specified by \(s\), 1-byte characters of A to \(\mathrm{Z}, 0\) to 9 , and symbols can be handled. (2-byte characters cannot be handled.)
By the programming tool, the character string is entered when programming.
- In the device specified by \(\mathbb{C}\), converted ASCII code is stored by 2 characters/1 byte each in the sequence of lower 8 bits and higher 8 bits.


\section*{Extension function}

When the extension function is validated by turning ON M8161, the 1-byte alphanumeric character string of the device specified by \(\Omega\) is converted into ASCII code, and sequentially transferred into the device specified by \((d)\) only in the lower 8 bits (1 byte).
The extension function is not available when FXU PLC is V2.30 or earlier.


Higher 8 bits are H 00 .
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{(d)} & (d) \\
\hline & Higher 8 bits & Lower 8 bits & Character string \\
\hline (d) & 00 & 41 & A \\
\hline (d) +1 & 00 & 42 & B \\
\hline (d) +2 & 00 & 43 & C \\
\hline (d) +3 & 00 & 44 & D \\
\hline (d) +4 & 00 & 45 & E \\
\hline (d) +5 & 00 & 46 & F \\
\hline (d) +6 & 00 & 47 & G \\
\hline (d) +7 & 00 & 48 & H \\
\hline
\end{tabular}

\section*{Related devices}
\begin{tabular}{c|c|c}
\hline Device & Name & \multicolumn{1}{c}{ Content } \\
\hline M8161 & Function extension flag & \begin{tabular}{l} 
8-bit processing mode of ASC, RS, ASCI, HEX, CCD instruction \\
OFF : Every 2 characters are stored in the sequence of lower 8 bits, higher 8 bits (2 characters/ \\
word).
\end{tabular} \\
ON : Characters are stored in lower 8 bits character by character (1 character/word).
\end{tabular}

\section*{Cautions}
1. Number of bits occupied in device
1) When extension function is OFF
- The device specified by \(\mathbb{d}\) occupies the value of number of characters \(\div 2\) bits. (The remainder is carried over.)
2) When extension function is ON
- The device specified by \(d\) occupies the same number as the number of characters.

\section*{2. When using RS, ASCI, HEX, CCD}

The extension function flag M8161 is a common flag used in other instructions.
When above instructions are used together with ASC instruction, you must execute the program of turning ON or OFF the M8161 immediately before the ASC instruction so as to avoid its effect.

\section*{3. Object devices are limited.}

A1: FX3U, FX3UC PLCs only are applicable.

\subsection*{7.8.8 PR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction performs parallel output of ASCII code data to the output (Y).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline PR & 16 bits & Continuous &  & PR(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & s & Head device for storing data of ASCII code. & String \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Head device for output data of ASCII code. & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Cons \\
tant
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{Character String
\[
\text { " } \square
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & - & & - & A1 & & & & \(\bullet\) & & & & & \\
\hline (d) & & \(\bullet\) & & & & & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (PR)}

ASCII code stored in lower 8 bits (1 byte) of \(s\) to \(\circlearrowleft+7\) is issued to \(\square\) to \(\mathbb{d}+7\) sequentially in time division character by character.


The following timing chart explains the ASCII code stored in the device specified by \(\mathbb{S}\).
The transmission sequence begins from \(\subseteq=\) "A", and ends with \(\circlearrowleft+7=" H\) ", and 8 bytes are transmitted in total.
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline s & \(\mathrm{s}+1\) & \(\mathrm{~s}+2\) & \(\mathrm{~s}+3\) & \(\mathrm{~s}+4\) & \(\mathrm{~s}+5\) & \(\mathrm{~s}+6\) & \(\mathrm{~s}+7\) \\
\hline \(\mathrm{~A}(\mathrm{H} 41)\) & \(\mathrm{B}(\mathrm{H} 42)\) & \(\mathrm{C}(\mathrm{H} 43)\) & \(\mathrm{D}(\mathrm{H} 44)\) & \(\mathrm{E}(\mathrm{H} 45)\) & \(\mathrm{F}(\mathrm{H} 46)\) & \(\mathrm{G}(\mathrm{H} 47)\) & \(\mathrm{H}(\mathrm{H} 48)\) \\
\hline
\end{tabular}

\section*{2. Timing chart}

(d) +8 Strobe

(d) +9 Execution busy flag

\section*{Type of output signal}
- (d to \(\mathbb{d}+7\) : Transmission outputis the lower bit side, and \(\mathbb{d}+7\) is the higher bit side.
- (d) +8
: Strobe signal
- (d) +9
: Execution busy flag Operation conforms to the timing chart above.

\section*{Extension function}

\section*{1. 16-byte serial output}

By ON/OFF control of special auxiliary relay M8027, the number of characters of output varies in every two times of instruction drive. In the case of M8027=OFF, the operation is 8-byte serial output (fixed in 8 characters), and in the case of \(\mathrm{M} 8027=\mathrm{ON}\), it is 16 -byte serial output ( 1 to 16 characters).
An example of display of 16 characters or less (1 character/byte) is explained by referring to a display device (example: A6FD type external display unit \({ }^{* 1}\) ).
The display data is supposed to be stored in hexadecimal code in D300 to D307, for example.
1) A6FD type external display unit \({ }^{* 1}\) connection example

The PLC shown below is an example of FX2N-16EYT (sink output) connected to FX3U-32M \(\square\).

*1. A6FD type external display unit is out of production since November 2002.
2) Timing chart (When M8027=ON)

* If H00 (NUL code) exists in the data (in 16 characters), one character before HOO (NUL code) is the end character.

\section*{Related devices}
\begin{tabular}{c|c|l}
\hline Device & Name & \\
\hline M8027*1 & PR mode & \begin{tabular}{l} 
OFF : 8-byte serial output (fixed in 8 characters) \\
ON : 16-byte serial output (1 to 16 characters) \\
\hline
\end{tabular} \\
\hline
\end{tabular}
*1. Cleared when changed from RUN to STOP.

\section*{Cautions}

\section*{1. Command input and operation of instruction}

Command input=ON : Even in the midst of continuous ON or pulse instruction execution, when the output of one cycle is over, the execution is terminated. M8029 operates only when M8027=ON.
Command input=OFF:All outputs are OFF.
2. Relation with scan time (operation time)

This instruction is executed in synchronism with the scan time.
If the scan time is short, it is driven by constant scan mode, or if too long, it is driven by using the timer interrupt mode.

\section*{3. Output of PLC}

Use the transistor output for the output of the PLC.
4. If \(\mathbf{0 0 H}\) (NUL) exists in the data (when M8027=ON)

The instruction execution is completed, and the remaining data is not issued.
M8029 remains ON during 1 operation cycle.

\section*{5. Object devices are limited.}

A1: FX3U, FX3uc PLCs only are applicable.

\subsection*{7.8.9 FROM}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\Delta\) & \(\bigcirc\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction reads out the content of buffer memory (BFM) of special extension unit/block to the PLC. If a large quantity of buffer memory (BFM) data is read out in batch by using this instruction, a watchdog timer error may occur. When there is no bad influence for the control if the data is divided and read out, you can use RBFM instruction.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline FROM & 16 bits & Continuous & \begin{tabular}{lr|} 
& \multicolumn{2}{c|}{FROM} \\
EN & ENO- \\
n1 & d \\
-n 2 & \\
-n 3 & \\
\end{tabular} & FROM(EN, n1, n2, n3, d); \\
\hline FROMP & 16 bits & Pulse & \begin{tabular}{lr} 
& \multicolumn{2}{c}{ FROMP } \\
- & ENO- \\
n1 & d- \\
-n 2 & \\
n3 & \\
\hline
\end{tabular} & FROMP(EN, n1, n2, n3, d); \\
\hline DFROM & 32 bits & Continuous & \begin{tabular}{lr|r}
\hline \multicolumn{2}{c|}{ DFROM } & \\
EN & ENO & - \\
-n 1 & d & - \\
n2 & \\
-n 3 & \\
\hline
\end{tabular} & DFROM(EN, n1, n2, n3, d); \\
\hline DFROMP & 32 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DFROMP } \\
EN & ENO \\
n1 & d \\
- \\
-n 2 & \\
n 3 & \\
\hline
\end{tabular} & DFROMP(EN, n1, n2, n3, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & \begin{tabular}{l}
32-bit \\
operation
\end{tabular} \\
\hline \multirow{4}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (n1) & Unit No. of special extension unit/block & ANY16 & ANY \(32{ }^{* 1}\) \\
\hline & (n2) & Transfer origin buffer memory (BFM) number & ANY16 & ANY32*1 \\
\hline & (n3) & Number of transfer points & ANY16 & ANY32*1 \\
\hline & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline Variable & (d) & \begin{tabular}{l}
Transfer destination device \\
- 16-bit operation: \(\mathrm{n}^{3}\) points occupied \\
- 32-bit operation: \(2 \times \mathrm{n}^{3}\) points occupied
\end{tabular} & ANY16 & ANY32 \\
\hline
\end{tabular}
*1. In the case of FXU, FX1N, FX2N, FX2C, FX1NC, FX2NC series, the data type of DFROM, DFROMP of 32-bit operation is ANY16.

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{5}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & & D & R & U \(\square \backslash \square \square\) & V & Z & Modifier & K & H & & & \\
\hline (n1) & & & & & & & & & & & & & & & - & -1 & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (n2) & & & & & & & & & & & & & & & - & -1 & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & - & & - & -1 & & \(\bullet\) & - & \(\bullet\) & & & & & \\
\hline (n3) & & & & & & & & & & & & & & & - & -1 & & & & & \(\bullet\) & - & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}
1. 16-bit operation (FROM, FROMP)
\(\rightarrow\) As for the common terms of FROM/TO instruction, refer to the Common terms of FROM/TO

From special extension (BFM) to PLC (word device)
16-bit data of n3 points starting from buffer memory (BFM) n2 in the special extension unit/block of unit number \(n 1\) is transferred (read out) by the portion of \(n 3\) points starting from the device specified by \((d)\) in the PLC.


\section*{2. 32-bit operation (DFROM, DFROMP)}

From special extension (BFM) to PLC (word device)
32-bit data of \(n 3\) points starting from buffer memory (BFM) [n2+1, n2] in the special extension unit/block of unit number n 1 is transferred (read out) by the portion of n 3 points starting from the device specified by d in the PLC.

*1. This defines the transfer destination device.

\section*{Related devices}
\begin{tabular}{|c|c|c|}
\hline Device & Name & Content \\
\hline M8028 & Interrupt permit flag & \begin{tabular}{l}
Prohibit/permit interruption during execution of FROM/TO instruction. \\
\(\rightarrow\) As for the detail, refer to the following pages "Interrupt accept during execution of FROM/TO (M8028)." \\
OFF : Interrupt prohibit (interrupt executed after FROM/TO instruction process) \\
ON : Interrupt permit
\end{tabular} \\
\hline
\end{tabular}

\section*{Cautions}
1) Bit device digits to be specified by \(d\) should be K1 to K4 in the case of 16-bit operation instruction, and K1 to K8 in the case of 32-bit operation.
2) When handling 32-bit data in structured program, unlike the simple project, you cannot specify the 16-bit device directly. Use the label when handling 32-bit data.
However, the 32-bit counter is a 32-bit long device, and can be specified directly.
Use the global label when specifying the device.
3) FXU PLC supports the instruction in V2.10 or later.
4) FXon PLC does not support the instruction of pulse operation type.

To execute pulse operation, make the instruction execution condition pulse type.
5) Object devices are limited.
©1: FX3U, FX3UC, FX3G PLCs only are applicable.

\section*{Program example}

By using direct specification*1 of FROM instruction or buffer memory, you can transfer (read out) the content of buffer memory (BFM) of special extension unit/block to the digit specification of data register (D), extension register ( \(R\) ), or auxiliary relay (M).
*1. \(F X_{3} \cup, \mathrm{FX}_{3} \cup \mathrm{C}\) PLCs only are available.
Example) Program for reading out BFM\#4 (abnormal station information) of CC-Link/LT master (unit No. 0 fixed) built in FX3Uc-32MT-LT(-2) to D0.
- In the case of FROM instruction
[Structured ladder]


- In the case of MOV instruction
[Structured ladder]
[ST]
MOV(M8000, U0¥G4, D0);
[ST]
FROM(X001, K0, K4, K1, D0);

Program for reading out BFM\#0 to \#3 (remote station connection information) of CC-Link/LT master (unit No. 0 fixed) built in FX3Uc-32MT-LT(-2) to D10 to D13.
- In the case of FROM instruction
[Structured ladder]
[ST]


FROMP(M0, K0, K0, K4, D10);
- In the case of BMOV instruction
[Structured ladder]

[ST]
BMOV(M0, U0¥G0, K4, D10);

Number of transfer points
Unit No. 0
BFM \#0

\section*{Common terms of FROM/TO instruction (detail)}

\section*{Specification content of operand}
1. Unit number n 1 of special extension unit/block

Unit number is used for specifying which equipment is the object of working for FROM/TO instruction.
Setting range: K0 to K7


The unit number is assigned automatically to the special extension unit/block connected to the PLC. The unit number is given from the one closest to the basic unit in the sequence of No. 0, No. 1, No.2, etc. In the case of the FX3Uc-32MT-LT(-2) PLC, since the CC-Link/LT master is built in, the unit number is given from the one closest to the basic unit in the sequence of No. 1, No.2, No. 3, etc.
2. Buffer memory (BFM) number "n2"

In the special extension unit/block, 16-bit RAM is built in, and it is used as the buffer memory.
The buffer memory numbers are \#0 to \#32766, and the content is determined depending on the control purpose of each equipment.
Setting range: K0 to K32766
- When BFM is handled in 32-bit instruction, the specified BFM is lower 16 bits, and the BFM of the next number is higher 16 bits.
Higher 16 bits Lower 16 bits
\begin{tabular}{|c|c|}
\hline BFM \(\# 10\) & BFM \(\# 9\) \\
\hline
\end{tabular}\(\leftarrow\) Specified BFM number
3. Transfer points "n3"

Setting range: K1 to K32767
Number of transfer words is specified by n3.
" \(n=2\) " in a 16-bit instruction indicates the same meaning with " \(n=1\) " in a 32 -bit instruction.


16-bit operation when \(n=5\)


32-bit operation when \(n=2\)

\section*{Interrupt accept during execution of FROM/TO (M8028)}
1. When M8028=OFF

Interrupt is prohibited automatically during execution of FROM/TO instruction, and input interrupt or timer interrupt is not executed.
An interrupt occurring in this period is executed immediately after completion of execution of FROM/TO instruction.
FROM/TO instruction can be used also during the interrupt program.
2. When M8028=ON

When an interrupt occurs during execution of FROM/TO instruction, the execution is suspended, and the interrupt program is executed.
However, FROM/TO instruction cannot be used during interrupt program.

\section*{Handling in the event of occurrence of watchdog timer error}
1. Cause of occurrence of watchdog timer error

Watchdog timer error may occur in the following cases.
1) When many special extension equipments are connected.

In a configuration of a large number of connected units of special extension equipments (positioning, cam switch, link, analog, etc.), the initializing time of the buffer memory executed in PLC RUN mode is long, and the operation time is extended, and a watchdog timer error may occur.
2) When \(\mathrm{FROM} / \mathrm{TO}\) instructions are driven simultaneously.

When many FROM/TO instructions are executed, or when multiple buffer memories are transferred, the operation time is extended, and a watchdog timer error may occur.

\section*{2. Countermeasure}
1) Method of using RBFM, WBFM instruction
\(\rightarrow\) As for BFM divided reading [RBFM], refer to section 7.25.1.
\(\rightarrow\) As for BFM divided writing [WBFM], refer to section 7.25.2.
2) Method of changing the time of watchdog timer

The detection time of the watchdog timer can be changed by rewriting the content of D8000 (watchdog timer time).
By entering the following program, the subsequent sequence programs are monitored by the new watchdog timer time.


Watchdog timer time 300 ms

Watchdog timer refresh
When WDT instruction is not programmed, the value of D8000 is valid during END process.
3) Change of execution timing of \(\mathrm{FROM} / \mathrm{TO}\) instruction

Please shorten the operation time by deviating the execution of FROM/TO instruction.

\section*{Handling of special extension unit/block}

As for the connection method of special extension unit/block, the number of units allowed to be connected, and handling of input and output numbers, please refer to the manual of the PLC main body or the manual of each special extension unit/block.

\subsection*{7.8.10 TO}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\Delta\) & \(\bigcirc\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction writes data from PLC into the buffer memory (BFM) of special extension unit/block.
By this instruction, when data is written into multiple buffer memories (BFM) in batch a watchdog timer error may occur. When there is no bad influence for the control if the data is divided and written in, you can use WBFM instruction.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline TO & 16 bits & Continuous & \begin{tabular}{ll}
-2 & \multicolumn{2}{c}{ TO } \\
-EN & ENO \\
-n 1 & \\
-n 2 & \\
n 3 & \\
\end{tabular} & TO(EN, s, n1, n2, n3); \\
\hline TOP & 16 bits & Pulse &  & TOP(EN, s, n1, n2, n3); \\
\hline DTO & 32 bits & Continuous & \begin{tabular}{ll} 
& \multicolumn{1}{c|}{DTO} \\
-EN & \(\mathrm{ENO}-\) \\
-s \\
-n 1 \\
-n 2 \\
-n 3 & \\
& \\
& \\
&
\end{tabular} & DTO(EN, s, n1, n2, n3); \\
\hline DTOP & 32 bits & Pulse & \begin{tabular}{ll} 
& \multicolumn{1}{c|}{ DTOP } \\
-EN & ENO \\
-s & \\
-n 1 & \\
-n 2 & \\
-n 3 & \\
\end{tabular} & DTOP(EN, s, n1, n2, n3); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow{5}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s) & \begin{tabular}{l}
Transfer source data or device \\
- 16-bit operation: n3 points occupied \\
- 32-bit operation: \(2 \times\) n3 points occupied
\end{tabular} & ANY16 & ANY32 \\
\hline & (n1) & Unit No. of special extension unit/block (Sequentially from the right side of basic unit, K0 to K7) & ANY16 & ANY32*1 \\
\hline & (n2) & Transfer destination buffer memory (BFM) number & ANY16 & ANY \(32{ }^{* 1}\) \\
\hline & (n3) & Number of transfer points & ANY16 & ANY32*1 \\
\hline Output variable & ENO & Execution state & Bit & \\
\hline
\end{tabular}
*1. In the case of FXU, FX1N, FX2N, FX2C, FX1NC, FX2NC series, the data type of DTO, DTOP of 32-bit operation is ANY16.

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Cons \\
tant
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(1 \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (n1) & & & & & & & & & & & & & & - & -1 & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (n2) & & & & & & & & & & & & & & - & \(\Delta 1\) & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & - & -1 & & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (n3) & & & & & & & & & & & & & & - & \(\Delta 1\) & & & & & - & \(\bullet\) & & & \\
\hline
\end{tabular}
© : Refer to "Cautions".

\section*{Function and operation explanation}
1. 16-bit operation (TO, TOP)
\(\rightarrow\) As for common terms of FROM/TO instruction, refer to section 7.8.9.
From PLC (word device) to special extension (BFM)
You can transfer (write) 16-bit data for the portion of n3 points starting from buffer memory (BFM) n2 in special extension unit/block of unit number n1, and for the portion of n3 points starting from the device specified by s in PLC.


\section*{2. 32-bit operation (DTO, DTOP)}

From PLC (word device) to special extension (BFM)
You can transfer (write) 32-bit data for the portion of n3 points starting from buffer memory (BFM) [n2+1, n2] in special extension unit/block of unit number n1, and for the portion of n3 points starting from the device specified by \(\triangle\) in PLC.

*1. This defines transfer destination data or device.

\section*{Related devices}
\begin{tabular}{c|c|c}
\hline Device & Name & \multicolumn{1}{c}{ Content } \\
\hline & & \begin{tabular}{c} 
Prohibit/permit interruption during execution of FROM/TO instruction. \\
M8028
\end{tabular} \\
& Interrupt permit flag & \\
& & \begin{tabular}{l} 
OFF for detail, refer to Subsection 7.8 .9 "Interrupt accept during execution \\
of FROM/TO (M8028)" \\
ON \(:\) Interrupt permit
\end{tabular} \\
\hline
\end{tabular}

\section*{Cautions}
1) About bit device digit specification to be specified by \(s\) Specify K1 to K4 in the case of 16-bit operation instruction, or K1 to K8 in the case of 32-bit operation.
2) When handling 32-bit data in structured program, unlike the simple project, you cannot specify the 16-bit device directly. Use the label when handling 32-bit data.
However, the 32-bit counter is a 32-bit long device, and can be specified directly. Use the global label when specifying the device.
3) FXU PLC supports the instruction in V2.10 or later.
4) FXoN PLC does not support the instruction of pulse operation type. To execute pulse operation, make the instruction execution condition pulse type.
5) Object devices are limited.
©1: FX3U, FX3UC, FX3G PLCs only are applicable.

\section*{Program example}

By using direct specification*1 of TO instruction or buffer memory, you can write in (transfer) the digit specification of data register (D), extension register (R), or auxiliary relay (M) or constants ( \(K, H\) ) to the buffer memory (BFM) of special extension unit/block.
*1. FX3U, FX3UC PLCs only are available.
Example) Program for writing "H0" in BFM \#27 (instruction) of CC-Link/LT master (unit No. 0 fixed) built in the FX3UC-32MT-LT(-2).
- In the case of TO instruction
[Structured ladder]

- In the case of MOV instruction
[Structured ladder]


\section*{[ST]}

TO(M1, H0, K0, K27, K1);

\section*{[ST]}

MOVP(M1, H0, UO¥G27);

\subsection*{7.9 External Device (optional device)}

\subsection*{7.9.1 RS}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction sends and receives data in no-protocol communication by way of a serial port (only the ch1) in accordance with RS-232C or RS-485 provided in the main unit.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline RS & 16 bits & Continuous &  & RS(EN, s, m, n, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & s & Head device storing data to be sent & ANY16 \\
\cline { 2 - 4 } & m & Number of bytes of data to be sent & ANY16 \\
\cline { 2 - 5 } & n & Head device storing received data when receiving is completed & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Number of bytes to be received & ANY16 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\) \\
口"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & - & -1 & & & & - & & & & & \\
\hline (m) & & & & & & & & & & & & & & \(\bullet\) & \(\triangle 1\) & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline ( \({ }^{\text {a }}\) & & & & & & & & & & & & & & - & -1 & & & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & & & & & & & \(\bullet\) & -1 & & & & & - & - & & & \\
\hline
\end{tabular}
: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (RS)}

This instruction sends and receives data in no-protocol communication by way of serial ports in accordance with RS-232C or RS-485 provided in the main unit. \(\rightarrow\) For detailed explanation, refer to the Data Communication Edition manual.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Command input} & \multicolumn{3}{|c|}{RS} & \multirow[b]{3}{*}{Number of bytes to be received} \\
\hline & EN & ENO & & \\
\hline Head device storing data to be sent & S & d & & \\
\hline Number of bytes of data to be sent & m & & & \\
\hline Head device storing received data when receiving is completed & n & & & \\
\hline
\end{tabular}
\(\rightarrow\) For detailed explanation, refer to the Data Communication Edition manual.
\begin{tabular}{c|l}
\hline Device & \multicolumn{1}{|c}{ Name } \\
\hline M8063 & Serial communication error 1 \\
\hline M8121 & Sending wait flag \\
\hline M8122 & Sending request \\
\hline M8123 & Receiving complete flag \\
\hline M8124*1 & Carrier detection flag \\
\hline M8129*2 & Time-out check flag \\
\hline M8161 & 8-bit processing mode \\
\hline
\end{tabular}
\begin{tabular}{c|l}
\hline Device & \multicolumn{1}{c}{ Name } \\
\hline D8120 & Communication format setting \\
\hline D8122 & Remaining number of data to be sent \\
\hline D8123 & Monitor for number of received data \\
\hline D8124 & Header \\
\hline D8125 & Terminator \\
\hline D8129*2 & Time-out time setting \\
\hline D8063 & Error code number of serial communication error 1 \\
\hline D8405*3 & Communication parameter display \\
\hline D8419*3 & Operation mode display \\
\hline
\end{tabular}
*1. Not supported by the FXon PLC.
*2. FXu, FX2C PLCs are applicable at Ver. 3.30 or later.
*3. Not supported by the FX1s, FX1N, FX2N, FX1NC, FX2NC, FXU, FX2C and FXon PLCs.

\section*{System configuration}

To use this instruction, it is necessary to attach one of the products shown in the table below to the main unit. \(\rightarrow\) For the system configuration, refer to the respective PLC Hardware Edition manual. \(\rightarrow\) For detailed explanation, refer to the Data Communication Edition manual.

\section*{Differences between RS instruction and RS2 instruction}

RS2 instruction is not supported by the FX1S, FX1N, FX2N, FX1NC, FX2NC, FXU and FXon PLCs.
\begin{tabular}{l|l|l|l}
\hline \multicolumn{1}{c|}{ Item } & \multicolumn{1}{c|}{ RS2 instruction } & \multicolumn{1}{c|}{ RS instruction } & \multicolumn{1}{c}{ Remarks } \\
\hline Header size & 1 to 4 characters (bytes) & Up to 1 character (byte)
\end{tabular} \begin{tabular}{l} 
For the RS2 instruction, up to 4 characters (bytes) can be \\
specified as a header or terminator.
\end{tabular}

\section*{Cautions}
\(\rightarrow\) For other cautions, refer to the Data Communication Edition manual.
1. For FX3U, FX3UC and FX3g PLCs.
1) \(R S\) instruction can be used for ch1 only (cannot be used for ch2). Ch2 is not provided for the FX1s, FX1N, FX2N, FX1Nc, FX2NC, FXU, FX2C and FXon PLCs.
2) Do not drive two or more RS and/or RS2 instructions for the same port at the same time. FX1S, FX1N, FX2N, FX1NC, FX2NC, FXU, FX2C and FXon PLCs does not support the RS2 instruction.
2. FXU PLC supports the instruction at V3.07 or later.
3. FXon PLC supports the instruction at V1.20 or later.
4. Number of bytes of data to be sent(m), Number of bytes to be received(n)
1) For \(F X_{3 U}, F X_{3} U C, F X_{3 G}, F X_{2 N}\) and \(F X_{2 N C}\) PLCs \(\mathrm{m}, \mathrm{n}\) : 0 to 4096 points (However, " \(m+n\) " should not be more than 8000 points in FX2N and FX2NC PLCs.)
2) For FX1s, FX1n, FX1nc, FXon, FXu and FX2C PLCs \(\mathrm{m}, \mathrm{n}\) : 0 to 256 points

\section*{5. Object devices are limited.}
©1: FX3U, FX3UC, FX3G PLCs only are applicable.

\subsection*{7.9.2 PRUN}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction handles the device number specified by \(\Omega\) and \(\mathbb{d}\) specified by digits as octal number, and transfers data.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{3}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & & ST \\
\hline PRUN & 16 bits & Continuous &  & \(\operatorname{PRUN}(\mathrm{EN}, \mathrm{s}, \mathrm{d})\); & \\
\hline PRUNP & 16 bits & Pulse &  & PRUNP(EN, s, d); & \\
\hline DPRUN & 32 bits & Continuous &  & \(\operatorname{DPRUN}(E N, ~ s, ~ d) ;\) & \\
\hline DPRUNP & 32 bits & Pulse &  & DPRUNP(EN, s, d); & \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow[b]{2}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s) & Specification of digits (the lowest digit of specified device number is 0 .) & ANY16 & ANY32 \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Transfer destination device (the lowest digit of specified device number is 0 .) & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|l|}{System User} & \multirow[t]{2}{*}{Special Unit U \(\square \backslash\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Con stant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\) \\
\(\square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{Pointer} \\
\hline & X & \(\mathbf{Y}\) & M \(\mathbf{T}\) & T C & S & D & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & & \(\bullet\) & & & & & & & & & - & & & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. 16-bit operation(PRUN, PRUNP)

From octal number bit device to decimal number bit device


Octal number bit device(X)


From decimal number bit device to octal number bit device



Octal number bit device( Y )

\section*{2. 32-bit operation(DPRUN, DPRUNP)}

From octal number bit device to decimal number bit device


Octal number bit device( X )


From decimal number bit device to octal number bit device


Decimal number bit device(M)


Octal number bit device(Y)

\subsection*{7.9.3 ASCI}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts HEX code into ASCII code.
Also available are BINDA instruction for converting BIN data into ASCII code, and DESTR instruction for converting binary floating decimal point data into ASCII code.
\(\rightarrow\) As for BINDA instruction, refer to section 7.23.6. \(\rightarrow\) As for DESTR instruction, refer to section 7.12.4.
1. Format and operation, execution form

2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Head device in which HEX code to be converted is stored \\
\cline { 2 - 4 } & s & Number of characters in HEX code to be converted (number of digits) & ANY16 \\
\cline { 2 - 5 } & n & Execution state & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Head device for storing converted ASCII code & Bit \\
\cline { 2 - 5 } & d & &
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{6}{|c|}{System User} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|l|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{\[
\begin{array}{|l}
\text { Con } \\
\text { stant }
\end{array}
\]} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
"口"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y \(\mathbf{M}\) & M 7 & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & -1 & -2 & - & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & & & \\
\hline (d) & & & & & & & & \(\bullet\) & - & \(\bullet\) & - & - & - & -1 & -2 & & & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & \(\bullet\) & -1 & & & & & \(\bullet\) & - & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation}

\section*{1. 16-bit operation(ASCI/ASCIP)}

Of the HEX code stored after the device specified by \(\triangle\), n characters (digits) are converted into ASCII code, and stored in the device after the one specified by \(d\).
In this instruction, the mode usable when converting includes 16 -bit mode and 8 -bit mode. As for the operation of each mode, refer to the following pages.

2. <16-bit conversion mode> When M8161=OFF(M8161 is used commonly with RS, HEX, CCD, CRC instructions)

Each digit of HEX data stored after the device specified by \(s\) is converted into ASCII code, and transferred to lower and higher 8 bits (bytes) each in each device after the one specified by \(\mathbb{d}\). The number of digits (characters) to be converted is specified by n .
The device specified by \(\square\) is divided into lower 8 bits and higher 8 bits, and ASCII data is stored.
M8161 is used commonly with RS, HEX, CCD, CRC instructions. When using in 16 bits, you must keep always OFF.
M8161 is cleared when changed from RUN to STOP.


\section*{Operation}

In the case of the program shown below, the conversion is executed as follows.


\section*{Devices after s}
(D100) \(=0 \mathrm{ABCH}\)
(D101) \(=1234 \mathrm{H}\)
(D102) \(=5678 \mathrm{H}\)

Number of digits (characters) specified and result of conversion
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (n) & \multirow[t]{2}{*}{K1} & \multirow[t]{2}{*}{K2} & \multirow[t]{2}{*}{K3} & \multirow[t]{2}{*}{K4} & \multirow[t]{2}{*}{K5} & \multirow[t]{2}{*}{K6} & \multirow[t]{2}{*}{K7} & \multirow[t]{2}{*}{K8} & \multirow[t]{2}{*}{K9} \\
\hline (d) & & & & & & & & & \\
\hline D 200 lower & C) & B) & A) & 0) & 4) & 3) & 2) & 1) & 8) \\
\hline D 200 higher & & C) & B) & A) & 0) & 4) & 3) & 2) & 1) \\
\hline D 201 lower & & & C) & B) & A) & 0) & 4) & 3) & 2) \\
\hline D 201 higher & & & \multicolumn{2}{|l|}{\multirow[t]{6}{*}{Not changed}} & B) & A) & 0) & 4) & 3) \\
\hline D 202 lower & & & & & C) & B) & A) & 0) & 4) \\
\hline D 202 higher & & & & & & C) & B) & A) & 0) \\
\hline D 203 lower & & & & & & & C) & B) & A) \\
\hline D 203 higher & & & & & & & & C) & B) \\
\hline D 204 lower & & & & & & & & & C) \\
\hline
\end{tabular}

\section*{Bit composition in the case of \(\mathbf{n}=\mathrm{K} 4\)}

D 100=ABCH


D 200
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & 1 & 0 & & 0 & 0 & 0 & 0 & 1 & 0 & 0 & & 1 & 1 & 0 & 0 & 0 & 0 \\
\hline \multicolumn{18}{|c|}{A) \(\rightarrow 41 \mathrm{H}\)} \\
\hline
\end{tabular}

- When issuing as BCD data by printer or the like, before execution of this instruction, you must convert from BIN to BCD.
3. <8-bit conversion mode> When M8161=ON (M8161 is used commonly with RS, HEX, CCD, CRC instructions)
Each digit of HEX data stored after the device specified by \(s\) is converted into ASCII, and stored in lower 8 bits (bytes) in each device after the one specified by (d). The number of digits (characters) to be converted is specified by \(n\).
In the device specified by \(\mathbb{d}\), higher 8 bits are 0 .
M8161 is used commonly with RS, HEX, CCD, CRC instructions. When using in 8 bits, you must keep always ON.
M8161 is cleared when changed from RUN to STOP.

When M8161=ON, 8-bit mode is established, and the conversion is executed as follows.

\begin{tabular}{lll}
\(0)=30 \mathrm{H}\) & \(1)=31 \mathrm{H}\) & \(5)=35 \mathrm{H}\) \\
A) \(=41 \mathrm{H}\) & \(2)=32 \mathrm{H}\) & \(6)=36 \mathrm{H}\) \\
\(\mathrm{B})=42 \mathrm{H}\) & \(3)=33 \mathrm{H}\) & \(7)=37 \mathrm{H}\) \\
\(\mathrm{C})=43 \mathrm{H}\) & \(4)=34 \mathrm{H}\) & \(8)=38 \mathrm{H}\)
\end{tabular}


\section*{Operation}

In the case of the program shown below, the conversion is executed as follows.


Devices after s
(D100) \(=0 \mathrm{ABCH}\)
(D101) \(=1234 \mathrm{H}\)
(D102) \(=5678 \mathrm{H}\)
Number of digits (characters) specified and result of conversion
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (n) & \multirow{2}{*}{K1} & \multirow{2}{*}{K2} & \multirow{2}{*}{K3} & \multirow{2}{*}{K4} & \multirow{2}{*}{K5} & \multirow{2}{*}{K6} & \multirow{2}{*}{K7} & \multirow{2}{*}{K8} & \multirow{2}{*}{K9} \\
\hline (d) & & & & & & & & & \\
\hline D 200 & C) & B) & A) & 0) & 4) & 3) & 2) & 1) & 8) \\
\hline D 201 & & C) & B) & A) & 0) & 4) & 3) & 2) & 1) \\
\hline D 202 & & \multicolumn{2}{|l|}{\multirow[t]{7}{*}{Not changed}} & B) & A) & 0) & 4) & 3) & 2) \\
\hline D 203 & & & & C) & B) & A) & 0) & 4) & 3) \\
\hline D 204 & & & & & C) & B) & A) & 0) & 4) \\
\hline D 205 & & & & & & C) & B) & A) & 0) \\
\hline D 206 & & & & & & & C) & B) & A) \\
\hline D 207 & & & & & & & & C) & B) \\
\hline D 208 & & & & & & & & & C) \\
\hline
\end{tabular}

\section*{Bit composition in the case of \(\mathbf{n}=\mathrm{K} 2\)}

D 100=0ABCH

- When issuing as BCD data by printer or the like, before execution of this instruction, you must convert from BIN to BCD.

\section*{Cautions}
1) FXU PLC supports the instruction at \(V 3.07\) or later. FXoN PLC supports the instruction at V1.20 or later.
2) FXon PLC does not support the instruction of pulse operation type.

To execute pulse operation, make the instruction execution condition pulse type.
3) Object devices are limited.
©1: \(\mathrm{FX}_{3}\), \(\mathrm{FX}_{3} \cup \mathrm{c}, \mathrm{FX} 3 \mathrm{G}\) PLCs only are applicable.
A2: FX3U, FX3Uc PLCs only are applicable.

\subsection*{7.9.4 HEX}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts ASCII code into HEX code.
Also available are DABIN instruction for converting ASCII code into BIN data, and DEVAL instruction for converting ASCII code into binary floating decimal point data.
\(\rightarrow\) As for DABIN instruction, refer to section 7.23.5. \(\rightarrow\) As for DEVAL instruction, refer to section 7.12.5.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline HEX & 16 bits & Continuous &  & HEX(EN, s, n, d); \\
\hline HEXP & 16 bits & Pulse &  & \(\operatorname{HEXP}(\mathrm{EN}, \mathrm{s}, \mathrm{n}, \mathrm{d})\); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Head device in which ASCII code to be converted is stored \\
\cline { 2 - 5 } & s & Number of characters in ASCII code to be converted (number of bytes) & ANY16 \\
\cline { 2 - 5 } & n & Execution state & Ait \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Head device for storing converted HEX code & Bit \\
\cline { 2 - 5 } & & &
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|l|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Con \\
stant
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & c & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & - & - & - & - & - & - & - & -1 & -2 & & & - & - & \(\bullet\) & & & \\
\hline (d) & & & & & & & & & - & - & - & - & - & - & -1 & -2 & - & - & - & & & & & \\
\hline (n) & & & & & & & & & & & & & & \(\bullet\) & -1 & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(HEX/HEXP)}

Of the ASCII code stored after the device specified by \(S\), n characters are converted into HEX code, and stored in the device after the one specified by \(d\). In this instruction, the mode usable when converting includes 16 -bit mode and 8 -bit mode. As for the operation of each mode, refer to the following pages.

2. <16-bit conversion mode> When M8161=OFF(M8161 is used commonly with RS, ASCI, CCD, CRC instructions)
ASCII characters stored in higher and lower 8 bits (bytes) in the device specified by \(\Omega\) are converted into HEX data, and transferred to the device specified by \(\square\) in every four digits. The number of characters to be converted is specified by n .
M8161 is used commonly with RS, ASCI, CCD, CRC instructions. When using in 16 bits, you must keep always OFF.
M8161 is cleared when changed from RUN to STOP.


\section*{Operation}

In the case of the program shown below, the conversion is executed as follows.


Conversion source data
\begin{tabular}{c|c|c}
\hline s & ASCII code & HEX conversion \\
\hline D 200 lower & 30 H & 0 \\
\hline D 200 higher & 41 H & A \\
\hline D 201 lower & 42 H & B \\
\hline D 201 higher & 43 H & C \\
\hline D 202 lower & 31 H & 1 \\
\hline D 202 higher & 32 H & 2 \\
\hline D 203 lower & 33 H & 3 \\
\hline D 203 higher & 34 H & 4 \\
\hline D 204 lower & 35 H & 5 \\
\hline
\end{tabular}

Number of characters specified and result of conversion
"." is 0 .

\begin{tabular}{c|c|c|c}
\cline { 3 - 4 } & & 0 ABCH & 1234 H \\
\hline 9 & \(\ldots 0 \mathrm{H}\) & ABC 1 H & 2345 H \\
\hline
\end{tabular}
- When the input data is BCD, after execution of this instruction, you must convert from BCD to BIN.
- In the case of HEX instruction, if the data stored in the device specified by \(S\) is not ASCII code, it is an operation error, and HEX conversion is disabled. In particular, if M8161 is OFF, you must store the ASCII code also in the higher 8 bits of the device specified by s .
3. <8-bit conversion mode> When M8161=ON(M8161 is used commonly with RS, ASCI, CCD, CRC instructions)
ASCII characters stored in lower 8 bits in \(s\) are converted into HEX data, and transferred to \(\mathbb{d}\) in every four digits. The number of characters to be converted is specified by n .
M8161 is used commonly with RS, ASCI, CCD, CRC instructions. When using in 8 bits, you must keep always ON.
M8161 is cleared when changed from RUN to STOP.


\section*{Operation}

In the case of the program shown below, the conversion is executed as follows.


\section*{Source data}

Conversion source data
\begin{tabular}{c|c|c}
\hline S & ASCII code & HEX conversion \\
\hline D 200 & 30 H & 0 \\
\hline D 201 & 41 H & A \\
\hline D 202 & 42 H & B \\
\hline D 203 & 43 H & C \\
\hline D 204 & 31 H & 1 \\
\hline D 205 & 32 H & 2 \\
\hline D 206 & 33 H & 3 \\
\hline D 207 & 34 H & 4 \\
\hline D 208 & 35 H & 5 \\
\hline
\end{tabular}

Number of characters specified and result of conversion
"." is 0 .

\begin{tabular}{|c|c|c|c|}
\hline 7 & & . OABH & C 123 H \\
\hline 8 & & OABCH & 1234H \\
\hline 9 & ... OH & ABC1H & 2345H \\
\hline
\end{tabular}

- When the input data is BCD, after execution of this instruction, you must convert from BCD to BIN.

\section*{Cautions}
1) FXU PLC supports the instruction at V 3.07 or later.

FXON PLC supports the instruction at V1.20 or later.
2) FXon PLC does not support the instruction of pulse operation type.

To execute pulse operation, make the instruction execution condition pulse type.
3) Object devices are limited.

A1: FX3U, FX3UC, FX3G PLCs only are applicable.
A2: \(F_{3} \cup\), FX \(_{3} \cup\) PLCs only are applicable.

\subsection*{7.9.5 CCD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction calculates the horizontal parity value or check sum value of error check method used in communication or the like. The error check method also includes cyclic redundancy check (CRC). Use the CRC instruction when determining the CRC value.
\(\rightarrow\) As for CRC instruction, refer to section 7.18.4. \(\rightarrow\) As for complementary number [NEG instruction], refer to section 7.3.10.
1. Format and operation, execution form

2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
\multirow{2}{*}{ variable }
\end{tabular}} & EN & Execution condition & Bead object device \\
\cline { 2 - 4 } & S & Number of data (n=1 to 256) & ANY16 \\
\cline { 2 - 5 } & n & Execution state & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & d & Head storage destination device of calculated data \\
\cline { 2 - 5 } & & & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|l|}{System User} & \multirow[t]{2}{*}{Special Unit U \(\square\) IG \(\square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Con stant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y M & M T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & \(\bullet\) & \(\bullet\) & - & - & \(\bullet\) & - & \(\bullet\) & -1 & 42 & & & - & & & & & \\
\hline (d) & & & & & & & & - & - & - & \(\bullet\) & - & - & \(\triangle 1\) & & & & \(\bullet\) & & & & & \\
\hline ( m & & & & & & & & & & & & & \(\bullet\) & -1 & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}
©: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation(CCD/CCDP)}

The addition data and horizontal parity of the data stored in the device specified by \(s\) are calculated, and the addition data and the horizontal parity are stored in the device specified by d.
In this instruction, the mode usable when calculating includes 16 -bit mode and 8 -bit mode. As for the operation of each mode, refer to the following pages.

2. <16-bit conversion mode> When M8161=OFF(M8161 is used commonly with RS, ASCI, HEX, CRC instructions)
Of the data of \(n\) points starting from the device specified by \(\triangle\), the addition data and the horizontal parity data of higher and lower 8 bits are stored in the device specified by \(d\).
M8161 is used commonly with RS, ASCI, HEX, CRC instructions. When using in 16 bits, you must keep always OFF.
M8161 is cleared when changed from RUN to STOP.


\section*{Example of 16-bit conversion}

In the case of the program shown below, the conversion is executed as follows.

\begin{tabular}{l|ll}
\hline \multicolumn{1}{|c|}{ (s } & \multicolumn{2}{|c}{ Example of data content } \\
\hline D 100 lower & K100 \(=01100100\) \\
\hline D 100 higher & K111 \(=01101111\) \\
\hline D 101 lower & K100 \(=01100100\) \\
\hline D 101 higher & K 98 \(=01100010\) \\
\hline D 102 lower & K123 \(=01111011\) \\
\hline D 102 higher & K 66 & \(=01000010\) \\
\hline D 103 lower & K100 & \(=01100100\) \\
\hline D 103 higher & K 95 & \(=01011111\) \\
\hline D 104 lower & K210 & \(=11010010\) \\
\hline D 104 higher & K 88 & \(=01011000\) \\
\hline Total & K1091 \\
\hline Horizontal parity & & 100001011 \\
\hline
\end{tabular}

When the number of " 1 " is an even number, the horizontal parity is 0 .

D0 \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline
\end{tabular}
D 1 \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{tabular}
3. <8-bit conversion mode> When M8161=ON(M8161 is used commonly with RS, ASCI, HEX, CRC instructions)
Of the data of \(n\) points (lower 8 bits only) starting from the device specified by \(s\), the addition data and the horizontal parity data are stored in the device specified by \(\mathbb{d}\).
M8161 is used commonly with RS, ASCI, HEX, CRC instructions. When using in 8 bits, you must keep always ON.
M8161 is cleared when changed from RUN to STOP.


\section*{Example of 8-bit conversion}

In the case of the program shown below, the conversion is executed as follows.

\begin{tabular}{l|ll}
\hline \multicolumn{1}{|c|}{s} & \multicolumn{2}{|c}{ Example of data content } \\
\hline D 100 & K100 \(=01100100\) \\
\hline D 101 & K111 \(=0110111(1)\) \\
\hline D 102 & K100 \(=01100100\) \\
\hline D 103 & K 98 \(=01100010\) \\
\hline D 104 & K123 \(=01111011\) \\
\hline D 105 & K 66 & \(=01000010\) \\
\hline D 106 & K100 & \(=01100100\) \\
\hline D 107 & K 95 & \(=010111111\) \\
\hline D 108 & K210 & \(=11010010\) \\
\hline D 109 & K 88 & \(=01011000\) \\
\hline Total & K1091 \\
\hline Horizontal parity & & \\
\hline
\end{tabular}

When the number of " 1 " is an odd number, the horizontal parity is 1 .
When the number of " 1 " is an even number, the horizontal parity is 0 .

D 0 \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline
\end{tabular}

D 1 \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{tabular}

\section*{Cautions}
1) FXU PLC supports the instruction at \(V 3.07\) or later.

FX0N PLC supports the instruction at V1.20 or later.
2) FXon PLC does not support the instruction of pulse operation type.

To execute pulse operation, make the instruction execution condition pulse type.
3) Object devices are limited.
©1: \(\mathrm{FX}_{3}\), \(\mathrm{FX}_{3} \cup \mathrm{c}, \mathrm{FX} 3 \mathrm{G}\) PLCs only are applicable.
A2: \(\mathrm{FX}_{3}\), FX3uc PLCs only are applicable.

\subsection*{7.9.6 VRRD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\times\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction reads out the value determined by the variable resistor.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline VRRD & 16 bits & Continuous & \begin{tabular}{lr}
-EN & ENO \\
-s & d \\
\hline
\end{tabular} & \(\operatorname{VRRD}(\mathrm{EN}, \mathrm{s}, \mathrm{d})\); \\
\hline VRRDP & 16 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ VRRDP } \\
-EN & ENO \\
-s & d \\
\hline
\end{tabular} & \(\operatorname{VRRDP}(E N, ~ s, ~ d) ;\) \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & s & Variable resistor No. to be read out & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 4 } & d & Storage destination of variable resistor value & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|l|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square \mathbf{I G}\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Con stant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{Character String
} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & -1 & \(\triangle 1\) & & & & \(\bullet\) & \(\bullet\) & - & & & \\
\hline (d) & & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & - & - & -1 & & - & \(\bullet\) & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}


The analog value of variable resistor No. is converted into BIN 8 bits, and 0 to 255 are transferred to DO.
As an application example, D0 is used as timer preset value.
The analog timer is obtained by this operation.
As the timer constant value, if a value of more than 256 is necessary, the product of take-in value multiplied by the constant by MUL instruction is set indirectly as the timer constant.

\section*{Cautions}
1) FX1NC, FX2NC PLCs are not provided with variable resistors for reading out by this instruction, and hence do not function even if programmed.
2) FX3G PLC supports the instruction at V1.10 or later.
3) Object devices are limited

A1: FX3G PLCs only are applicable.

\section*{Program example}

Variable resistor values are read out sequentially.
Depending on variable resistors VR0 to VR7, the specified values of VRRD instruction are K0 to K7.
In the example below, being decorated by index ( \(Z=0\) to 7 ), KOZ is K0 to K7.
[Structured ladder]


\subsection*{7.9.7 VRSC}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\times\) & \(\Delta\) & \(\Delta\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction reads out the value determined in the variable resistor graduations.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline VRRD & 16 bits & Continuous &  & VRSC(EN, s, d); \\
\hline VRRDP & 16 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{VRSCP} \\
-EN & ENO \\
s & d \\
\hline
\end{tabular} & VRSCP(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & s & Variable resistor number for reading out the graduations & ANY16 \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 4 } & d & Storage destination of variable resistor graduations & ANY16 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|l|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{c|}
\hline \begin{tabular}{c} 
Special \\
Unit
\end{tabular} \\
U \(\square \backslash \square \square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline Real \\
Number
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Character \\
String
\end{tabular} \\
\hline\(" \square "\) \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M T & C & S & & \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & -1 & -1 & & & & \(\bullet\) & - & \(\bullet\) & & & \\
\hline (d) & & \(\bullet\) & \(\bullet\) & & \(\bullet\) & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & -1 & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & \\
\hline
\end{tabular}
© : Refer to "Cautions".

\section*{Function and operation explanation}


This instruction reads the value of a variable analog potentiometer on the variable analog potentiometer board attached to the main unit as a numeric value in the range from 0 to 10 .
However, the actual scale value does not always correspond to the switching position of the variable analog potentiometer scale (0 to 10). This instruction converts into a binary value the scale value of a variable analog potentiometer specified in \(\circlearrowleft\), and transfers the converted binary value to d.

\section*{Cautions}
1) FX1NC, FX2NC PLCs are not provided with variable resistors for reading out by this instruction, and hence do not function even if programmed.
2) \(F X_{3 G}\) PLC supports the instruction at V1.10 or later.
3) Object devices are limited

A1: FX3G PLCs only are applicable.

\section*{Program example}

This is an example of use as rotary switch.
Depending on variable resistor graduations 0 to 10, any one of auxiliary relays M0 to M10 is turned ON. By DECO instruction, the auxiliary relays are occupied from M0 to M15.
[Structured ladder]


\section*{[ST]}

VRSC(X000, K1, D1);
DECO(X001, D1, K4, M0);
OUT(MO, ‥);
OUT(M1, …);


OUT(M10, ‥);

MO
ON at graduation 0
M1
\(\stackrel{-}{\square}\)
ON at graduation 1
\(\}\)
M10
M10


ON at graduation 10

\subsection*{7.9.8 RS2}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction transmits and receives data by no-procedure communication via serial port of RS-232C or RS-485 installed in the basic unit.
In the case of FX3G PLC, data can be transmitted and received by no-procedure communication also via standard built-in port (RS-422).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline RS2 & 16 bits & Continuous & \begin{tabular}{lr|} 
& \multicolumn{2}{c}{RS 2} \\
-EN & \(\mathrm{ENO}-\) \\
-s & \(\mathrm{d}-\) \\
-m & \\
-n & \\
-n 1 & \\
&
\end{tabular} & RS2(EN, s, m, n, n1, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{5}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s) & \begin{tabular}{l}
Head device in which transmission data is stored \\
- 16 -bit processing mode: \(m \div 2\) points \({ }^{* 1}\) occupied
\end{tabular} & ANY16 \\
\hline & m & Number of transmission data bytes [Setting range: 0 to 4096] & ANY16 \\
\hline & n & Number of reception data bytes [Setting range: 0 to 4096] & ANY16 \\
\hline & (n1) & Used channel number [Setting content: K0: ch0, K1: ch1, K2: ch2] \({ }^{*}\) & ANY16 \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & \begin{tabular}{l}
Head device for storing reception data upon completion of reception \\
- 16 -bit processing mode: \(\mathrm{n} \div 2\) points \({ }^{* 1}\) occupied
\end{tabular} & ANY16 \\
\hline
\end{tabular}
*1. Rounding up below the decimal point
*2. In the case of 14-point or 24-point type of FX3G PLC, ch2 cannot be used. Ch0 is applicable to FX3G PLC only.

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{8}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Special \\
Unit
\end{tabular} \\
U \(\square \backslash \square \square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Const ant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Character \\
String
\end{tabular} \\
\hline\(" \square "\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & & - & - & & & & \(\bullet\) & & & & & \\
\hline (m) & & & & & & & & & & & & & & & - & - & & & & & - & \(\bullet\) & & & \\
\hline (d) & & & & & & & & & & & & & & & - & - & & & & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & & - & - & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (n2) & & & & & & & & & & & & & & & & & & & & & - & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation(RS2)}

This instruction transmits and receives data by no-procedure communication via serial port of RS-232C or RS-485 installed in the basic unit.
\(\rightarrow\) As for the detailed explanation, refer to the communication control manual.


\section*{Related devices}
\(\rightarrow\) As for the detailed explanation, refer to the communication control manual.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Device} & \multirow[b]{2}{*}{Name} \\
\hline cho \({ }^{* 1}\) & ch1 & ch2 \({ }^{* 1}\) & \\
\hline M8371 & M8401 & M8421 & Transmission waiting flag*2 \\
\hline M8372 & M8402 & M8422 & Transmission request \({ }^{*}{ }^{2}\) \\
\hline M8373 & M8403 & M8423 & Reception complete flag \({ }^{*}\) \\
\hline - & M8404 & M8424 & Carrier detection flag \\
\hline - & M8405 & M8425 & Data set ready (DSR) flag*3 \\
\hline - & - & - & - \\
\hline M8379 & M8409 & M8429 & Time out judging flag \\
\hline - & - & - & - \\
\hline M8062 & M8063 & M8438 & Serial communication error \\
\hline
\end{tabular}
\begin{tabular}{c|c|c|l}
\hline \multicolumn{3}{|c|}{ Device } & \multicolumn{2}{|c}{ Name } \\
\cline { 1 - 3 } ch0*1 \(^{*}\) & ch1 & ch2*1 \(^{*}\) & \multicolumn{1}{c}{-} \\
\hline D8370 & D8400 & D8420 & Communication format setting \\
\hline- & - & - & \multicolumn{1}{c}{-} \\
\hline D8372 & D8402 & D8422 & Transmission data remainder points \({ }^{* 2}\) \\
\hline D8373 & D8403 & D8423 & Reception points monitor2 \({ }^{*}\) \\
\hline D8375 & D8405 & D8425 & Communication parameter display \\
\hline D8379 & D8409 & D8429 & Time out time setting \\
\hline D8380 & D8410 & D8430 & Headers 1, 2 \\
\hline D8381 & D8411 & D8431 & Headers 3, 4 \\
\hline D8382 & D8412 & D8432 & Terminators 1, 2 \\
\hline D8383 & D8413 & D8433 & Terminators 3, 4 \\
\hline D8384 & D8414 & D8434 & Reception sum (reception data) \\
\hline D8385 & D8415 & D8435 & Reception sum (calculation result) \\
\hline D8386 & D8416 & D8436 & Transmission sum \\
\hline D8389 & D8419 & D8439 & Operation mode display \\
\hline D8062 & D8063 & D8438 & \begin{tabular}{l} 
Error code number of serial \\
communication error
\end{tabular} \\
\hline
\end{tabular}
*1. ch0 is applicable to FX3G PLC only.
In the case of 14-point or 24-point type of FX3G PLC, ch2 cannot be used.
*2. Cleared when changed from RUN to STOP.
*3. FX3U, FX3UC PLCs are applicable at Ver. 2.30 or later.

\section*{System configuration}

In order to use this instruction, you must install any one of the following products in the basic unit. \(\rightarrow\) As for the system configuration, refer to the hardware manual of the corresponding PLC main unit. \(\rightarrow\) As for the detailed explanation, refer to the communication control manual.
\begin{tabular}{l|l|l}
\hline \multicolumn{1}{c|}{ PLC } & \multicolumn{1}{|c}{\begin{tabular}{c} 
Type of \\
communication
\end{tabular}} & \multicolumn{1}{c}{ Option } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
FX3U, \\
FX3UC-32MT-LT(-2)
\end{tabular}} & \begin{tabular}{l} 
RS-232C \\
communication
\end{tabular} & FX3U-232-BD or FX3U-232ADP(-MB) \\
\cline { 2 - 3 } & \begin{tabular}{l} 
RS-485 \\
communication
\end{tabular} & FX3U-485-BD or FX3U-485ADP(-MB) \\
\hline \multirow{3}{*}{ FX3UC(D, DSS) } & \begin{tabular}{l} 
RS-232C \\
communication
\end{tabular} & FX3U-232ADP(-MB) \\
\cline { 2 - 3 } & \begin{tabular}{l} 
RS-485 \\
communication
\end{tabular} & FX3U-485ADP(-MB) \\
\hline \multirow{3}{*}{ FX3G } & \begin{tabular}{l} 
RS-232C \\
communication
\end{tabular} & \begin{tabular}{l} 
FX3G-232-BD or FX3U-232ADP(-MB) (FX3G-CNV-ADP is needed) \\
RS-232C/RS-422 converter1 (FX-232AW, FX-232AWC, FX-232AWC-H)
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l} 
RS-485 \\
communication
\end{tabular} & FX3G-485-BD or FX3U-485ADP(-MB) (FX3G-CNV-ADP is needed)
\end{tabular}
*1. Required to use ch0 (standard built-in RS-422 port) in FX3G PLCs.
Difference between RS instruction and RS2 instruction
\begin{tabular}{l|l|l|l}
\hline \multicolumn{1}{c|}{ Item } & \multicolumn{1}{c|}{ RS2 instruction } & \multicolumn{1}{c}{ RS instruction } & \multicolumn{1}{c}{ Remarks } \\
\hline Header size & 1 to 4 characters (bytes) & Up to 1 character (byte) & \multicolumn{1}{c}{\begin{tabular}{l} 
For the RS2 instruction, up to 4 characters \\
(bytes) can be specified as a header or \\
terminator.
\end{tabular}} \\
\hline Terminator size & 1 to 4 characters (bytes) & Up to 1 character (byte) & \begin{tabular}{l} 
For the RS2 instruction, the check sum can be \\
automatically attached to the sent and received
\end{tabular} \\
\hline \begin{tabular}{l} 
Attachment of check \\
sum
\end{tabular} & \begin{tabular}{l} 
The check sum can be \\
automatically attached. \\
In this case, however, make sure to use a \\
terminator with the communication frame to be \\
sent and received.
\end{tabular} \\
\begin{tabular}{l} 
Used channel \\
number
\end{tabular} & ch1 & \begin{tabular}{l} 
The check sum should \\
attached by a user program.
\end{tabular} & \begin{tabular}{l} 
In RS2 instruction is as follows: \\
Ch2 is not available in 14-point and 24-point \\
type FX3G PLCs. \\
Ch0 is available only in FX3G PLCs.
\end{tabular} \\
\hline
\end{tabular}

\section*{Function change by version}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Corresponding version} & \multirow[b]{2}{*}{Item} & \multirow[b]{2}{*}{Outline of function} \\
\hline FX3G & FX3U & FX3UC & & \\
\hline \multirow{2}{*}{Ver. 1.00 or later} & \multirow{2}{*}{Ver. 2.30 or later} & \multirow{2}{*}{Ver. 2.30 or later} & ch1 Data set ready (DSR) flag & When DR (DSR) signal of ch1 is ON, special device M8405 is turned ON. \\
\hline & & & \begin{tabular}{l}
ch2 \\
Data set ready (DSR) flag
\end{tabular} & When DR (DSR) signal of ch2 is ON, special device M8425 is turned ON. \\
\hline
\end{tabular}

\section*{Cautions}
\(\rightarrow\) As for other cautions, refer to the communication control manual.
1) With RS, RS2 instructions, do not drive the same port simultaneously by plural instructions.
2) You cannot use RS, RS2 instructions, and IVCK, IVDR, IVRD, IVWR, IVBWR instructions on the same port.
3) When using the header or terminator, please set the data of the header or terminator in the special \(D\) before driving the RS2 instruction. Do not change the values of the header or terminator during driving of RS2 instruction.

\subsection*{7.9.9 PID}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction executes PID control for changing the output values depending on the change value of the input.
\(\rightarrow\) As for the detail, refer to the analog control manual.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline PID & 16 bits & Continuous &  & PID(EN, s1, s2, s3, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{4}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s1) & Data register for storing the target value (SV) & ANY16 \\
\hline & s2) & Data register for storing the measured value (PV). & ANY16 \\
\hline & (s3) & Data register for storing the parameter [29 points occupied] \({ }^{* 1}\) & ANY16 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Data register for storing the output value (MV) & ANY16 \\
\hline
\end{tabular}
*1. Variable depending on the setting content of the parameter.

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System User} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|l|}{System User} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special Unit \\
U \(\square\) IG
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Con stant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & & & \(\bullet\) & \(\triangle 1\) & -2 & & & & & & & & \\
\hline (s2) & & & & & & & & & & & & & & \(\bullet\) & \(\triangle 1\) & 42 & & & & & & & & \\
\hline (3) & & & & & & & & & & & & & & \(\bullet\) & \(\triangle 1\) & & & & & & & & & \\
\hline (3) & & & & & & & & & & & & & & \(\bullet\) & \(\triangle 1\) & 42 & & & & & & & & \\
\hline
\end{tabular}
: Refer to "Cautions".

\section*{Function and operation explanation}
1. 16-bit operation(PID)

When the program is executed by setting the target value of the device specified by s1, the measured value of the device specified by s2, and the parameter of the device specified by s3, at every sampling time of the device specified by \(s 3\), the calculation result \((\mathrm{MV})\) is stored in the output value of the device specified by \((d\).

2. Setting items
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Setting items} & Content & No. of points occupied \\
\hline (s1) & Target value(SV) & \begin{tabular}{l}
- To set the target value (SV). \\
- PID instruction does not change the contents of setting. \\
- Cautions when using auto-tuning (limit cycle method) If the target value for auto-tuning and the target value for PID control are different, the value to which the bias value is added is set, and the actual target value must be stored when the auto-tuning flag is turned OFF.
\end{tabular} & 1 point \\
\hline (s2) & Measured value(PV) & Input value of PID operation. & 1 point \\
\hline (s3) & Parameter** & \begin{tabular}{l}
1) Auto-tuning: In the case of limit cycle method \\
The devices are occupied by 29 points from the head device specified by \\
2) Auto-tuning: In the case of step response method \\
a) Action setting (ACT) setting: When all of bit1, bit2, bit5 are other than "0" \\
The devices are occupied by 25 points from the head device specified by \\
b) Action setting (ACT) setting: When all of bit1, bit2, bit5 are " 0 " \\
The devices are occupied by 20 points from the head device specified by
\end{tabular} & \begin{tabular}{l}
29 points \\
25 points \\
20 points
\end{tabular} \\
\hline (s3) & Output value(MV) & \begin{tabular}{l}
1) In the case of PID control (in ordinary processing) \\
The initial output value is set at the user side before instruction drive. \\
Thereafter, operation results are stored. \\
2) Auto-tuning: In the case of limit cycle method ULV value or LLV value is automatically issued during auto-tuning, and specified MV value is set after auto-tuning. \\
3) Auto-tuning: In the case of step response method Please set the step output value at the user side before instruction drive. During auto-tuning, the MV output cannot be changed at the PID instruction side.
\end{tabular} & 1 point \\
\hline
\end{tabular}
*1. When the auto-tuning is not used, the same number of points as in the step response method are occupied.
3. List of parameters (s3) to (s3)+28
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Setting items} & Content of setting & Remarks \\
\hline (53) & \multicolumn{2}{|l|}{Sampling time(TS)} & 1 to 32767 [ms] & Value shorter than operation cycle cannot be executed. \\
\hline \multirow{8}{*}{(s3) +1} & \multirow{8}{*}{Action setting (ACT)} & bit0 & 0: Normal action 1:Reverse action & Direction of action \\
\hline & & bit1 & \begin{tabular}{l}
0 : Input change amount alarm absent \\
1: Input change amount alarm valid
\end{tabular} & \\
\hline & & bit2 & \begin{tabular}{l}
0: Output change amount alarm absent \\
1: Output change amount alarm valid
\end{tabular} & Do not turn ON bit2 and bit5 simultaneously. \\
\hline & & bit3 & Not usable. & \\
\hline & & bit4*2 & \begin{tabular}{l}
0: Auto-tuning inaction \\
1: Auto-tuning execute
\end{tabular} & \\
\hline & & bit5 \({ }^{*}\) & \begin{tabular}{l}
0: Output value upper and lower limit setting absent \\
1: Output value upper and lower limit setting valid
\end{tabular} & Do not turn ON bit2 and bit5 simultaneously. \\
\hline & & bit6 \({ }^{*}\), *3 & \begin{tabular}{l}
0 : Step response method \\
1: Limit cycle method
\end{tabular} & Selection of auto-tuning mode \\
\hline & & bit7 to bit15 & Not usable. & \\
\hline (s3) +2 & \multicolumn{2}{|l|}{Input filter constant ( \(\alpha\) )} & 0 to 99 [\%] & No input filter in the case of 0 \\
\hline (s3) +3 & \multicolumn{2}{|l|}{Proportional gain (KP)} & 1 to 32767 [\%] & \\
\hline (s3) +4 & \multicolumn{2}{|l|}{Integral time(TI)} & 0 to 32767 [ \(\times 100 \mathrm{~ms}\) ] & Handled as \(\infty\) in the case of 0 (No integral) \\
\hline (s3) +5 & \multicolumn{2}{|l|}{Differential gain (KD)} & 0 to 100 [\%] & No differential gain in the case of 0 \\
\hline (s3) +6 & \multicolumn{2}{|l|}{Differential time(TD)} & 0 to 32767 [ \(\times 10 \mathrm{~ms}\) ] & No differentiation in the case of 0 \\
\hline \[
\begin{aligned}
& s 3+7 \\
& : \\
& s 3+19
\end{aligned}
\] & \multicolumn{4}{|l|}{Occupied by the internal processing of PID operation. Do not change the data.} \\
\hline (s3) \(+20^{* 1}\) & \multicolumn{2}{|l|}{Input change amount (increase side) alarm setting value} & 0 to 32767 & Direction of action(ACT): valid if s3 + 1 bit 1 is 1 \\
\hline (s3) \(+21^{* 1}\) & \multicolumn{2}{|l|}{Input change amount (decrease side) alarm setting value} & 0 to 32767 & Direction of action(ACT): valid if s3 + 1 bit 1 is 1 \\
\hline
\end{tabular}
*1. s3 +20 to +24 will be occupied in the case of bit1 \(=1\), bit2 \(=1\), or bit5 \(=1\) of (s3) +1 action setting (ACT)
*2. FXu, FX2C PLCs are not usable.
*3. FX1s, FX1N, FX2n, FX1NC, FX2nc PLCs are not usable.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Setting items} & Content of setting & Remarks \\
\hline \multirow[b]{2}{*}{(s3) \(+22^{* 1}\)} & \multicolumn{2}{|l|}{Output change amount (increase side) alarm setting value} & 0 to 32767 & \begin{tabular}{l}
Direction of action (ACT): \\
s3) +1 bit2 \(=1\), bit5 \(=0\); valid
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{Output upper limit setting value} & -32768 to 32767 & \begin{tabular}{l}
Direction of action (ACT): \\
(s3) +1 bit2 \(=0\), bit5 \(=1\); valid
\end{tabular} \\
\hline \multirow[b]{2}{*}{(s3) \(+23 * 1\)} & \multicolumn{2}{|l|}{Output change amount (decrease side) alarm setting value} & 0 to 32767 & \begin{tabular}{l}
Direction of action (ACT): \\
(s3) +1 bit2 \(=1\), bit5 \(=0\); valid
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{Output lower limit setting value} & -32768 to 32767 & \begin{tabular}{l}
Direction of action (ACT): \\
(s3) +1 bit2 \(=0\), bit5 \(=1\); valid
\end{tabular} \\
\hline \multirow{4}{*}{(s3) \(+24^{* 1}\)} & \multirow{4}{*}{Alarm output} & bit0 & \begin{tabular}{l}
0 : Input change amount (increase side) not over \\
1: Input change amount (increase side) over
\end{tabular} & \begin{tabular}{l}
Direction of action (ACT): \\
s3) +1 bit1 \(=1\) or bit2 \(=1\); valid
\end{tabular} \\
\hline & & bit1 & \begin{tabular}{l}
0 : Input change amount (decrease s \\
1: Input change amount (decrease sid
\end{tabular} & \begin{tabular}{l}
de) not over \\
de) over
\end{tabular} \\
\hline & & bit2 & \begin{tabular}{l}
0: Output change amount (increase \\
1: Output change amount (increase
\end{tabular} & side) not over side) over \\
\hline & & bit3 & \begin{tabular}{l}
0: Output change amount (decrease \\
1: Output change amount (decrease
\end{tabular} & side) not over side) over \\
\hline \multicolumn{5}{|l|}{The following setting is required when using the limit cycle method (in the case of action direction (ACT) b6: ON).} \\
\hline (s3) \(+25^{* 2}\) & \multicolumn{2}{|l|}{PV value threshold (hysteresis) width (SHPV)} & To be set according to fluctuation of measured value (PV). & \multirow{4}{*}{\begin{tabular}{l}
Action setting (ACT) b6: \\
Occupied when limit cycle method (ON) is selected.
\end{tabular}} \\
\hline (s3) \(+26^{* 2}\) & \multicolumn{2}{|l|}{Output value upper limit (ULV)} & Setting of maximum output value (ULV) of output value (MV) & \\
\hline (s3) \(+27^{*} 2\) & \multicolumn{2}{|l|}{Output value lower limit (LLV)} & Setting of minimum output value (LLV) of output value (MV) & \\
\hline (s3) \(+28^{*} 2\) & \multicolumn{2}{|l|}{Weight setting parameter from end of tuning cycle to start of PID control (KW)} & -50 to 32717\% & \\
\hline
\end{tabular}
*1. s3 +20 to +24 will be occupied in the case of bit1 \(=1\), bit2 \(=1\), or bit5 \(=1\) of s3 +1 action setting (ACT)
*2. FX2N, FX2NC, FX1N, FX1NC, FX1s, FXu, FX2C PLCs are not usable.

\section*{Cautions}
1. Cautions when using a plurality of instructions

Possible to execute plural times simultaneously (the number of loops is not limited), but you must be careful so that the device numbers may not be overlapped in the devices used in s3 or \(d\) used in operation.

\section*{2. Number of parameters s3 occupied}
1) In the case of limit cycle method
- Devices are occupied by 29 points from the head device specified by s3.
2) In the case of step response method
- Action setting (ACT) setting: when all of bit1, bit2, bit5 are other than "0" Devices are occupied by 25 points from the head device specified by s3.
- Action setting (ACT) setting: when all of bit1, bit2, bit5 are "0" Devices are occupied by 20 points from the head device specified by s3.

\section*{3. When specifying a device in power failure hold region}

As for the output value (MV) of PID instruction, specify the data register \((d)\) excluding the power failure hold region.
(When specifying the data register in the power failure hold region, you must clear the content of backup while the PLC is ON by the following program.)

Program example

4. \(\mathrm{FXu}, \mathrm{FX} 2 \mathrm{C}\) PLCs support the instruction at V 3.30 or later.
5. FX2N PLC supports the upper and lower limit setting functions of the auto-tuning and output value at V3.00 or later.
6. Object devices are limited.
©1: \(F X_{3 U}, F X_{3} \cup C, F X_{3 G}\) PLCs only are applicable.
A2: \(\mathrm{FX}_{3}\), FX3uc PLCs only are applicable.

\section*{Error}

If an operation error occurs, special auxiliary relay M8067 is turned ON, and the error code is stored in special data register D8067.

\subsection*{7.10 External Device}

\subsection*{7.10.1 MNET}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\Delta\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction exchanges ON/OFF signals between the FXU, FX2C PLCs, and F-16NP/NT type interface unit.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline MNET & 16 bits & Continuous &  & MNET(EN, s, d); \\
\hline MNETP & 16 bits & Pulse &  & MNETP(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & S & \begin{tabular}{l} 
Head input number of FX2-24EI connected to F-16NP/NT (16 points \\
occupied)
\end{tabular} & Bit \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & \begin{tabular}{l} 
Head output number of FX2-24EI connected to F-16NP/NT (8 points \\
occupied)
\end{tabular} \\
\cline { 2 - 4 } & d & & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System User
\end{tabular}}} & \multicolumn{11}{|c|}{Word Devices} & & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{3}{|l|}{System User} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Special Unit
U■IG■}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{\[
\begin{array}{|l}
\text { Con } \\
\text { stant }
\end{array}
\]} & \multirow[t]{2}{*}{Real Number} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & & c & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & & & V & Z & Modifier & K & H & & & \\
\hline (s) & \(\bullet\) & & & & & & & & & & & & & & & & & & & & & & & \\
\hline (d) & & \(\bullet\) & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

- To exchange signals with F-16NP/NT.
- Head input and output numbers are determined by the connection position of FX2-24EI type special block.

The following signals are exchanged by the above instruction.


\section*{Cautions}
1) In the case of \(F X-16 N P / N T, F X-16 N P / N T-S 3\) type interface block, this instruction is not used, and FX224 El is not needed.
2) FXU, FX2C PLCs do not support the instruction at \(V 3.30\) or later. This instruction is disused from V3.30 and later.

\subsection*{7.10.2 ANRD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\triangle\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction writes the analog input of F2-6A type analog input and output unit.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline ANRD & 16 bits & Continuous & \begin{tabular}{lr|r}
\hline \multicolumn{2}{c|}{ ANRD } & \\
EN & ENO & - \\
-s & d 1 & - \\
n & d 2 & - \\
\hline
\end{tabular} & ANRD(EN, s, n, d1, d2); \\
\hline ANRDP & 16 bits & Pulse & \begin{tabular}{lr}
-2 & \multicolumn{2}{c}{ ANRDP } \\
EN & ENO \\
-s & d 1 \\
n & d 2
\end{tabular} & ANRDP(EN, s, n, d1, d2); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s) & Head input number of FX2-24EI connected to F2-6A (16 points occupied) & Bit \\
\hline & ( n & Channel number of analog input ( \(\mathrm{n}=10,11,12,13\) ) & ANY16 \\
\hline \multirow{3}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d1) & Head output number of FX2-24EI connected to F2-6A (8 points occupied) & Bit \\
\hline & (d2) & Device storing analog input value (8-bit binary) & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{5}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Con stant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\) \\
口"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & \(\bullet\) & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & & \(\bullet\) & - & & & \\
\hline (d) & & - & & & & & & & & & & & & & & & & & & & & & & & \\
\hline (d2) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & & - & & & - & - & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}


To read out from analog input CH10 to D300.
- To read in analog input of F2-6A type analog input and output unit.
- The content of the device specified by \(s\), d1 is determined by the connection position of FX2-24EI type special adapter.
- In the device specified by (d2), 8-bit binary analog data is stored.

\section*{Caution}

FXu, FX2C PLCs do not support the instruction at V3.30 or later.
This instruction is disused from V3.30 and later.

\section*{Program example}

This is intended to determine the average of three points of time series data in 100 ms unit in order to suppress fluctuations of the analog input.
[Structured ladder]


To store the data of input channel 10 of F2-6A
type analog input and output unit connected from X040, Y030, in the D20.

The content of D20 is shifted to D0, D1, D2 in 100 ms unit.

The average of \(\mathrm{D} 0, \mathrm{D} 1, \mathrm{D} 2\) is stored in the D 10 .
[ST]
ANRD(M8000, X040, K10, Y030, D20);
WSFLP(M8012, D20, K3, K1, D0);
MEANP(M8012, D0, K3, D10);

\subsection*{7.10.3 ANWR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\Delta\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction writes data from the PLC in the F2-6A type analog input and output unit, and issues as analog data.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline ANWR & 16 bits & Continuous & \begin{tabular}{lr|} 
& \multicolumn{2}{c}{ ANWR } & \\
EN & ENO \\
-s 1 & \\
s2 & \\
-n & \\
\hline
\end{tabular} & ANWR(EN, s1, s2, n, d); \\
\hline ANWRP & 16 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ ANWRP } \\
EN & ENO \\
-s 1 & d \\
-s 2 & \\
-n & \\
\end{tabular} & ANWRP(EN, s1, s2, n, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & s1 & Device for storing analog output data (8-bit binary) & ANY16 \\
\cline { 2 - 4 } & s2 & Head input number of FX2-24EI connected to F2-6A & Bit \\
\cline { 2 - 4 } & n & Channel number of analog output & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & & dead output number of FX2-24EI connected to F2-6A & \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Con stant} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & X & \(\mathbf{Y}\) & M & T & c & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & \(\bullet\) & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & - & & & & & & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & - & & & \\
\hline (d) & \(\bullet\) & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}


To write in from D310 into analog input CNO
- Data is written in from PLC into F2-6A type analog input and output unit, and issued as analog data.
- The content of the device specified by \(s 2\), \(d\) is determined by the connection position of FX2-24EI type special adapter.
- In the device specified by s1, 8-bit binary data is stored.

\section*{Caution}

FXU, FX2C PLCs do not support the instruction at V3.30 or later.
This instruction is disused from V3.30 and later.

\subsection*{7.10.4 RMST}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction gives start signal from the PLC or receives status information, in the F2-32RM type programmable cam switch.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline RMST & 16 bits & Continuous & \begin{tabular}{lr}
\(-\mathrm{ENO}_{2} \mathrm{RMST}\) & \\
-ENO & \(\mathrm{d}-\) \\
-n & d 2
\end{tabular} & RMST(EN, s, n, d1, d2); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s) & Head input number of FX2-24El connected to F2-32RM (16 points occupied) & Bit \\
\hline & n & Program (bank) number of F2-32RM ( \(\mathrm{n}=0,1\) ). & ANY16 \\
\hline \multirow{3}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d1) & Head output number of FX2-24EI connected to F2-32RM (8 points occupied) & Bit \\
\hline & (d2) & Head of device storing status information (8 points occupied) & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Con stant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{Character String
} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & \(\bullet\) & & & & & & & & & & & & & & & & & & & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & \(\bullet\) & & & & & & & & & & & & & & & & & & & & & & \\
\hline (d2) & & \(\bullet\) & & & & \(\bullet\) & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}


FXu \(\rightarrow\) FX2-32RM Start command \(\mathrm{F}_{2}-32 \mathrm{RM} \rightarrow \mathrm{FXU} \quad\) Status information
- This instruction gives start command from the PLC or receives status information, in the F2-32RM type programmable cam switch.
- The content of the device specified by \(S\), (d1) is determined by the connection position of FX2-24EI type special adapter.
- In the device specified by (d2), the status information is stored as follows.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & M307 & M306 & M305 & M304 & M303 & M302 & M301 & M300 \\
\hline ON & Normal & Normal & CW & Normally ON & \(1.0^{\circ}\) & START & & BANK1 \\
\hline OFF & S/W error & H/W error & CCW & & \(0.5^{\circ}\) & STOP & Normally OFF & BANKO \\
\hline
\end{tabular}

As for the meaning of each status, please refer to the user's manual of F2-32RM type programmable cam switch.

\subsection*{7.10.5 RMWR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction sends output prohibit information from the PLC to the F2-32RM type programmable cam switch.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline RMWR & 16 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{1}{c}{ RMWR } & \\
-EN & ENO \\
-s 1 & d \\
s2 & \\
\hline
\end{tabular} & RMWR(EN, s1, s2, d); \\
\hline RMWRP & 16 bits & Pulse & \begin{tabular}{lr}
-2 & \multicolumn{2}{c}{ RMWRP } \\
EN & ENO- \\
-s 1 & d \\
-s 2 & \\
\hline
\end{tabular} & RMWRP(EN, s1, s2, d); \\
\hline DRMWR & 32 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DRMWR } \\
EN & ENO \\
-s 1 & d \\
-s 2 & \\
\hline
\end{tabular} & \(\operatorname{DRMWR}(E N, ~ s 1, ~ s 2, ~ d) ; ~\) \\
\hline DRMWRP & 32 bits & Pulse & \begin{tabular}{lr|r}
\hline \multicolumn{2}{c|}{ DRMWRP } & \\
EN & ENO & - \\
-s 1 & d & - \\
s2 & \\
\hline
\end{tabular} & DRMWRP(EN, s1, s2. d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & s1 & \begin{tabular}{l}
Head bit device of output prohibit table \\
- 16-bit operation: 16 points occupied \\
- 32-bit operation: 32 points occupied
\end{tabular} & Bit \\
\hline & (s2) & Head input number of FX2-24EI connected to F2-32RM (16 points occupied) & Bit \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Head output number of FX2-24EI connected to F2-32RM (8 points occupied) & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Con stant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s1) & \(\bullet\) & - & - & & & - & & & & & & & & & & & & & - & & & & & \\
\hline (s2) & - & & & & & & & & & & & & & & & & & & & & & & & \\
\hline (d) & & \(\bullet\) & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}


Writing of output prohibit information
- This instruction sends output prohibit information from the PLC to the F2-32RM type programmable cam switch.
- The content of the device specified by (s2), d is determined by the connection position of FX2-24EI type special adapter.
- The device specified by s1 is an output prohibit table, and is handled as octagonal number as shown in the example below.


Output number of

F2-32RM

For example, when M500 is turned ON, Y000 is output prohibited, and cannot be turned ON.

Auxiliary relay number of \(F X u, F X_{2 c}\)

\subsection*{7.10.6 RMRD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction reads out the ON/OFF state of output of the F2-32RM type programmable cam switch to the PLC.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline RMRD & 16 bits & Continuous & \begin{tabular}{lr}
\(-\mathrm{EN}^{2}\) & RMRD \\
-s & \(\mathrm{d} 1-\) \\
& d 2
\end{tabular} & RMRD(EN, s, d1, d2); \\
\hline RMRDP & 16 bits & Pulse & \begin{tabular}{lr}
\multicolumn{2}{c|}{ RMRDP } \\
EN & ENO- \\
- & d1- \\
& d2-
\end{tabular} & RMRDP(EN, s, d1, d2); \\
\hline DRMRD & 32 bits & Continuous & \begin{tabular}{lr}
\hline \multicolumn{2}{c|}{ DRMRD } \\
-EN & \(\mathrm{ENO}-\) \\
s & \(\mathrm{d} 1-\) \\
& d 2 \\
\hline
\end{tabular} & DRMRD(EN, s, d1, d2); \\
\hline DRMRDP & 32 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DRMRDP } \\
EN & ENO \\
-s & d 1 \\
& d 2 \\
& \\
\hline
\end{tabular} & DRMRDP(EN, s, d1, d2); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & \begin{tabular}{l} 
Head input number of FX2-24EI connected to F2-32RM (16 points \\
occupied) \\
\cline { 2 - 4 } \\
\cline { 2 - 4 } \\
\begin{tabular}{l} 
Output \\
variable
\end{tabular} \\
\cline { 2 - 4 }
\end{tabular} \\
\cline { 2 - 4 } & ENO & Execution state & \begin{tabular}{l} 
Head output number of FX2-24EI connected to F2-32RM (8 points \\
occupied)
\end{tabular} \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{8}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{c}
\begin{tabular}{c} 
Special \\
unit
\end{tabular} \\
\hline U \(\square\) IG \(\square\)
\end{tabular}}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Con stant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & \(\mathbf{Y}\) & M & T & C & S & & \(\square . b\) & KnX & KnY & KnM & KnS & T & C & & R & & & V & Z & Modifier & K & H & & & \\
\hline (s) & \(\bullet\) & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline (d1) & & \(\bullet\) & - & & & & & & & & & & & & & & & & & & & & & & & \\
\hline (d2) & & \(\bullet\) & - & & & - & & & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}


Reading of ON/OFF information
- This instruction reads out the ON/OFF state of output of the F2-32RM type programmable cam switch to the PLC.
- The content of the device specified by s, d1 is determined by the connection position of FX2-24EI type special adapter.
- If X000 is turned OFF, the content of the device specified by (d2 is not changed.
- The ON/OFF information being read out is stored in the device specified by (d2), and is handled as octagonal number as shown in the example below.


\subsection*{7.10.7 RMMN}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction reads out the rotating speed (rpm) or present angle of the resolver connected to the F2-32RM type programmable cam switch to the PLC.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline RMMN & 16 bits & Continuous & \begin{tabular}{lr}
\multicolumn{2}{c|}{RMMN} \\
-EN & ENO \\
s & \(\mathrm{d} 1-\) \\
& d 2
\end{tabular} & RMMN(EN, s, d1, d2); \\
\hline RMMNP & 16 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{|c|}{ RMMNP } \\
EN & ENO \\
s & d1- \\
& d 2
\end{tabular} & RMMNP(EN, s, d1, d2); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Head input number of FX2-24EI connected to F2-32RM. \\
\cline { 2 - 4 } & S & Execution state & Bit \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & d1 & Head output number of FX2-24EI connected to F2-32RM. \\
\cline { 2 - 5 } & d2 & \begin{tabular}{l} 
Device for storing data of rotating speed and present angle (2 points \\
occupied)
\end{tabular} & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Con stant} & \multirow[t]{2}{*}{\begin{tabular}{|c|c|}
\hline Real \\
Number
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & \(\bullet\) & & & & & & & & & & & & & & & & & & & & & & \\
\hline (d1) & & - & & & & & & & & & & & & & & & & & & & & & \\
\hline (d2) & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & - & \(\bullet\) & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}


Monitor of rotating speed or present angle
- The rotating speed (rpm) or present angle of the resolver connected to the F2-32RM type programmable cam switch is read out to the PLC. Whether the rotating speed or the present angle is determined by the setting switch \#4 of F2-32RM, whether OFF or ON.
- The content of the device specified by \(s\), d1 is determined by the connection position of FX2-24EI type special adapter.
- In the device specified by (d2), the data of the rotating speed or the present angle being read out is stored.

D100 \begin{tabular}{|l|l|l|}
\hline 8 & 3 & 0 \\
\hline
\end{tabular}
D100 \begin{tabular}{|l|l|l|}
\hline 3 & 5 & 0 \\
\hline
\end{tabular}

\subsection*{7.10.8 BLK}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\Delta\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction specifies the block number for the F2-30GM type pulse output unit from the PLC.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{3}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & & ST \\
\hline BLK & 16 bits & Continuous &  & BLK(EN, s1, s2, d); & \\
\hline BLKP & 16 bits & Pulse &  & BLKP(EN, s1, s2, d); & \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Block number (K0 to K31) \\
\cline { 2 - 4 } & s1 & Head input number of FX2-24EI connected to F2-30GM & ANY16 \\
\cline { 2 - 4 } & s2 & Execution state & Bit \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Head output number of FX2-24EI connected to F2-30GM & Bit \\
\cline { 2 - 4 } & d & &
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Con stant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(1 \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & C & 5 & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & \(\bullet\) & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & \(\bullet\) & & & & & & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline (d) & & \(\bullet\) & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}


FXu, \(\mathrm{FX}_{2} \mathrm{C} \rightarrow \mathrm{FX}_{2}-30 \mathrm{GM}\)
Block numbers 0 to 31 (decimal)
- The block number is specified from the PLC to the F2-30GM type pulse output unit.
The block number is the content of the device specified by s1, and the value is BIN, but is valid in a range of 0 to 31 as converted to BCD.
- When using the BCD digital switch as S1, it is converted to BIN value, and the result must be specified.
(Constant K is automatically converted into BIN value, and 0 to 31 can be directly entered.)
- The content of the device specified by \(\$ 1\) and \((d)\) is determined by the connection position of the FX224El type special block.
- You must always use this instruction when using the F2-30GM.

If block number specification is not needed from FXU, FX2C PLCs to F2-30GM, please program as follows.

- In the FX-1GM type pulse output unit, TO instruction is used instead of BLK instruction, and the FX2-24EI type interface block is not needed.

\section*{Caution}

FXU, FX2C PLCs do not support the instruction at V3.30 or later.
This instruction is disused from V3.30 and later.

\subsection*{7.10.9 MCDE}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\triangle\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction sends the M code numbers M0 to M77 to the PLC from the F2-30GM type pulse output unit.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline MCDE & 16 bits & Continuous &  & MCDE(EN, s, d1, d2); \\
\hline MCDEP & 16 bits & Pulse & \begin{tabular}{lr}
\hline \multicolumn{2}{c|}{ MCDEP } \\
-EN & ENO \\
-s & d 1
\end{tabular} & \(\operatorname{MCDEP}(\mathrm{EN}, \mathrm{s}, \mathrm{d} 1, \mathrm{~d} 2) ; 2\) \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & S & Head input number of FX2-24EI connected to F2-30GM & Bit \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Cx1 & Head output number of FX2-24EI connected to F2-30GM \\
\cline { 2 - 4 } & (d2 & Bit device for issuing M code number (78 points occupied) & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{\[
\begin{array}{|l}
\text { Con } \\
\text { stant }
\end{array}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c}
\hline Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & \(\bullet\) & & & & & & & & & & & & & & & & & & & & & & & \\
\hline (d1) & & - & & & & & & & & & & & & & & & & & & & & & & \\
\hline (d2) & & - & - & & & - & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

Function and operation explanation

\(\mathrm{FX}_{2}-30 \mathrm{GM} \rightarrow \mathrm{FXu}, \mathrm{FX}_{2} \mathrm{C}\)
M code number M0 to 77 (octal)
- From F2-30GM type pulse output unit, M code number M0 to M77 is sent out to the PLC.
- The content of the device specified by \(s\), d1 is determined by the connection position of FX2-24EI type special block.
- When \(M\) code output instruction is executed at the F2-30GM side, input X is operated according to the value 0 to 77 (octal), and the result is stored in M500 to M577 in octal notation. For example, in the case of \(M\) code 23 , M523 is turned ON.
- For the ease of understanding of correspondence of M code number between the PLC side and the F230 GM side, it is recommended to set 00 in the lower two digits of device \(M\), \(S\) specified by (d2).
- In the FX-1GM type pulse output unit, FROM instruction is used instead of MCDE instruction.

\section*{Cautions}

FXU, FX2C PLCs do not support the instruction at V3.30 or later.
This instruction is disused from V3.30 and later.

\subsection*{7.11 Data Transfer 2}

\subsection*{7.11.1 ZPUSH}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction temporarily retracts the present values of index registers V 0 to \(\mathrm{V} 7, \mathrm{Z} 0\) to Z 7 .
To return the retracted present values to the original values, use the ZPOP instruction.
\(\rightarrow\) As for ZPOP instruction, refer to section 7.11.2.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline ZPUSH & 16 bits & Continuous &  & ZPUSH(EN, d); \\
\hline ZPUSHP & 16 bits & Pulse &  & ZPUSHP(EN, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Bit \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & \begin{tabular}{l} 
Head device for retracting contents of index registers V0 to V7, Z0 to Z7 \\
temporarily [(1+16 \(\times\) times of retraction) occupied]
\end{tabular} \\
\cline { 2 - 4 } & ANY16 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Con
stant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square "\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & & V & Z & Modifier & K & H & & & \\
\hline (d) & & & & & & & & & & & & & & - & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. 16-bit operation (ZPUSH/ZPUSHP)

1) Contents of index registers \(V 0\) to \(V 7, Z 0\) to \(Z 7\) are temporarily retracted in and after the device specified by \((d\). When the contents of index registers are retracted, the number of retracting of the device specified by \((d\) is incremented by +1 .
2) To restore the data, use ZPOP instruction. Use ZPUSH, ZPOP instructions in pair.
3) By specifying d by the same device, ZPUSH and ZPOP instructions can be used as nesting. In this case, every time the ZPUSH instruction is executed, the region to be used after the device specified by (d) is added by 16 points each. Hence, you must preliminarily reserve the region for the number of times to be used by nesting.
4) The composition of the data to be retracted after the device specified by \(d\) is as shown below.
- No action of nesting
\begin{tabular}{l} 
Index \\
register
\end{tabular}
\begin{tabular}{|c|}
\hline Z 0 \\
\hline V 0 \\
\hline Z 1 \\
\hline V 1 \\
\hline Z 2 \\
\hline V 2 \\
\hline\(\vdots\) \\
\hline Z 7 \\
\hline V 7 \\
\hline
\end{tabular}
of times of retraction d by ZPOP
- With action of nesting

Portion of one nesting: 16 points instruction
\begin{tabular}{|c|c|}
\hline & Retraction data \\
\hline (d) +0 & Times of retraction \\
\hline +1 & Z0 \\
\hline +2 & V0 \\
\hline +3 & Z1 \\
\hline +4 & V1 \\
\hline +5 & Z2 \\
\hline +6 & V2 \\
\hline : & : \\
\hline +15 & Z7 \\
\hline +16 & V7 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline & Retraction data \\
\hline (d) +0 & Times of retraction \\
\hline T +1 & Z0 \\
\hline +2 & V0 \\
\hline +3 & Z1 \\
\hline +4 & V1 \\
\hline +5 & Z2 \\
\hline : & : \\
\hline +15 & Z7 \\
\hline +16 & V7 \\
\hline +17 & Z0 \\
\hline +18 & V0 \\
\hline +19 & Z1 \\
\hline +20 & V1 \\
\hline - & \(\vdots\) \\
\hline
\end{tabular}

Retraction
data

\section*{Related instructions}
\begin{tabular}{c|l}
\hline Instruction & \\
\hline ZPOP & This instruction restores the index registers V0 to V7, Z0 to Z7 once retracted by ZPUSH instruction. \\
\hline
\end{tabular}

\section*{Cautions}
- Without action of nesting, please clear the number of retraction of the device specified by d before execution of ZPUSH instruction.
- With action of nesting, please clear the number of retraction of the device specified by d before first execution.

\section*{Error}

It is an operation error in the following case, and error flag M8067 is turned ON, and error code is stored in D8067.
- When the range of the number of points used after the device specified by \(ه\) by ZPUSH exceeds the range of the corresponding device.(Error code: K6706)
- In ZPUSH instruction execution, when the number of retraction of the device specified by \(\mathbb{d}\) is negative. (Error code: K6707)

\section*{Program example}

This is a program for retracting the contents of index registers Z 0 to \(\mathrm{Z7}\), V 0 to V 7 before execution of subroutine program after D0, when using the index register in the subroutine after pointer P0.

[ST]
RST(M8002, D0); MOVP(X005, K5, V0) MOVP(NOT X005, K10, V0); OUT(XOOOVO, YOOO); ZPUSH(M8000, D0);


ZPOP(M8000, D0);

\subsection*{7.11.2 ZPOP}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction returns the contents of index registers V 0 to \(\mathrm{V} 7, \mathrm{Z} 0\) to \(\mathrm{Z7}\) once retracted by the ZPUSH instruction to the original state.
\(\rightarrow\) As for ZPUSH (FNC102) instruction, refer to section 17.1.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline ZPOP & 16 bits & Continuous &  & ZPOP(EN, d); \\
\hline ZPOPP & 16 bits & Pulse & \(-\mathrm{EN}^{\mathrm{ZPPOPP}} \mathrm{ENO}-\) & ZPOPP(EN, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Bit \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & \begin{tabular}{l} 
Head device once retracting the contents of index registers V0 to V7, Z0 to \\
Z7 [(1+16 \(\times\) times of retraction \()\) occupied \(]\)
\end{tabular} \\
\cline { 2 - 4 } & d & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Con \\
stant
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c}
\hline Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & X & Y & M T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s3) & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. 16 -bit operation (ZPOP/ZPOPP)
\(\rightarrow\) As for the function and operation, refer also to section 7.11.1.

1) The contents of index registers \(Z 0\) to \(Z 7, V 0\) to \(V 7\) once retracted after the device specified by \(\mathbb{C}\) by ZPUSH instruction are restored in the original index register. When the contents of the index register are restored, the number of retraction of the device specified by \((d)\) is processed by -1 .
2) Use ZPUSH instruction for temporary retraction of data. Use ZPUSH, ZPOP instructions in pair.

\section*{Related instructions}
\begin{tabular}{c|l}
\hline Instruction & \\
\hline ZPUSH & This instruction temporarily retracts the present values of index registers V0 to V7, Z0 to Z7. \\
\hline
\end{tabular}

\section*{Error}

It is an operation error in the following case, and error flag M8067 is turned ON, and error code is stored in D8067.
- When the content of the number of retraction of the device specified by \(₫\) during execution of ZPOP instruction is 0 or negative. (Error code: K6706)

\section*{Program example}
\(\rightarrow\) As for program examples, refer to section 7.11.1.

\subsection*{7.12 Floating Point}

\subsection*{7.12.1 DECMP}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction compares two data (binary floating decimal point), and issues the result of greater, smaller, or equal to the bit device (3 points).
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DECMP & 32 bits & Continuous &  & DECMP(EN, s1, s2, d); \\
\hline DECMPP & 32 bits & Pulse & \[
\] & DECMPP(EN, s1, s2, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s1) & Device for storing binary floating point data to be compared & FLOAT(Single Precision) \\
\hline & s2) & Device for storing binary floating point data to be compared & FLOAT(Single Precision) \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Head bit device for output of result (3 points occupied) & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|l|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Con stant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(1 \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & & \(\bullet\) & -1 & -2 & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & -1 & & \\
\hline (s2) & & & & & & & & & & & & & \(\bullet\) & -1 & -2 & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & A1 & & \\
\hline (d) & & \(\bullet\) & & & \(\bullet\) & \(\Delta 3\) & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DECMP, DECMPP)}

The compared value specified by s1 and the comparison source specified by s2 are compared as floating decimal point data, and depending on the result of greater, smaller, or equal, any bit of devices (d), (d) +1 , and (d) +2 ) specified by (d is turned ON.
- When constants (K, H) are specified in the devices specified by s1, s2), the values are automatically converted from BIN and handled as binary floating decimal point data.


If the command input is OFF and DECMP instruction cannot be executed, the device specified by d holds the state before the command input is turned OFF.

\section*{Cautions}
1. Number of devices occupied
(d) occupies 3 points.

Be careful not to overlap with the devices used in other applications.
2. Specification of input and output variables

When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label. However, the 32-bit counter is a 32 -bit long device, and can be specified directly. When specifying the device, use the global label.
3. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
4. Applicable devices are limited.

A1: FX3U, FX3UC and FX3G PLCs only are applicable.
A2: \(F X_{3 \cup}, F X_{3} \cup c\) PLCs only are applicable.
A3: FX3U, FX3Uc PLCs only are applicable.
However, index decoration is not applicable.

\subsection*{7.12.2 DEZCP}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction compares the comparison range of upper and lower two points and the data (binary floating decimal point), and issues the result to the bit device (3 points) depending on the greater, smaller or the band.
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DEZCP & 32 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DEZCP } \\
EN & ENO \\
- 1 & \\
s2 & \\
-s 3 & \\
\hline
\end{tabular} & DEZCP(EN, s1, s2, s3, d); \\
\hline DEZCPP & 32 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{|c|}{ DEZCPP } \\
EN & ENO \\
-s 1 & d \\
s2 & \\
-s 3 & \\
\hline
\end{tabular} & DEZCPP(EN, s1, s2, s3, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{4}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s1) & Device for storing binary floating point data to be compared & FLOAT(Single Precision) \\
\hline & s2 & Device for storing binary floating point data to be compared & FLOAT(Single Precision) \\
\hline & s3) & Device for storing binary floating point data to be compared & FLOAT(Single Precision) \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Head bit device for output of result (3 points occupied) & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|l|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Con stant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & & & \(\bullet\) & \(\Delta 1\) & -1 & & & - & \(\bullet\) & \(\bullet\) & -1 & & \\
\hline (s2) & & & & & & & & & & & & & & \(\bullet\) & \(\triangle 1\) & -1 & & & - & \(\bullet\) & \(\bullet\) & -1 & & \\
\hline (s3) & & & & & & & & & & & & & & \(\bullet\) & \(\triangle 1\) & -1 & & & \(\bullet\) & - & - & -1 & & \\
\hline (d) & & \(\bullet\) & - & & & \(\bullet\) & -2 & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DEZCP, DEZCPP)}

The compared value specified by (s1, s2 and the comparison source specified by s3 are compared as floating decimal point data, and depending on the result of smaller, within range, or greater, any bit of devices (d) , d +1, and (d +2) specified by \((d)\) is turned ON.
- When constants (K, H) are specified in the devices specified by (s1), s2), s3), the values are automatically converted and handled as binary floating decimal point data.


If the command input is OFF and DEZCP instruction cannot be executed, the device specified by (d) holds the state before the command input is turned OFF.
*1. To define the device for storing binary floating decimal point data (data 1) to be compared.
*2. To define the device for storing binary floating decimal point data (data 2) to be compared.
*3. To define the device for storing binary floating decimal point data (data 3 ) to be compared.

\section*{Cautions}
1. Number of devices occupied
(d) occupies 3 points.

Be careful not to overlap with the devices used in other applications.
2. Comparison data of \(s 1\) and \(s 2\)

The magnitude relation of comparison data is \(s 1 \leq s 2\).
In the case of \(s 1>(s 2\), the value of \(s 2\) is regarded to be same as \(s 1\), and is compared.

\section*{3. Specification of input and output variables}

When handling 32-bit data in structured program, you cannot specify 16 -bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32 -bit counter is a 32 -bit long device, and can be specified directly.
When specifying the device, use the global label.
4. Applicable devices are limited.

A1: FX3U, FX3uc PLCs only are applicable.
A2: FX3u, FX3Uc PLCs only are applicable.
However, index decoration is not applicable.

\subsection*{7.12.3 DEMOV}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\Delta\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \&
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \&
Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DEMOV & 32 bits & Continuous & \begin{tabular}{lr}
-2 DEMOV \\
-EN & ENO \\
-s & d
\end{tabular} & DEMOV(EN, s, d); \\
\hline DEMOVP & 32 bits & Pulse & \begin{tabular}{lr}
- DEMOVP \(^{2}\) \\
-EN & ENO- \\
-s & d
\end{tabular} & DEMOVP(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & \begin{tabular}{l} 
Binary floating decimal point data of transfer source, or device storing the \\
data
\end{tabular} \\
\cline { 2 - 5 } & datoAT(Single \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Brecision) \\
\cline { 2 - 5 } & d & Transfer destination device of binary floating decimal point data & \begin{tabular}{l} 
FLOAT(Single \\
Precision)
\end{tabular} \\
\hline
\end{tabular}
3. Applicable devices
© : Refer to "Cautions".

\section*{This instruction transfers binary floating point data.}

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DEMOV/DEMOVP)}

The content (binary floating decimal point data) of transfer source of device specified by \(s\) is transferred to the device specified by \(\mathbb{C}\). Real number ( E ) can be directly specified in the device specified by s .

*1. To define the device storing the transfer source data.


Binary floating decimal point (real number)
*2. To define the transfer destination device.

\section*{Program example}
1. This is a program for storing the real number of D11, D10 in D1, D0 when X007 is turned ON.
[Structured ladder]

*1. VAR_01 is global label, and D10 is defined.
*2. VAR_02 is global label, and DO is defined.

\section*{[ST]}

DEMOVP(X007,VAR_01,VAR_02);
2. This is a program for storing the real number -1.23 in \(D 11, D 10\) when \(X 007\) is turned \(O N\).
[Structured ladder]

*1. VAR_011 is global label, and E-1.23 is defined.
*2. VAR_021 is global label, and D10 is defined.
[ST]
DEMOVP(X007,VAR_011,VAR_021);

\section*{Cautions}
1) When handling 32-bit data in structured program, you cannot specify 16 -bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32 -bit long device, and can be specified directly. When specifying the device, use the global label.
2) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
3) Applicable devices are limited.

A1: FX3U, FX3UC PLCs only are applicable.

\subsection*{7.12.4 DESTR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts the binary floating decimal point data into character string (ASCII code) in a specified number of digits. You can also use the STR instruction for converting BIN data into character string (ASCII code).
\(\rightarrow\) As for character string, refer to FX Structured Programming Manual (Device \& Common). \(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
\(\rightarrow\) As for STR instruction, see section 7.20.1.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DESTR & 32 bits & Continuous &  & DESTR(EN, s1, s2, d1); \\
\hline DESTRP & 32 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DESTRP } \\
EN & ENO \\
-s 1 & d 1
\end{tabular}\(-\) & DESTRP(EN, s1, s2, d1); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\(\begin{array}{l}\text { Input } \\
\text { variable }\end{array}\)} & EN & Execution condition & Binary floating decimal point data to be converted, or device storing the data
\end{tabular} \(\left.\begin{array}{l}\text { FLOAT(Single } \\
\text { Precision) }\end{array}\right]\)

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|l|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Con stant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\) \\
"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & & & - & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & \(\bullet\) & & \\
\hline (s2) & & & & & & & & \(\bullet\) & - & \(\bullet\) & - & - & - & - & \(\bullet\) & - & & & - & & & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & - & - & \(\bullet\) & - & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DESTR/DESTRP)}

The content (binary floating decimal point data) of the device specified by s1 is converted into character string depending on the content of the device specified by s2, and stored in or after the device specified by (d). Real number can be directly specified in the device specified by (s1).

of the numeric value
to be converted.
*1. To define the binary floating decimal point data to be converted, or the device storing the data.
*2. To define the head of the storing destination device of the converted character string.
- The converted data differs depending on the display specification specified by s2.


\section*{2. In the case of decimal point type}

- The number of all digits that can be specified by \(s 2+1\) is as follows. (Maximum: 24 digits)

When the number of digits below decimal point is " 0 " . . . . . . . . . . . All digits \(\geq 2\)
When the number of digits below decimal point is other than " 0 " . . . All digits \(\geq\) (decimal digits +3 )
- Decimal digits that can be specified by s2 +2 is 0 to 7 digits.

However, please set in the range of decimal digits \(\leq\) (all digits -3 ).

For example, in the case of all digits of 8 and decimal digits of 3 , when -1.23456 is specified, the data after (d) is stored as follows.



To be stored automatically at the end of character string.
- The converted character string data is stored in the device after d as follows.
- For the sign, " 20 H " (space) is stored when the binary floating decimal point data is positive, and "2DH" (-) is stored when negative.
- When the decimal part of binary floating decimal point data does not settle within the decimal digits, the lower decimal digits are rounded off.

- When the number of decimal digits is set in other than "0", automatically "2EH" (.) is stored at the specified decimal digits +1 digit.
However, when the number of decimal digits is "0", "2EH" (.) is not stored.

- When the number of digits subtracting the sign, decimal point, and decimal part from the total number of digits is greater than the integer part of the binary floating decimal point data, "20H" (space) is inserted between the sign and the integer part.

- " 00 H " or " 0000 H " is automatically stored at the end of the converted character string.

\section*{3. In the case of exponential type}



To be stored automatically at the end of character string.
- The number of all digits that can be specified by \(s 2+1\) is as follows. (Maximum: 24 digits) When the number of digits below decimal point is "0" . . . . . . . . . . . No. of digits \(\geq 6\) When the number of digits below decimal point is other than " 0 " . . . .No. of digits \(\geq\) (decimal digits +7 )
- Decimal digits that can be specified by s2 +2 is 0 to 7 digits. Please set within the range of decimal digits \(\leq\) (total digits -7 ).

For example, in the case of all digits of 12 and decimal digits of 4 , when -12.34567 is specified, the data after (d) is stored as follows.

\begin{tabular}{|c|c|c|}
\hline (d) & 20 H (space) & 2DH(-) \\
\hline (d) +1 & 2EH(.) & \(31 \mathrm{H}(1)\) \\
\hline (d) +2 & 33H(3) & 32 H (2) \\
\hline (d) +3 & 36H(6) & \(34 \mathrm{H}(4)\) \\
\hline (d) +4 & 2BH(+) & 45H(E) \\
\hline (d) +5 & \(31 \mathrm{H}(1)\) & \(30 \mathrm{H}(0)\) \\
\hline (d) +6 & \multicolumn{2}{|c|}{0000H} \\
\hline
\end{tabular}
- The converted character string data is stored in the device after d as follows.
- For the sign of integer part, " 20 H " (space) is stored when the binary floating decimal point data is positive, and "2DH" (-) is stored when negative.
- The integer part is fixed in one digit.

Between the integer part and the sign, "20H" (space) is inserted.

- When the decimal part of binary floating decimal point data does not settle within the decimal digits, the lower decimal digits are rounded off.

- When the number of decimal digits is set in other than "0", automatically "2EH" (.) is stored at the specified decimal digits + 1 digit.
However, when the number of decimal digits is "0", "2EH" (.) is not stored.

- For the sign of exponential part, "2BH" (+) is stored when the index is positive, and "2DH" (-) is stored when negative.
- The exponential part is fixed in two digits.

When the exponential part is one digit, between the exponential part and the sign, " \(30 \mathrm{H} "(0)\) is inserted.

- " 00 H " or " 0000 H " is automatically stored at the end of the converted character string.

\section*{Cautions}

When handling character string data or 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling character string data or 32-bit data, please use the label. However, the 32-bit counter is a 32-bit long device, and can be specified directly. When specifying the device, use the global label.

\section*{Related instructions}
\begin{tabular}{c|l}
\hline Instruction & \multicolumn{1}{c}{ Content } \\
\hline EVAL & This instruction converts the character string (ASCII code) data into binary floating decimal point data. \\
\hline STR & This instruction converts BIN data into character string (ASCII code). \\
\hline VAL & This instruction converts the character string (ASCII code) data into BIN data. \\
\hline
\end{tabular}

\section*{Error}

In the following cases, it is an operation error, and error flag (M8067) is turned ON, and error code is stored in D8067.
- When (s1) is not within the following range. (Error code: K6706)
\[
0, \pm 2^{-126} \leq \text { s } 1
\]
- When the type specification specified by s2 is other than 0 , 1. (Error code: K6706)
- When the all digits specification specified by s2) +1 is out of the following range. (Error code: K6706) In the case of decimal point type

When the number of digits below decimal point is "0" . . . . . . . . . . . All digits \(\geq 2\)
When the number of digits below decimal point is other than " 0 " . . All digits \(\geq\) (decimal digits +3 )
In the case of exponential type
When the number of digits below decimal point is "0" . . . . . . . . . . . All digits \(\geq 6\)
When the number of digits below decimal point is other than " 0 " . . All digits \(\geq\) (decimal digits +7 )
- When the decimal digits specification specified by s2 +2 is out of the following range. (Error code: K6706) In the case of decimal point type: Decimal digits \(\leq\) (all digits - 3 )
In the case of index type: Decimal digits \(\leq\) (all digits - 7)
- When the device range for storing the character string specified by \(d\) is over the range of the corresponding device.
(Error code: K6706)
- When the result of conversion exceeds the specified all digits. (Error code: K6706)

\section*{Program example}
1) This is a program for converting the content (binary floating decimal point data) of R0, R1 depending on the content specified by R10 to R12 when the X000 is turned ON, and storing after the D0.
[Structured ladder]

*1. VAR_01 is global label, and R10 is defined.
*2. VAR_02 is global label, and D0 is defined.

2) This is a program for converting the content (binary floating decimal point data) of R0, R1 depending on the content specified by R10 to R12 when the X000 is turned ON, and storing after the D10.
[Structured ladder]

*1. VAR_01 is global label, and R0 is defined.
*2. VAR_02 is global label, and D10 is defined.
\begin{tabular}{|c|c|c|}
\hline R10 & 1(Index type) & \[
\begin{aligned}
& \text { Conversion } \\
& \text { type }
\end{aligned}
\] \\
\hline R11 & 12 & \multirow[t]{2}{*}{All digits Number of digits below decimal point} \\
\hline R12 & 4 & \\
\hline & R1 & R0 \\
\hline & 0.0327 & 457 \\
\hline
\end{tabular}


DESTRP(X000,VAR_01,R10,VAR_02);

Space Number of digits below decimal point



Stored automatically.

\subsection*{7.12.5 DEVAL}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts the character string (ASCII code) into binary floating decimal point data.
You can also use the VAL instruction for converting the character string (ASCII code) into BIN data.
\(\rightarrow\) As for character string, refer to FX Structured Programming Manual (Device \& Common). \(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
\(\rightarrow\) As for VAL instruction, refer to section 7.20.2.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DEVAL & 32 bits & Continuous & \begin{tabular}{lr}
-2 DEVAL \\
-EN & ENO \\
-s & d \\
\hline
\end{tabular} & DEVAL(EN, s, d); \\
\hline DEVALP & 32 bits & Pulse &  & DEVALP(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{\(\begin{array}{l}\text { Input } \\
\text { variable }\end{array}\)} & EN & Execution condition & \(\begin{array}{l}\text { Head device storing the character string to be converted into binary floating } \\
\text { point decimal data. }\end{array}\) \\
\cline { 2 - 4 } & s. & String \\
\hline \multirow{2}{*}{\(\begin{array}{l}\text { Output } \\
\text { variable }\end{array}\)} & ENO & Execution state & Device for storing the converted binary floating point decimal data.
\end{tabular} \(\left.\begin{array}{l}\text { FLOAT(Single } \\
\text { Precision) }\end{array}\right]\)
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{5}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{c}
\begin{tabular}{c} 
Character \\
String
\end{tabular} \\
\hline\(" \square "\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & c & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & - & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & & & & & & & - & - & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. 32-bit operation (EVAL/EVALP)

The character string stored after the device specified by \(\subseteq\) is converted into binary decimal floating point data, and stored in the device specified by \(\mathbb{}\).

*1. To define the head device storing the character string data to be converted into binary floating point decimal data.
*2. To define the device for storing the converted binary floating point decimal data.

The character string specified can be converted into binary floating point decimal data whether in decimal point type or in specified type.

a) In the case of decimal point type

-1007812
b) In the case of exponential type

- When the character string to be converted into the binary floating decimal point specified by \(S\) is more than 7 digits excluding the sign, decimal point, and the exponential part, the data after the seventh digit is cut off.
a) In the case of decimal point type

b) In the case of exponential type


- To be converted as positive value when "2BH" (+) is specified by the sign or the sign is omitted in the decimal point type. To be converted as negative value when "2DH" (-) is specified by the sign.
- To be converted as positive value when "2BH" (+) is specified in the exponential part sign or the sign is omitted in the exponential type. To be converted as negative value when "2DH" (-) is specified in the exponential part sign.
- When " 20 H " (space) or " 30 H " (0) is present among the numeric values except for the first " 0 " in the character string specified by \(\triangle\), " 20 H " or " 30 H " is ignored in the converting operation.

- When "30H" ( 0 ) is present between " E " and the numeric value in the character string in the exponential type, " 30 H " is ignored in the converting operation.

- The character string can be set in a maximum of 24 characters.

In the character string, " 20 H " (space) or " 30 H " \((0)\) is counted as one character.

\section*{Caution}

When handling character string data or 32-bit data in structured program, you cannot specify 16 -bit device directly unlike the simple project. When handling character string data or 32 -bit data, please use the label. However, the 32 -bit counter is a 32 -bit long device, and can be specified directly.
When specifying the device, use the global label.

\section*{Related devices}
\(\rightarrow\) As for the manner of using the zero, borrow, or carry flag, refer to the FX Structured Programming Manual (Device \& Common).
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{Device} & \multirow{2}{*}{Name} & \multicolumn{2}{|r|}{Content} \\
\hline & & Condition & Operation \\
\hline M8020 & Zero & \begin{tabular}{l}
The conversion result is really zero \\
(when the mantissa part is " 0 ")
\end{tabular} & Zero flag (M8020) is ON. \\
\hline M8021 & Borrow & Absolute value of conversion result < \(2^{-126}\) & The value of \((d)\) is the smallest value \(\left(2^{-126}\right)\) of 32 -bit real number, and borrow flag (M8021) is ON. \\
\hline M8022 & Carry & Absolute value of conversion result \(\geq 2^{128}\) & The value of \((d)\) is the largest value \(\left(2^{128}\right)\) of 32 -bit real number, and carry flag (M8022) is ON. \\
\hline
\end{tabular}

\section*{Related instructions}
\begin{tabular}{c|l}
\hline Instruction & \multicolumn{1}{c}{ Content } \\
\hline ESTR & This instruction converts the binary floating decimal point data into character string (ASCII code). \\
\hline STR & This instruction converts BIN data into character string (ASCII code). \\
\hline VAL & This instruction converts the character string (ASCII code) data into BIN data. \\
\hline
\end{tabular}

\section*{Error}

In the following cases, it is an operation error, error flag (M8067) is turned ON, and error code is stored in D8067.
- When other characters than "30H" (0) to "39H" (9) are present in the integer part or the decimal part. (Error code : K6706)
- When two or more "2EH" (.) are present in the character string specified by \(\qquad\) . (Error code : K6706)
- When other characters than "45H" (E), "2BH" (+), or "2DH" (-) are present in the exponential part, or when there are plural exponential parts. (Error code : K6706)
- When " 00 H " is not present in the corresponding device range from \(\mathcal{S}\). (Error code : K6706)
- When the number of characters after \(S\) is 0 or exceeds 24 characters. (Error code : K6706)

\section*{Program example}
1) This is a program for converting the character string stored after RO when the X 000 is turned ON , into binary floating decimal point, and storing in D0, D1.
[Structured ladder]

[ST]
DEVAR(X000,VAR_01,VAR_02);
*1. VAR_01 is global label, and R0 is defined.
*2. VAR_02 is global label, and DO is defined.

2) This is a program for converting the character string stored after D10 when the X000 is turned ON, into binary floating decimal point, and storing in D100, D101.
[Structured ladder]

*1. VAR_01 is global label, and D10 is defined.
*2. VAR_02 is global label, and D100 is defined.


Operation in overflow, underflow, zero mode
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Condition } & \multicolumn{1}{c}{ Operation } \\
\hline \begin{tabular}{l} 
Absolute value of conversion result \\
\(<2^{-126}\)
\end{tabular} & \begin{tabular}{l} 
The value of \((d)\) is the smallest value \(\left(2^{-126}\right)\) of 32-bit real number, and borrow flag (M8021) is \\
ON.
\end{tabular} \\
\begin{tabular}{l} 
Absolute value of conversion result \\
\(\geq 2^{128}\)
\end{tabular} & The value of \(\triangle\) d the largest value \(\left(2^{128}\right)\) of 32-bit real number, and carry flag (M8022) is ON. \\
\hline \begin{tabular}{l} 
The conversion result is really zero \\
(when the mantissa part is " 0 " \()\)
\end{tabular} & Zero flag (M8020) is ON. \\
\hline
\end{tabular}

[ST]
DEVALP(X000,VAR_01,VAR_02);


新

\subsection*{7.12.6 DEBCD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts the binary floating decimal point in the device into decimal floating decimal point.
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \&
Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DEBCD & 32 bits & Continuous &  & DEBCD (EN, s, d); \\
\hline DEBCDP & 32 bits & Pulse &  & DEBCDP(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Device for storing binary floating decimal point data. \\
\cline { 2 - 4 } & s & Execution state & \begin{tabular}{l} 
FLOAT(Single \\
Precision)
\end{tabular} \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & d & Device for storing the converted decimal floating decimal point data.
\end{tabular} ANY32 \begin{tabular}{l} 
Bit \\
\cline { 2 - 4 }
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & - & 1 & -1 & & & - & & & & & \\
\hline (d) & & & & & & & & & & & & & & - & 11 & -1 & & & - & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DEBCD, DEBCDP)}

The binary floating decimal point of the device specified by \(s\) is converted into decimal floating decimal point, and is transferred to the device specified by \(\mathbb{d}\).

*1. To define the device for storing the binary floating decimal point data.
*2. To define the device for storing the converted decimal floating decimal point data.


\section*{Cautions}
1) In the floating decimal point operation, all operations are executed at the binary floating decimal point. However, since the binary floating decimal point is a difficult numeric value (exclusive monitor method), by converting it into decimal floating decimal point, it is easier for monitoring by peripheral devices or the like.
Meanwhile, GX Works 2 or GOT is provided with a function for monitoring or displaying the binary floating decimal point directly.
2) When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and can be specified directly. When specifying the device, use the global label.
3) Applicable devices are limited.

A: FX3U, FX3UC PLCs only are applicable.

\subsection*{7.12.7 DEBIN}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts the decimal floating decimal point in the device into binary floating decimal point.
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \&
Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DEBIN & 32 bits & Continuous &  & DEBIN(EN, s, d); \\
\hline DEBINP & 32 bits & Pulse &  & DEBINP(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & ENO & Execution condition & Bit \\
\cline { 2 - 4 } & s & Device for storing decimal floating decimal point data. & ANY32 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Device for storing the converted binary floating decimal point data.
\end{tabular} \begin{tabular}{l} 
FLOAT(Single \\
\cline { 2 - 4 } \\
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(\%\) \\
\(\square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & - & -1 & -1 & & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & & & & & & & - & -1 & -1 & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}
: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DEBIN, DEBINP)}

The decimal floating decimal point of the device specified by \(s\) is converted into binary floating decimal point, and is transferred to the device specified by \(\mathbb{d}\).

*1. To define the device for storing the decimal floating decimal point data.
*2. To define the device for storing the converted binary floating decimal point data.


\section*{Cautions}
1) When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and can be specified directly. When specifying the device, use the global label.
2) Applicable devices are limited.
\(\mathbf{A}\) : \(\mathrm{FX}_{3} \cup, \mathrm{FX}_{3} \cup с\) PLCs only are applicable.

\section*{Program example}

By using the DEBIN instruction, the numeric value including the decimal point can be directly converted into the binary floating decimal point.

Example: Binary floating decimal point conversion of 3.14
\(3.14=314 \times 10^{-2}\) (Decimal floating decimal point)
[Structured ladder]

*1. VAR_01 is global label, and D0 is defined.
*2. VAR_02 is global label, and D10 is defined.
[ST]
MOVP(X002,K314,DO);
MOVP(X002,K-2,D1);
DEBIN(Y002,VAR_01,VAR_02);
\(\rightarrow\) As for program example of floating decimal point operation, refer to section 7.5.10.

\section*{7．12．8 DEADD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U（C） & FX3G & FX2N（C） & FX1N（C） & FX1S & FXU／FX2C & FX0N & FX0（S） \\
\hline\(○\) & \(\Delta\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction adds two binary floating decimal points．
\(\rightarrow\) As for program example of floating decimal point operation，refer to section 7．5．10． \(\rightarrow\) As for handling of floating decimal point，refer to FX Structured Programming Manual（Device \＆ Common）．
\(\rightarrow\) As for the operation of the flag，refer to the FX Structured Programming Manual（Device \＆ Common）．

1．Format and operation，execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DEADD & 32 bits & Continuous &  & DEADD（EN，s1，s2，d）； \\
\hline DEADDP & 32 bits & Pulse &  & DEADDP（EN，s1，s2，d）； \\
\hline
\end{tabular}

2．Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\(\begin{array}{l}\text { Input } \\
\text { variable }\end{array}\)} & EN & Execution condition & Device for storing binary floating decimal point data to be added．
\end{tabular} \(\left.\begin{array}{l}\text { BLOAT（Single } \\
\text { Precision）}\end{array}\right\}\)

3．Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{Special unit U \(\square\) IG \(\square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
＂\(\square\)＂
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & c & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline （s1） & & & & & & & & & & & & & & \(\bullet\) & －1 & \(\triangle 2\) & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & －1 & & \\
\hline （s2） & & & & & & & & & & & & & & \(\bullet\) & \(\Delta 1\) & 42 & & & \(\bullet\) & － & \(\bullet\) & －1 & & \\
\hline （d） & & & & & & & & & & & & & & \(\bullet\) & －1 & 42 & & & － & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DEADD, DEADDP)}

The binary floating decimal point data in the device specified by s1 and in the device specified by s2 are added, and the result is transferred to the device specified by \(d\) in binary floating decimal point.

\([(s 1)+1,(s 1)]+[(s 2)+1,(s 2)] \rightarrow[(d)+1,(d]]\)
\begin{tabular}{l} 
Binary floating \\
decimal point
\end{tabular} \begin{tabular}{l} 
Binary floating \\
decimal point
\end{tabular}\(\quad\)\begin{tabular}{l} 
Binary floating \\
decimal point
\end{tabular}
*1.To define the device for storing binary floating decimal point data to be added.
*2. To define the device for storing binary floating decimal point data to be added.
*3. To define the device for storing the added binary floating decimal point data.
When constants (K,H) are specified in the device specified by \(s\) ( 1 or in the device specified by (s2), the values are automatically converted and handled as binary floating decimal point.


*1. To define the device for storing binary floating decimal point data to be added.
*2. To define the device for storing binary floating decimal point data to be added.
*3. To define the device for storing the added binary floating decimal point data.

\section*{Cautions}
1) When the same devices are specified, the same device numbers can be specified in s1 and s2 and (d). In this case, when the continuous execution type instruction (DEADD) is used, it must be noted that the addition result changes in every operation cycle.
2) When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and can be specified directly.
When specifying the device, use the global label.
3) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
4) Applicable devices are limited.

A1: FX3U, FX3Uc and FX3G PLCs only are applicable.
A2: \(F^{\prime} 3 \cup, F X_{3} \cup c\) PLCs only are applicable.

\subsection*{7.12.9 DESUB}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\Delta\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction subtracts two binary floating decimal points.
\(\rightarrow\) As for program example of floating decimal point operation, refer to section 7.5.10. \(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
\(\rightarrow\) As for the operation of the flag, refer to the FX Structured Programming Manual (Device \& Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DESUB & 32 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DESUB } \\
-EN & ENO \\
-s 1 & d \\
-s 2 & \\
\hline
\end{tabular} & DESUB(EN, s1, s2, d); \\
\hline DESUBP & 32 bits & Pulse & \begin{tabular}{lr}
\multicolumn{2}{c|}{ DESUBP } \\
EN & ENO \\
-s 1 & d \\
-s 2 & \\
\hline
\end{tabular} & DESUBP(EN, s1, s2, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & s1 & Device for storing binary floating decimal point data to be subtracted. & FLOAT(Single Precision) \\
\hline & (s2) & Device for storing binary floating decimal point data to be subtracted. & FLOAT(Single Precision) \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Device for storing the subtracted binary floating decimal point data. & FLOAT(Single Precision) \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Character \\
String
\end{tabular} \\
\hline\(" \square "\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M T & T & S & & \(\square . b\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & & & \(\bullet\) & -1 & -2 & & & - & \(\bullet\) & - & -1 & & \\
\hline (s2) & & & & & & & & & & & & & & \(\bullet\) & -1 & 42 & & & - & - & - & -1 & & \\
\hline (d) & & & & & & & & & & & & & & \(\bullet\) & -1 & -2 & & & - & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DESUB, DESUBP)}

The binary floating decimal point data in the device specified by s2 are subtracted from the device specified by (s1) , and the result is transferred to the device specified by \(\mathbb{C}\) in binary floating decimal point.

\([s 1)+1,(s 1)]-[(s 2)+1,(s 2)] \rightarrow[(d)+1,(d)]\)
\begin{tabular}{l} 
Binary floating \\
decimal point
\end{tabular}\(\quad\)\begin{tabular}{l} 
Binary floating \\
decimal point
\end{tabular}
*1. To define the device for storing binary floating decimal point data to be subtracted.
*2. To define the device for storing binary floating decimal point data to be subtracted.
*3. To define the device for storing the subtracted binary floating decimal point data.
When constants \((\mathrm{K}, \mathrm{H})\) are specified in the device specified by s1 or in the device specified by s2 , the values are automatically converted and handled as binary floating decimal point.

\begin{tabular}{|c|c|c|}
\hline [s1 +1, s1 ] & - [ K2346 & d +1, d \(]\) \\
\hline Binary floating decimal point & Automatic conversion into binary floating decimal point & Binary floating decimal point \\
\hline
\end{tabular}
*1. To define the device for storing binary floating decimal point data to be subtracted.
*2. To define the device for storing binary floating decimal point data to be subtracted.
*3. To define the device for storing the subtracted binary floating decimal point data.

\section*{Cautions}
1) When the same devices are specified, the same device numbers can be specified in s1 and s2 and (d). In this case, when the continuous execution type instruction (DESUB) is used, it must be noted that the subtraction result changes in every operation cycle.
2) When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and can be specified directly.
When specifying the device, use the global label.
3) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
4) Applicable devices are limited.

A1: \(F X_{3} \cup, F_{3} \cup C\) and \(F X_{3}\) PLCs only are applicable.
A2: \(\mathrm{FX}_{3} \cup, \mathrm{FX}_{3} \cup \mathrm{C}\) PLCs only are applicable.

\subsection*{7.12.10 DEMUL}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\Delta\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction multiplies two binary floating decimal points.
\(\rightarrow\) As for program example of floating decimal point operation, refer to section 7.5.10. \(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DEMUL & 32 bits & Continuous & \[
\] & DEMUL(EN, s1, s2, d); \\
\hline DEMULP & 32 bits & Pulse & \[
\] & DEMULP(EN, s1, s2, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & s1 & Device for storing binary floating decimal point data to be multiplied. & FLOAT(Single Precision) \\
\hline & (s2) & Device for storing binary floating decimal point data to be multiplied. & FLOAT(Single Precision) \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Device for storing the multiplied binary floating decimal point data. & FLOAT(Single Precision) \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{Pointer} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & \(\bullet\) & -1 & -2 & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & -1 & & \\
\hline (s2) & & & & & & & & & & & & & & \(\bullet\) & -1 & -2 & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & -1 & & \\
\hline (d) & & & & & & & & & & & & & & \(\bullet\) & -1 & -2 & & & - & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DEMUL, DEMULP)}

The binary floating decimal point data in the device specified by s1 and in the device specified by s2 are multiplied, and the result is transferred to the device specified by \(d\) in binary floating decimal point.

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{[s1 +1, s1 ] \(\times\) [s2 +1, s22] \(\rightarrow\) [d +1, (d)} \\
\hline Binary floating decimal point & Binary floating decimal point & Binary floating decimal point \\
\hline
\end{tabular}
*1. To define the device for storing binary floating decimal point data to be multiplied.
*2. To define the device for storing binary floating decimal point data to be multiplied.
*3. To define the device for storing the multiplied binary floating decimal point data.
When constants (K,H) are specified in the device specified by \(s 1\) or in the device specified by s2) the values are automatically converted and handled as binary floating decimal point.

*1. To define the device for storing binary floating decimal point data to be multiplied.
*2. To define the device for storing binary floating decimal point data to be multiplied.
*3. To define the device for storing the multiplied binary floating decimal point data.

\section*{Cautions}
1) When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label. However, the 32-bit counter is a 32 -bit long device, and can be specified directly. When specifying the device, use the global label.
2) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
3) Applicable devices are limited.

A1: FX3U, FX3uc and FX3G PLCs only are applicable.
A2: FX3U, FX3Uc PLCs only are applicable.

\subsection*{7.12.11 DEDIV}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\Delta\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction divides two binary floating decimal points.
\(\rightarrow\) As for program example of floating decimal point operation, refer to section 7.5.10. \(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
\(\rightarrow\) As for the operation of the flag, refer to the FX Structured Programming Manual (Device \& Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DEDIV & 32 bits & Continuous &  & DEDIV(EN, s1, s2, d); \\
\hline DEDIV & 32 bits & Pulse & \begin{tabular}{lr}
\hline \multicolumn{2}{c|}{ DEDIVP } \\
- EN & ENO \\
-s 1 & d \\
-s 2 & \\
\hline
\end{tabular} & DEDIVP(EN, s1, s2, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & s1 & Device for storing binary floating decimal point data to be divided. & FLOAT(Single Precision) \\
\hline & s2 & Device for storing binary floating decimal point data to be divided. & FLOAT(Single Precision) \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Device for storing the divided binary floating decimal point data. & FLOAT(Single Precision) \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) \\
"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square \mathbf{I G} \square\) & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & & & \(\bullet\) & \(\Delta 1\) & -2 & & & - & \(\bullet\) & \(\bullet\) & -1 & & \\
\hline (s2) & & & & & & & & & & & & & & \(\bullet\) & \(\Delta 1\) & -2 & & & - & - & - & -1 & & \\
\hline (d) & & & & & & & & & & & & & & \(\bullet\) & \(\Delta 1\) & -2 & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}
: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DEDIV, DEDIVP)}

The binary floating decimal point data in the device specified by \(s 1\) and in the device specified by s2 are divided, and the result is transferred to the device specified by \(\mathbb{d}\) in binary floating decimal point.

\begin{tabular}{|c|c|c|}
\hline ividend & \multicolumn{2}{|l|}{Divisor} \\
\hline \multicolumn{3}{|l|}{\([(s 1)+1,(s 1)] \div[(s 2)+1,(s 2)] \rightarrow[(d)+1\), (d)} \\
\hline decimal point & Binary floatin decimal poi & decimal p \\
\hline
\end{tabular}
*1. To define the device for storing binary floating decimal point data to be divided.
*2. To define the device for storing binary floating decimal point data to be divided.
*3. To define the device for storing the divided binary floating decimal point data.
When constants \((\mathrm{K}, \mathrm{H})\) are specified in the device specified by s 1 or in the device specified by s2), the values are automatically converted and handled as binary floating decimal point.


\section*{Cautions}
1) When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and can be specified directly.
When specifying the device, use the global label.
2) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
3) Applicable devices are limited.

A1: FX3U, FX3UC and FX3G PLCs only are applicable.
A2: FX3U, FX3Uc PLCs only are applicable.

\subsection*{7.12.12 DEXP}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction executes exponential operation whose base is "e (2.71828)".
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DEXP & 32 bits & Continuous &  & DEXP(EN, s, d); \\
\hline DEXPP & 32 bits & Pulse &  & DEXPP(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & \begin{tabular}{l} 
Head device for storing binary floating decimal point data for exponential \\
operation.
\end{tabular} \\
\cline { 2 - 4 } & S & \begin{tabular}{l} 
FLOAT(Single \\
Precision)
\end{tabular} \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 4 } & d & Head device for storing the operation result. & \begin{tabular}{l} 
FLOAT(Single \\
Precision)
\end{tabular} \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\) \\
口"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & - & & & - & & & - & & \\
\hline (d) & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. 32-bit operation (DEXP/DEXPP)

By exponential operation of the device specified by \(S\), the operation result is stored in the device specified by \(\mathbb{d}\). Real number can be directly specified in the device specified by \(s\).
Command
input
- In exponential operation, the bottom (e) is supposed to be 2.71828 .
 (real number)

Binary floating decimal point (real number)

\section*{Error}

In the following cases, it is an operation error, error flag (M8067) is turned ON, and error code is stored in D8067.
- When the operation result is out of the following range. (Error code: K6706) \(2^{-126} \leq \mid\) Operation result | \(<2^{128}\)

\section*{Program example}

This is a program for executing exponential operation of the values set in BCD two digits in X020 to X027 when the X000 is turned ON, and storing in binary floating decimal points D0, D1.
[Structured ladder]


Input of data for
exponential operation (1))

Checking of range of operation values
(see the following check point 1).

Input data is converted into binary floating decimal point (real number).(2))

Exponential operation(3))
*1. VAR_01 is global label, and D10 is defined.
*2. VAR_02 is global label, and D10 is defined.
*3. VAR_03 is global label, and D0 is defined.
[ST]
BIN(X060,K2X20,D20);
M0:=LD>(TRUE,D20,K88);
FLT(NOT M0,D20,VAR_01);
DEXP(NOT M0,VAR_02,VAR_03);

\section*{Operation when 13 is specified in X020 to X027.}


\section*{Points}
1) The operation result is less than \(2^{128}\) only when the BCD value of \(X 020\) to \(X 027\) is smaller than 88 , because \(\log\) e \(2^{128}=88.7\). When a value greater than 89 is specified, it is an operation error, and therefore when a value greater than 89 is specified, MO is turned ON, so that the operation is not carried out.
2) Conversion from natural logarithm into common logarithm

The CPU operates in natural logarithm.
To determine value in common logarithm, please specify the value of common logarithm divided by 0.4342945 in \(\circlearrowleft+1, \mathrm{~s}\).
\[
10^{x}=e^{\frac{x}{0.4329295}}
\]

\section*{Caution}

When handling 32 -bit data in structured program, you cannot specify 16 -bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and can be specified directly.
When specifying the device, use the global label.

\subsection*{7.12.13 DLOGE}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction executes natural logarithm operation.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DLOGE & 32 bits & Continuous &  & DLOGE(EN, s, d); \\
\hline DLOGEP & 32 bits & Pulse &  & DLOGEP(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & S & \begin{tabular}{l} 
Head device for storing the binary floating decimal point data for natural \\
logarithm operation.
\end{tabular} & \begin{tabular}{l} 
FLOAT(Single \\
Precision)
\end{tabular} \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Bead device for storing the operation result.
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & \(\bullet\) & & \\
\hline (d) & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DLOGE/DLOGEP)}

By natural logarithm operation of the device specified by \(s\) (logarithm supposing e (2.71828) to be the bottom), the operation result is stored in the device specified by \(\mathbb{C}\). Real number can be directly specified in the device specified by s .
*1. To define the head device for storing the binary floating decimal point data for natural logarithm operation.
*2. To define the head device for storing the operation result.
- The value to be specified by \(\subseteq\) can be set in positive number only. (Negative number cannot be
 operated.)

\section*{Caution}

When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32 -bit long device, and can be specified directly.
When specifying the device, use the global label.

\section*{Error}

In the following cases, it is an operation error, error flag (M8067) is turned ON, and error code is stored in D8067.
- When the value specified by \(\triangle\) is negative. (Error code: K6706)
- When the value specified by \(s\) is 0 . (Error code: K6706)

\section*{Program example}

This is a program for determining the natural logarithm of " 10 " set in D50 when the X000 is turned ON, and storing in D30, D31.
[Structured ladder]


Setting of data for natural logarithm operation.(1))

Conversion of operation data into binary floating decimal point (real number).(2))

Operation of natural logarithm.(3))
*1. VAR_01 is global label, and D40 is defined.
*2. VAR_02 is global label, and D40 is defined.
*3. VAR_03 is global label, and D30 is defined.
[ST]
MOV(X000,K10,D50);
FLT:=(X000,D50,VAR_01);
DLOGE(X000,VAR_02,VAR_03);


\subsection*{7.12.14 DLOG10}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction executes common logarithm operation.
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
1. Format and operation, execution form

2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow[b]{2}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & S & Head device for storing the binary floating decimal point data for common logarithm operation. & FLOAT(Single Precision) \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Head device for storing the operation result. & FLOAT(Single Precision) \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c}
\hline Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & X & \(\mathbf{Y}\) & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & - & & & - & & & \(\bullet\) & & \\
\hline (d) & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DLOG10/DLOG10P)}

By common logarithm operation of the device specified by \(\checkmark\) (logarithm supposing 10 to be the bottom), the operation result is stored in the device specified by \((d\).
Real number can be directly specified in the device specified by \(\circlearrowleft\).

*1. To define the head device for storing the binary floating decimal point data for common logarithm operation.
*2. To define the head device for storing the operation result.
- The value to be specified by \(\subseteq\) can be set in positive number only. (Negative number cannot be operated.)

\section*{Caution}

When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and can be specified directly.
When specifying the device, use the global label.

\section*{Error}

In the following cases, it is an operation error, error flag (M8067) is turned ON, and error code is stored in D8067.
- When the value specified by \(\triangle\) is negative. (Error code: K6706)
- When the value specified by \(s\) is 0 . (Error code: K6706)

\section*{Program example}

This is a program for determining the common logarithm of " 15 " set in D50 when the X000 is ON, and storing in D30, D31.
[Structured ladder]


Setting of data for common logarithm operation. (1))

Conversion of operation data into binary floating decimal point (real number). (2))

Operation of common logarithm (3))
*1. VAR_01 is global label, and D40 is defined.
*2. VAR_02 is global label, and D40 is defined.
*3. VAR_03 is global label, and D30 is defined.
[ST]
MOV(X000,K15,D50);
FLT:=(X000,D50,VAR_01);
DLOGIO(X000,VAR_02,VAR_03);


\subsection*{7.12.15 DESQR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction executes the square root operation of binary floating decimal point.
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DESQR & 32 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{|c|}{ DESQR } \\
EN & ENO \\
-s & d
\end{tabular} & DESQR(EN, s, d); \\
\hline DESQRP & 32 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{|c|}{ DESQRP } \\
EN & ENO \\
s & d \\
\hline
\end{tabular} & DESQRP(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & \begin{tabular}{l} 
Device for storing binary floating decimal point data for square root \\
operation
\end{tabular} \\
\cline { 2 - 4 } & S & Execution state & \begin{tabular}{l} 
FLOAT(Single \\
Output \\
variable
\end{tabular} \\
\cline { 2 - 4 } & ENO & \begin{tabular}{l} 
Device for storing binary floating decimal point data after square root \\
operation
\end{tabular} & \begin{tabular}{l} 
FLOAT(Single \\
Precision)
\end{tabular} \\
\cline { 2 - 4 } & &
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M \(\mathbf{T}\) & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & - & A1 & 42 & & & - & \(\bullet\) & - & A1 & & \\
\hline (d) & & & & & & & & & & & & & & \(\bullet\) & -1 & -2 & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}
1. 32-bit operation (DESQR, DESQRP)

The data in the device specified by \(s\) is operated by square root (binary floating decimal point), and the result is transferred to the device specified by \(\mathbb{d}\).

*1. To define the device for storing binary floating decimal point data for square root operation
*2. To define the device for storing binary floating decimal point data after operation of square root

\section*{Related devices}
\(\rightarrow\) As for the manner of using the zero flag, refer to the FX Structured Programming Manual (Device \&
Common).
\begin{tabular}{c|c|l}
\hline Device & Name & \\
\hline M8020 & Zero & To be turned ON when the operation result is true 0. \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and can be specified directly. When specifying the device, use the global label.
2) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
3) Applicable devices are limited.

A1: FX3U, FX3UC and FX3G PLCs only are applicable.
A2: FX3U, FX3UC PLCs only are applicable.

\section*{Error}

The content of the device specified by s1 is valid only in positive number, and negative number leads to operation error (M8067), and the instruction is not executed.

\subsection*{7.12.16 DENEG}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction inverts the sign of binary floating decimal point (real number) data.
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DENEG & 32 bits & Continuous &  & DENEG(EN, d); \\
\hline DENEGP & 32 bits & Pulse &  & DENEGP(EN, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Bit \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & \begin{tabular}{l} 
Head device for storing the binary floating decimal point data of which sign \\
is to be inverted.
\end{tabular}
\end{tabular} \begin{tabular}{l} 
FLOAT(Single \\
Precision)
\end{tabular},
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (d) & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & - & & & - & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DENEG/DENEGP)}

The sign of the binary floating decimal point data of the device specified by \(\mathbb{d}\) is inverted, and stored in the device specified by \(\mathbb{d}\).

*1. To define the head device for storing the binary floating
decimal point data of which sign is to be inverted.

\section*{Caution}

When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and can be specified directly.
When specifying the device, use the global label.

\section*{Program example}

This is a program for inverting the sign of the binary floating decimal point data of D100, D101 when the X000 is turned ON, and storing in D100, D101.
[Structured ladder]

*1. VAR_01 is global label, and D100 is defined.
[ST]
DENEGP(X000,VAR_01);

\subsection*{7.12.17 INT}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts the binary floating decimal point into BIN integer in normal data type in the PLC. (From binary floating decimal point data to BIN integer)
\(\rightarrow\) As for program example of floating decimal point operation, refer to section 7.5.10.
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline INT & 16 bits & Continuous &  & INT(EN, s, d); \\
\hline INTP & 16 bits & Pulse &  & INTP(EN, s, d); \\
\hline DINT & 32 bits & Continuous &  & DINT(EN, s, d); \\
\hline DINTP & 32 bits & Pulse &  & DINTP(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multirow{2}{c|}{ Description } & \multicolumn{2}{c}{ Data type } \\
\cline { 4 - 6 } & & \begin{tabular}{c} 
16-bit \\
operation
\end{tabular} & \begin{tabular}{c} 
32-bit \\
operation
\end{tabular} \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & \begin{tabular}{l} 
Device for storing the binary floating decimal point data to be converted \\
into BIN integer.
\end{tabular} & FLOAT(Single Precision) \\
\cline { 2 - 6 } & d & Execution state & Device for storing the converted BIN integer. & Bit & \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{6}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & Real Number & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y \(\mathbf{M}\) & M T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & E & & \\
\hline (s) & & & & & & & & & & & & & \(\bullet\) & -1 & -2 & & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & & & & & & \(\bullet\) & -1 & 42 & & & - & & & & & \\
\hline
\end{tabular}
: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (INT, INTP)}

The binary floating decimal point of the device specified by \(\triangle\) is converted into BIN integer, and is transferred to the device specified by d.

(s)+1, s \(\rightarrow \underset{\text { d }}{\text { Binary floating }}\)\begin{tabular}{l} 
To discard below the decimal \\
decimal point
\end{tabular}
point of 16-bit BIN integer.
*1. To define the device for storing the data to be converted into BIN integer.

\section*{Instruction of reverse converting operation}

Reverse converting operation of the operation of this instruction is FLT.
\(\rightarrow\) As for FLT instruction, refer to 7.5.10.

\section*{2. 32-bit operation (DINT, DINTP)}

The binary floating decimal point of the device specified by \(S\) is converted into BIN integer, and is transferred to the device specified by \(d\).

*1. To define the device for storing the data to be converted into BIN integer.
*2. To define the device for storing the converted data.

\section*{Instruction of reverse converting operation}

Reverse converting operation of the operation of this instruction is DFLT(FNC49) instruction.
\(\rightarrow\) As for FLT instruction, refer to 7.5.10.

\section*{Related devices}
\(\rightarrow\) As for the manner of using the zero, borrow, and carry flag, refer to the FX Structured Programming Manual (Device \& Common).
\begin{tabular}{c|c|l}
\hline Device & Name & \multicolumn{1}{c}{ Content } \\
\hline M8020 & Zero & To be turned ON when the operation result is 0. \\
\hline M8021 & Borrow & To be turned ON when less than 1 is discarded in convertion. \\
\hline M8022 & Carry & \begin{tabular}{l} 
To be turned ON when the operation result overflows by exceeding the range of -32, 768 to 32, \\
767 (in 16-bit operation), or -2, 147, 483,648 to 2, 147, 483,647 (in 32-bit operation). \\
(Operation result is not reflected.)
\end{tabular} \\
\hline
\end{tabular}

\section*{Cautions}
1) Fractions below the decimal point are discarded in operation.
2) When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label. However, the 32-bit counter is a 32 -bit long device, and can be specified directly. When specifying the device, use the global label.
3) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
4) Applicable devices are limited.

A1: FX3U, FX3Uc and FX3G PLCs only are applicable.
A2: FX3U, FX3UC PLCs only are applicable.

\subsection*{7.12.18 DSIN}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction determines the SIN value of angle (RAD).
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DSIN & 32 bits & Continuous &  & DSIN(EN, s, d); \\
\hline DSINP & 32 bits & Pulse &  & DSINP(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow[b]{2}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s) & Device for storing the RAD (angle) of binary floating decimal point. & FLOAT(Single Precision) \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Device for storing the SIN value of binary floating decimal point. & FLOAT(Single Precision) \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{Real Number E} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
"口"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & \(\bullet\) & -1 & -1 & & & - & & & -1 & & \\
\hline (d) & & & & & & & & & & & & & & \(\bullet\) & ©1 & -1 & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}
1. 32-bit operation (DINT, DINTP)

The value of angle (binary floating decimal point) specified by \(S\) is converted into SIN value, and is transferred to the device specified by \(d\).

\begin{tabular}{|c|c|}
\hline 1, S JRAD & d +1 SIN \\
\hline Binary floating decimal point value & Binary floating decimal point value \\
\hline
\end{tabular}
(S)


RAD value (angle \(\times \pi / 180\) )
Binary floating decimal point value is specified.


(d)


SIN value Binary floating decimal point value

\footnotetext{
*1. To define the device for storing RAD (angle).
*2. To define the device for storing SIN value.
}

\section*{Cautions}
1) When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and can be specified directly. When specifying the device, use the global label.
2) Applicable devices are limited.

A: FX3U, FX3UC PLCs only are applicable.

\section*{Program example}
[Structured ladder]

*1. VAR_01 is global label, and D4 is defined.
*2. VAR_02 is global label, and K31415926 is defined.
*3. VAR_03 is global label, and K1800000000 is defined.
*4. VAR_04 is global label, and D20 is defined.
*5. VAR_05 is global label, and D4 is defined.
*6. VAR_06 is global label, and D20 is defined.
*7. VAR_07 is global label, and D30 is defined.
*8. VAR_08 is global label, and D30 is defined.
*9. VAR_09 is global label, and D100 is defined.
[ST]
MOVP(X001,K45,D0);
MOVP(X002,K90,D0);
FLTP(M8000,D0,VAR_01);
DEDIV(M8000,VAR_02,VAR_03,VAR_04);
DEMUL(M8000,VAR_05,VAR_06,VAR_07);
DSIN(M8000,VAR_08,VAR_09);

\subsection*{7.12.19 DCOS}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction determines the COS value of angle (RAD).
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DCOS & 32 bits & Continuous & \begin{tabular}{lr}
\hline \multicolumn{2}{c|}{DCOS} \\
-eN & ENO \\
s & d \\
\hline
\end{tabular} & DCOS(EN, s, d); \\
\hline DCOSP & 32 bits & Pulse & \begin{tabular}{lr}
-ENCOSP \\
-sN & ENO \\
-s & d \\
\hline
\end{tabular} & DCOSP(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & s & Device for storing the RAD (angle) of binary floating decimal point. & \begin{tabular}{l} 
FLOAT(Single \\
Precision)
\end{tabular} \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 4 } & device for storing the COS value of binary floating decimal point. & \begin{tabular}{l} 
FLOAT(Single \\
Precision)
\end{tabular} \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(1 \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & - & -1 & -1 & & & - & & & -1 & & \\
\hline (d) & & & & & & & & & & & & & & - & A1 & A1 & & & - & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}
1. 32-bit operation (DCOS, DCOSP)

The value of angle (binary floating decimal point) specified by \(S\) is converted into COS value, and is transferred to the device specified by © .

\(\left[\begin{array}{l}\text { Binary floating } \\ \text { decimal point value }\end{array} \quad \begin{array}{l}\text { Binary floating } \\ \text { decimal point value }\end{array}\right.\)
(s)


RAD value (angle \(\times \pi / 180\) )
Binary floating decimal point value is specified.

COS value
Binary floating decimal point value
*1. To define the device for storing RAD (angle).
*2. To define the device for storing the COS value.

\section*{Cautions}
1) When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and can be specified directly. When specifying the device, use the global label.
2) Applicable devices are limited.

A: FX3U, FX3UC PLCs only are applicable.

\subsection*{7.12.20 DTAN}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction determines the TAN value of angle (RAD).
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[t]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DTAN & 32 bits & Continuous &  & DTAN(EN, s, d); \\
\hline DTANP & 32 bits & Pulse &  & DTANP(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow[b]{2}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s) & Device for storing the RAD (angle) of binary floating decimal point. & FLOAT(Single Precision) \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Device for storing the TAN value of binary floating decimal point. & FLOAT(Single Precision) \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & Real Number & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c}
\hline Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & E & & \\
\hline (s) & & & & & & & & & & & & & & - & -1 & -1 & & & \(\bullet\) & & & -1 & & \\
\hline (d) & & & & & & & & & & & & & & \(\bullet\) & A1 & -1 & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}
: Refer to "Cautions".

\section*{Function and operation explanation}
1. 32-bit operation (DTAN, DTANP)

The value of angle (binary floating decimal point) specified by \(s\) is converted into TAN value, and is transferred to the device specified by \(\mathbb{d}\).

\begin{tabular}{ll}
{\([\mathrm{s}+1, \mathrm{~s}]\)} \\
\begin{tabular}{l} 
Binary floating \\
decimal point value
\end{tabular} & \begin{tabular}{l} 
Binary floating \\
decimal point value
\end{tabular}
\end{tabular}


RAD value (angle \(\times \pi / 180\) )
Binary floating decimal point value is specified.
\([\mathrm{s}+1, \mathrm{~s}]\) RAD \(\rightarrow\)
Binary floating
Binary floating
(d)


TAN value
Binary floating decimal point value
*1. To define the device for storing RAD (angle).
*2. To define the device for storing the TAN value.

\section*{Cautions}
1) When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and can be specified directly. When specifying the device, use the global label.
2) Applicable devices are limited.

A1: FX3U, FX3Uc PLCs only are applicable.

\subsection*{7.12.21 DASIN}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction executes \(\mathrm{SIN}^{-1}\) operation.
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DASIN & 32 bits & Continuous &  & DASIN(EN, s, d); \\
\hline DASINP & 32 bits & Pulse &  & DASINP(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & S & Head device for storing the SIN value for SIN \(^{-1}\) (reverse sine) operation. & \begin{tabular}{l} 
FLOAT(Single \\
Precision)
\end{tabular} \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Head device for storing the operation result. & \begin{tabular}{l} 
FLOAT(Single \\
Precision)
\end{tabular} \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{c} 
Character \\
String
\end{tabular}
" \(\square "\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & - & & & - & & & \(\bullet\) & & \\
\hline (d) & & & & & & & & & & & & & \(\bullet\) & - & - & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DASIN/DASINP)}

The angle is determined from the SIN value specified by \(s\), and the operation result is stored in the device specified by \(\square\). In the device specified by \(\circlearrowleft\), real number can be directly specified.

- The SIN value specified by \(S\) can be set in a range of -1.0 to 1.0 .
- The angle (operation result) to be stored in the device specified by \((d)\) stores the value of radian ( \(-\pi / 2\) to \(\pi / 2)\). As for conversion from radian to angle or vice versa, refer to DRAD instruction or DDEG instruction.
\(\rightarrow\) As for DRAD instruction, refer to section 7.12.24.
\(\rightarrow\) As for DDEG instruction, refer to section 7.12.25.

\section*{Caution}

When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and can be specified directly.
When specifying the device, use the global label.

\section*{Error}

In the following cases, it is an operation error, error flag (M8067) is turned ON, and error code is stored in D8067.
- When the value specified byis out of the range of -1.0 to 1.0. (Error code: K6706)

\section*{Program example}

This is a program for determining \(\mathrm{SIN}^{-1}\) of D0，D1（binary floating decimal point）when the X 000 is ON ，and sending the angle to Y 040 to Y 057 in BCD four digits．
［Structured ladder］


Calculation of angle（radian）by \(\mathrm{SIN}^{-1}\) operation．（1））

Conversion of radian into angle．（2））

Conversion of angle of binary floating decimal point（real number）into integer（BIN）．（3））

Output of angle converted to integer（BIN） to display unit．（4））
＊1．VAR＿01 is global label，and D0 is defined．
＊2．VAR＿02 is global label，and D10 is defined．
＊3．VAR＿03 is global label，and D10 is defined．
＊4．VAR＿04 is global label，and D20 is defined．
＊5．VAR＿05 is global label，and D20 is defined．
［ST］
DASIN（X000，VAR＿01，VAR＿02）；
DDEG：＝（X000，VAR＿03，VAR＿04）；
INT（X000，VAR＿05，D30）；
BCD（X000，D30，K4Y10）；
Operation when the value of D0，D1 is 0.5 ．


2）Angle conversion DDEG


Value of binary floating


4）\(B C D\) decimal point（real number）

\(B C D\)
INT
IN value
\(B C D\) value

\subsection*{7.12.22 DACOS}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction executes \(\mathrm{COS}^{-1}\) operation.
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DACOS & 32 bits & Continuous &  & DACOS(EN, s, d); \\
\hline DACOSP & 32 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DACOSP } \\
-EN & ENO \\
-s & d \\
\hline
\end{tabular} & \(\operatorname{DACOSP}(E N, ~ s, ~ d) ;\) \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & S & \begin{tabular}{l} 
Head device for storing the COS value for \(\operatorname{COS}^{-1}\) (reverse cosine) \\
operation.
\end{tabular} & \begin{tabular}{l} 
FLOAT(Single \\
Precision)
\end{tabular} \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Bit \\
\cline { 2 - 4 } & dead device for storing the operation result. & \begin{tabular}{l} 
FLOAT(Single \\
Precision)
\end{tabular} \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & \(\bullet\) & & \\
\hline (d) & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & - & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DACOS/DACOSP)}

The angle is calculated from the COS value specified by \(s\), and the operation result is stored in the device specified by \(\propto\). Real number can be directly specified by the device specified by \(\subseteq\).


*1. To define the head device for storing the COS value for \(\mathrm{COS}^{-1}\) operation.
*2. To define the device for storing the operation result.
- The COS value specified by can be set in a range of -1.0 to 1.0 .
- The angle (operation result) to be stored in the device specified by \(\mathbb{d}\) stores the value 0 to \(\pi\) in the radian unit.
As for conversion from radian to angle or vice versa, refer to DRAD instruction or DDEG instruction.
\(\rightarrow\) As for DRAD instruction, refer to section 7.12.24.
\(\rightarrow\) As for DDEG instruction, refer to section 7.12.25.

\section*{Caution}

When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and can be specified directly.
When specifying the device, use the global label.

\section*{Error}

In the following cases, it is an operation error, error flag (M8067) is turned ON, and error code is stored in D8067.
- When the value specified by \(s\) is out of the range of -1.0 to 1.0 . (Error code: K6706)

\section*{Program example}

This is a program for determining \(\mathrm{COS}^{-1}\) of D0, D1 (binary floating decimal point) when the X 000 is ON , and sending the angle to Y 040 to Y 057 in BCD four digits.
[Structured ladder]


Calculation of angle (radian) by \(\mathrm{COS}^{-1}\) operation. (1))

Conversion of radian into angle. (2))

Conversion of angle of binary floating
decimal point (real number) into integer (BIN). (3))

Output of angle converted to integer to display unit. (4))
*1. VAR_01 is global label, and D0 is defined.
*2. VAR_02 is global label, and D10 is defined.
*3. VAR_03 is global label, and D10 is defined.
*4. VAR_04 is global label, and D20 is defined.
*5. VAR_05 is global label, and D20 is defined.
[ST]
DACOS(X000,VAR_01,VAR_02);
DDEG:=(X000,VAR_03,VAR_04);
INT(X000,VAR_05,D30);
BCD(X000,D30,K4Y10);

\section*{Operation when the value of D0, D1 is 0.5 .}


\subsection*{7.12.23 DATAN}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction executes TAN \(^{-1}\) operation.
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured Iadder & ST \\
\hline DATAN & 32 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DATAN } \\
-EN & ENO \\
-s & d
\end{tabular} & DATAN(EN, s, d); \\
\hline DATANP & 32 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c}{ DATANP } \\
EN & ENO \\
s & d \\
\hline
\end{tabular} & DATANP(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & \begin{tabular}{l} 
Head device for storing the TAN value for TAN \\
-1 \\
tangent).
\end{tabular} \\
\cline { 2 - 4 } & s & Execution state & \begin{tabular}{l} 
Bit \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} \\
\cline { 2 - 4 }
\end{tabular} \\
\cline { 2 - 4 } & ENO & Head device for storing the operation result. & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & \(\mathbf{Y}\) M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & \(\bullet\) & & \\
\hline (d) & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DATAN/DATANP)}

The angle is calculated from the TAN value specified by \(S\), and the operation result is stored in the device specified by \(d\). Real number can be directly specified by the device specified by \(s\).

*1. To define the head device for storing
the TAN value for TAN \({ }^{-1}\) operation.
*2. To define the device for storing the operation result.
- The angle (operation result) to be stored in the device specified by \(d\) stores the value larger than \((-\pi / 2)\) and smaller than \((\pi / 2)\) in the radian unit.
As for conversion from radian to angle or vice versa, refer to DRAD instruction or DDEG instruction.
\(\rightarrow\) As for DRAD instruction, refer to section 7.12.24.
\(\rightarrow\) As for DDEG instruction, refer to section 7.12.25.

\section*{Caution}

When handling 32-bit data in structured program, you cannot specify 16 -bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and can be specified directly.
When specifying the device, use the global label.

\section*{Program example}

This is a program for determining TAN \({ }^{-1}\) of D0, D1 (binary floating decimal point) when the X 000 is ON , and sending the angle to Y 040 to Y 057 in BCD four digits.
[Structured ladder]


Calculation of angle (radian)
by TAN \({ }^{-1}\) operation. (1))

Conversion of radian into angle. (2))

Conversion of angle of binary floating
decimal point (real number) into integer (BIN). (3))
Output of angle converted to integer
(BIN) to display unit. (4))
*1. VAR_01 is global label, and D0 is defined.
*2. VAR_02 is global label, and D10 is defined.
*3. VAR_03 is global label, and D10 is defined.
*4. VAR_04 is global label, and D20 is defined.
*5. VAR_05 is global label, and D20 is defined.
[ST]
DATAN(X000,VAR_01,VAR_02);
DDEG:=(X000,VAR_03,VAR_04);
INT(X000,VAR_05,D30);
BCD(X000,D30,K4Y10);
Operation when the value of D0, D1 is 1.


\subsection*{7.12.24 DRAD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts the value of angle unit to the radian unit.
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DRAD & 32 bits & Continuous &  & DRAD (EN, s, d); \\
\hline DRADP & 32 bits & Pulse & \begin{tabular}{lr}
\(-\mathrm{DN}^{2} \mathrm{DRAD} \mathrm{P}\) & ENO \\
s & d
\end{tabular} & DRAD_P(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow[b]{2}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s) & Head device for storing the angle to be converted to radian unit. & FLOAT(Single Precision) \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Head device for storing the value having been converted to radian unit & FLOAT(Single Precision) \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & - & & & \(\bullet\) & & & \(\bullet\) & & \\
\hline (d) & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DRAD/DRADP)}

The angle specified by \(S\) is converted from the degree unit to the radian unit, and is stored in the device specified by \(\mathbb{d}\). Real number can be directly specified in the device specified by \(s\).

*1. To define the head device for storing the angle to be converted to the radian unit.
*2. To define the head device for storing the value having been converted to the radian unit.
- Conversion from degree unit to radian unit is as follows.
\[
\text { Radian unit }=\text { degree unit } \times \frac{\pi}{180}
\]

\section*{Caution}

When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and can be specified directly.
When specifying the device, use the global label.

\section*{Program example}

This is a program for converting the angle set in BCD four digits in X020 to X037 when the X000 is ON, and storing in binary floating decimal point in D20, D21.
[Structured ladder]


Input of angle to be converted to radian value. (1))

Conversion of input angle to binary floating decimal point (negative number).) (2))

Conversion of angle to radian value. (3))
*1. VAR_01 is global label, and D10 is defined.
*2. VAR_02 is global label, and D10 is defined.
*3. VAR_03 is global label, and D20 is defined.
[ST]
BIN(X000,K4X20,D0);
FLT:=(X000,D0,VAR_01);
DRAD(X000,VAR_02,VAR_03);
Operation when 120 is specified in X020 to X037.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline X037.-X020 & 1) BIN & \[
\begin{gathered}
\text { D0 } \\
15 \cdots \text { b0 }
\end{gathered}
\] & 2) Conversion of binary floating decimal point & D11 & D10 & 3) Radian conversion & D21 & D20 \\
\hline 0|1220 & & 120 & & 12 & & \(\square\) & & \\
\hline \(B C D\) value & BIN & BIN value & FLT & & & DRAD & & \\
\hline
\end{tabular}

\subsection*{7.12.25 DDEG}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts the radian unit value into the angle (DEG) unit.
\(\rightarrow\) As for handling of floating decimal point, refer to FX Structured Programming Manual (Device \& Common).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DDEG & 32 bits & Continuous &  & DDEG(EN, s, d); \\
\hline DDEGP & 32 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{|c|}{ DDEG_P } \\
EN & ENO \\
s & d \\
\hline
\end{tabular} & DDEG_P(EN, s, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow[b]{2}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s) & Head device for storing the radian angle to be converted to degree unit. & FLOAT(Single Precision) \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Head device for storing the value having been converted to degree unit. & FLOAT(Single Precision) \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|c|}
\hline Real \\
Number
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(11 \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & - & & & - & & & \(\bullet\) & & \\
\hline (d) & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. 32-bit operation (DDEG/DDEGP)
(DDEG/DDEGP)
The unit of the angle specified by \(s\) is converted from the radian unit to the degree unit, and is stored in the device specified by \(\quad d\).

*1. To define the head device for storing the radian angle to be converted to degree unit.
*2. To define the head device for storing the value having been converted to degree unit.
- Conversion from radian unit to degree unit is as follows.
\[
\text { Degree unit }=\text { radian unit } \times \frac{180}{\pi}
\]

\section*{Caution}

When handling 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32 -bit long device, and can be specified directly.
When specifying the device, use the global label.

\section*{Program example}

This is a program for converting the radian value set in binary floating decimal point in D20, D21 to the angle when the X 000 is ON, and issuing to the Y040 to Y057 in BCD value.
[Structured ladder]


Radial value is converted to angle. (1))

Angle of binary floating decimal point (real number) is converted to integer. (2))

The converted integer value is issued to the display unit. (3))
*1. VAR_01 is global label, and D20 is defined.
*2. VAR_02 is global label, and D10 is defined.
*3. VAR_03 is global label, and D10 is defined.
[ST]
DDEG(X000,VAR_01,VAR_02);
INT:=(X000,VAR_03,D0);
BCD(X000,D0,K4Y40);
Operation when the value of D20, D21 is 1.435792 .


\subsection*{7.13 Data Operation 2}

\subsection*{7.13.1 WSUM}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction calculates the total value of continuous 16-bit data or 32-bit data.
Please use the CCD when calculating the sum data (total value) in byte (8-bit) unit.
\(\rightarrow\) As for the CCD, refer to section 7.9.5.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline WSUM & 16 bits & Continuous &  & WSUM(EN, s, n, d); \\
\hline WSUMP & 16 bits & Pulse &  & WSUMP(EN, s, n, d); \\
\hline DWSUM & 32 bits & Continuous &  & DWSUM(EN, s, n, d); \\
\hline DWSUMP & 32 bits & Pulse & \begin{tabular}{lr|r}
\hline \multicolumn{2}{c|}{ DWSUMP } & \\
-EN & ENO & - \\
-s & d & \\
n & \\
\hline
\end{tabular} & DWSUMP(EN, s, n, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|c|}{Data type} \\
\hline & & & 16-bit & 32-bit \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s) & Head device for storing the data for calculating the total value ( \(n\) points occupied). & ANY16 & ANY32 \\
\hline & (n) & Number of data (0<n) & \multicolumn{2}{|l|}{ANY16} \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Head device for storing the total value. & ANY32 & \[
\begin{aligned}
& \text { ARRAY [1..4] } \\
& \text { OF ANY16 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{Pointer} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & \(\bullet\) & - & & & - & & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & - & & - & & & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & - & \(\bullet\) & & & & & \(\bullet\) & - & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. 16-bit operation (WSUM/WSUMP)

The total value of \(n\) points of 16 -bit data from the device specified by \((S\) is stored in the device specified by (d) as 32-bit data.



\section*{2. 32-bit operation (DWSUM/DWSUMP)}

The total value of \(n\) points of 32-bit data from the device specified by \(s\) is stored in the device specified by (d) as 64-bit data.


\section*{Related instructions}
\begin{tabular}{c|l}
\hline Instruction & \multicolumn{1}{c}{ Content } \\
\hline CCD & \begin{tabular}{l} 
Check code \\
This instruction calculates the total value and the horizontal parity of 16-bit data in byte (8-bit) unit.
\end{tabular} \\
\hline
\end{tabular}

\section*{Cautions}
1) In 32-bit operation, the total value becomes 64-bit data. FX3U, FX3UC PLCs cannot handle 64-bit data. However, when the total value is in the numeric value range of 32 -bit data ( \(\mathrm{K}-2,147,483,648\) to \(\mathrm{K} 2,147,483,647\) ), higher 32-bit data is ignored, and the lower 32-bit data can be handled as the total value.
2) When handling array data or 32-bit data in structured program, you cannot specify 16 -bit device directly unlike the simple project. When handling array data or 32-bit data, please use the label. However, the 32 -bit counter is a 32 -bit long device, and can be specified directly. When specifying the device, use the global label.
3) \(F X_{3} \cup, F_{3} \cup C\) PLCs support the instruction at \(V 2.20\) or later.

\section*{Error}

In the following case, it is an operation error, error flag M8067 is turned ON, and error code is stored in D8067.
1) When \(n\) devices from the device specified by \(\qquad\) exceed the device range. (Error code: K6706)
2) When \(\mathrm{n} \leq 0\). (Error code: K6706)
3) When the device specified by (d) exceeds the range. (Error code: K6706)

\section*{Program example}

This is a program for storing the total value of 16 -bit data of D10 to D14 when the X010 is turned ON to [D101, D100].
[Structured ladder]

[ST]
WSUMP(X10,D10,K5,VAR_SUM);

\subsection*{7.13.2 WTOB}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction separates continuous 16-bit data in byte (8-bit) unit.
1. Format and operation, execution form

2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & Data type \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & s & Head device for storing the data to be separated in byte unit. & ANY16 \\
\cline { 2 - 5 } & n & Number of byte data to be separated. \((0 \leq \mathrm{n})\) & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Head device for storing the result separated in byte unit. & ANY16 \\
\hline
\end{tabular}

\section*{3. Applicable devices}


\section*{Function and operation explanation}

\section*{1. 16-bit operation (WTOB/WTOBP)}
1) This instruction separates \(n / 2\) points of 16-bit data stored after the device specified by \(S\) into \(n\) bytes, and stores into \(n\) devices starting from the device specified by \((d)\) as explained below.

2) 00 H is stored in the higher byte ( 8 bits) of the device for storing the separated byte data (after the device specified by (d).
3) In the case of \(\mathrm{n}=\) odd number, the final data of separation source is applicable only to the data in the lower byte ( 8 bits) as shown below.
For example, in the case of \(n=5\), data of lower byte ( 8 bits) of \(\mathbb{S}\) to \((s)+2\) is stored in \((d)\) to (d) +4 .

4) Instruction is not processed in the case of \(n=0\).

\section*{Related instructions}
\begin{tabular}{c|l}
\hline Instruction & \\
\hline BTOW & This instruction couples the lower 8 bits (lower byte) of continuous 16-bit data. \\
\hline
\end{tabular}

\section*{Cautions}
1) The device storing the separation source data and the device storing the separated data can be used in overlap. However, in the case of \(n=\) odd number, it must be noted that the data of the higher byte ( 8 bits) of the final data of the separation source may be overwritten and erased as shown below.


\section*{Error}

In the following case, it is an operation error, error flag M8067 is turned ON, and error code is stored in D8067.
1) When devices \(\triangle\) to \(s+n / 2\) of separation source exceed the device range of specified devices. When n is an odd number, the devices are required in the number by rounding up. (Error code: K6706)
2) When devices (d) to d \(+n-1\) for storing the separated data exceed the device range of specified devices. (Error code: K6706)

\section*{Program example}

This is a program for separating the data of D10 to D12 into byte unit when the X 000 is turned ON , and storing in D20 to D25.
[Structured ladder]


[ST]
WTOBP(X000,D10,K6,D20);

\subsection*{7.13.3 BTOW}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction couples the lower 8 bits (lower byte) of continuous 16-bit data.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{3}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & & ST \\
\hline BTOW & 16 bits & Continuous &  & BTOW(EN, s, n, d); & \\
\hline BTOWP & 16 bits & Pulse &  & BTOWP(EN, s, n, d); & \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Head device for storing the data to be coupled in byte unit. \\
\cline { 2 - 5 } & s & Number of byte data to be coupled \((0 \leq n)\) & Bit \\
\cline { 2 - 5 } & n & Execution state & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & d & Head device for storing the coupled result in byte unit. \\
\cline { 2 - 5 } & & &
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{5}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Special \\
unit
\end{tabular} \\
\hline U \(\square\) \G \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(11 \square\) \\
"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & c & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & \(\bullet\) & - & - & - & \(\bullet\) & & & & - & & & & & \\
\hline (d) & & & & & & & & & & & & \(\bullet\) & - & - & - & \(\bullet\) & & & & \(\bullet\) & & & & & \\
\hline ( n & & & & & & & & & & & & & & & - & \(\bullet\) & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (BTOW/BTOWP)}
1) This instruction stores the 16 -bit data coupling lower byte ( 8 bit) of 16 -bit data of \(n\) points from the device specified by \(\qquad\) , into \(\mathrm{n} / 2\) devices starting from \(\square\) as follows.


2) Higher byte ( 8 bits) of 16 -bit data (after \(s\) ) in the coupling source is ignored.
3) When \(n\) is an odd number, as shown below, higher byte ( 8 bits) of the data coupled in the last place is set to 00 H . For example, in the case of \(n=5\), data of lower byte ( 8 bits) of \(\Omega\) to \(s+4\) is stored in \(d\) to (d) +2 . Higher byte \((8\) bits) of \(d+2\) is 00 H .

4) Instruction is not processed in the case of \(n=0\).

\section*{Related instructions}
\begin{tabular}{c|l}
\hline Instruction & \\
\hline WTOB & This instruction separates continuous 16-bit data in byte (8-bit) unit. \\
\hline
\end{tabular}

\section*{Cautions}
1) The device storing the coupling source data and the device storing the coupled data can be used in overlap. However, it must be noted that the higher byte ( 8 bits ) of the coupling source data stored in the device used in overlap is erased because the data of the higher byte ( 8 bits) is overwritten by the coupled data.

2) \(\mathrm{FX} 3 \cup \mathrm{C}\) PLC supports at V 2.20 or later.

\section*{Error}

In the following case, it is an operation error, error flag M8067 is turned ON, and error code is stored in D8067.
1) When the devices \(\subseteq\) to ( \(S+n-1\) ) at the coupling source exceeds the device range of the specified devices. (Error code: K6706)
2) When the devices (d) to ( \(d+n / 2\) ) for storing the coupled data exceeds the device range of the specified devices. When n is an odd number, the devices are required in the number by rounding up. (Error code: K6706)

\section*{Program example}

This is a program for coupling the data of lower byte ( 8 bits) of D20 to D25 when the X000 is turned ON, and storing into D10 to D12.
[Structured ladder]


[ST]
BTOWP(X000,D20,K6,D10);

\subsection*{7.13.4 UNI}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction couples lower 4 bits of continuous 16-bit data.
1. Format and operation, execution form


\section*{2. Set data}
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & s & Head device for storing the data to be coupled. & ANY16 \\
\cline { 2 - 5 } & n & Number of couples (no processing in the case of 0 to 4, n=0) & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Head device for storing the coupled data. & ANY16 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c}
\hline Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & - & - & - & & & & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & & & & & \(\bullet\) & & - & & & & & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & - & \(\bullet\) & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16 -bit operation (UNI/UNIP)}
1) 16-bit data coupling lower 4 bits of 16-bit data of \(n\) points from the device specified by \(s\) is stored in the device specified by \((d)\) as shown below.

2) Any one of 1 to 4 is specified by \(n\).

In the case of \(n=0\), instruction is not processed.
3) In the case of \(1 \leq n \leq 3\), higher ( \(4 \times(4-n)\) ) bits of the device specified by \(\mathbb{C}\) are 0 .

For example, in the case of \(n=3\), lower 4 bits of \(\Omega\) to \((s+2)\) are stored in b0 to b11 of \(\mathbb{d}\), and higher 4 bits of \((d)\) are 0 .


\section*{Related instructions}
\begin{tabular}{c|l}
\hline Instruction & \\
\hline DIS & This instruction separates 16-bit data in 4-bit unit. \\
\hline
\end{tabular}

\section*{Cautions}

FX3UC PLC supports at V2.20 or later.

\section*{Error}

In the following case, it is an operation error, error flag M8067 is turned ON, and error code is stored in D8067.
1) When \(\subseteq\) to ( \(S+n\) ) exceeds the device range of the specified devices. (Error code: K6706)
2) When n is specified other than 0 to 4 . (Error code: K6706)

\section*{Program example}

This is a program for coupling lower 4 bits of D0 to D2 when the X000 is turned ON, and storing in D10.
[Structured ladder]


[ST]
UNIP(X000,D0,K3,D10);

\subsection*{7.13.5 DIS}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction separates 16 -bit data in 4-bit unit.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{3}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & & T \\
\hline DIS & 16 bits & Continuous &  & DIS(EN,s,n,d); & \\
\hline DISP & 16 bits & Pulse &  & DISP(EN,s,n,d); & \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & s & Device for storing the data to be separated. & ANY16 \\
\cline { 2 - 5 } & n & Number of separates (no processing in the case of 0 to 4, n=0) & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Head device for storing the separated data. & ANY16 \\
\hline
\end{tabular}

\section*{3. Applicable devices}


\section*{Function and operation explanation}

\section*{1. 16-bit operation (DIS/DISP)}
1) This instruction separates 16 -bit data of the device specified by \(\Omega\) in 4-bit unit, and storing in the device specified by \((d)\) as follows.

(s)



To be set in 0 . Storing area
2) Any one of 1 to 4 is specified by \(n\).

In the case of \(n=0\), instruction is not processed.
3) 0 is set in higher 12 bits in the device of \(n\) points from the device specified by \(\mathbb{d}\).

\section*{Related instructions}
\begin{tabular}{c|l}
\hline Instruction & \\
\hline UNI & This instruction couples lower 4 bits of 16-bit data. \\
\hline
\end{tabular}

\section*{Cautions}

FX3UC PLC supports at V2.20 or later.

\section*{Error}

In the following case, it is an operation error, error flag M8067 is turned ON, and error code is stored in D8067.
1) When the range of \(n\) points from the device specified by \(\square\) exceeds the device range of specified device. (Error code: K6706)
2) When n is specified other than 0 to 4. (Error code: K6706)

\section*{Program example}

This is a program for separating D0 in 4 bits each when the X000 is turned ON, and storing in D10 to D13.
[Structured ladder] [ST]

DISP(X000,D0,K4,D10);


\subsection*{7.13.6 SWAP}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction swaps higher 8 bits and lower 8 bits of word data.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline SWAP & 16 bits & Continuous &  & SWAP(EN,s); \\
\hline SWAPP & 16 bits & Pulse &  & SWAPP(EN,s); \\
\hline DSWAP & 32 bits & Continuous &  & DSWAP(EN,s); \\
\hline DSWAPP & 32 bits & Pulse & \begin{tabular}{ll}
-2 DSWAPP \\
-EN & ENO \\
-s & \\
\hline
\end{tabular} & DSWAPP(EN,s); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l|l|l}
\hline \multirow{2}{*}{ Variable } & \multirow{2}{c|}{ Description } & \multicolumn{2}{c}{ Data type } \\
\cline { 4 - 6 } & & \begin{tabular}{c} 
16-bit \\
operation
\end{tabular} & \begin{tabular}{c} 
32-bit \\
operation
\end{tabular} \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Bit & \\
\cline { 2 - 6 } \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Device for swapping higher and lower bytes. & ANY16 & ANY32 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{Bit Devices
System user}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|l|}{Special unit} & \multirow[t]{2}{*}{} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & -1 & -1 & \(\bullet\) & - & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}
1. 16-bit operation (SWAP, SWAPP, DSWAP, DSWAPP)

This instruction swaps lower 8 bits and higher 8 bits.


\section*{2. 32-bit operation (DSWAP, DSWAPP)}

In the case of 32-bit instruction, too, lower 8 bits and higher 8 bits are swapped individually.


In the label, the head device data for swapping higher and lower is defined.


\section*{Cautions}
1) When the continuous execution instruction is used, it must be noted that the swap takes place in every operation cycle.
2) When handling 32-bit data in structured program, you cannot designate 16 -bit device directly unlike the simple project. When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32 -bit long device, and 32-bit data can be specified directly. When specifying the device, use the global label.
3) Applicable devices are limited.

A1: \(\mathrm{FX}_{3}\), FX3Uc PLCs only are applicable.

\subsection*{7.13.7 SORT2}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction sorts the data table composed of data (rows) and group data (columns) in the ascending order/descending order in row unit on the basis of the specified group data (rows). In this instruction, data (row direction) is stored in continuous devices, and it is easy to add the data (row).
In SORT, sorting is in ascending order only, and data composition is different (data is composed in devices continuous in row direction).
\(\rightarrow\) As for SORT, refer to section 7.7.10.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline SORT2 & 16 bits & Continuous &  & SORT2(EN,s,m1,m2,n,d); \\
\hline DSORT2 & 32 bits & Continuous & \begin{tabular}{lr}
\multicolumn{2}{c|}{ DSORT2 } \\
- EN & ENO \\
-s & d \\
-m 1 & \\
-m 2 & \\
-n & \\
\hline
\end{tabular} & DSORT2(EN,s,m1,m2,n,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|c|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow{5}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s) & Head device for storing data table [ \(\mathrm{m} 1 \times \mathrm{m} 2\) points occupied] & ANY16 & ANY32 \\
\hline & (m1) & Number of data (rows) [1 to 32] & ANY16 & ANY32 \\
\hline & (m2) & Number of group data (columns) [1 to 6] & ANY16 & ANY32 \\
\hline & (n) & Columns of group data (columns) as reference for sorting [1 to m2] & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Head device for storing operation result [m1 \(\times \mathrm{m} 2\) points occupied] & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Special \\
unit
\end{tabular} \\
\hline UपIG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & - & - & & & & & & & & & \\
\hline (m1) & & & & & & & & & & & & & & - & - & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (m2) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & & & & & & & & & & & & \(\bullet\) & - & & & & & & & & & \\
\hline (n) & & & & & & & & & & & & & & - & \(\bullet\) & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (SORT2)}

This instruction sorts the data rows of data table (sorting source) of ( \(\mathrm{m} 1 \times \mathrm{m} 2\) ) points from the device specified by \(s\) in the ascending order/descending order on the basis of group data of \(n\) rows, and stores in data table (after sorting) of ( \(\mathrm{m} 1 \times \mathrm{m} 2\) ) points from the device specified by \(\mathbb{d}\).
\(\rightarrow\) As for operation example, refer to 3. Operation examples.
 as reference for sorting

Instruction execution complete flag M8029 \(\stackrel{\text { M8029 }}{ }\)

The data table is composed of \(\mathrm{m} 1=\mathrm{K} 3, \mathrm{~m} 2=\mathrm{K} 4\) in the sorting source as explained in this case. In the data table after sorting, exchange \(s\) and \(d\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{3}{*}{\begin{tabular}{l}
Column number \\
Row number
\end{tabular}}} & \multicolumn{4}{|c|}{Number of groups m2 (in the case of m2=K4)} \\
\hline & & 1 & 2 & 3 & 4 \\
\hline & & Management number & Height & Body weight & Age \\
\hline \multirow[t]{3}{*}{In the case of number of data \(\mathrm{m} 1=3\)} & 1 & (s) & (s) +1 & (s) +2 & (s) +3 \\
\hline & 2 & (s) +4 & (s) +5 & (s) +6 & (s) +7 \\
\hline & 3 & (s) +8 & (s) +9 & (s) +10 & (S) +11 \\
\hline
\end{tabular}
1) Sorting is set depending on the ON/OFF state of M8165.
\begin{tabular}{c|c}
\hline & Setting of sorting order \\
\hline M8165=ON & Descending \\
\hline M8165=OFF & Ascending \\
\hline
\end{tabular}
2) Data sorting is started when the instruction input is ON , and is completed after m 1 scan , and instruction execution complete flag M8029 is turned ON.
\(\rightarrow\) As for the manner of using the instruction execution complete flag, refer to section 1.3.4.

\section*{2. 32-bit operation (DSORT2)}

This instruction sorts the data rows of data table (sorting source) of ( \(\mathrm{m} 1 \times \mathrm{m} 2\) ) points from the device specified by \((s)\) in the ascending order/descending order on the basis of group data of \(n\) rows, and stores in data table (after sorting) of ( \(\mathrm{m} 1 \times \mathrm{m} 2\) ) points from the device specified by \(\mathbb{C}\).
\(\rightarrow\) As for operation example, refer to 3. Operation examples.

*1. Head device for storing the data table is defined in label 1.
*2. Head device for storing the operation result is defined in label 1.
The data table is composed of \(\mathrm{m} 1=\mathrm{K} 3, \mathrm{~m} 2=\mathrm{K} 4\) in the sorting source as explained in this case. In the data table after sorting, exchange \(s\) and (d).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{3}{*}{\begin{tabular}{l}
Column number \\
Row number
\end{tabular}}} & \multicolumn{4}{|c|}{Number of groups m2 (in the case of m2=K4)} \\
\hline & & 1 & 2 & 3 & 4 \\
\hline & & Management number & Height & Body weight & Age \\
\hline \multirow[t]{3}{*}{In the case of number of data \(\mathrm{m} 1=3\)} & 1 & [ \(\mathrm{s}+1, \mathrm{~s}\) ] & [ \(\mathrm{s}+3, \mathrm{~s}+2\) ] & [ \(\mathrm{s}+5, \mathrm{~s}+4]\) & [ \(\mathrm{s}+7, \mathrm{~s}+6]\) \\
\hline & 2 & [ \(\mathrm{s}+9, \mathrm{~s}+8]\) & [ \(\mathrm{s}+11, \bigcirc+10]\) & [ \(\mathrm{s}+13, \mathrm{~s}+12]\) & [ \(\mathrm{s}+15, \mathrm{~s}+14]\) \\
\hline & 3 & [ \(\mathrm{s}+17, \mathrm{~s}^{\text {+16 }}\) & \([\) s +19, \(s+18]\) & [s +21, s +20] & [s +23, s +22] \\
\hline
\end{tabular}
1) Sorting is set depending on the ON/OFF state of M8165.
\begin{tabular}{c|c}
\hline & Sorting order \\
\hline M8165=ON & Descending \\
\hline M8165=OFF & Ascending \\
\hline
\end{tabular}
2) When using data register \(D\) or extension register \(R\) for \(m 1\), the data length is 32 bits. For example, when m 1 is specified by \(\mathrm{D} 0, \mathrm{~m} 1\) is 32 -bit data of [D1, D0].
3) Data sorting is started when the instruction input is ON , and is completed after m 1 scan, and instruction execution complete flag M8029 is turned ON.
\(\rightarrow\) As for the manner of using the instruction execution complete flag, refer to section 1.3.4.

\section*{3. Operation example}

The operation is as follows when the following sorting source data is executed in " \(\mathrm{n}=\mathrm{K} 2\) (column number 2)", "n=K3 (column number 3)".
The operation example is a case of 16 -bit operation. In the case of 32 -bit operation, the data table should be composed of BIN 32 bits.
When a serial number such as management number is entered in the first column, it is convenient because the original row number can be judged from its content.

\section*{Sorting source data}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \multicolumn{4}{|c|}{Number of groups m2 (in the case of m2=K4)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Column number \\
Row number
\end{tabular}}} & 1 & 2 & 3 & 4 \\
\hline & & Management number & Height & Body weight & Age \\
\hline \multirow{10}{*}{In the case of number of data \(m 1=5\)} & \multirow[t]{2}{*}{1} & (s) & (s) +1 & (s) +2 & (s) +3 \\
\hline & & 1 & 150 & 45 & 20 \\
\hline & 2 & (s) +4 & (s) +5 & (s) +6 & (s) +7 \\
\hline & & 2 & 180 & 50 & 40 \\
\hline & 3 & (s) +8 & (s) +9 & (s) +10 & (s) +11 \\
\hline & & 3 & 160 & 70 & 30 \\
\hline & 4 & (s) +12 & (s) +13 & (s) +14 & (s) +15 \\
\hline & & 4 & 100 & 20 & 8 \\
\hline & 5 & (s) +16 & (s) +17 & (s) +18 & (s) +19 \\
\hline & & 5 & 150 & 50 & 45 \\
\hline
\end{tabular}
1) Sorting result when instruction is executed in \(n=K 2\) (column number 2) (ascending order)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Column
number
Row
number} & 1 & 2 & 3 & 4 \\
\hline & Management number & Height & Body weight & Age \\
\hline \multirow[t]{2}{*}{1} & (d) & (d) +1 & (d) +2 & (d) +3 \\
\hline & 4 & 100 & 20 & 8 \\
\hline \multirow[t]{2}{*}{2} & (d) +4 & (d) +5 & (d) +6 & (d) +7 \\
\hline & 1 & 150 & 45 & 20 \\
\hline \multirow[t]{2}{*}{3} & (d) +8 & (d) +9 & (d) +10 & (d) +11 \\
\hline & 5 & 150 & 50 & 45 \\
\hline \multirow[t]{2}{*}{4} & (d) +12 & (d) +13 & (d) +14 & (d) +15 \\
\hline & 3 & 160 & 70 & 30 \\
\hline \multirow[t]{2}{*}{5} & (d) +16 & (d) +17 & (d) +18 & (d) +19 \\
\hline & 2 & 180 & 50 & 40 \\
\hline
\end{tabular}
2) Sorting result when instruction is executed in \(n=K 3\) (column number 3) (descending order)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Column
number
Row
number} & 1 & 2 & 3 & 4 \\
\hline & Management number & Height & Body weight & Age \\
\hline \multirow[t]{2}{*}{1} & (d) & (d) +1 & (d) +2 & (d) +3 \\
\hline & 3 & 160 & 70 & 30 \\
\hline \multirow[t]{2}{*}{2} & (d) +4 & (d) +5 & (d) +6 & (d) +7 \\
\hline & 2 & 180 & 50 & 40 \\
\hline \multirow[t]{2}{*}{3} & (d) +8 & (d) +9 & (d) +10 & (d) +11 \\
\hline & 5 & 150 & 50 & 45 \\
\hline \multirow[t]{2}{*}{4} & (d) +12 & (d) +13 & (d) +14 & (d) +15 \\
\hline & 1 & 150 & 45 & 20 \\
\hline \multirow[t]{2}{*}{5} & (d) +16 & (d) +17 & (d) +18 & (d) +19 \\
\hline & 4 & 100 & 20 & 8 \\
\hline
\end{tabular}

\section*{Related devices}
\(\rightarrow\) As for the manner of using the instruction execution complete flag, refer to section 1.3.4.
\begin{tabular}{c|c|l}
\hline Device & Name & \multicolumn{1}{c}{ Content } \\
\hline M8029 & \begin{tabular}{c} 
Instruction execution \\
complete
\end{tabular} & Turned ON when data sorting instruction is complete. \\
\hline M8165 & Descending order & \begin{tabular}{l} 
Sorted in descending order when M8165=ON. \\
Sorted in ascending order when M8165=OFF.
\end{tabular} \\
\hline
\end{tabular}

\section*{Related instructions}
\begin{tabular}{c|l}
\hline Instruction & \multicolumn{1}{c}{ Content } \\
\hline SORT & \begin{tabular}{l} 
Data sorting \\
This instruction sorts the data table composed of data (rows) and group data (columns) in ascending order \\
in row unit on the basis of the specified group data (columns). In this instruction, the group data (column \\
direction) is stored in continuous devices.
\end{tabular} \\
\hline
\end{tabular}

\section*{Cautions}
1) During operation, do not change the content of the operand or data.
2) When executing again, once turn OFF the command input.
3) Limitation of times of instruction Up to two instructions can be driven simultaneously in the program.
4) The circuit block including this instruction cannot be written during RUN.
5) When specifying same device in s and d

The original data is sorted in the data order after sorting.
In particular, be careful not to change the content of d until instruction execution is complete.
6) Be careful not to allow overlap of original data and sorted data due to deviation.


\subsection*{7.14 Positioning Control}

\subsection*{7.14.1 DSZR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction matches the mechanical position and the current value register in the PLC by zero return. This instruction can perform following operation which is not supported by ZRN.
- Corresponding action of DOG search function
- Zero return is possible by using near-point DOG and zero-point signal.

Zero point cannot be determined by counting the zero-point signals.
\(\rightarrow\) As for explanation of the instruction, see the positioning control manual.
\(\rightarrow\) As for cautions of use of high speed output special adapter, see the positioning control manual.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Execution } \\
& \text { form }
\end{aligned}
\]} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DSZR & 16 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DSZR } \\
EN & ENO \\
-s 1 & d 1 \\
s 2 & d 2 \\
\hline
\end{tabular} & DSZR(EN,s1,s2,d1,d2); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & Data type \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & (s1) \\
\cline { 2 - 4 } & s2 & Device for entering the near-point signal (DOG) & Bit \\
\cline { 2 - 4 } & ENO & Execution state & Bit \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & (d1) & Device for issuing pulse (Y) & Bit \\
\cline { 2 - 4 } & (d2) & Device of rotating direction signal & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Special } \\
\text { unit }
\end{array} \\
\hline \text { U } \square \backslash G \square \\
\hline
\end{array}
\]} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Character \\
String
\end{tabular} \\
\hline\(" \square "\) \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & - & A1 & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline (s2) & -2 & & & & & & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline (d1) & & -3 & & & & & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline (d2) & & A4 & \(\bullet\) & & & \(\bullet\) & A1 & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}


\section*{Cautions}
1) Applicable devices are limited.
\(\mathbf{\Delta 1}\) : \(\mathrm{FX}_{3} \cup, \mathrm{FX}_{3} \cup \mathrm{C}\) PLCs only are applicable, index (V, Z) decoration is disabled.
A2: Please specify X000 to X007.
©3: Please specify Y000, Y001, Y002*1 of transistor output of basic unit, or Y000, Y001, Y002*3, Y003*3 of high speed output special adapter \({ }^{*}\).
*1. Y002 cannot be used in the 14-point type or 24-point type of FX3G PLC.
*2. High speed output special adapter can be connected only in FX3u PLC.
*3. When using Y002, Y003 in high speed output special adapter, a second high speed output special adapter is needed.
Points
- When using FX3U PLC of relay output type, high speed output special adapter is needed.
- The output of high speed output special adapter is a differential line driver.

44: When high speed output special adapter is used at the pulse output destination in the FX3U PLC, as the rotating direction signal, use the output shown in the table below.
\begin{tabular}{c|l|c}
\hline \begin{tabular}{c} 
Connection position of high speed \\
output special adapter
\end{tabular} & Pulse output & \begin{tabular}{c} 
Rotating direction \\
signal
\end{tabular} \\
\hline \multirow{3}{*}{ First unit } & (d1 \(=\mathrm{Y} 000\) & (d2 \(=\mathrm{Y} 004\) \\
\cline { 2 - 3 } & (d1 \(=\mathrm{Y} 001\) & (d2 \(=\mathrm{Y} 005\) \\
\hline \multirow{3}{*}{ Second unit } & (d1 \(=\mathrm{Y} 002\) & (d2 \(=\mathrm{Y} 006\) \\
\cline { 2 - 3 } & (d1 \(=\mathrm{Y} 003\) & (d2 \(=\mathrm{Y} 007\) \\
\hline
\end{tabular}

When built-in transistor output is used at the pulse output destination in the FX3U, FX3UC, FX3G PLCs, as the rotating direction signal, use the transistor output.
2) Output number of rotating direction signal d2

Operation changes as follows depending on polarity of output pulse frequency.
[+ (Positive)] \(\rightarrow\) (d2): ON
\([-\) (Negative) \(] \rightarrow\) (d2): OFF

\section*{Cautions about writing during RUN}

Avoid writing during RUN while DSZR is being executed (during pulse output).
If, during pulse output, writing during RUN is attempted in the circuit block including this instruction, it must be noted that the pulse output slows down and stops.

\section*{Function changes by version}

This instruction includes the function changes as shown in the table below depending on the version.
\(\rightarrow\) As for the explanation of the instruction and contents of function changes, refer to the positioning control manual.
\begin{tabular}{c|c|c|l|l}
\hline \multicolumn{2}{c|}{ Corresponding version } & \multicolumn{1}{c|}{ Item } & \\
\hline FX3G & FX3U & FX3UC & & \multicolumn{1}{c}{ Outline of function } \\
\hline \begin{tabular}{c} 
Ver. 1.00 \\
or later
\end{tabular} & \begin{tabular}{c} 
Ver. 2.20 \\
or later
\end{tabular} & \begin{tabular}{l} 
Ver. 2.20 \\
or later
\end{tabular} & \begin{tabular}{l} 
Clear signal \\
output destination \\
designating \\
function
\end{tabular} & \begin{tabular}{l} 
When special auxiliary relay corresponding to d1 is turned ON, the clear \\
signal output specification is changed to the output number specified by special \\
data register corresponding to d d
\end{tabular} \\
\hline
\end{tabular}

\subsection*{7.14.2 DVIT}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction executes one-speed interrupt inching.
\(\rightarrow\) As for explanation of the instruction, see the positioning control manual.
\(\rightarrow\) As for cautions of use of high speed output special adapter, see the positioning control manual.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution
form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DVIT & 16 bits & Continuous & \begin{tabular}{lr}
\hline \multicolumn{2}{c|}{ DVIT } \\
- EN & ENO- \\
-s 1 & d 1 \\
-s 2 & d 2
\end{tabular} & DVIT(EN,s1,s2,d1,d2); \\
\hline DDVIT & 32 bits & Continuous & \begin{tabular}{lr}
-2 & \multicolumn{2}{c}{ DDVIT } \\
EN & ENO- \\
-s 1 & d 1
\end{tabular} & DDVIT(EN,s1,s2,d1,d2); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l|l|l}
\hline \multirow{2}{*}{ Variable } & \multirow{2}{c}{ Description } & \multicolumn{2}{c}{ Data type } \\
\cline { 4 - 6 } & & \begin{tabular}{c} 
16-bit \\
operation
\end{tabular} & \begin{tabular}{c} 
32-bit \\
operation
\end{tabular} \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit & \\
\cline { 2 - 6 } & s1 & Number of output pulses after interrupt (relative address) & ANY16 & ANY32 \\
\cline { 2 - 5 } & s2 & Output pulse frequency & ANY16 & ANY32 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit & \\
\cline { 2 - 5 } & d1 & Device for issuing pulse (Y) & Bit & \\
\cline { 2 - 5 } & (d2 & Device of rotating direction signal & Bit & \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & \multirow[t]{2}{*}{Special unit U \(\square\) IG \(\square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{Character String
} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & \(\bullet\) & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & - & - & - & & & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (d1) & & \(\Delta 1\) & & & & & & & & & & & & & & & & & - & & & & & \\
\hline (d2) & & \(\Delta 2\) & \(\bullet\) & & & \(\bullet\) & 43 & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

*1. Number of output pulses after interrupt is defined.
*2. Number of output pulses is defined.

\section*{Cautions about writing during RUN}

Avoid writing during RUN while DVIT is being executed (during pulse output).
If, during pulse output, writing during RUN is attempted in the circuit block including this instruction, it must be noted that the pulse output slows down and stops.

\section*{Function changes by version}

This instruction includes the function changes as shown in the table below depending on the version.
\(\rightarrow\) As for the explanation of the instruction and contents of function changes, refer to the positioning control manual.
\begin{tabular}{c|c|l|l}
\hline \multicolumn{2}{c|}{ Corresponding version } & \multicolumn{1}{c|}{ Item } & \multicolumn{1}{c}{ Outline of function } \\
\hline FX3U & FX3UC & \\
\begin{tabular}{c} 
Ver. 2.20 or \\
later
\end{tabular} & \begin{tabular}{c} 
Ver. 1.30 or \\
later
\end{tabular} & \begin{tabular}{l} 
Interrupt input \\
signal designating \\
function
\end{tabular} & \begin{tabular}{l} 
When M8336 is turned ON, the interrupt input signal corresponding to Y000 to \\
Y003 is changed to input number (X000 to X007) specified by D8336. \\
However, Y003 cannot be specified when transistor output of basic unit is used.
\end{tabular} \\
\hline \begin{tabular}{c} 
Ver. 2.20 or \\
later
\end{tabular} & \begin{tabular}{c} 
Ver. 2.20 or \\
later
\end{tabular} & User interrupt mode & \begin{tabular}{l} 
When 8 is specified by D8336 in interrupt input signal corresponding to Y000 to \\
Y003 and M8336 is turned ON, the interrupt input signal is changed to special \\
auxiliary relay. When the changed special auxiliary relay is changed from OFF \\
to ON by input interrupt program, the interrupt operation is started. However, \\
when this function is used, the logic of interrupt input cannot be inverted. \\
However, Y003 cannot be specified when transistor output of basic unit is used.
\end{tabular} \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling 32-bit data in structured program, you cannot designate 16 -bit device directly unlike the simple project.
When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32 -bit long device, and 32-bit data can be specified directly. When specifying the device, use the global label.
2) Applicable devices are limited.
©1: Please specify Y000, Y001, Y002 of transistor output of basic unit, or Y000, Y001, Y002*2, Y003*2 of high speed output special adapter*1.
*1. High speed output special adapter can be connected only in FX3u PLC.
*2. When using Y002, Y003 in high speed output special adapter, a second high speed output special adapter is needed.
Points
- When using FX3U PLC of relay output type, high speed output special adapter is needed.
- The output of high speed output special adapter is a differential line driver.
©2: When high speed output special adapter is used at the pulse output destination in the FX3U PLC, as the rotating direction signal, use the output shown in the table below.
\begin{tabular}{c|c|c}
\hline \begin{tabular}{c} 
Connection position of high speed \\
output special adapter
\end{tabular} & Pulse output & \begin{tabular}{c} 
Rotating direction \\
signal
\end{tabular} \\
\hline \multirow{2}{*}{ First unit } & (d1 \(=\mathrm{Y} 000\) & (d2 \(=\mathrm{Y} 004\) \\
\cline { 2 - 3 } & (d1 \(=\mathrm{Y} 001\) & (d2 \(=\mathrm{Y} 005\) \\
\hline \multirow{3}{*}{ Second unit } & (d1 \(=\mathrm{Y} 002\) & (d2 \(=\mathrm{Y} 006\) \\
\cline { 2 - 3 } & (d1 \(=\mathrm{Y} 003\) & (d2 \(=\mathrm{Y} 007\) \\
\hline
\end{tabular}

When built-in transistor output is ussed at the pulse output destination in the FX3U and FX3UC PLCs, as the rotating direction signal, use the transistor output.
43: In \(D \square . b\), index ( \(V, Z\) ) decoration is disabled.
3) Number of output pulses after interrupt is specified (specified by (s1). The setting range is as follows.
a) In the case of 16-bit operation
\(-32,768\) to \(+32,767\) (excluding 0 )
b) In the case of 32-bit operation
-999,999 to +999,999 (excluding 0)
4) Output pulse frequency is specified (specified by \(s 2\) ).

The setting range is as follows.
a) In the case of 16-bit operation

10 to \(32,767(\mathrm{~Hz})\)
b) In the case of 32-bit operation
\begin{tabular}{l|l|c}
\hline \multicolumn{2}{c|}{ Pulse output destination } & Setting range \\
\hline FX3U PLC & High speed output special adapter & 10 to 200,000 (HZ) \\
\hline FX3U, FX3UC PLCs & Basic unit (transistor output) & 10 to 100,000 (HZ) \\
\hline
\end{tabular}
5) Output number of rotating direction signal (d2)

Operation changes as follows depending on polarity of output pulse frequency.
[+ (Positive)] \(\rightarrow\) (d2): ON
\([-\) (Negative) \(] \rightarrow\) (d2): OFF

\section*{7．14．3 DTBL}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U（C） & FX3G & FX2N（C） & FX1N（C） & FX1S & FXU／FX2C & FX0N & FX0（S） \\
\hline\(\Delta\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction operates the instruction predetermined in the data table by GX Works2 by one specified table． \(\rightarrow\) As for explanation of the instruction，see the positioning control manual． \(\rightarrow\) As for cautions of use of high speed output special adapter，see the positioning control manual．

1．Format and operation，execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured Iadder & ST \\
\hline DTBL & 32 bits & Continuous &  & DTBL（EN，n，d）； \\
\hline
\end{tabular}

2．Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & n & Table number to be executed（n＝1 to 100） & ANY32 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Device for issuing pulse \((Y)\) & Bit \\
\hline
\end{tabular}

\section*{3．Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|l|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Character \\
String
\end{tabular} \\
\hline\(" \square "\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline （d） & & －1 & & & & & & & & & & & & & & & & & & & & & & \\
\hline （ m & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A：Refer to＂Cautions＂．

\section*{Function and operation explanation}


\section*{Cautions about writing during RUN}

The circuit block including DTBL cannot be written during RUN.

\section*{Cautions}
1) When handling 32-bit data in structured program, you cannot designate 16 -bit device directly unlike the simple project.
When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and 32-bit data can be specified directly.
When specifying the device, use the global label.
2) FX3UC PLC supports at V2.20 or later.
3) Applicable devices are limited.
©1: Please specify Y000, Y001, Y002*1 of transistor output of basic unit, or Y000, Y001, Y002*3, Y003*3
of high speed output special adapter*2.
*1. Y002 cannot be used in the 14-point type or 24-point type of FX3G PLC.
*2. High speed output special adapter can be connected only in FX3u PLC.
*3. When using Y002, Y003 in high speed output special adapter, a second high speed output special adapter is needed.
Points
- When using FX3U PLC of relay output type, high speed output special adapter is needed.
- The output of high speed output special adapter is a differential line driver.

\subsection*{7.14.4 DABS}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction connects with our company's MR-H, MR-J2(S) or MR-J3 type servo amplifier (with absolute position detecting function), and reads out the absolute position (ABS) data. The data is read out in pulse converted value.
\(\rightarrow\) As for explanation of the instruction, see the positioning control manual.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DABS & 32 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DABS } \\
-EN & ENO \\
s & d 1
\end{tabular} & DABS(EN,s,d1,d2); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & s & \begin{tabular}{l} 
Head device for entering the output signal for absolute value (ABS) data \\
from the servo amplifier (3 points occupied).
\end{tabular} & Bit \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & d1) & Execution state \\
\cline { 2 - 4 } & (d2) & \begin{tabular}{l} 
Head device for issuing the control signal for absolute value (ABS) data to \\
the servo amplifier (3 points occupied).
\end{tabular} & Bit \\
\cline { 2 - 5 } & Storing destination device of absolute value (ABS) data (32-bit value) & ANY32 \\
\hline
\end{tabular}
3. Applicable devices


A: Refer to "Cautions".

\section*{Function and operation explanation}


\section*{Cautions}
1) When handling 32-bit data in structured program, you cannot designate 16 -bit device directly unlike the simple project. When handling 32-bit data, please use the label. However, the 32-bit counter is a 32 -bit long device, and 32-bit data can be specified directly. When specifying the device, use the global label.
2) \(F X_{2 N}, ~ F X 2 N C\) PLCs support the instruction at V3.00 or later.
3) Since ABS data is read out in pulse converted value, please specify "Motor system" for parameter setting (BFM\#3) of FX2N-1PG. (FX1s, FX1N, FX2N, FX1NC, FX2NC PLCs.)
4) Writing of ABS data into FX2N-10PG should be addressed to the current value registers (BFM\#40, \#39) in which the pulse converted values are stored. (FX1s, FX1N, FX2N, FX1NC, FX2NC PLCs.)
5) Applicable devices are limited.

A1: Please designate the transistor output.
42: \(F X_{3} \cup, F X_{3} \cup C\) PLCs only are applicable, index \((V, Z)\) decoration is disabled.
©3: \(\mathrm{FX}_{3} \cup\), \(\mathrm{FX}_{3} \cup \mathrm{C}, \mathrm{FX} 3 \mathrm{~F}\) PLCs only are applicable.
44: FX3U, FX3UC PLCs only are applicable.

\subsection*{7.14.5 ZRN}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction matches the mechanical position and the current value register in the PLC by zero return. Please use DSZR when DOG search function is necessary.
\(\rightarrow\) As for explanation of the instruction, see the positioning control manual. \(\rightarrow\) As for cautions of use of high speed output special adapter, see the positioning control manual.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline ZRN & 16 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ ZRN } \\
EN & ENO- \\
- 11 & d \\
- 22 & \\
-s3 & \\
\hline
\end{tabular} & ZRN(EN,s1,s2,s3,d); \\
\hline DZRN & 32 bits & Continuous & \begin{tabular}{lr|} 
& \multicolumn{2}{c}{ DZRN } \\
EN & ENO- \\
-s 1 & \\
s2 & \\
-s 3 & \\
\hline
\end{tabular} & DZRN(EN,s1,s2,s3,d); \\
\hline
\end{tabular}
2. Set data

3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Special } \\
\text { unit }
\end{array} \\
\hline \text { U } \square I G \square \\
\hline
\end{array}
\]} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & -3 & -2 & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & - & - & - & \(\triangle 3\) & -2 & \(\bullet\) & - & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (3) & - & - & - & & & \(\bullet\) & -1 & & & & & & & & & & & & - & & & & & \\
\hline (d) & & -4 & & & & & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

signal (DOG)
*1. The speed when starting to zero return is defined.
*2. The creep speed is defined.

\section*{Cautions about writing during RUN}
1) Avoid writing during RUN while ZRN or DZRN is being executed (during pulse output).
(FX3u, FX3UC, FX3G PLCs.)
If, during pulse output, writing during RUN is attempted in the circuit block including this instruction, it must be noted that the pulse output slows down and stops.
2) While ZRN or DZRN is being executed, the following writing during RUN is prohibited. (FX1s, FX1N, FX1NC PLCs.)
Program change of circuit block including this instruction.
Program change of circuit block immediately before or immediately after the circuit block including this instruction.
Addition or deletion of circuit block immediately before or immediately after the circuit block including this instruction.

\section*{Function changes by version}

This instruction includes the function changes as shown in the table below depending on the version.
\(\rightarrow\) As for the explanation of the instruction and contents of function changes, refer to the positioning control manual.

\section*{1. FX3u. FX3uc PLCs}
[V2.20 or later]
When the special auxiliary relay corresponding to \(d\) is turned ON, the output destination of clear signal is changed to the output number specified by the special data register corresponding to \(\mathbb{d}\).
2. FX1s PLC
[Before V2.00]
After resetting the "rotating direction signal" (normal rotation output) used in other positioning instruction by RST, start to zero return.
When started to zero return while the "rotating direction signal" is in normal rotation output state, the motor moves to the normal rotation, not zero return.
[After V2.00]
When driving of other positioning instruction is turned OFF, the rotating direction signal is turned OFF at the same time, and processing of before V 2.00 is not required.

\section*{3. FX1s, FX1N PLCs}
[Before V2.00]
If the zero return speed does not reach the speed specified by the instruction, change the acceleration or deceleration speed (D8148) to other value than given below.
(For example, if the current value is 150 , change to 149 or 151.)
\(50,75,90,100,125,150,225,250,375,450,500,750,900,1120,1500,2250,4499,4500\)
[After V2.00]
The above processing is not required.

\section*{Cautions}
1) When handling 32-bit data in structured program, you cannot designate 16 -bit device directly unlike the simple project.
When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and 32-bit data can be specified directly. When specifying the device, use the global label.
2) Instruction driving timing (FX1s, FX1N, FX1NC PLCs)

This is an instruction allowed to program as many times as desired, but you are advised to design the instruction driving timing according to the following cautions.
a) Do not drive simultaneously the positioning instruction using the same output relay (Y000 or Y001). If driven simultaneously, it is handled as double coil, and normal function is disabled.
b) After turning OFF the direction input of the instruction, drive again after the following condition is established.
Condition: Re-driving is allowed after one operation cycle or more from the OFF moment of "pulse output mode monitor (Y000: [M8147], Y001: [M8148]" of the positioning instruction driven previous time.
This is because one or more OFF operation is required for re-driving of the positioning instruction.
c) We recommend the step-ladder instruction (STL) as a method of programming correctly the positioning instruction according to the cautions mentioned above.
3) Not applicable to DOG search function, please start the zero return operation from the front side of the near-point signal. (FX1s, FX1N, FX1NC PLCs.)
4) Not applicable to zero-point signal of servo motor, please adjust to the position of near-point signal (DOG) when fine adjustment of zero point is necessary. (FX1s, FX1N, FX1NC PLCs.)
5) While zero return, the numeric values of the current value registers (Y000: [D8141, D8140], Y001: [D8143, D8142]) move in the decreasing direction. (FX1s, FX1N, FX1Nc PLCs)
When zero return in reverse direction, please control the output relay \((\mathrm{Y})\) wired as "rotating direction signal" by the program in the following procedure.
1) Set (ON) Y \(\square \square \square\) (rotating direction signal).
2) Execute zero return instruction.
3) Reset (OFF) Y \(\square \square \square\) (rotating direction signal) by execution complete flag (M8012) of zero return instruction.
6) Applicable devices are limited.
\(\mathbf{\Delta 1}\) : \(\mathrm{FX}_{3} \cup, \mathrm{FX}_{3} \cup \mathrm{C}\) PLCs only are applicable, index \((\mathrm{V}, \mathrm{Z})\) decoration is disabled.
A2: \(F X_{3 \cup}, F X_{3} \cup c\) PLCs only are applicable.
©3: \(\mathrm{FX}_{3}\), FX3UC, FX3G PLCs only are applicable.
44: <FX3U, FX3uc, FX3G PLCs>
Please specify Y000, Y001, Y002*1 of transistor output of basic unit, or Y000, Y001, Y002 \({ }^{* 3}\), Y003*3
of high speed output special adapter \({ }^{*}\).
*1 Y002 cannot be used in the 14-point type or 24-point type of FX3G PLC.
*2 High speed output special adapter can be connected only in FX3U PLC.
*3 When using Y002, Y003 in high speed output special adapter, a second high speed output special adapter is needed.
Points
- When using FX3U PLC of relay output type, high speed output special adapter is needed.
- The output of high speed output special adapter is a differential line driver.
<FX1s, FX1N, FX1NC PLCs>
Specify Y000 or Y001.
As the output of the PLC, please use the transistor output.
7) Specify the speed of return zero point in s1.

The setting range is as follows.
a) In the case of 16-bit operation
- FX3U, FX3uc, FX3G PLCs

10 to 32,767 (Hz)
- FX1s, FX1N PLCs

10 to \(32,767(\mathrm{~Hz})\)
- FX1nc PLC

10 to \(10,000(\mathrm{~Hz})\)
b) In the case of 32 -bit operation
- FX3u, FX3uc, FX3G PLCs
\begin{tabular}{l|l|c}
\hline \multicolumn{2}{c|}{ Pulse output destination } & Setting range \\
\hline FX3U PLC & High speed output special adapter & 10 to \(200,000(\mathrm{HZ})\) \\
\hline FX3U, FX3UC, FX3G PLCs & Basic unit (transistor output) & 10 to \(100,000(\mathrm{HZ})\) \\
\hline
\end{tabular}
- FX1s, FX1N PLCs 10 to \(100,000(\mathrm{~Hz})\)
- FX1nc PLC 10 to \(10,000(\mathrm{~Hz})\)

\subsection*{7.14.6 PLSV}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction issues a variable speed pulse with the rotating direction.
\(\rightarrow\) As for explanation of the instruction, see the positioning control manual.
\(\rightarrow\) As for cautions of use of high speed output special adapter, see the positioning control manual.
1. Format and operation, execution form

2. Set data
\begin{tabular}{l|l|l|l|l|l}
\hline \multirow{2}{*}{ Variable } & \multirow{2}{c}{ Description } & \multicolumn{2}{c}{ Data type } \\
\cline { 3 - 5 } & & \begin{tabular}{c} 
16-bit \\
operation
\end{tabular} & \begin{tabular}{c} 
32-bit \\
operation
\end{tabular} \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit & \\
\cline { 2 - 5 } & S & Output pulse frequency & ANY16 & ANY32 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit & \\
\cline { 2 - 5 } & d1 & Device for issuing pulse \((Y)\) & Bit & \\
\cline { 2 - 5 } & d2 & Device of rotating direction signal & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & c & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & - & - & - & -4 & -5 & - & - & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (d1) & & -1 & & & & & & & & & & & & & & & & & - & & & & & \\
\hline (d2) & & \(\triangle 2\) & \(\bullet\) & & & \(\bigcirc\) & -3 & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}


\section*{Cautions about writing during RUN}
1) Avoid writing during RUN while PLSV or DPLSV is being executed (during pulse output). (FX3U, FX3UC, FX3G PLCs)
If, during pulse output, writing during RUN is attempted in circuit block including this instruction, it must be noted that the pulse output becomes as follows.
\begin{tabular}{l|l}
\hline & \begin{tabular}{c} 
Operation when written during RUN while instruction \\
is being executed
\end{tabular} \\
\hline \begin{tabular}{l} 
When operating with \\
acceleration or deceleration*1
\end{tabular} & Pulse output slows down and stops. \\
\hline \begin{tabular}{l} 
When operating without \\
acceleration or deceleration
\end{tabular} & Pulse output stops immediately. \\
\hline
\end{tabular}
*1. Only available for \(\mathrm{FX}_{3} \mathrm{U} / \mathrm{FX} 3 \cup \mathrm{C}\) PLC Ver. 2.20 or later and FX3G PLC.
2) While PLSV or DPLSV is being executed, the following writing during RUN is prohibited. (FX1s, FX1n, FX1nc PLCs.)
Program change of circuit block including this instruction.
Program change of circuit block immediately before or immediately after the circuit block including this instruction.
Addition or deletion of circuit block immediately before or immediately after the circuit block including this instruction.

\section*{Function changes by version}

This instruction includes the function changes as shown in the table below depending on the version.
\(\rightarrow\) As for the explanation of the instruction and contents of function changes, refer to the positioning
control manual.
\begin{tabular}{c|c|c|c|c}
\hline \multicolumn{2}{c|}{ Corresponding version } & \multirow{2}{*}{ Added function } & \\
\cline { 1 - 2 } FX3G & FX3U & FX3UC & & \\
\hline \begin{tabular}{c} 
Ver. 1.00 \\
or later
\end{tabular} & \begin{tabular}{c} 
Ver. 2.20 \\
or later
\end{tabular} & \begin{tabular}{c} 
Ver. 2.20 \\
or later
\end{tabular} & \begin{tabular}{c} 
Acceleration or \\
deceleration \\
operation function
\end{tabular} & \begin{tabular}{c} 
When M8338 is turned ON, the operation accelerates or decelerates up to \\
s1 by setting of acceleration time or deceleration time corresponding to \\
(d1 when s1 is changed.
\end{tabular} \\
\hline
\end{tabular}

FX1N, FX1NC, FX1s are not applicable to this function.

\section*{Cautions}
1) When handling 32-bit data in structured program, you cannot designate 16 -bit device directly unlike the simple project.
When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and 32-bit data can be specified directly.
When specifying the device, use the global label.
2) Instruction driving timing (FX1s, FX1N, FX1NC PLCs)

This is an instruction allowed to program as many times as desired, but you are advised to design the instruction driving timing according to the following cautions.
a) Do not drive simultaneously the positioning instruction using the same output relay (Y000 or Y001). If driven simultaneously, it is handled as double coil, and normal function is disabled.
b) After turning OFF the direction input of the instruction, drive again after the following condition is established.
Condition: Re-driving is allowed after one operation cycle or more from the OFF moment of "pulse output mode monitor (Y000: [M8147], Y001: [M8148]" of the positioning instruction driven previous time.
This is because one or more OFF operation is required for re-driving of the positioning instruction.
c) We recommend the step-ladder instruction (STL) as a method of programming correctly the positioning instruction according to the cautions mentioned above.
3) When output pulse frequency is changed to K0 during pulse output (FX1s, FX1N, FX1NC PLCs), the PLC stops the pulse output.
When sending output again, once turn OFF the flag during pulse output (Y000: [M8147], Y001: [M8148]), and after lapse of one operation cycle, set again (change) the output pulse frequency to other value than KO.
a) Within one operation cycle, if the value is changed to other value than \(K 0\), the output maintains the stop function. In this case, write K0 again for more than one operation cycle, or once turn OFF the command input.
4) Applicable devices are limited.
©1: <FX3U, FX3Uc, FX3G PLCs>
Please specify Y000, Y001, Y002*1 of transistor output of basic unit, or Y000, Y001, Y002*3, Y003*3 of high speed output special adapter*2.
*1. Y002 cannot be used in the 14-point type or 24-point type of FX3G PLC.
*2. High speed output special adapter can be connected only in FX3u PLC.
*3. When using Y002, Y003 in high speed output special adapter, a second high speed output special adapter is needed.
Points
- When using FX3U PLC of relay output type, high speed output special adapter is needed.
- The output of high speed output special adapter is a differential line driver.
<FX1s, FX1N, FX1Nc PLCs>
Specify Y000 or Y001.
As the output of the PLC, please use the transistor output.
©2: <FX3U, FX3Uc, FX3G PLCs>
When high speed output special adapter is used at the pulse output destination in the FX3U PLC, as the rotating direction signal, use the output shown in the table below.
\begin{tabular}{c|c|c}
\hline \begin{tabular}{c} 
Connection position of high speed \\
output special adapter
\end{tabular} & Pulse output & \begin{tabular}{c} 
Rotating direction \\
signal
\end{tabular} \\
\hline \multirow{3}{*}{ First unit } & (d1 \(=\mathrm{Y} 000\) & (d2 \(=\mathrm{Y} 004\) \\
\cline { 2 - 3 } & (d1 \(=\mathrm{Y} 001\) & \((\mathrm{~d} 2)=\mathrm{Y} 005\) \\
\hline \multirow{2}{*}{ Second unit } & (d1 \(=\mathrm{Y} 002\) & (d2 \(=\mathrm{Y} 006\) \\
\cline { 2 - 3 } & (d1 \(=\mathrm{Y} 003\) & (d2 \(=\mathrm{Y} 007\) \\
\hline
\end{tabular}

When built-in transistor output is used at the pulse output destination in the FX3U, FX3UC, FX3G PLCs, as the rotating direction signal, use the transistor output.

43: \(\mathrm{FX}_{3} \mathrm{C}, \mathrm{FX} 34 \mathrm{C}\) PLCs only are applicable, index \((\mathrm{V}, \mathrm{Z})\) decoration is disabled.
44: FX3U, FX3UC, FX3G PLCs only are applicable.
©5: FX3u, FX3Uc PLCs only are applicable.
5) The output pulse frequency is specified by \(S\).

The setting range is as follows.
a) In the case of 16-bit operation
- FX3u, FX3uc, FX3G PLCs \(-32,768\) to \(-1,+1\) to \(32,767(\mathrm{~Hz})\)
- FX1s, FX1N PLCs \(-32,768\) to \(-1,+1\) to \(32,767(\mathrm{~Hz})\)
- FX1nc PLC \(-10,000\) to \(-1,+1\) to \(10,000(\mathrm{~Hz})\)
b) In the case of 32-bit operation
- FX3U, FX3uc, FX3G PLCs
\begin{tabular}{l|l|l}
\hline \multicolumn{2}{c|}{ Pulse output destination } & \multicolumn{1}{c}{ Setting range } \\
\hline FX3U PLC & High speed output special adapter & \(-200,000\) to \(-1,+1\) to \(200,000(\mathrm{HZ})\) \\
\hline FX3U, FX3UC, FX3G PLCs & Basic unit (transistor output) & \(-100,000\) to \(-1,+1\) to \(100,000(\mathrm{HZ})\) \\
\hline
\end{tabular}
- FX1s, FX1N PLCs
\(-100,000\) to \(-1,+1\) to \(100,000(\mathrm{~Hz})\)
- FX1NC PLC
\(-10,000\) to \(-1,+1\) to \(10,000(\mathrm{~Hz})\)
6) Output number of rotating direction signal d2

Operation changes as follows depending on polarity of output pulse frequency.
[+ (Positive)] \(\rightarrow\) (d2): ON
\([-\) (Negative) \(] \rightarrow\) (d2): OFF

\subsection*{7.14.7 DRVI}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction performs one-speed positioning by relative drive. The moving distance from the present position is specified together with plus or minus sign, and this is also called increment (relative) driving method.
\(\rightarrow\) As for explanation of the instruction, see the positioning control manual. \(\rightarrow\) As for cautions of use of high speed output special adapter, see the positioning control manual.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DRVI & 16 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DRVI } \\
EN & ENO- \\
-s 1 & d 1 \\
s 2 & d 2
\end{tabular} & DRVI(EN,s1,s2,d1,d2); \\
\hline DDRVI & 32 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{|c|}{ DDRVI } \\
-EN & \(\mathrm{ENO}-\) \\
-s 1 & d 1 \\
-s 2 & d 2 \\
\hline
\end{tabular} & DDRVI(EN,s1,s2,d1,d2); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit & 32-bit \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Number of output pulses (relative address) & ANY16 & ANY32 \\
\hline & (s2) & Output pulse frequency & ANY16 & ANY32 \\
\hline \multirow{3}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d1) & Device for issuing pulse (Y) & \multicolumn{2}{|l|}{Bit} \\
\hline & (d2) & Device of rotating direction signal & \multicolumn{2}{|l|}{Bit} \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{c|}
\hline \begin{tabular}{c} 
Special \\
unit
\end{tabular} \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & c & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & -4 & -5 & & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & - & - & - & -4 & -5 & - & - & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (d1) & & 41 & & & & & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline (d2) & & -2 & \(\bullet\) & & & \(\bullet\) & -3 & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}


\section*{Cautions about writing during RUN}
1) Avoid writing during RUN while DRVI or DDRVI is being executed (during pulse output). (FX3U, FX3UC, FX3G PLCs)
If, during pulse output, writing during RUN is attempted in circuit block including this instruction, it must be noted that the pulse output slows down and stops.
2) While DRVI or DDRVI is being executed, the following writing during RUN is prohibited. (FX1s, FX1n, FX1nc PLCs.)
Program change of circuit block including this instruction.
Program change of circuit block immediately before or immediately after the circuit block including this instruction.
Addition or deletion of circuit block immediately before or immediately after the circuit block including this instruction.

\section*{Cautions}
1) When handling 32-bit data in structured program, you cannot designate 16 -bit device directly unlike the simple project.
When handling 32-bit data, please use the label.
However, the 32 -bit counter is a 32 -bit long device, and 32 -bit data can be specified directly. When specifying the device, use the global label.
2) Instruction driving timing (FX1S, FX1N, FX1NC PLCs)

This is an instruction allowed to program as many times as desired, but you are advised to design the instruction driving timing according to the following cautions.
a) Do not drive simultaneously the positioning instruction using the same output relay (Y000 or Y001). If driven simultaneously, it is handled as double coil, and normal function is disabled.
b) After turning OFF the direction input of the instruction, drive again after the following condition is established.
Condition: Re-driving is allowed after one operation cycle or more from the OFF moment of "pulse output mode monitor (Y000: [M8147], Y001: [M8148]" of the positioning instruction driven previous time.
This is because one or more OFF operation is required for re-driving of the positioning instruction.
c) We recommend the step-ladder instruction (STL) as a method of programming correctly the positioning instruction according to the cautions mentioned above.
3) Applicable devices are limited.
© 1: <FX3u, FX3Uc, FX3G PLCs>
Please specify Y000, Y001, Y002*1 of transistor output of basic unit, or Y000, Y001, Y002*3, Y003*3 of high speed output special adapter*2.
*1. Y002 cannot be used in the 14-point type or 24-point type of FX3G PLC.
*2. High speed output special adapter can be connected only in FX3U PLC.
*3. When using Y002, Y003 in high speed output special adapter, a second high speed output special adapter is needed.
Points
- When using FX3U PLC of relay output type, high speed output special adapter is needed.
- The output of high speed output special adapter is a differential line driver.
<FX1s, FX1N, FX1NC PLCs>
Specify Y000 or Y001.
As the output of the PLC, please use the transistor output.
©2: <FX3U, FX3UC, FX3G PLCs>
When high speed output special adapter is used at the pulse output destination in the FX3U PLC, as the rotating direction signal, use the output shown in the table below.
\begin{tabular}{c|c|c}
\hline \begin{tabular}{c} 
Connection position of high speed \\
output special adapter
\end{tabular} & Pulse output & \begin{tabular}{c} 
Rotating direction \\
signal
\end{tabular} \\
\hline \multirow{2}{*}{ First unit } & (d1 \(=\mathrm{Y} 000\) & (d2 \(=\mathrm{Y} 004\) \\
\cline { 2 - 3 } & (d1 \(=\mathrm{Y} 001\) & (d2 \(=\mathrm{Y} 005\) \\
\hline \multirow{2}{*}{ Second unit } & (d1 \(=\mathrm{Y} 002\) & (d2 \(=\mathrm{Y} 006\) \\
\cline { 2 - 3 } & (d1 \(=\mathrm{Y} 003\) & (d2 \(=\mathrm{Y} 007\) \\
\hline
\end{tabular}

When built-in transistor output is used at the pulse output destination in the FX3U, FX3UC, FX3G PLCs, as the rotating direction signal, use the transistor output.
©3: \(\mathrm{FX}_{3} \cup\), \(\mathrm{FX}_{3} \mathrm{UC}\) PLCs only are applicable, index \((\mathrm{V}, \mathrm{Z})\) decoration is disabled.
44: \(\mathrm{FX}_{3} \cup, \mathrm{FX}_{3} \cup \mathrm{c}, \mathrm{FX} 3 \mathrm{P}\) PLCs only are applicable.
\(\mathbf{\Delta} 5\) : FX3u, FX3uc PLCs only are applicable.
4) Number of output pulses is specified by s1.

The setting range is as follows.
a) In the case of 16-bit operation
\(-32,768\) to \(+32,767\) (excluding 0 )
b) In the case of 32 -bit operation
-999,999 to +999,999 (excluding 0)
5) The output pulse frequency is specified by s2).

The setting range is as follows.
a) In the case of 16 -bit operation
- In the case of FX3u, FX3UC, FX3G PLCs 10 to \(32,767(\mathrm{~Hz})\)
- In the case of FX1s, FX1N PLCs 10 to \(32,767(\mathrm{~Hz})\)
- In the case of FX1Nc PLC 10 to \(10,000(\mathrm{~Hz})\)
b) In the case of 32-bit operation
- In the case of FX3u, FX3uc, FX3G PLCs
\begin{tabular}{l|l|c}
\hline \multicolumn{2}{c|}{ Pulse output destination } & Setting range \\
\hline FX3U PLC & High speed output special adapter & 10 to 200,000 (HZ) \\
\hline FX3U, FX3UC, FX3G PLCs & Basic unit (transistor output) & 10 to 100,000 (HZ) \\
\hline
\end{tabular}
- FX1s, FX1N PLCs 10 to \(100,000(\mathrm{~Hz})\)
- FX1nc PLC 10 to \(10,000(\mathrm{~Hz})\)
6) Output number of rotating direction signal (d2)

Operation changes as follows depending on polarity of output pulse frequency.
[+ (Positive)] \(\rightarrow\) (d2): ON
\([-\) (Negative) \(] \rightarrow\) (d2): OFF

\subsection*{7.14.8 DRVA}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction performs one-speed positioning by absolute drive. The moving distance from the origin (0 point) is specified, and this is also called absolute driving method.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DRVA & 16 bits & Continuous & \begin{tabular}{lr}
\hline \multicolumn{2}{c|}{ DRVA } \\
- EN & ENO- \\
-s 1 & \(\mathrm{~d} 1-\) \\
s2 & d 2
\end{tabular} & DRVA(EN,s1,s2,d1,d2); \\
\hline DDRVA & 32 bits & Continuous & \begin{tabular}{lr|r}
\hline \multicolumn{2}{|c|}{ DDRVA } & \\
EN & ENO & - \\
- 1 & d 1 & - \\
s2 & d 2 & - \\
\hline
\end{tabular} & DDRVA(EN,s1,s2,d1,d2); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Number of output pulses (absolute address) & ANY16 & ANY32 \\
\hline & (s2) & Output pulse frequency & ANY16 & ANY32 \\
\hline & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline Output variable & (d1) & Device for issuing pulse (Y) & \multicolumn{2}{|l|}{Bit} \\
\hline & (d2) & Device of rotating direction signal & \multicolumn{2}{|l|}{Bit} \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{5}{|r|}{System user} & \multirow[t]{2}{*}{Special unit U \(\square \mathbf{I G} \square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{Character String
\[
\text { " } \square \text { " }
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D口.b & KnX & KnY & KnM & KnS & T & C & D & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & \(\triangle 4\) & -5 & - & - & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & \(\bullet\) & - & - & - & -4 & - 5 & - & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (d1) & & 41 & & & & & & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline (d2) & & -2 & \(\bullet\) & & & \(\bullet\) & \(\triangle 3\) & & & & & & & & & & & & & - & & & & & \\
\hline
\end{tabular}
: Refer to "Cautions".

\section*{Function and operation explanation}


\section*{Cautions about writing during RUN}
1) Avoid writing during RUN while DRVA or DDRVA is being executed (during pulse output). (FX3U, FX3UC, FX3G PLCs)
If, during pulse output, writing during RUN is attempted in circuit block including this instruction, it must be noted that the pulse output slows down and stops.
2) While DRVA or DDRVA is being executed, the following writing during RUN is prohibited.
(FX1s, FX1N, FX1NC PLCs.)
Program change of circuit block including this instruction.
Program change of circuit block immediately before or immediately after the circuit block including this instruction.
Addition or deletion of circuit block immediately before or immediately after the circuit block including this instruction.

\section*{Cautions}
1) When handling 32-bit data in structured program, you cannot designate 16 -bit device directly unlike the simple project.
When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and 32-bit data can be specified directly.
When specifying the device, use the global label.
2) Instruction driving timing (FX1s, FX1N, FX1Nc PLCs)

This is an instruction allowed to program as many times as desired, but you are advised to design the instruction driving timing according to the following cautions.
a) Do not drive simultaneously the positioning instruction using the same output relay (Y000 or Y001). If driven simultaneously, it is handled as double coil, and normal function is disabled.
b) After turning OFF the direction input of the instruction, drive again after the following condition is established.
Condition: Re-driving is allowed after one operation cycle or more from the OFF moment of "pulse output mode monitor (Y000: [M8147], Y001: [M8148]" of the positioning instruction driven previous time.
This is because one or more OFF operation is required for re-driving of the positioning instruction.
c) We recommend the step-ladder instruction (STL) as a method of programming correctly the positioning instruction according to the cautions mentioned above.
If, during pulse output, writing during RUN is attempted in circuit block including this instruction, it must be noted that the pulse output slows down and stops.
3) Applicable devices are limited.

A1: <FX3U, FX3UC, FX3G PLCs>
Please specify Y000, Y001, Y002*1 of transistor output of basic unit, or Y000, Y001, Y002 \({ }^{* 3}\), Y003 \({ }^{* 3}\) of high speed output special adapter \({ }^{* 2}\).
*1. Y002 cannot be used in the 14-point type or 24-point type of FX3G PLC.
*2. High speed output special adapter can be connected only in FX3U PLC.
*3. When using Y002, Y003 in high speed output special adapter, a second high speed output special adapter is needed.
Points
- When using FX3U PLC of relay output type, high speed output special adapter is needed.
- The output of high speed output special adapter is a differential line driver.
<FX1s, FX1N, FX1Nc PLCs>
Specify Y000 or Y001.
As the output of the PLC, please use the transistor output.
A2: <FX3U, FX3Uc, FX3G PLCs>
When high speed output special adapter is used at the pulse output destination in the FX3U PLC, as the rotating direction signal, use the output shown in the table below.
\begin{tabular}{c|c|c}
\hline \begin{tabular}{c} 
Connection position of high speed \\
output special adapter
\end{tabular} & Pulse output & \begin{tabular}{c} 
Rotating direction \\
signal
\end{tabular} \\
\hline \multirow{2}{*}{ First unit } & (d1 \(=\mathrm{Y} 000\) & (d2 \(=\mathrm{Y} 004\) \\
\cline { 2 - 3 } & (d1 \(=\mathrm{Y} 001\) & (d2 \(=\mathrm{Y} 005\) \\
\hline \multirow{2}{*}{ Second unit } & (d1 \(=\mathrm{Y} 002\) & (d2 \(=\mathrm{Y} 006\) \\
\cline { 2 - 3 } & (d1 \(=\mathrm{Y} 003\) & (d2 \(=\mathrm{Y} 007\) \\
\hline
\end{tabular}

When built-in transistor output is used at the pulse output destination in the FX3U, FX3UC, FX3G PLCs, as the rotating direction signal, use the transistor output.
43: \(F X_{3} \cup, F X_{3} \cup c\) PLCs only are applicable, index \((V, Z)\) decoration is disabled.
44: \(F_{3} \cup, F_{3} \cup c, F_{3 G}\) PLCs only are applicable.
\(\mathbf{\Delta} 5\) : \(\mathrm{FX}_{3} \cup\), FX3Uc PLCs only are applicable.
4) Number of output pulses is specified by (s1). The setting range is as follows.
a) In the case of 16-bit operation
- In the case of FX3U, FX3uc, FX3G PLCs \(-32,768\) to \(+32,767\)
- FX1s, FX1N, FX1Nc PLCs \(-32,768\) to \(+32,767\)
b) In the case of 32-bit operation
- In the case of \(\mathrm{FX}_{3} \mathrm{C}, \mathrm{FX}_{3} \cup \mathrm{C}, \mathrm{FX} 3 \mathrm{~F}\) PLCs -999,999 to +999,999
- FX1s, FX1N, FX1Nc PLCs -999,999 to +999,999
5) The output pulse frequency is specified by s2). The setting range is as follows.
a) In the case of 16-bit operation
- In the case of \(F X_{3} \cup, F X_{3} \cup c, F X_{3 G}\) PLCs 10 to \(32,767(\mathrm{~Hz})\)
- In the case of FX1S, FX1N PLCs 10 to 32,767 (Hz)
- In the case of FX1NC PLC 10 to \(10,000(\mathrm{~Hz})\)
b) In the case of 32-bit operation
- In the case of \(\mathrm{FX}_{3} \mathrm{C}, \mathrm{FX}_{3} \mathrm{C}\), FX3G PLCs
\begin{tabular}{l|l|c}
\hline \multicolumn{2}{|c|}{ Pulse output destination } & Setting range \\
\hline FX3U PLC & High speed output special adapter & 10 to \(200,000(\mathrm{HZ})\) \\
\hline FX3U, FX3UC, FX3G PLCs & Basic unit (transistor output) & 10 to \(100,000(\mathrm{HZ})\) \\
\hline
\end{tabular}
- FX1s, FX1N PLCs 10 to \(100,000(\mathrm{~Hz})\)
- FX1NC PLC 10 to \(10,000(\mathrm{~Hz})\)
6) Output number of rotating direction signal (d2)

Operation is as follows by judging the difference between the output pulse frequency (target position) and present position.
[+ (Positive)] \(\rightarrow\) (d2): ON
\([-\) (Negative) \(] \rightarrow\) (d2): OFF

\subsection*{7.15 Real Time Clock Control}

\subsection*{7.15.1 TCMP}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

The comparison time and the time data are compared, and the bit device is turned ON or OFF depending on the magnitude of difference.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline TCMP & 16 bits & Continuous &  & TCMP(EN,s1,s2,s3,s,d); \\
\hline TCMPP & 16 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ TCMPP } \\
EN & ENO-_ \\
-s 1 & d \\
s2 & \\
-s 3 & \\
-s & \\
\end{tabular} & TCMPP(EN,s1,s2,s3,s,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|l|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Comparison time "hour" (Setting range: 0 to 23) \\
\cline { 2 - 5 } & s1 & s2 & Comparison time "minute" (Setting range: 0 to 59) \\
\cline { 2 - 5 } & s3 & Comparison time "second" (Setting range: 0 to 59) & ANY16 \\
\cline { 2 - 5 } & s & Time data (hour, minute, second) "hour" (3 points occupied) & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & ANY16 \\
\cline { 2 - 5 } & d & \begin{tabular}{l} 
Device to be turned ON or OFF depending on the comparison result. \\
(3 points occupied)
\end{tabular} & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{8}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{Character String
"} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\(\mathbf{P}\)
\end{tabular}} \\
\hline & X & Y & M & T & C & S & & D. \(\quad\) b & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & -2 & \(\triangle 3\) & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & A2 & -3 & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s3) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & A2 & -3 & - & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (s) & & & & & & & & & & & & & - & - & - & -2 & -3 & & & \(\bullet\) & & & & & \\
\hline (d) & & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & -1 & & & & & & & & & & & & - & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (TCMP)}

The time of comparison time (hour, minute, second) s1, s2), s3) is compared with the time data (hour, minute, second) of the device specified by \(\circlearrowleft\), and the device specified by \(\mathbb{d}\) is turned ON or OFF depending on the magnitude of difference.


If TCMP is not executed when command contact is changed from ON to OFF, d , d +1, d +2 are holding the state before the command contact is turned OFF.

\section*{Cautions}
1) Number of devices occupied

Three devices are occupied each in \(s\) and (d.
Be careful not to overlap with the devices used in machine control.
2) When using the time (hour, minute, second) of the clock data of the real time clock built in the PLC, first read out the value of the special data register by using TRD, TRDP, and specify the word device in each operand.
3) Applicable devices are limited.

A1: \(\mathrm{FX}_{3} \mathrm{U}, \mathrm{FX} 3 \cup \mathrm{PLCs}\) only are applicable, index \((\mathrm{V}, \mathrm{Z})\) decoration is disabled.
42: \(F X_{3}\), \(F X_{3} \cup c, F X_{3 G}\) PLCs only are applicable.
A3: \(\mathrm{FX}_{3}\), FX3Uc PLCs only are applicable.

\section*{Program example}
[Structured ladder]


\section*{[ST]}

M0:=TCMP(X000,K10,K30,K50,D0);
M1:=TCMP(X000,K10,K30,K50,D0);
M2:=TCMP(X000,K10,K30,K50,D0);
(s1) :Comparison time "hour" is specified.
(s2) :Comparison time "minute" is specified.
s3 :Comparison time "second" is specified.
:Time data "hour" is specified.
(d)d
:Three bit devices are turned ON or OFF
depending on the comparison result.

\subsection*{7.15.2 TZCP}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

The comparison time of higher and lower points and the time data are compared, and the bit device is turned ON or OFF depending on the magnitude of difference.
1. Format and operation, execution form


\section*{2. Set data}
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & \begin{tabular}{l} 
Comparison lower limit time (hour, minute, second) "hour" (3 points \\
occupied)
\end{tabular} \\
\cline { 2 - 5 } & s1 & \begin{tabular}{l} 
Comparison higher limit time (hour, minute, second) "hour" (3 points \\
occupied)
\end{tabular} & ANY16 \\
\cline { 2 - 5 } & s2 & Time data (hour, minute, second) "hour" (3 points occupied) & ANY16 \\
\cline { 2 - 5 } & s & Execution state & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & \begin{tabular}{l} 
Device to be turned ON or OFF depending on the comparison result. (3 \\
points occupied)
\end{tabular} & Bit \\
\cline { 2 - 5 } & & &
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{5}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & - & - & - & & -2 & -3 & & & \(\bullet\) & & & & & \\
\hline (s2) & & & & & & & & & & & & \(\bullet\) & - & - & & -2 & \(\triangle 3\) & & & \(\bullet\) & & & & & \\
\hline (s) & & & & & & & & & & & & - & \(\bullet\) & \(\bullet\) & & -2 & \(\triangle 3\) & & & \(\bullet\) & & & & & \\
\hline (d) & & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & -1 & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (TZCP, TZCPP)}

The comparison time (hour, minute, second) of higher and lower points and the time data (hour, minute, second) of the device specified by \(\circlearrowleft\) are compared, and the device specified by \(\mathbb{\infty}\) is turned ON or OFF depending on the magnitude of difference.


If TZCP is not executed when command contact is changed from ON to OFF, (d), (d)+1, d +2 are holding the state before the command contact is turned OFF.

\section*{Cautions}
1) Number of devices occupied

Three devices are occupied each in (s1), s2), s3 and (d.
Be careful not to overlap with the devices used in machine control.
2) When using the time (hour, minute, second) of the clock data of the real time clock built in the PLC, first read out the value of the special data register by using TRD, TRDP, and specify the word device in each operand.
3) Applicable devices are limited.
\(\mathbf{\Delta 1}\) : \(\mathrm{FX}_{3} \mathrm{U}, \mathrm{FX} 3 \cup \mathrm{C}\) PLCs only are applicable, index \((\mathrm{V}, \mathrm{Z})\) decoration is disabled.
©2: \(\mathrm{FX}_{3}\), FX3Uc, FX3G PLCs only are applicable.
©3: FX3U, FX3UC PLCs only are applicable.

\section*{Program example}
[Structured ladder]

[ST]
M3:=TZCP(X000,D20,D30,D0);
M4: =TZCP (X000,D20,D30,D0);
M5: =TZCP (X000,D20,D30,D0);
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{M3} & D20 (hour) & D0 (hour) & \multicolumn{2}{|l|}{\multirow{3}{*}{and then turned ON}} & \multirow{9}{*}{and then turned ON} \\
\hline & D21 (minute) & D1 (minute) & & & \\
\hline & D22 (second) & D2 (second) & & & \\
\hline M4 & D20 (hour) & D0 (hour) & \multirow{3}{*}{\(\leq\)} & D30 (hour) & \\
\hline \(\bigcirc\) & D21 (minute) & D1 (minute) & & D31 (minute) & \\
\hline & D22 (second) & D2 (second) & & D32 (second) & \\
\hline \multirow[t]{3}{*}{M5} & & D0 (hour) & \multirow{3}{*}{>} & D30 (hour) & \\
\hline & & D1 (minute) & & D31 (minute) & \\
\hline & & D2 (second) & & D32 (second) & \\
\hline
\end{tabular}
\(\uparrow\)
If TZCP instruction is not executed when X000 is changed from ON to OFF, M3 to M5 are holding the state before X000 is turned OFF.
s1
s1 (1) +1 , (s1 +2 2 :Comparison time lower limit is specified by "hour," "minute," "second."
(s2) , s2 +1, s2 +2 :Comparison time upper limit is specified by "hour," "minute," "second."
(s) , \(\mathrm{S}+1, \mathrm{~s}+2\) :Time data is specified by "hour," "minute," "second."
(d), (d) +1 , d +2 :Three bit devices are turned ON or OFF depending on the comparison result.

The range of "hour" is 0 to 23 .
The range of "minute" is 0 to 59 .
The range of "second" is 0 to 59 .

\subsection*{7.15.3 TADD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

Two time data are added and stored in the word device.
1. Format and operation, execution form

2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & & Description \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Data type \\
\cline { 2 - 5 } & s1 & Device for storing "hour" of addition time data (hour, minute, second) (3 points occupied) & ANY16 \\
\cline { 2 - 5 } & s2 & Device for storing "hour" of addition time data (hour, minute, second) (3 points occupied) & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & \begin{tabular}{l} 
Device for storing the added result of two time data (hour, minute, second) (3 points \\
occupied)
\end{tabular} & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{5}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\) \\
\(\square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & - & - & - & & -1 & -2 & & & \(\bullet\) & & & & & \\
\hline (s2) & & & & & & & & & & & & \(\bullet\) & - & - & & -1 & 42 & & & - & & & & & \\
\hline (d) & & & & & & & & & & & & \(\bullet\) & - & - & - & -1 & 42 & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16 -bit operation (TADD)}

Time data (hour, minute, second) of the device specified by s1, and time data (hour, minute, second) of the device specified by s2 are added, and the result is stored in the device specified by \(\mathbb{d}\).

(s1), s1 \(+1,(s 1)+2)+(s 2), s 2)+1,(s 2)+2)\)
\[
\rightarrow(d), d+1,(d+2)
\]

1) If the operation result exceeds 24 hours, the carry flag is turned \(O N\), and the time by subtracting 24 hours from the simple sum is stored as the operation result.
2) If the operation result is 0 ( 0 hour, 0 minute, 0 second), the zero flag is turned ON .

\section*{Cautions}
1) Number of devices occupied Three devices are occupied each in (s1), s2) and (d). Be careful not to overlap with the devices used in machine control.
2) When using the time (hour, minute, second) of the clock data of the real time clock built in the PLC, first read out the value of the special data register by using TRD, TRDP, and specify the word device in each operand.
3) Applicable devices are limited.
©1: \(F_{3} \cup\), \(F X_{3} \cup c, F X_{3 G}\) PLCs only are applicable.
A2: \(\mathrm{FX}_{3}\), FX3uc PLCs only are applicable.

\section*{Program example}
[Structured ladder]


10 hours, 30 minutes, 10 seconds 3 hours, 10 minutes, 5 seconds 13 hours, 40 minutes, 15 seconds

\section*{If the operation result exceeds \(\mathbf{2 4}\) hours}


\subsection*{7.15.4 TSUB}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

Two time data are subtracted and stored in the word device.
1. Format and operation, execution form

2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & "Hour" of subtraction time data (hour, minute, second) (3 points occupied) \\
\cline { 2 - 5 } & s1 & "Hour" of subtraction time data (hour, minute, second) (3 points occupied) & ANY16 \\
\cline { 2 - 5 } & s2 & Execution state & Bit \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & \begin{tabular}{l} 
The subtracting result of two time data (hour, minute, second) is stored (3 \\
points occupied)
\end{tabular} & ANY16 \\
\cline { 2 - 5 } & & &
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & \(\bullet\) & - & \(\bullet\) & -1 & -2 & & & - & & & & & \\
\hline (s2) & & & & & & & & & & & & - & - & \(\bullet\) & \(\Delta 1\) & 42 & & & - & & & & & \\
\hline (d) & & & & & & & & & & & & \(\bullet\) & - & - & -1 & 42 & & & - & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (TSUB, TSUBP)}

From the time data (hour, minute, second) of the device specified by \(s 1\), the time data (hour, minute, second) of the device specified by s2 is subtracted, and the result is stored in the device specified by \(\mathbb{d}\).

\begin{tabular}{|c|c|c|c|c|c|}
\hline (s1) (hour) & \multirow[t]{3}{*}{} & (s2) (hour) & \multirow{3}{*}{\(\longrightarrow\)} & (d) (hour) & \multirow[t]{3}{*}{\begin{tabular}{l}
The range of "hour" is 0 to 23 . \\
The range of "minute" is 0 to 59 . \\
The range of "second" is 0 to 59 .
\end{tabular}} \\
\hline (s1) +1 (minute) & & s2) +1 (minute) & & (d) +1 (minute) & \\
\hline s1) +2 (second) & & s2) +2 (second) & & (d) +2 (second) & \\
\hline
\end{tabular}

If the operation result is less than 0 hour, the borrow flag is turned ON , and the time by adding 24 hours to the simple difference is stored as the operation result. If the operation result is 0 ( 0 hour, 0 minute, 0 second), the zero flag is turned ON.

\section*{Cautions}
1) Number of devices occupied

Three devices are occupied each in (s1), s2) and (d).
Be careful not to overlap with the devices used in machine control.
2) When using the time (hour, minute, second) of the clock data of the real time clock built in the PLC, first read out the value of the special data register by using TRD, TRDP, and specify the word device in each operand.
3) Applicable devices are limited.

11: \(F_{3} \mathrm{FX}_{3}, \mathrm{FX}_{3} \cup \mathrm{C}, \mathrm{FX}_{3} \mathrm{G}\) PLCs only are applicable.
A2: \(\mathrm{FX}_{3}\), FX3Uc PLCs only are applicable.

\section*{Program example}
[Structured ladder]

(D10,D11,D12) - (D20,D21,D22)
\(\rightarrow(\mathrm{D} 30, \mathrm{D} 31, \mathrm{D} 32)\)
\begin{tabular}{|cc|}
\hline D 10 & 10 (hour) \\
\hline D 11 & 30 (minute) \\
\hline D 12 & 10 (second) \\
\hline
\end{tabular}
\(=\)\begin{tabular}{|rr|}
\hline D 20 & 3 (hour) \\
\hline D 21 & 10 (minute) \\
\hline D 22 & 5 (second) \\
\hline
\end{tabular}
10 hours, 30 minutes, 10 seconds 3 hours, 10 minutes, 5 seconds 7 hours, 20 minutes, 5 seconds
[ST]

TSUB(X000,D10,D20,D30);

If the operation result is less than \(\mathbf{0}\) hour


\subsection*{7.15.5 HTOS}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts the "hour, minute, second" unit (time) data into second unit data.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|l|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline HTOS & 16 bits & Continuous &  & HTOS(EN,s,d); \\
\hline HTOSP & 16 bits & Pulse & \begin{tabular}{lr}
\hline HTOSP \\
-EN & ENO \\
-d & - \\
\hline
\end{tabular} & HTOSP(EN,s,d); \\
\hline DHTOS & 32 bits & Continuous &  & DHTOS(EN,s,d); \\
\hline DHTOSP & 32 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DHTOSP } \\
- & \\
-EN & ENO \\
\hline
\end{tabular} & DHTOSP(EN,s,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|c|}{Data type} \\
\hline & & & 16-bit & 32-bit \\
\hline \multirow[b]{2}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & S & Head device for storing the time data (hour, minute, second) before conversion & \multicolumn{2}{|l|}{ANY16} \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Device for storing the time data (hour, minute, second) after conversion & ANY16 & ANY32 \\
\hline
\end{tabular}

\section*{3. Applicable devices}


\section*{Function and operation explanation}

\section*{1. 16-bit operation (HTOS/HTOSP)}

The time data (hour, minute, second) of the device specified by \(S\) is converted into the second unit, and the result is stored in the device specified by \(\mathbb{d}\).


For example, when 4 hours, 29 minutes, 31 seconds is specified, the operation is as follows.


\section*{2. 32-bit operation (DHTOS/DHTOSP)}

The time data (hour, minute, second) of the device specified by \(\circlearrowleft\) is converted into the second unit, and the result is stored in the device specified by \(\mathbb{d}\)


For example, when 35 hours, 10 minutes, 58 seconds is specified, the operation is as follows.


\section*{Cautions}
1) When handling 32-bit data in structured program, you cannot designate 16-bit device directly unlike the simple project.
When handling 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and 32-bit data can be specified directly. When specifying the device, use the global label.

\section*{Error}

In the following case, it is an operation error, and the error flag (M8067) is turned ON, and the error code is stored in D8067.
1) When the data of the device specified byis out of the range. (Error code: K6706)

\section*{Program example}

This is a program for converting the time data being read out from the real-time clock built in the PLC, when the X020 is ON, into the second unit, and storing in D100, D101.
[Structured ladder]


VAR SECOND is a global label, and \(\overline{\mathrm{D}} 100\) is defined.

\section*{Operation}
1) Reading operation of clock data by TRD

2) Conversion operation to seconds by DHTOS


D10:=TRD(X020);
VAR_SECOND:=DHTOS(X020,D13);

\subsection*{7.15.6 STOH}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts the time data in second unit into time data in "hour, minute, second" unit.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline STOH & 16 bits & Continuous &  & STOH(EN,s,d); \\
\hline STOHP & 16 bits & Pulse &  & STOHP(EN,s,d); \\
\hline DSTOH & 32 bits & Continuous &  & DSTOH(EN,s,d); \\
\hline DSTOHP & 32 bits & Pulse &  & DSTOHP(EN,s,d); \\
\hline
\end{tabular}

\section*{2. Set data}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit & 32-bit \\
\hline \multirow[t]{2}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s) & Device for storing the time data in second unit before conversion & ANY16 & ANY32 \\
\hline & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline variable & (d) & Device for storing the time data in "hour, minute, second" unit after conversion & \multicolumn{2}{|l|}{ANY16} \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|r|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & - & - & - & - & - & - & - & - & - & & & - & & & & & \\
\hline (d) & & & & & & & & & - & \(\bullet\) & - & - & - & - & - & \(\bullet\) & & & - & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation}

The second unit data of the device specified by \(\subseteq\) is converted into "hour, minute, second" unit, and the result is stored in the device specified by (d).



For example, when 29011 seconds is specified, the operation is as follows.


\section*{2. 32-bit operation}

The second unit data of the device specified by \(S\) is converted into "hour, minute, second" unit, and the result is stored in the device specified by \((d)\).


For example, when 45325 seconds is specified, the operation is as follows.


\section*{Cautions}
1) When handling 32-bit data in structured program, you cannot designate 16 -bit device directly unlike the simple project.
When handling 32-bit data, please use the label.
However, the 32 -bit counter is a 32 -bit long device, and 32 -bit data can be specified directly. When specifying the device, use the global label.

\section*{Error}

In the following case, it is an operation error, and the error flag (M8067) is turned ON, and the error code is stored in D8067.
1) When the data of the device specified by \(\qquad\) is out of the range. (Error code: K6706)

\section*{Program example}

This is a program for converting the second unit data stored in D0, D1 when the X 020 is turned ON, into the "hour, minute, second" unit, and storing the result in D100, D101, D102.
[Structured ladder]


VAR_SECOND is a global label, and \(\overline{\mathrm{D}} 100\) is defined.

\section*{[ST]}
D100:=DSTOH(X020,VAR_SECOND)

\section*{Operation}
1) Conversion into the "hour, minute, second" unit by STOHP instruction (when 40000 seconds is specified by D1, D0)


\subsection*{7.15.7 TRD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

The clock data is read out in the real-time clock built in the PLC.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline TRD & 16 bits & Continuous &  & TRD (EN, d); \\
\hline TRDP & 16 bits & Pulse &  & TRDP(EN, d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Bit \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & \begin{tabular}{l} 
The reading destination of clock data and the head device are specified \((7\) \\
points occupied).
\end{tabular} \\
\cline { 2 - 4 } & d & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (d) & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bigcirc\) & -1 & -2 & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (TRD)}

The clock data (D8013 to D8019) of the real-time clock built in the PLC is read out into the device specified by (d) in the following format.
[Structured ladder] TST] This instruction reads out the

real-time clock data of the PLC into seven data registers.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{8}{*}{} & Device & Item & Clock data & Device & Item \\
\hline & D8018 & Year (solar calendar) & 0 to 99 (Lower 2 digits of year) & D 0 & Year (solar calendar) \\
\hline & D8017 & Month & 1 to 12 & D 1 & Month \\
\hline & D8016 & Day & 1 to 31 & D 2 & Day \\
\hline & D8015 & hour & 0 to 23 & D 3 & hour \\
\hline & D8014 & minute & 0 to 59 & D 4 & minute \\
\hline & D8013 & second & 0 to 59 & D 5 & second \\
\hline & D8019 & Day of week & 0 (Sunday) to 6 (Saturday) & D 6 & Day of week \\
\hline
\end{tabular}

\section*{Cautions}
1. Number of devices occupied

Seven devices specified by \((d)\) are occupied.
Be careful not to overlap with the devices used in machine control.
2. Applicable devices are limited.

A1: FX3U, FX3Uc, FX3G PLCs only are applicable.
A2: FX3U, FX3UC PLCs only are applicable.

\section*{7．15．8 TWR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U（C） & FX3G & FX2N（C） & FX1N（C） & FX1S & FXU／FX2C & FX0N & FX0（S） \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

The clock data is written into the real－time clock built in the PLC．
1．Format and operation，execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline TWR & 16 bits & Continuous &  & TWR（EN，s）； \\
\hline TWRP & 16 bits & Pulse &  & TWRP（EN，s）； \\
\hline
\end{tabular}

\section*{2．Set data}
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & \begin{tabular}{l} 
The writing source of clock data and the head device are specified（7 \\
points occupied）．
\end{tabular} \\
\cline { 2 - 4 } \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & ANY16 \\
\hline
\end{tabular}

3．Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{4}{|l|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
＂口＂
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline （s） & & & & & & & & & & & & － & － & － & －1 & A2 & & & － & & & & & \\
\hline
\end{tabular}

A：Refer to＂Cautions＂．

\section*{Function and operation explanation}

The setting clock data stored in the device specified by \(s\) is written into the clock data (D8013 to D8019) of the real-time clock built in the PLC.

1) D8018 (year data) can be also changed over to four-digit mode. (See Program example.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Device & Item & Clock data & Device & Item & \\
\hline \multirow{7}{*}{} & D 10 & Year (solar calendar) & 0 to 99 (Lower 2 digits of year) & D8018 & Year (solar calendar) & \multirow{7}{*}{} \\
\hline & D 11 & Month & 1 to 12 & D8017 & Month & \\
\hline & D 12 & Day & 1 to 31 & D8016 & Day & \\
\hline & D 13 & hour & 0 to 23 & D8015 & hour & \\
\hline & D 14 & minute & 0 to 59 & D8014 & minute & \\
\hline & D 15 & second & 0 to 59 & D8013 & second & \\
\hline & D 16 & Day of week & 0 (Sunday) to 6 (Saturday) & D8019 & Day of week & \\
\hline
\end{tabular}
2) When TWR or TWRP is executed, the clock data of the real-time clock is changed immediately. Therefore, in the device to be specified by \(\subseteq\), you are advised to transfer the clock data of several minutes ahead, and execute the instruction when reaching the exact time.
3) When setting the clock data (time setting) by this instruction, you are not required to control the special auxiliary relay M8015 (time stopping and time setting).
4) The day of week of FX1S, FX1N, FX1NC PLCs is set automatically depending on the content of the date regardless of the written numeric value.
5) If a numeric value of non-existing date is entered, the clock data is not changed. Enter correct clock data, and write again.

\section*{Cautions}
1. Number of devices occupied

The device specified by \(S\) occupies the subsequent seven devices.
Be careful not to overlap with the devices used in machine control.
2. Applicable devices are limited.
©1: \(F X_{3} \cup, F X_{3} \cup C, F X_{3 G}\) PLCs only are applicable.
A2: FX3u, FX3Uc PLCs only are applicable.

\section*{Program example}

\section*{1. Setting example of clock data (time)}

To set the real-time clock. In the case of 15 hours, 20 minutes, 30 seconds, Tuesday, April 25, 2001.
[Structured ladder]

1) When setting the time, first set the time of several minutes ahead, and turn \(O N\) the \(X 000\) when reaching the exact time, then the set time is written into the real-time clock, and the clock data is updated.
2) Every time the X 001 is turned \(\mathrm{ON}, \pm 30\) seconds can be corrected.
3) When handling the year in four digits, please add the following program. D8018 operates in four-digit year mode from the second scan after RUN of PLC.

a) Usually, the PLC operates in two-digit year mode. After RUN of PLC, by executing the above instruction, and transferring K2000 (fixed value) to D8018 (year) for one operation cycle only, the operation is changed to four-digit mode.
b) This program must be executed every time the PLC is set to RUN. By transferring K2000, only the year display is changed to four-digit mode, and the present time is not changed.
c) In the case of four-digit mode of the year, 80 to 99 correspond to 1980 to 1999 , and 00 to 79 correspond to 2000 to 2079.
Example: 80=1980, 99=1999, 00=2000, 79=2079
4) When connecting with the data access unit of FX-10DU, FX-20DU, FX-25DU types, please set the year in two-digit mode. If set in four-digit mode, the year is not displayed correctly in the present versions of these DU types.
When the PLC is in four-digit mode, if the clock is set from FX-10DU, 20DU, 25DU, it must be noted that the mode is changed to two-digit mode.

\subsection*{7.15.9 HOUR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction adds and measures the ON time duration of input contact in one-hour unit.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{3}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & & ST \\
\hline HOUR & 16 bits & Continuous &  & \(\operatorname{HOUR}(\mathrm{EN}, \mathrm{s}, \mathrm{d} 1, \mathrm{~d} 2) ;\) & \\
\hline DHOUR & 32 bits & Continuous &  & DHOUR(EN,s,d1,d2); & \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|c|}{Data type} \\
\hline & & & 16-bit & 32-bit \\
\hline \multirow[t]{2}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s) & ON time duration of d2 (set in one-hour unit) & ANY16 & ANY32 \\
\hline \multirow{3}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d1) & Present value of one-hour unit (data register for power failure hold is specified) & ARRAY [1..2] OF ANY16 & ARRAY [1..3] OF ANY16 \\
\hline & (d2) & Device of alarm output destination & \multicolumn{2}{|l|}{Bit} \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit designation} & \multicolumn{5}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Special \\
unit
\end{tabular} \\
\hline U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|c|}
\hline Real \\
Number
\end{tabular}\(|\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\)

\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & & - & \(\triangle 2\) & \(\triangle 3\) & \(\bullet\) & - & - & \(\bullet\) & - & & & \\
\hline (d1) & & & & & & & & & & & & & & & - & -2 & & & & - & & & & & \\
\hline (d2) & & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & A1 & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation}

*1. In label 2, the device for storing the present value of one-hour unit is defined.

When the cumulative total of ON time duration of command input exceeds the time of the device specified by \(\leftrightarrows\), the device specified by (d2) is turned ON. In (d1) +1 , the present value of less than one hour is stored in one-second unit.
\begin{tabular}{|c|c|}
\hline (s) & The time until (d2 is turned ON is specified in one-hour unit. \\
\hline (d1) & Present value of one-hour unit \\
\hline (d1) +1 & Present value of less than one hour (one-second unit) \\
\hline (d2) & Device of alarm output destination \\
\hline & To be turned ON when the present value (d1) exceeds the specified time of \\
\hline
\end{tabular}
1) To use the present value data continuously after the PLC power source is turned OFF, please specify the data register for power failure hold in the device specified by (d1). When the data register for general purpose is used, the present value data is cleared when the PLC power source is turned OFF, or when changed from STOP to RUN.
2) Measurement continues even after the alarm output (device specified by (d2) is turned ON.
3) Measurement stops when the present value of the device specified by (d1) reaches the maximum value of 16-bit figure. When desired to measure continuously, please clear the present values of (d1) to (d1) +1 .

\section*{2. 32-bit operation}

*1. In label 1, the ON time of the device specified by d2 is defined.
*2. In label 3, the device for storing the present value of one-hour unit is defined.
[S +1, \(s\) ] : Time setting until (d2 is turned ON Specify by S1 +1 (upper digit), ©1 (lower digit).
[ (d1) +1, (d1)]: Present value of one-hour unit Store in (d1) +1 (upper digit), (d1) (lower digit).
(d1) +2 : Present value of less than one hour (one-second unit)
(d2) : Specification of alarm output
To be turned ON when the present value (d1), (d1) +1 exceeds the time specified by s .
1) To use the present value data continuously after the PLC power source is turned OFF, please specify the data register for power failure hold in the device specified by (d1).
When the data register for general purpose is used, the present value data is cleared when the PLC power source is turned OFF, or when changed from STOP to RUN.
2) Measurement continues even after the alarm output (device specified by (d2) is turned ON.
3) Measurement stops when the present value of the device specified by (d1) reaches the maximum value of 32-bit figure. When desired to measure continuously, please clear the present values of (d1) to (d1) +2 .

\section*{Cautions}
1) When handling array data or 32-bit data in structured program, you cannot specify 16-bit device directly unlike the simple project.
When handling array data or 32-bit data, please use the label.
However, the 32-bit counter is a 32-bit long device, and 32-bit data can be specified directly. When specifying the device, use the global label.
2) \(F X_{2 N}, ~ F X 2 N C\) PLCs are supporting the instruction at \(V 3.00\) or later.
3) Number of devices occupied

The device specified by (d1) occupies two devices (16-bit operation) or three devices (32-bit operation).
4) Be careful not to overlap with the devices used in machine control.
©1: \(\mathrm{FX}_{3} \mathrm{U}, \mathrm{FX} 3 \cup \mathrm{CLCs}\) only are applicable, index \((\mathrm{V}, \mathrm{Z})\) decoration is disabled.
A2: \(\mathrm{FX}_{3} \cup, \mathrm{FX}_{3} \cup \mathrm{c}, \mathrm{FX} 3 \mathrm{BLCs}\) only are applicable.
A3: FX3U, FX3UC PLCs only are applicable.

\section*{Program example}

When the cumulative total of ON time duration of X000 exceeds 300 hours, Y005 is turned ON. In D201, the present time of less than one hour is stored in one-second unit.
[Structured ladder]

```

[ST]
VAR_TIME:=HOUR(X000,K300);
Y005:=HOUR(X000,K300);
Y005:=HOUR(X000,K300);

```

VAR_TIME is a global label, and D200 is defined.
\begin{tabular}{ll} 
(s) & Time setting for turning ON d2 \\
& Specified in one-hour unit. \\
d1 \(:\) & Present value of one-hour unit \\
d1 \(+1:\) & Present value of less than one hour (one-second unit) \\
(d2 : & Specification of alarm output \\
& To be turned ON when the present value of the device specified by d1) exceeds the \\
& specified time of the device specified by \\
reaching 300 hours + 1 second.)
\end{tabular}

\subsection*{7.16 External Device}

\subsection*{7.16.1 GRY}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts a binary value into a gray code, and transfers it.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline GRY & 16 bits & Continuous &  & GRY(EN,s,d); \\
\hline GRYP & 16 bits & Pulse &  & GRYP(EN,s,d); \\
\hline DGRY & 32 bits & Continuous &  & DGRY(EN,s,d); \\
\hline DGRYP & 32 bits & Pulse & \begin{tabular}{lr}
\hline \multicolumn{2}{|c|}{ DGRYP } \\
- EN & ENO \\
s & d \\
\hline
\end{tabular} & DGRYP(EN,s,d); \\
\hline
\end{tabular}
2. Set data

3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{5}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{c|}
\hline \begin{tabular}{c} 
Special \\
unit
\end{tabular} \\
\hline U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & - & & - & -1 & -2 & \(\bullet\) & \(\bullet\) & - & - & \(\bullet\) & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & - & -1 & -2 & - & \(\bullet\) & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions"

\section*{Function and operation explanation}

\section*{1. 16-bit operation (GRY, GRYP)}
[Structured ladder]

GRY 1234

1) The device specified by \(s\) can store a value from 0 to 32,767 .
2. 32-bit operation (DGRY, DGRYP)
[ST]
GRY(EN,s,d);

[Structured ladder]


DGRY(EN,s,d);
*1. Label 1 is defined as the conversion source data or the device that stores the conversion source data.
*2. Label 2 is defined as the device that stores the data after conversion.
1) A binary value can be converted into a gray code of up to 32 bits.
2) The device specified by \(s\) can store a value from 0 to \(2,147,483,647\).

\section*{Cautions}
1) When handling array data or 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project.
Use a label to handle array data or 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
2) The data conversion speed depends on the scan time of the PLC.
3) Some restrictions to applicable devices
©1: Applicable to the \(F X_{3} \cup, F X_{3} \cup c\) and \(F X_{3 G}\) PLCs only.
©2: Applicable to the FX3U and FX3uc PLCs only.

\subsection*{7.16.2 GBIN}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts a gray code into a binary value, and transfers it.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline GBIN & 16 bits & Continuous &  & GBIN(EN,s,d); \\
\hline GBINP & 16 bits & Pulse &  & GBINP(EN,s,d); \\
\hline DGBIN & 32 bits & Continuous &  & DGBIN(EN,s,d); \\
\hline DGBINP & 32 bits & Pulse &  & DGBINP(EN,s,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit & 32-bit \\
\hline \multirow[b]{2}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s) & Conversion source data or word device storing conversion source data & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Word device storing data after conversion & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{Special unit U \(\square\) IG} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|c|}
\hline Real \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Character String
\(\square\)} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & X & \(\mathbf{Y}\) & M & T & c & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & - & - & A1 & -2 & \(\bullet\) & - & - & \(\bullet\) & - & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & - & - & -1 & -2 & \(\bullet\) & \(\bullet\) & - & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions"

\section*{Function and operation explanation}
1. 16-bit operation (GBIN, GBINP)
[Structured ladder]

GBIN(EN,s,d);

This instruction converts and transfers data from
the source (gray code) to the destination (binary).
When the device specified by \(s\) is \(\mathrm{K} 3 \times 000\) and the device specified by \(\square\) is D10

1) This instruction can be used for detecting an absolute position by a gray code type encoder.
2) The device specified by \(\checkmark\) can store a value from 0 to 32,767 .

\section*{2. 32-bit operation (DGBIN, DGBINP)}
[Structured ladder]

*1. Label 1 is defined as the conversion source data or the device that stores the conversion source data.
*2. Label 2 is defined as the device that stores the data after conversion.
1) A gray code can be converted into a binary value of up to 32 bits.
2) The device specified by \(\subseteq\) can store a value from 0 to \(2,147,483,647\).

\section*{Cautions}
1) When handling array data or 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project.
Use a label to handle array data or 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
2) When an input relay \((X)\) is specified as \(\subseteq\), the response delay will be "Scan time of PLC + Input filter constant."
The input filter value can be changed in X000 to X017 using REFF, REFFP or D8020 (filter adjustment) so that the filter constant delay is eliminated.
*1. The FX3G and FX2N-16M PLCs use X000 to X007.
3) Some restrictions to applicable devices
©1: Applicable to the FX3U, FX3UC and FX3G PLCs only.
©2: Applicable to the \(F X_{3}\) and \(F X_{3} \cup c\) PLCs only.

\subsection*{7.16.3 RD3A}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction reads an analog input value from the analog block FXon-3A or FX2N-2AD.
1. Format and operation, execution form

2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & m1 & \begin{tabular}{l} 
Special block number \\
• FX1N, FX1NC, FX2N, FX2NC, FX3U and FX3UC series PLCs: K0 to K7 \\
- \\
FX3UC-32MT-LT (-2) series PLC: K1 to K7
\end{tabular} & ANY16 \\
\cline { 2 - 5 } & m2 & Analog input channel & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Word device storing the read data & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{\prime}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (m1) & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & -1 & & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (m2) & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & -1 & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & & & \\
\hline (d) & & & & & & & & \(\bullet\) & - & - & \(\bullet\) & - & - & -1 & & \(\bullet\) & \(\bullet\) & - & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions"

\section*{Function and operation explanation}

\section*{1. 16-bit operation (RD3A)}
[Structured ladder]

<For FX3U and FX3uc PLCs>
This instruction reads an analog input value from the analog block FXoN-3A or FX2N-2AD.
m1 : Special block number
FX3U and FX3UC (D, DSS) series PLCs :K0 to K7
FX3UC-32MT-LT(-2) :K1 to K7 (K0 indicates the built-in CC-Link/LT master.)
(m2) : Analog input channel number
FXon-3A : K1 (ch1), K2(ch2)
FX2N-2A : K21(ch1), K22(ch2)
(d): Read data

A value read from the analog block is stored.
FXon-3A : 0 to 255 (8 bits)
FX2N-2AD : 0 to 4095 (12 bits)
<For FX1N and FX1NC PLCs>
This instruction reads an analog input value from the analog block FXon-3A.
(m1) : Special block number
K0 to K7
m2 : Analog input channel number
K1 or K2
(d): Read data

A value read from the analog block is stored.
FXon-3A : 0 to 255 (8 bits)
<For FX2N and FX2NC PLCs>
This instruction reads an analog input value from the analog block FXon-3A or FX2N-2AD.
(m1) : Special block number K0 to K7
(m2) : Analog input channel number
FXon-3A : K1(ch1), K2(ch2)
FX2N-2AD: K21(ch1), K22(ch2)
(d): Read data

A value read from the analog block is stored.
FXon-3A : 0 to 255 (8 bits)
FX2N-2AD : 0 to 4095(12 bits)

\section*{Cautions}
1) The FX2N and FX2Nc PLCs of V3.00 or later support RD3A instruction.
2) Some restrictions to applicable devices

41: Applicable to the FX3U and FX3uc PLCs only.

\subsection*{7.16.4 WR3A}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction writes a digital value to the analog block FXON-3A and FX2N-2DA.
1. Format and operation, execution form

2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{4}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (m1) & \begin{tabular}{l}
Special block number \\
- FX1N, FX1NC, FX2N, FX2NC, FX3U and FX3UC series PLCs: K0 to K7 \\
- FX3UC-32MT-LT (-2) series PLC: K1 to K7
\end{tabular} & ANY16 \\
\hline & (m2) & Analog output channel & ANY16 \\
\hline & S & Data to be written or word device storing data to be written. & ANY16 \\
\hline Output variable & ENO & Execution state & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c}
\hline Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D口.b & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (m1 & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & -1 & & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (m2) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & - & - & -1 & & - & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (s) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & -1 & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions"

\section*{Function and operation explanation}

\section*{1. 16-bit operation (WR3A, WR3AP)}
[Structured ladder]
 storing data to be written
[ST]

WR3A(EN,m1,m2,s);
<For FX3U and FX3uc PLCs>
This instruction writes a digital value to the analog block FXON-3A or FX2N-2DA.
(m1) : Special block number
FX3U and FX3uc (D, DSS) series PLCs: :K0 to K7
FX3UC-32MT-LT(-2) :K1 to K7 (K0 indicates the built-in CC-Link/LT master.)
(m2) : Analog output channel number
FXon-3A : K1 (ch1)
FX2N-2DA: K21(ch1), K22(ch2)
(s)

Data to be written
This specifies the value to be written to the analog block.
FXon-3A : 0 to 255 (8 bits)
FX2N-2DA: 0 to 4095 (12 bits)
<For FX1N and FX1nc PLCs>
This instruction writes a digital value to the analog block FXON-3A.
m1 : Special block number
K0 to K7
(m2): Analog output channel number
Valid for K1 onlyData to be written
This specifies the value to be written to the analog block.
FXon-3A : 0 to 255 (8 bits)
<For FX2N and FX2NC PLCs>
This instruction writes a digital value to the analog block FXON-3A or FX2N-2DA.
(m1) : Special block number
K0 to K7
(m2): Analog output channel number
FXon-3A : K1(ch1)
FX2N-2AD : K21(ch1), K22(ch2)
(s) : Data to be written

This specifies the value to be written to the analog block.
FXON-3A : 0 to 255 ( 8 bits)
FX2N-2DA : 0 to 4095(12 bits)

\section*{Cautions}
1) The FX2N and FX2NC PLCs of V3.00 or later support RD3A instruction.
2) Some restrictions to applicable devices.

41: Applicable to the FX3U and FX3uc PLCs only.

\subsection*{7.17 Extension Function}

\subsection*{7.17.1 EXTR_IN}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\times\) & \(\times\) & \(\Delta\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction writes the operation control instructions and parameters of the memory for extension function.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline EXTR_IN & 16 bits & Continuous &  & EXTR_IN(EN,s,sd1,sd2,sd3); \\
\hline EXTRP_IN & 16 bits & Pulse &  & EXTRP_IN(EN,s,sd1,sd2,sd3); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{5}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s) & \begin{tabular}{l}
Function number \\
- K11: Inverter operation control instruction \\
- K13: Writing inverter parameter
\end{tabular} & ANY16 \\
\hline & sd1 & Inverter station number & ANY \\
\hline & (sd2) & \begin{tabular}{l}
- When issuing inverter operation control instruction: inverter instruction code (hexadecimal) \\
- When writing inverter parameter: Inverter parameter number (decimal)
\end{tabular} & ANY \\
\hline & sd3 & Value written in inverter & ANY \\
\hline Output variable & ENO & Execution state & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|r|}{System user} & \multirow[t]{2}{*}{Special unit U \(\square\) IG \(\square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{Character String " \(\square\) "} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & & & & & & & - & \(\bullet\) & & & \\
\hline sd1 & \(\bullet\) & - & - & & & - & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & & & \(\bullet\) & - & \(\bullet\) & - & \(\bullet\) & & & \\
\hline (sd2) & - & - & - & & & - & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & - & & & \(\bullet\) & - & - & - & \(\bullet\) & & & \\
\hline (sd3) & \(\bullet\) & - & \(\bullet\) & & & \(\bullet\) & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & - & & & \(\bullet\) & \(\bigcirc\) & - & - & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation1 (Inverter operation control)}
\(\rightarrow\) For the details of the instruction, refer to Communication Control Manual. This instruction is for using the optional memory for extension functions.
When K11 is set to the device specified by \((s\), the control values necessary for inverter operation are written in the PLC.
1. 16-bit operation (EXTR_IN, EXTRP_IN)

As for the inverter*1 of the station number specified by sd1), the control values (contents of the device specified by (sd3) are written to the "instruction code" (contents of the device specified by (sd2) \({ }^{*}\).

*1. General purpose inverters FREQROL-A500/E500/S500 (with communications functions) series made by Mitsubishi Electric Corporation
*2. Refer to the "Instruction code List" described later.
Also refer to the pages describing in detail the computer links from the inverter manual.

\section*{2. Inverter instruction codes}

The table below shows the inverter instruction codes and their functions of the device specified by (sd2).
For the instruction codes, refer to the pages describing in detail the computer links from the inverter manual.
\begin{tabular}{c|l|c|c|c}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Instruction codes of \\
inverter specified by \\
(sd2) (hexadecimal)
\end{tabular}} & \multicolumn{2}{|c|}{ Contents to be written } & \multicolumn{3}{|c}{ Applicable inverters } \\
\hline & & A500 & E500 & S500 \\
\hline HFB & Operation mode & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline HF3 & Special monitor selection No. & \(\checkmark\) & & \\
\hline HFA & Operation command & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline HEE & Writing set frequency (EEPROM) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline HED & Writing set frequency (RAM) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline HFD & Inverter reset & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline HF4 & Batch-clearing error contents & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline HFC & Clearing all parameters & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline HFC & User clear & \(\checkmark\) & & \\
\hline
\end{tabular}
3. Related devices
\begin{tabular}{|c|c|c|c|}
\hline Special auxiliary relays & Function & Special data register & Function \\
\hline \multirow[t]{2}{*}{M8104} & ON when installing extended ROM cassette & D8104 & Extended ROM type code \\
\hline & & D8105 & Extended ROM version \\
\hline M8154 & Function to be defined for each EXTR instruction & D8154 & Time waiting for EXTR instruction response \\
\hline M8155 & Communications port being used by EXTR instruction & D8155 & Step number of instruction occupying communications port \\
\hline M8156 & Communication error by EXTR instruction & D8156 & Communication error by EXTR instruction \\
\hline M8157 & Communication error by EXTR instruction (Latch) \({ }^{* 1}\) & D8157 & Communication error by EXTR instruction (Latch)* \({ }^{* 1}\) K1 if no error \\
\hline
\end{tabular}
*1. Cleared when changing from STOP to RUN.

\section*{Function and operation explanation2 (Writing inverter parameters)}
\(\rightarrow\) For the details of the instruction, refer to Communication Control Manual. This instruction is for using the optional memory for extension functions.
When K13 is set to device specified by \(\Omega\), the inverter parameter is written.

\section*{1. 16-bit operation (EXTR-IN, EXTRP-IN)}

The value (contents of the device specified by (sd3) is written to the parameter (contents of the device specified by (sd2) ) of the inverter of the station number specified by sd1.

*1. General purpose inverters FREQROL-A500/E500/S500 (with communications functions) series made by Mitsubishi Electric Corporation

\section*{2. Related devices}

The same as the inverter operation control described above.

\section*{Caution}
1) The FX2N and FX2NC PLCs of V3.00 or later support the EXTR_IN instruction.

\subsection*{7.17.2 EXTR_OUT}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\times\) & \(\times\) & \(\Delta\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction is for the short mail transmission of the memory for extension function, inverter operation monitoring instruction, and parameter readout.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline EXTR_OUT & 16 bits & Continuous & \begin{tabular}{lr}
\hline \multicolumn{2}{|c}{ EXTR_OUT } \\
\(-\operatorname{EN}\) & ENO \\
-s & sd 3
\end{tabular} & EXTR_OUT(EN,s,sd1,sd2,sd3); \\
\hline EXTRP_OUT & 16 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{1}{|c}{ EXTRP_OUT } \\
EN & ENO
\end{tabular} - & EXTRP_OUT(EN,s,sd1,sd2,sd3); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{4}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s) & \begin{tabular}{l}
Function number \\
- K0: Short mail transmission \\
- K10: Inverter operation monitoring instruction \\
- K12: Inverter parameter readout
\end{tabular} & ANY16 \\
\hline & sd1 & \begin{tabular}{l}
- When transmitting short mail: \\
Mail center, phone number of transmission destination and waiting time \\
- When issuing inverter operation monitoring instruction and reading parameter: \\
Inverter station number
\end{tabular} & ANY \\
\hline & Sd2 & \begin{tabular}{l}
- When transmitting short mail: \\
Transmission message format and message text \\
- When issuing inverter operation monitoring instruction: inverter instruction code (hexadecimal) \\
- When reading inverter parameter: Inverter parameter number (decimal)
\end{tabular} & ANY \\
\hline \multirow[b]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (sd3) & \begin{tabular}{l}
- When transmitting short mail: operation status \\
- When issuing inverter operation monitoring instruction and reading parameter: \\
Destination device storing readout value
\end{tabular} & ANY \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{Special unit U \(\square \mathbf{I G} \square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & & & & & & & - & \(\bullet\) & & & \\
\hline sd1 & \(\bullet\) & - & - & & & \(\bullet\) & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline sd2 & - & - & - & & & \(\bullet\) & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (sd3) & \(\bullet\) & - & - & & & \(\bullet\) & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation1 (Transmitting short mail)}

\section*{\(\rightarrow\) For the details of the instruction, refer to Communication Control Manual.}

This instruction is for using the optional memory for extension function.
When K0 is set to the device specified by \(\subseteq\), the PLC transmits the short mail.
The short mail is transmitted by the PLC. The NTT DoCoMo and other firms mobile phones capable of receiving the short mail are notified.
The PLC connects to the NTT DoCoMo short mail center through the modem.
1. 16-bit operation (EXTR_OUT, EXTRP_OUT)

Message (contents of the device specified by (sd2) is transmitted to the mail center (mail center specified by (sd1).


\section*{2. Contents of message}

The message should be as follows.
- Number of characters : Up to 50 half width characters ( 25 full width characters)
- Type of characters : Numbers, Kanji, Katakana, Hiragana, symbols, etc.
- Available characters : Use the character codes specified by the short mail service
- Receiving message : Received automatically.

\section*{3. Related devices}
\begin{tabular}{c|l}
\hline \begin{tabular}{c} 
Special \\
auxiliary \\
relays
\end{tabular} & \multicolumn{1}{c}{ Function } \\
\hline M8104 & \begin{tabular}{l} 
ON when installing extended ROM \\
cassette
\end{tabular} \\
\hline & \\
\hline M8154 & \begin{tabular}{l} 
Function to be defined for each EXTR \\
instruction
\end{tabular} \\
\hline M8155 & \begin{tabular}{l} 
Communications port being used by EXTR \\
instruction
\end{tabular} \\
\hline M8156 & Communication error by EXTR instruction \\
\hline M8157 & \begin{tabular}{l} 
Communication error by EXTR instruction \\
(Latch)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{c|l}
\hline \begin{tabular}{c} 
Special data \\
register
\end{tabular} & \multicolumn{1}{|c}{ Function } \\
\hline D8104 & Extended ROM type code \\
\hline D8105 & Extended ROM version \\
\hline D8154 & Time waiting for EXTR instruction response \\
\hline D8155 & \begin{tabular}{l} 
Step number of instruction occupying communications \\
port
\end{tabular} \\
\hline D8156 & Communication error by EXTR instruction \\
\hline D8157 & \begin{tabular}{l} 
Communication error by EXTR instruction (Latch) \\
K1 if no error \\
\hline
\end{tabular} \\
\hline
\end{tabular}
*1. Cleared when changing from STOP to RUN.

\section*{Function and operation explanation2（Monitoring inverter operation）}
\(\rightarrow\) For the details of the instruction，refer to Communication Control Manual．
This instruction is for using the optional memory for extension functions．
When K10 is set to the device specified by \(\subseteq\) ，the inverter operation is monitored．

\section*{1．16－bit operation（EXTR＿OUT，EXTRP＿OUT）}

As for the inverter \({ }^{* 1}\) of the station number specified by（sd1），the operation condition of the inverter corresponding to the＂instruction code＂＊2（contents of the device specified by sd2）is read to the device specified by（sd3）．

＊1．General purpose inverters FREQROL－A500／E500／S500（with communications functions）series made by Mitsubishi Electric Corporation
＊2．Refer to the instruction code list described later．
Also refer to the pages describing in detail the computer links from the inverter manual．

\section*{2．Inverter instruction code}

The table below shows the inverter instruction codes and their functions of the device specified by（sd2）． For the instruction codes，refer to the pages describing in detail the computer links from the inverter manual．
\begin{tabular}{|c|c|c|c|c|}
\hline （sd2） & & & ble i & \\
\hline Inverter instruction code （hexadecimal） & Contents to be read out & A500 & E500 & S500 \\
\hline H7B & Operation mode & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline H6F & Output frequency［rotational speed］ & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline H70 & Output current & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline H71 & Output voltage & \(\checkmark\) & \(\checkmark\) & \\
\hline H72 & Special monitor & \(\checkmark\) & & \\
\hline H73 & Special monitor selection number & \(\checkmark\) & & \\
\hline H74 & Error contents & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline H75 & Error contents & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline H76 & Error contents & \(\checkmark\) & \(\checkmark\) & \\
\hline H77 & Error contents & \(\checkmark\) & \(\checkmark\) & \\
\hline H7A & Inverter status monitor & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline H6E & Set frequency（E2PROM）readout & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline H6D & Set frequency（RAM）readout & \multicolumn{3}{|l|}{Not commanded by s2 for this instruction． Use EXTR K12 instruction to set＂second parameter specification code＂for automatic processing．} \\
\hline H7F & Link parameter extension setting & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Not commanded by s2 for this instruction． Use EXTR K12 instruction to set＂second parameter specification code＂for automatic processing．}} \\
\hline H6C & Second parameter switchover & & & \\
\hline
\end{tabular}

3．Related devices
The same as the short mail transmission described above．

\section*{Function and operation explanation 3 (Reading inverter parameters)}
\(\rightarrow\) For the details of the instruction, refer to Communication Control Manual. This instruction is for using the optional memory for extension functions.
When K12 is set to the device specified by \(\subseteq\), the inverter parameter is read out to the PLC.

\section*{1. 16-bit operation (EXTR_OUT, EXTRP_OUT)}

The value of the parameter specified by (sd2) is read out from the inverter \({ }^{* 1}\) of the station number specified by sd1 to the device specified by (sd3).

*1. General purpose inverters FREQROL-A500/E500/S500 (with communications functions) series made by Mitsubishi Electric Corporation

\section*{2. Related devices}

The same as the short mail transmission described above.

\section*{Caution}

The FX2N and FX2Nc PLCs of V3.00 or later support the EXTR_IN instruction.

\subsection*{7.18 Others}

\subsection*{7.18.1 COMRD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction reads the comment data for registered devices written to the PLC by programming software such as GX Works2.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline COMRD & 16 bits & Continuous &  & COMRD (EN,s,d); \\
\hline COMRDP & 16 bits & Pulse &  & COMRDP(EN,s,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bevice for which comment to be read is registered \\
\cline { 2 - 5 } & S & Execution state & ANY_SIMPLE \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & d & Head device storing read comment
\end{tabular} Bit \begin{tabular}{l} 
String \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(1 \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & \(\bullet\) & - & - & & & \(\bullet\) & & & & & & - & - & - & \(\bullet\) & & & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & & & & & - & - & - & \(\bullet\) & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. 16-bit operation (COMRD/COMRDP)
1) The comment registered for the device specified by \(S\) is read, and stored in ASCII code in the device specified by \(\mathbb{C}\).

*1. This defines the head of the device that stores the comment read out.
to be read is registered


When the comment is made up of an even number of characters:
- When M8091 is OFF, " 0000 H " is stored to the device following the last character.
- When M8091 is ON, the device following the last character does not change.

For example, when the comment of the device specified by \(\subseteq\) is "Line No. 1 Start", it is stored in the device specified by \(d\) as shown below.

Comment of s

\begin{tabular}{|c|c|c|}
\hline (d) +0 & 69H(i) & 4CH(L) \\
\hline +1 & \(65 \mathrm{H}(\mathrm{e})\) & 6EH(n) \\
\hline +2 & 6FH(o) & 4EH(N) \\
\hline +3 & 31H(1) & 2EH(.) \\
\hline +4 & \(74 \mathrm{H}(\mathrm{t})\) & \(53 \mathrm{H}(\mathrm{S})\) \\
\hline +5 & 72H(r) & \(61 \mathrm{H}(\mathrm{a})\) \\
\hline +6 & 20H(space) & \(74 \mathrm{H}(\mathrm{t})\) \\
\hline +7 & 20H(space) & 20H(space) \\
\hline +8 & \multicolumn{2}{|c|}{0000H} \\
\hline
\end{tabular}

When the comment is made up of an odd number of characters:
- When M8091 is OFF, " 00 H " is written to the high order byte of the device that stores the last character.
- When M8091 is ON, the high order byte of the device that stores the last character does not change.
2) The last data of the device specified by \(\triangle\) is as follows depending on the ON/OFF status of M8091.
\begin{tabular}{c|ll}
\hline ON/OFF status & \multicolumn{1}{c}{ Contents of processing } \\
\hline M8091=OFF & \begin{tabular}{l} 
- When the comment is made up of an odd number of characters, " \(00 \mathrm{H} "\) is written to the high order one byte \\
(8 bits) of the device storing the last character of the comment. \\
When the comment is made up of an even number of characters, " \(00 \mathrm{H} "\) is written to the device that follows \\
the device storing the last character of the comment.
\end{tabular} \\
\hline M8091=ON & \begin{tabular}{l} 
- When the comment is made up of an odd number of characters, the high order one byte (8 bits) of the \\
device storing the last character of the comment does not change. \\
When the comment is made up of an even number of characters, the device that follows the device storing \\
the last character of the comment does not change.
\end{tabular} \\
\hline
\end{tabular}

\section*{Related devices}
\begin{tabular}{l|c|lc}
\hline Device & Name & & Description \\
\hline M8091 & \begin{tabular}{c} 
Output character number \\
selector signal
\end{tabular} & Refer to the above explanation. & \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling character string data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project.
Use a label to handle character string data. Use a global label to specify a label.
2) Specify a device number in the device specified by \(\$\) for which a comment is registered in the PLC. If a comment is not registered for the device specified by d " 20 H " (space) is stored in the device specified by \(d\) for the number of characters in the comment ( 16 half-width characters).
3) The \(\mathrm{FX} 3 \cup C\) PLC of V 2.20 or later supports this instruction.

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When a comment is not registered for the device specified by \(\checkmark\) (error code: K6706)
2) When the range of points used from the device specified by \(\mathbb{d}\) for the comment exceeds the corresponding device range (error code: K6706)
The comment, however, is written up to that point.

\section*{Program examples}

In the program shown below, the comment "Target Line A" registered to D100 is stored in ASCII code in D0 and later when X010 is set to ON. (When M8091 is OFF)
[Structured ladder]

*1. VAR_COMENT is a global label and is defined as D0.


\subsection*{7.18.2 RND}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction generates random numbers.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline RND & 16 bits & Continuous &  & RND(EN, d); \\
\hline RNDP & 16 bits & Pulse &  & RNDP(EN, d); \\
\hline
\end{tabular}

\section*{2. Set data}
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \begin{tabular}{l} 
Input \\
variable
\end{tabular} & EN & Execution condition & Bit \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Head device storing a random number
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{6}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square \mathbf{I G} \square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (d) & & & & & & & & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & - & - & \(\bullet\) & - & & & - & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (RND/RNDP)}

This instruction generates a pseudo-random number within the range from 0 to 32767 , and stores it as a random number to the device specified by \((d)\).
In the pseudo-random number sequence, the source value of a random number is calculated at every time, and this instruction calculates a pseudo-random number using the source value.


\section*{Pseudo-random number calculation equation:}
\((\) D8311, D8310 \(\left.)=(\text { D8311, D8310 })^{* 1} \times 103515245+12345 \ldots 1\right)\)
\(d=\) "[D8311, D8310]>>16)\& Logical product > 00007FFFh"
*1. To (D8311, D8310), write a non-negative value ( 0 to \(2,147,483,647\) ) only once when the PLC mode switches from STOP to RUN.
[ K 1 is written to (D8311, D8310) as the initial value when the power is restored.]

\section*{Program examples}

In the program example shown below, a random number is stored to D100 every time X010 turns ON. When the PLC mode switches from STOP to RUN, the time data converted into seconds and added by the value "(Year + Month) \(\times\) Day" is written to (D8311 and D8310).
[Structured ladder]

[ST]

TRD(M8002,D0);
DHTOS(M8002,D3,VAR_SECOND);
ADD(M8002,D0,D1,D10);
MUL(M8002,D10,D2,VAR_MUL);
DADD(M8002,VAR_DATA1,VAR_DATA2,VAR_DATA3); D100:=RNDP(X010);

The data in second is added by the value "(Year + Month) \(\times\) Day", and written to D8311 and D8310.
*1. VAR_SECOND is a global label and is defined as D14.
*2. VAR_MUL is a global label and is defined as D12.
*3. VAR_DATA1 is a global label and is defined as D14.
*4. VAR_DATA2 is a global label and is defined as D12.
*5. VAR_DATA3 is a global label and is defined as D8310.

\subsection*{7.18.3 DUTY}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction generates the timing signal whose one cycle corresponds to the specified number of operation cycles.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured Iadder & ST \\
\hline DUTY & 16 bits & Continuous &  & DUTY(EN,n1,n2,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Number of scans (operation cycles) to remain ON \\
\cline { 2 - 5 } & n1 & n2 & Number of scans (operation cycles) to remain OFF \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & ANY16 \\
\cline { 2 - 5 } & d & Timing clock output destination & ANY16 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(1 \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & \(\mathbf{Y}\) & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & UपIG口 & V & Z & Modifier & K & H & & & \\
\hline (n1) & & & & & & & & & & & & \(\bullet\) & - & - & \(\bullet\) & & & & & \(\bullet\) & - & & & \\
\hline (n2) & & & & & & & & & & & & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & - & & & & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

A: Refer to "Cautions"

\section*{Function and operation explanation}

\section*{1. 16-bit operation (DUTY)}
1) The timing clock output of the device specified by \(\square\) is set to ON and OFF with the ON duration for "n1" scans and OFF duration for "n2" scans.


2) Specify either one among M8330 to M8334 as the timing clock output destination device specified by (d).
3) The counted number of scans is stored in either one among D8330 to D8334 in accordance with the timing clock output destination device specified by \((d\).
The counted number of scans stored in either one among D8330 to D8334 is reset when the counted value reaches " \(\mathrm{n} 1+\mathrm{n} 2\) " or when the command input (instruction) is set to ON.
\begin{tabular}{c|c}
\hline Timing clock output destination & Scan counting device \\
\hline M8330 & D8330 \\
\hline M8331 & D8331 \\
\hline M8332 & D8332 \\
\hline M8333 & D8333 \\
\hline M8334 & D8334 \\
\hline
\end{tabular}
4) When the command input is set to ON, the operation is started. The timing clock output destination device specified by \(d\) is set to ON or OFF by END instruction.
Even if the command input is set to OFF, the operation is not stopped. In the STOP mode, the operation is suspended. When the power of the PLC is turned OFF, the operation is stopped.
5) When " \(n 1\) " and " \(n 2\) " are set to " 0 ", the device specified by \(d\) is set to the following status:
\begin{tabular}{c|l}
\hline \(\mathbf{n 1}, \mathbf{n 2}\) status & \multicolumn{1}{|c}{ ON/OFF status of (d) } \\
\hline \(\mathrm{n} 1=0, \mathrm{n} 2 \geq 0\) & \(\mathrm{~d}=\) fixed to OFF \\
\hline \(\mathrm{n} 1>0, \mathrm{n} 2=0\) & \(\mathrm{~d}=\) fixed to ON \\
\hline
\end{tabular}

\section*{Related devices}
\begin{tabular}{|c|c|c|}
\hline Device & Name & Description \\
\hline M8330 & Timing clock output 1 & \multirow{5}{*}{Timing clock output in DUTY instruction} \\
\hline M8331 & Timing clock output 2 & \\
\hline M8332 & Timing clock output 3 & \\
\hline M8333 & Timing clock output 4 & \\
\hline M8334 & Timing clock output 5 & \\
\hline D8330 & Counted number of scans for timing clock output 1 & Counted number of scans for timing clock output 1 in DUTY instruction \\
\hline D8331 & Counted number of scans for timing clock output 2 & Counted number of scans for timing clock output 2 in DUTY instruction \\
\hline D8332 & Counted number of scans for timing clock output 3 & Counted number of scans for timing clock output 3 in DUTY instruction \\
\hline D8333 & Counted number of scans for timing clock output 4 & Counted number of scans for timing clock output 4 in DUTY instruction \\
\hline D8334 & Counted number of scans for timing clock output 5 & Counted number of scans for timing clock output 5 in DUTY instruction \\
\hline
\end{tabular}

\section*{Cautions}
1) DUTY instruction can be used up to 5 times (points).

It is not permitted, however, to use the same timing clock output destination device (device specified by (d) for two or more DUTY instructions.
2) The FX3Uc PLC of V2.20 or later supports this instruction.
3) Some restrictions to applicable devices

A: Specify M8330 to M8334.

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When "n1" and/or "n2" is less than "0" (error code: K6706)
2) When any device other than M8330 to M8334 is set to the device specified by © . (error code: K6705)

\section*{Program examples}

In the program shown below, when X000 is set to ON, M8330 is set to ON for 1 scan and OFF for 3 scans.
[Structured ladder]


\subsection*{7.18.4 CRC}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This CRC instruction calculates the CRC (cyclic redundancy check) value which is an error check method used in communication.
In addition to CRC value, there are other error check methods such as parity check and sum check. For obtaining the horizontal parity value and sum check value, CCD instruction is available. CRC instruction uses " \(X^{16}+X^{15}+X^{2}+1\) " as a polynomial for generating the CRC value (CRC-16).
1. Format and operation, execution form

2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & S & Head device storing data for which the CRC value is generated & ANY16 \\
\cline { 2 - 5 } & n & \begin{tabular}{l} 
Number of 8-bit (byte) data for which the CRC value is generated or the \\
device storing the number of data
\end{tabular} & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Device storing the generated CRC value & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{c|}
\hline \begin{tabular}{c} 
Special \\
unit
\end{tabular} \\
\hline U \(\square\) \G \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointe \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & c & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & - & - & - & - & \(\bullet\) & - & - & \(\bullet\) & - & & & - & & & & & \\
\hline (d) & & & & & & & & & - & - & - & \(\bullet\) & - & - & - & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & - & \(\bullet\) & & & & & - & \(\bullet\) & & & \\
\hline
\end{tabular}
©: Refer to "Cautions"

\section*{Function and operation explanation}

\section*{1. 16-bit operation}

CRC value is generated for "n" 8-bit data (unit: byte) starting from a device specified in \(s\), and stored to the device specified by \(\mathbb{d}\).
The 8-bit conversion mode and 16-bit conversion mode are available in this instruction, and the mode can be switched by turning ON or OFF M8161. For the operation in each mode, refer to the later descriptions. \(X^{16}+X^{15}+X^{2}+1\) is used as a polynomial for generating the CRC value (CRC-16).

*1. Head device storing data for which the CRC value is generated
*2. Number of 8-bit (byte) data for which the CRC value is generated or the device storing the number of data
*3. Device storing the generated CRC value
1) 16-bit conversion mode [M8161 = OFF]

In this mode, the operation is executed for high-order 8 bits (byte) and low-order 8 bits (byte) of a device specified in \(s\).
The operation result is stored to one 16 -bit device specified in \(\mathbb{d}\).

*1. Head device storing data for which the CRC value is generated
*2. Number of 8-bit (byte) data for which the CRC value is generated or the device storing the number of data
*3. Device storing the generated CRC value
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{3}{|l|}{Example:
\[
\begin{aligned}
\mathrm{S} & =\mathrm{D} 100 \\
\mathrm{~d} & =\mathrm{D} 0 \\
\mathrm{n} & =6
\end{aligned}
\]} \\
\hline & & & \multirow[b]{2}{*}{Device} & \multicolumn{2}{|l|}{Contents of target data} \\
\hline & & & & 8 bits & 16 bits \\
\hline \multirow{9}{*}{Device storing data for which the CRC value is generated} & \multirow[b]{2}{*}{(s)} & Low-order byte & Low-order bits of D100 & 01H & \multirow{2}{*}{0301H} \\
\hline & & High-order byte & High-order bits of D100 & 03H & \\
\hline & \multirow[b]{2}{*}{(s) +1} & Low-order byte & Low-order bits of D101 & 03H & \multirow{2}{*}{0203H} \\
\hline & & High-order byte & High-order bits of D101 & 02H & \\
\hline & \multirow[b]{2}{*}{(s) +2} & Low-order byte & Low-order bits of D102 & 00H & \multirow{2}{*}{1400 H} \\
\hline & & High-order byte & High-order bits of D102 & 14H & \\
\hline & ! & : & \multicolumn{3}{|c|}{-} \\
\hline & \multirow[b]{2}{*}{(S) \(+\mathrm{n} / 2-1\)} & Low-order byte & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{-}} \\
\hline & & High-order byte & & & \\
\hline \multirow[t]{2}{*}{Device storing the generated CRC value} & \multirow[b]{2}{*}{(d)} & Low-order byte & Low-order bits of D0 & E4H & \multirow[t]{2}{*}{41E4H} \\
\hline & & High-order byte & High-order bits of D0 & 41H & \\
\hline
\end{tabular}
2) 8-bit conversion mode [M8161 = ON] In this mode, the operation is executed only for low-order 8 bits (low-order byte) of device specified by (s).

With regard to the operation result, low-order 8 bits (byte) are stored to a device specified by d , and high-order 8 bits (byte) are stored to a device specified by \(\mathbb{d}+1\).

*1. Head device storing data for which the CRC value is generated
*2. Number of 8-bit (byte) data for which the CRC value is generated or the device storing the number of data
*3. Device storing the generated CRC value
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{Example:
\[
\begin{aligned}
s & =D 100 \\
d & =D 0 \\
n & =6
\end{aligned}
\]} \\
\hline & & & Device & Contents of target data \\
\hline \multirow{8}{*}{Device storing data for which the CRC value is generated} & (s) & Low-order byte & Low-order bits of D100 & 01H \\
\hline & (s) +1 & Low-order byte & Low-order bits of D101 & 03H \\
\hline & (s) +2 & Low-order byte & Low-order bits of D102 & 03H \\
\hline & (s) +3 & Low-order byte & Low-order bits of D103 & 02H \\
\hline & (s) +4 & Low-order byte & Low-order bits of D104 & 00H \\
\hline & (S +5 & Low-order byte & Low-order bits of D105 & 14H \\
\hline & & ! & & \\
\hline & (s) \(+\mathrm{n}-1\) & Low-order byte & \multicolumn{2}{|r|}{-} \\
\hline \multirow[t]{2}{*}{Device storing the generated CRC value} & (d) & Low-order byte & Low-order bits of D0 & E4H \\
\hline & (d) +1 & Low-order byte & Low-order bits of D1 & 41H \\
\hline
\end{tabular}
2. Related devices
\begin{tabular}{c|l|l}
\hline Related devices & \multicolumn{2}{c}{ Description } \\
\hline \multirow{2}{*}{ M8161*1 } & ON & CRC instruction operates in the 8-bit mode. \\
\cline { 2 - 3 } & OFF & CRC instruction operates in the 16-bit mode. \\
\hline
\end{tabular}
*1. Cleared when the PLC mode is changed from RUN to STOP.

\section*{Cautions}
1) In this instruction, " \(X^{16}+X^{15}+X^{2}+1\) " is used as a polynomial for generating the CRC value (CRC-16). There are many other standard polynomials for generating the CRC value. Note that the CRC value completely differs if an adopted polynomial is different.

Reference: Major polynomials for generating the CRC value
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Name } & \multicolumn{1}{c}{ Generating polynomial } \\
\hline CRC-12 & \(X^{12}+X^{11}+X^{3}+X^{2}+X+1\) \\
\hline CRC-16 & \(X^{16}+X^{15}+X^{2}+1\) \\
\hline CRC-32 & \(X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}+X^{8}+X^{7}+X^{5}+X^{4}+X^{2}+X+1\) \\
\hline CRC-CCITT & \(X^{16}+X^{12}+X^{5}+1\) \\
\hline
\end{tabular}
2) Some restrictions to applicable devices
\(\boldsymbol{\Delta}\) : Be sure to specify four digits for the bit devices (K4 \(\square \mathrm{OOO}\) ).

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When any digits other than 4 digits are specified as the devices specified as \(s\) or \(\mathbb{d}\) in digit specification of bit device (error code: K6706)
2) When \(n\) is outside the allowable range ( 1 to 256) (error code: K6706)
3) When a device specified by \(\triangle+n-1\) or \(\triangle+1\) is outside the allowable range (error code: K6706)

\section*{Program examples}

In the program example shown below, the CRC value of the ASCII code " 0123456 " stored in D100 to D106 is generated and stored to D0 when MO turns ON.
1. In the case of \(\mathbf{1 6}\)-bit mode
[Structured ladder]

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{10}{*}{Device storing data for which the CRC value is generated} & \multicolumn{4}{|c|}{Contents of data} \\
\hline & & & & \\
\hline & \multirow[t]{2}{*}{D100} & \multirow[t]{2}{*}{3130 H} & Low-order byte & 30H \\
\hline & & & High-order byte & 31H \\
\hline & \multirow[t]{2}{*}{D101} & \multirow[t]{2}{*}{3332H} & Low-order byte & 32H \\
\hline & & & High-order byte & 33H \\
\hline & \multirow[t]{2}{*}{D102} & \multirow[t]{2}{*}{3534H} & Low-order byte & 34H \\
\hline & & & High-order byte & 35H \\
\hline & \multirow[t]{2}{*}{D103} & \multirow[t]{2}{*}{3736H} & Low-order byte & 36H \\
\hline & & & - & - \\
\hline \multirow[t]{2}{*}{Device storing the generated CRC value} & \multirow[t]{2}{*}{D0} & \multirow[t]{2}{*}{2ACFH} & Low-order byte & CFH \\
\hline & & & High-order byte & 2AH \\
\hline
\end{tabular}
2. In the case of 8-bit mode
[Structured ladder]

[ST]
8-bit
conversion mode
M8161:=M8000;
LDP(TRUE,M0);
D0:=CRC(TRUE,D100,K7);
\begin{tabular}{l|c|c|c}
\hline & \multicolumn{3}{|c}{ Contents of target data } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Device storing data for which the \\
CRC value is generated
\end{tabular}} & D100 & Low-order byte & 30 H \\
\cline { 2 - 4 } & D101 & Low-order byte & 31 H \\
\cline { 2 - 4 } & D102 & Low-order byte & 32 H \\
\cline { 2 - 4 } & D103 & Low-order byte & 33 H \\
\cline { 2 - 4 } & D104 & Low-order byte & 34 H \\
\cline { 2 - 4 } & D105 & Low-order byte & 35 H \\
\hline \hline \multirow{3}{*}{\begin{tabular}{l} 
Device \\
value
\end{tabular}} & D106 & Low-order byte & 36 H \\
\hline
\end{tabular}

\subsection*{7.18.5 DHCMOV}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction transfers the current value of a specified high speed counter or ring counter.
The function of this instruction varies depending on the PLC version.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{3}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & & ST \\
\hline DHCMOV & 32 bits & Continuous & \begin{tabular}{lr} 
& \multicolumn{2}{c}{ DHCMOV } \\
- & \\
-sN & ENO \\
-n & \\
\hline
\end{tabular} & DHCMOV(EN,s,n,d); & \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & S & Device of high speed counter or ring counter handled as transfer source & ANY32 \\
\hline & ( n & Specification to clear the current value of high speed counter or ring counter (transfer source) after transfer [clear (k1), no processing (K0)] & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Device handled as transfer destination & ANY32 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
: Refer to "Cautions"


\section*{Function and operation explanation}

\section*{1. 32-bit operation (DHCMOV)}

1) The current value of a high speed counter or ring counter specified by \(s\) is transferred to the device specified by d.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{Device s} & [ d +1, d] after instruction is executed \\
\hline High speed counter & C235 to C255 & Current value of high speed counter (s) \(\rightarrow\) d +1, d] \\
\hline \multirow[t]{2}{*}{Ring counter*1} & D8099 & \begin{tabular}{l}
\[
\text { D8099 } \rightarrow \text { d }
\] \\
" 0 " is stored in (d) +1 .
\end{tabular} \\
\hline & D8398 & Current value of [D8399, D8398] \(\rightarrow\) [d]+1, (d)] \\
\hline
\end{tabular}
2) After transfer, the current value of the high speed counter or ring counter is processed as shown in the table below depending on the set value of " n ".
\begin{tabular}{c|l}
\hline " n " set value & \multicolumn{1}{c}{ Operation } \\
\hline \(\mathrm{K} 0(\mathrm{H} 0)\) & Does not clear the current value (no processing). \\
\hline \(\mathrm{K} 1(\mathrm{H} 1)\) & Clears the current value to "0". \\
\hline
\end{tabular}
*1. Ring counters (D8099 and D8398) cannot be specified in FX3uc PLCs earlier than Ver. 2.20 (not inclusive).
2. High speed counter current value update timing and the effect of DHCMOV instruction
1) High speed counter current value update timing

When a pulse is input to an input terminal for a high speed counter (C235 to C255), the high speed counter executes up-counting or down-counting.
If the current value of a high speed counter is handled in an instruction such as the normal MOV instruction, the current value is updated at the timing shown in the table below. As a result, it is affected by the program scan time.
\begin{tabular}{l|l}
\hline & \multicolumn{1}{c}{ Current value update timing } \\
\hline Hardware counter & When OUT instruction for the counter is executed \\
\hline Software counter & Every time a pulse is input \\
\hline
\end{tabular}

By using DHCMOV instruction, the current value can be updated and transferred when it is executed.
2) Effect of DHCMOV instruction
a) By using both input interrupt and DHCMOV instruction, the current value of a high speed counter can be received at the rising edge or falling edge of an external input (at reception of input interrupt).
\(\rightarrow\) Refer to the Program example 2.
b) When DHCMOV instruction is used just before a comparison instruction (CMP, ZCP or comparison contact instruction), the latest value of a high speed counter is used in comparison. Unlike the comparison instruction for high speed counters (DHSCS, DHSCR or DHSZ), the following points must be kept in mind when using the DHCMOV instruction.
- When the current value of a hardware counter is compared using CMP, ZCP or comparison contact instruction (not using a designated high speed counter comparison instruction), a hardware counter does not change into a software counter.
\(\rightarrow\) FX Structured Programming Manual (Device \& Common)
- When the number of high speed software counter comparison instructions is reduced, the total frequency limitation is decreased.
\(\rightarrow\) FX Structured Programming Manual (Device \& Common)
- When it is necessary to execute comparison and change an output contact ( Y ) as soon as the current value of a high speed counter changes, use a designated high seed counter comparison instruction (DHSCS, DHSCR or DHSZ)
- DHCMOV instruction can be used as many times as necessary.

\section*{Cautions}

When programming DHCMOV instruction in an input interrupt program, the following points should be observed.
For assignment of pointers for input interrupt and inputs, refer to the table shown in 5) below.
1) Program EI and FEND instructions in the main program. They are necessary to execute an input interrupt program.
\(\rightarrow\) For El and FEND, refer to Sections 7.1.6 and 7.1.7.
2) When programming DHCMOV instruction in the first line in an input interrupt program, be sure to use the pattern program shown below. Be sure to use the command contact M8394.

3) If two or more DHCMOV instructions are used in one input interrupt program, only the first instruction (just after the interrupt pointer) is executed when the interrupt is generated.
The rest of the interrupt, including additional instructions, is executed according to normal interrupt processing.
Do not use M8394 as the command contact for the DHCMOV instructions following the first.
[Interrupt program]
(Event: I301)


When the input X003 turns from OFF to ON (that is, when input interrupt is accepted)
(s) \(\rightarrow\) [d +1 ,d \(]\)

When this instruction is executed in interrupt program
(s) ' \(\rightarrow\) [ (d) '+1, (d) ']
4) It is not permitted to use DHCMOV instruction for the same counter in two or more input interrupt programs.
[Interrupt program]
(Event: I000)

5) While input interrupts are disabled by the interrupt disable flags (shown in the table below), DHCMOV instructions are not executed when they are placed inside a corresponding interrupt.
\begin{tabular}{|c|c|c|}
\hline Interrupt disable flag & Corresponding interrupt pointer & Input number corresponding to interrupt pointer \\
\hline M8050*1 & 1000,1001 & X000 \\
\hline M8051*1 & I100,1101 & X001 \\
\hline M8052*1 & I200,1201 & X002 \\
\hline M8053*1 & 1300,1301 & X003 \\
\hline M8054*1 & 1400,1401 & X004 \\
\hline M8055*1 & 1500,1501 & X005 \\
\hline
\end{tabular}
*1. When the PLC mode is changed from RUN to STOP, if an input interrupt is generated while input interrupts are disabled by something other than the interrupt disable flags M8050 to M8055 (after execution of DI instruction and before execution of El instruction), DHCMOV instruction is immediately executed, but execution of the interrupt program is held. The interrupt program will be executed after El instruction is executed and interrupt are enabled.
6) Some restrictions to the applicable devices

A: Only the high speed counters (C235 to C255) and ring counters (D8099, D8398) \({ }^{* 1}\) can be specified.
*1. The FX3Uc PLCs of before Ver. 2.20 (not inclusive) cannot specify the ring counter (D8099, D8398).

\section*{Function change depending on the version}

The function of this instruction changes depending on the version as shown in the table below.
\begin{tabular}{c|c|c|c}
\hline \multicolumn{2}{c|}{ Applicable version } & \multirow{2}{*}{ Item } & \multirow{2}{*}{ Outline of function } \\
\hline FX3U & FX3UC & & \\
\hline Ver. 2.20 or later & Ver. 2.20 or later & Target device & \begin{tabular}{l} 
Ring counter (D8099 and D8398) can be specified in the device specified by \\
s.
\end{tabular} \\
\hline
\end{tabular}

\section*{Error}

An operation error occurs in the following case. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When a device specified in \(\mathbb{S}\) or \(d\) is outside the allowable range (error code: K6705)

\section*{Program examples}

\section*{1. Program examples 1}

In the program example below, the current value of the high speed counter C235 is compared in each operation cycle, and then the output Y000 is set to ON if the current value is "K500" or more (when the current value of C235 is not cleared.)
[Structured ladder]

\section*{[ST]}


DHCMOV(M8000,C235,K0,VAR_01);
Y000:=ANDD>=(M8000,VAR_11,K500);
*1. VAR_01 is a global label and is defined as D0.
*2. KO: The current value of the high speed counter is not cleared when DHCMOV instruction is executed.
K1: The current value of the high speed counter is cleared when DHCMOV instruction is executed.

\section*{2. Program examples 2}

In the program example below, the current value of C235 is transferred to D201 and D200, and the current value of C235 is cleared when X001 turns from OFF to ON.
[Structured ladder]



VAR_21:=DHCMOV(M8394,C235,K1); IRET(TRUE);
*1. VAR_21 is a global label and is defined as D200.
*2. K0: The current value of the high speed counter is not cleared when DHCMOV instruction is executed. K 1 : The current value of the high speed counter is cleared when DHCMOV instruction is executed.

\subsection*{7.19 Block Data Operation}

\subsection*{7.19.1 BK+}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction adds binary block data.
1. Format and operation, execution form

2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit & 32-bit \\
\hline \multirow{4}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Head device storing addition data & ANY16 & ANY32 \\
\hline & (s2) & Added constant or head device storing addition data & ANY16 & ANY32 \\
\hline & ( \({ }^{\text {l }}\) & Number of pieces of data & \multicolumn{2}{|l|}{Bit} \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & ANY16 & ANY32 \\
\hline & (d) & Head device storing operation result & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11}{ }^{\circ}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & \(\bullet\) & - & - & \(\bullet\) & & & & - & & & & & \\
\hline (s2) & & & & & & & & & & & & \(\bullet\) & - & - & - & & & & - & - & \(\bullet\) & & & \\
\hline (d) & & & & & & & & & & & & \(\bullet\) & - & - & \(\bullet\) & & & & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & - & \(\bullet\) & & & & & - & - & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. 16-bit operation (BK+/BK+P)

1) " \(n\) " 16-bit binary data starting from the device specified by s2 are added to " n " 16 -bit binary data starting from the device specified by \(s 1\), and the operation result is stored in " \(n\) " points starting from the device specified by \(\triangle\).

2) A (16-bit) constant from - 32768 to 32767 can be directly specified in the device specified by \(s 2\).

(s2) K4321


2. 32-bit operation (DBK+/DBK+P)

*1. This defines the head of the device that stores the addition data.
*2. This defines the added constant or the head of the device that stores the addition data.
*3. This defines the number of pieces of data.
*4. This defines the head of the device that stores the operation result.
1) " 2 n " 32 -bit binary data starting from the device specified by \(s 2\) are added to " 2 n " 32 -bit binary data starting from the device specified by \(s 1\), and the operation result is stored in " 2 n " points starting from the device specified by \((d\).

2) A (32-bit) constant from - \(2,147,483,648\) to \(2,147,483,647\) can be directly specified in the device specified by s2.


\section*{Related instruction}
\begin{tabular}{c|ll}
\hline Instruction & & Description \\
\hline BK- & Subtracts binary block data. \\
\hline
\end{tabular}

\section*{Cautions}
1) When underflow or overflow occurs in the operation result, the following processing is executed.

At this time, the carry flag does not turn ON.
a) In the case of 16-bit operation
\[
\begin{array}{llll}
\mathrm{K} 32767(\mathrm{H} 7 \mathrm{FFF}) & +\mathrm{K} 2(\mathrm{H} 0002) & \rightarrow \mathrm{K}-32767(\mathrm{H} 8001) \\
\mathrm{K}-32768(\mathrm{H} 8000) & +\mathrm{K}-2(\mathrm{HFFFE}) & \rightarrow \mathrm{K} 32766(\mathrm{H} 7 F F E)
\end{array}
\]
b) In the case of 32-bit operation
\begin{tabular}{lll}
\(\mathrm{K} 2,147,483,647(\mathrm{H} 7 F F F F F F F)\) & \(+\mathrm{K} 2(\mathrm{H} 00000002)\) & \(\rightarrow \mathrm{K}-2,147,483,647(\mathrm{H} 80000001)\) \\
\(\mathrm{K}-2,147,483,648(\mathrm{H} 80000000)\) & \(+\mathrm{K}-2(\mathrm{HFFFFFFFE})\) & \(\rightarrow \mathrm{K} 2,147,483,646(\mathrm{H} 7 F F F F F F E)\)
\end{tabular}
2) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project.
Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
3) The FX3Uc PLC of V. 2.20 or later supports this instruction.

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When " n " (" 2 n " in 32-bit operation) devices starting from the devices specified by s1, s2) and/or (d) exceed the corresponding device range (error code: K6706).
2) When " n " (" 2 n " in 32-bit operation) devices starting from the device specified by s1) overlap " n " (" 2 n " in 32-bit operation) devices starting from the device specified by (d (error code: K6706.)
3) When " n " (" 2 n " in 32 -bit operation) devices starting from the device specified by s2) overlap " n " (" 2 n " in 32-bit operation) devices starting from the device specified by \(d\) (error code: K6706.)

\section*{Program examples}

In the program shown below, the specified number of pieces of data stored in D150 to D0 are added to the specified number of pieces of data stored in D100 to D0 when X020 is set to ON, and the operation result is stored in D200 and later
[ Structured ladder]


BK+(X020,D100,D150,D0,D200);
\[
\text { DO } \lcm{4}
\]

\subsection*{7.19.2 BK-}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction subtracts binary block data.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{3}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & & ST \\
\hline BK- & 16 bits & Continuous & \begin{tabular}{lrr|}
\hline & BK- & \\
-EN & ENO \\
- 1 & & d \\
-s 2 & & \\
-n & & \\
\hline
\end{tabular} & BK-(EN,s1,s2,n,d); & \\
\hline BK-P & 16 bits & Pulse &  & BK-P(EN,s1,s2,n,d); & \\
\hline DBK- & 32 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{|c|}{ DBK- } \\
-EN & ENO \\
-s 1 & \\
-s 2 & \\
-n & \\
\hline
\end{tabular} & DBK-(EN,s1,s2,n,d); & \\
\hline DBK-P & 32 bits & Pulse &  & DBK-P(EN,s1,s2,n,d); & \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|c|}{Data type} \\
\hline & & & 16-bit & 32-bit \\
\hline \multirow{4}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Head device storing subtraction data & ANY16 & ANY32 \\
\hline & (s2) & Subtracted constant or head device storing subtraction data & ANY16 & ANY32 \\
\hline & ( \({ }^{\text {a }}\) & Number of pieces of data & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Head device storing operation result & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(1 \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & X & Y & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & \(\bullet\) & - & - & \(\bullet\) & & & & \(\bullet\) & & & & & \\
\hline (s2) & & & & & & & & & & & & \(\bullet\) & - & - & \(\bullet\) & & & & \(\bullet\) & \(\bullet\) & - & & & \\
\hline (d) & & & & & & & & & & & & \(\bullet\) & - & - & \(\bullet\) & & & & - & & & & & \\
\hline ( & & & & & & & & & & & & & & - & \(\bullet\) & & & & & - & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. 16-bit operation (BK-/BK-P)

1) " \(n\) " 16-bit binary data starting from the device specified by s2 are subtracted from "n" 16-bit binary data starting from the device specified by s1, and the operation result is stored in " n " points starting from the device specified by \(\mathbb{d}\).

2) A (16-bit) constant from -32768 to 32767 can be directly specified in s2).


\section*{2. 32-bit operation (DBK-/DBK-P)}

*1. This defines the head of the device that stores the subtraction data.
*2. This defines the subtracted constant or the head of the device that stores the subtraction data.
*3. This defines the number of pieces of data.
*4. This defines the head of the device that stores the operation result.
1) " \(2 n\) " 32 -bit binary data starting from the device specified by s2 are subtracted from " \(2 n\) " 32 -bit binary data starting from the device specified by s1, and the operation result is stored in " 2 n " points starting from the device specified by \((d\).

2) A (32-bit) constant from - \(2,147,483,648\) to \(2,147,483,647\) can be directly specified in the device specified by s2.


\section*{Related instruction}
\begin{tabular}{c|ll}
\hline Instruction & & Description \\
\hline BK + & Adds binary block data. & \\
\hline
\end{tabular}

\section*{Cautions}
1) When underflow or overflow occurs in the operation result, the following processing is executed. At this time, the carry flag does not turn ON.
a) In the case of 16-bit operation
\[
\begin{array}{llll}
\mathrm{K}-32768(\mathrm{H} 8000) & -\mathrm{K} 2(\mathrm{H} 0002) & \rightarrow & \mathrm{K} 32766(\mathrm{H} 7 \mathrm{FFE}) \\
\mathrm{K} 32767(\mathrm{H} 7 \mathrm{FFF}) & -\mathrm{K}-2(\mathrm{HFFFE}) & \rightarrow & \mathrm{K}-32767(\mathrm{H} 8001)
\end{array}
\]
b) In the case of 32-bit operation
\[
\begin{array}{llll}
\mathrm{K}-2,147,483,648(\mathrm{H} 80000000) & -\mathrm{K} 2(\mathrm{H} 00000002) & \rightarrow & \mathrm{K} 2,147,483,646(\mathrm{H} 7 \mathrm{FFFFFFFE}) \\
\mathrm{K} 2,147,483,647(\mathrm{H} 7 F F F F F F F) & -\mathrm{K}-2(\mathrm{HFFFFFFFE}) & \rightarrow & \mathrm{K}-2,147,483,647(\mathrm{H} 80000001)
\end{array}
\]
2) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data. A 32-bit counter can be specified directly as it is a 32-bit long device. Use a global label to specify a device.
3) The FX3UC PLC of V. 2.20 or later supports this instruction.

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When " n " (" 2 n " in 32-bit operation) devices starting from the devices specified by s1), s2 and/or © exceed the corresponding device range (error code: K6706).
2) When " n " (" 2 n " in 32-bit operation) devices starting from the device specified by s1 overlap " n " (" 2 n " in 32-bit operation) devices starting from the device specified by \(\mathbb{d}\) (error code: K6706.)
3) When " n " (" 2 n " in 32 -bit operation) devices starting from the device specified by s2) overlap " n (" 2 n " in 32-bit operation) devices starting from the device specified by \(\square\) (error code: K6706.)

\section*{Program examples}

In the program shown below, the constant " 8765 " is subtracted from the data stored in D100 to D102 when X010 is set to ON, and the operation result is stored in D200 and later.
[Structured ladder]



BK-(X020,D100,K8765,K3,D200);

\subsection*{7.19.3 BKCMP=, BKCMP>, BKCMP<, BKCMP<>, BKCMP<=, BKCMP>=}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

These instructions compare block data in the comparison condition set in each instruction.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline BKCMP= & 16 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{\(\mathrm{BKCMP}=\)} \\
-EN & ENO \\
-s 1 & a \\
-s 2 & \\
-n & \\
\hline
\end{tabular} & BKCMP=(EN,s1,s2,n,d); \\
\hline BKCMP> & 16 bits & Continuous &  & BKCMP>(EN,s1,s2,n,d); \\
\hline BKCMP< & 16 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ BKCMP< } \\
\(-E N\) & ENO- \\
-s 1 & \\
-s 2 & \\
n & \\
\hline
\end{tabular} & BKCMP<(EN,s1,s2,n,d); \\
\hline BKCMP<> & 16 bits & Continuous &  & BKCMP<>(EN,s1,s2,n,d); \\
\hline BKCMP<= & 16 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{|c|}{\(\mathrm{BKCMP}<=\)} \\
EN & ENO \\
-s 1 & d \\
s 2 & \\
-n & \\
\hline
\end{tabular} & BKCMP<=(EN,s1,s2,n,d); \\
\hline BKCMP>= & 16 bits & Continuous &  & BKCMP>=(EN,s1,s2,n,d); \\
\hline BKCMP=P & 16 bits & Pulse &  & BKCMP=P(EN,s1,s2,n,d); \\
\hline BKCMP>P & 16 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{\(\mathrm{BKCMP}>\mathrm{P}\)} \\
-EN & ENO \\
-s 1 & d \\
-s 2 & \\
-n & \\
\hline
\end{tabular} & BKCMP>P(EN,s1,s2,n,d); \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline BKCMP<P & 16 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{\(\mathrm{BKCMP}<\mathrm{P}\)} \\
EN & ENO \\
-s 1 & d \\
-s 2 & \\
-n & \\
\hline
\end{tabular} & BKCMP \(<\mathrm{P}(\mathrm{EN}, \mathrm{s} 1, \mathrm{~s} 2, \mathrm{n}, \mathrm{d})\); \\
\hline BKCMP<>P & 16 bits & Pulse & \begin{tabular}{lr}
\multicolumn{2}{c|}{ BKCMP<>P } \\
EN & ENO- \\
-s 1 & \\
-s 2 & \\
n & \\
\end{tabular} & BKCMP<>P(EN,s1,s2,n,d); \\
\hline BKCMP<=P & 16 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{|c|}{\(\mathrm{BKCMP}<=\mathrm{P}\)} \\
EN & ENO \\
-s 1 & a \\
-s 2 & \\
-n & \\
\hline
\end{tabular} & BKCMP<=P(EN,s1,s2,n,d); \\
\hline BKCMP>=P & 16 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{\(\mathrm{BKCMP}>=\mathrm{P}\)} \\
-EN & ENO \\
s 1 & d \\
-s 2 & \\
n & \\
\hline
\end{tabular} & BKCMP>=P(EN,s1,s2,n,d); \\
\hline DBKCMP= & 32 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DBKCMP= } \\
-EN & ENO \\
-s 1 & d \\
-s 2 & \\
-n & \\
\hline
\end{tabular} & DBKCMP=(EN,s1,s2,n,d); \\
\hline DBKCMP> & 32 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DBKCMP> } \\
\(-E N\) & ENO \\
-s 1 & \\
-s 2 & \\
-n & \\
\hline
\end{tabular} & DBKCMP>(EN,s1,s2,n,d); \\
\hline DBKCMP< & 32 bits & Continuous &  & DBKCMP<(EN,s1,s2,n,d); \\
\hline DBKCMP<> & 32 bits & Continuous &  & DBKCMP<>(EN,s1,s2,n,d); \\
\hline DBKCMP<= & 32 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DBKCMP<= } \\
-EN & ENO \\
-s 1 & \\
-s 2 & \\
-n & \\
\hline
\end{tabular} & DBKCMP<=(EN,s1,s2,n,d); \\
\hline DBKCMP>= & 32 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DBKCMP>= } \\
EN & ENO- \\
-s 1 & \\
s2 & \\
\(-n\) & \\
\(n\)
\end{tabular} & DBKCMP>=(EN,s1,s2,n,d); \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DBKCMP=P & 32 bits & Pulse &  & DBKCMP \(=P(\mathrm{EN}, \mathrm{s} 1, \mathrm{~s} 2, \mathrm{n}, \mathrm{d})\); \\
\hline DBKCMP>P & 32 bits & Pulse & \begin{tabular}{lr|r}
\hline \multicolumn{2}{|c|}{ DBKCMP>P } \\
EN & ENO- \\
-s 1 & d & - \\
-s 2 & \\
-n & \\
\hline
\end{tabular} & DBKCMP>P(EN,s1,s2,n,d); \\
\hline DBKCMP \(<\) P & 32 bits & Pulse &  & DBKCMP<P(EN,s1,s2,n,d); \\
\hline DBKCMP<>P & 32 bits & Pulse &  & DBKCMP<>P(EN,s1,s2,n,d); \\
\hline DBKCMP<=P & 32 bits & Pulse & \begin{tabular}{lr|r}
\hline \multicolumn{2}{c|}{\(\mathrm{DBKCMP}<=\mathrm{P}\)} \\
EN & ENO & - \\
-s 1 & d \\
s 2 & \\
-n & \\
\hline
\end{tabular} & DBKCMP<=P(EN,s1,s2,n,d); \\
\hline DBKCMP>=P & 32 bits & Pulse & \begin{tabular}{lr|r}
\hline \multicolumn{2}{|c|}{ DBKCMP> \(=\mathrm{P}\)} \\
EN & ENO & - \\
-s 1 & d & - \\
-s 2 & \\
-n & \\
\hline
\end{tabular} & DBKCMP>=P(EN,s1,s2,n,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l|l|l}
\hline \multirow{2}{*}{ Variable } & \multirow{2}{c|}{ Description } & \multicolumn{2}{c}{ Data type } \\
\cline { 4 - 6 } & & \begin{tabular}{c} 
16-bit \\
operation
\end{tabular} & \begin{tabular}{c} 
32-bit \\
operation
\end{tabular} \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit & ANY32 \\
\cline { 2 - 6 } & s1 & S2 & Comparison value or device storing comparison value & ANY16 & ANY \\
\cline { 2 - 6 } & n & Number of pieces of comparison data & ANY16 & ANY32 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & ANY & ANY32 \\
\cline { 2 - 6 } & d & Head device storing comparison result & Bit & \\
\hline
\end{tabular}
3. Applicable devices


A: Refer to "Cautions"

\section*{Function and operation explanation}

\section*{1. 16-bit operation}
( \(\mathrm{BKCMP}=, \mathrm{BKCMP}>, \mathrm{BKCMP}<, \mathrm{BKCMP}<>, \mathrm{BKCMP}<=, \mathrm{BKCMP>=}, \mathrm{BKCMP}=\mathrm{P}, \mathrm{BKCMP}>\mathrm{P}, \mathrm{BKCMP}<\mathrm{P}\), \(B K C M P<>P, B K C M P<=P, B K C M P>=P\) )
1) "n" 16-bit binary data starting from the device specified by s1 are compared with "n" 16-bit binary data starting from the device specified by s2, and the comparison result is stored in " n " points starting from the device specified by \(\quad d\).

*1. \(\mathrm{BKCMP}=, \mathrm{BKCMP}>, \mathrm{BKCMP}<, \mathrm{BKCMP}<>, \mathrm{BKCMP}<=, \mathrm{BKCMP>=}, \mathrm{BKCMP}=\mathrm{P}, \mathrm{BKCMP}>\mathrm{P}\), \(B K C M P<P, B K C M P<>P, B K C M P<=P\), and \(B K C M P>=P\) are put in.

2) A constant can be directly specified in the device specified by s1.

Comparison result
(s1) K32000

3) The table below shows the comparison result in each instruction.
\begin{tabular}{|c|c|c|}
\hline Instruction & Comparison result ON (1) condition & Comparison result OFF (0) condition \\
\hline BKCMP= & s1) \(=\) s2 & (s1) \(\neq\) s2 \\
\hline BKCMP> & (s1) \(>\) s2 & (s1) \(\leq\) s2 \\
\hline BKCMP< & (s1) < s2 & (s1) \(\geq\) s2 \\
\hline BKCMP<> & (s1) \(\neq\) s2 & s1 \(=\) s2 \\
\hline BKCMP<= & (s1) \(\leq\) s2 & (s1) > s2 \\
\hline BKCMP>= & (s1) \(\geq\) (s2 & (s1) < s2 \\
\hline
\end{tabular}
4) When the comparison result is \(O N(1)\) in all of " \(n\) " points starting from the device specified by (d), M8090 (block comparison signal) turns ON.

\section*{2. 32-bit operation}
(DBKCMP=, DBKCMP>, DBKCMP<, DBKCMP<>, DBKCMP<=, DBKCMP>=, DBKCMP=P, DBKCMP>P, DBKCMP<P, DBKCMP<>P, DBKCMP<=P, DBKCMP>=P)
1) " 2 n " 32-bit binary data starting from the device specified by s1 are compared with " 2 n " 32-bit binary data starting from the device specified by \(S\), and the comparison result is stored in " 2 n " points starting from the device specified by \(d\).

*1. DBKCMP=, DBKCMP>, DBKCMP<, DBKCMP<>, DBKCMP<=, DBKCMP>=, DBKCMP=P, DBKCMP>P, DBKCMP<P, DBKCMP<>P, DBKCMP<=P, and DBKCMP>=P are put in.
*2. This defines the comparison value or the device storing the comparison value.
*3. This defines the head of the device that stores the comparison source data.
*4. This defines the number of pieces of comparison data


2) A constant can be directly specified in the device specified by \(s 1\).
[s1 +1, (s1)] K32000
*1 An operation example of DBKCMP= instruction is shown here.


Comparison result

3) The table below shows the comparison result for each instruction.
\begin{tabular}{|c|c|c|}
\hline Instruction & Comparison result ON (1) condition & Comparison result OFF (0) condition \\
\hline DBKCMP= & \([s 1+1, s 1]=[s 2+1, s 2]\) & \(\left[s 1+1, s^{\text {c }}\right.\) ] \(] \neq\left[\right.\) s2 \(\left.+1, s^{2}\right]\) \\
\hline DBKCMP> &  & [ s1 \(\left.+1, \mathrm{~s} 1^{\text {d }}\right] \leq[\) s2 \(+1, \mathrm{~s} 2\) ] \(]\) \\
\hline DBKCMP< & \([s 11+1, s 1]<[s 2+1, s 2]\) & [s1 \(+1, s^{\text {s }}\) ] \(] \geq\) [s2 +1 , s2 \(]\) \\
\hline DBKCMP<> & (s1) \(+1, \mathrm{~s} 1\) ] \(] \neq[\mathrm{s} 2)+1, \mathrm{~s} 2\) ] & [ s1 +1, s1 ] = [s2 +1, s2 ] \\
\hline DBKCMP<= & [ s1 \(\left.+1, \mathrm{~s} 1^{\text {d }}\right] \leq\left[\right.\) s2 \(\left.+1, \mathrm{~s} 2^{2}\right]\) &  \\
\hline DBKCMP>= & [s1 +1, s1 \(] \geq\) [s2 +1, s2 \(]\) &  \\
\hline
\end{tabular}
4) When the comparison result is ON (1) in all of "n" points starting from the device specified by \(\mathbb{C}\), the M8090 (block comparison signal) turns ON.

\section*{Related device}
\begin{tabular}{c|c|l}
\hline Device & Name & \multicolumn{1}{c}{ Description } \\
\hline M8090 & Block comparison signal & \begin{tabular}{l} 
Turns ON when all comparison results are "ON (1)" in a block data instruction. \\
DBKCMP=, DBKCMP>, DBKCMP<, DBKCMP<>, DBKCMP<=, DBKCMP>=
\end{tabular} \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
2) The FX3UC PLC of V. 2.20 or later supports this instruction.
3) When using 32-bit counters (high speed counters)

For comparing 32-bit counters (C200 to C255), be sure to use an instruction for 32-bit operation (such as DBKCMP= and DBKCMP>).
If an instruction for 16-bit operation (such as BKCMP= and BKCMP>) is used, an operation error is caused (error code: K6705)
4) Some restrictions to applicable devices

A: \(D \square . b\) cannot be indexed \((v, z)\).

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When " \(n\) " (" 2 n " in 32-bit operation) devices starting from the devices specified by s1), s2 and/or (d) exceed the corresponding device range (error code: K6706).
2) When data registers starting from the device specified by \(\mathbb{C}\) specified as "D \(\square . b\) " overlap " \(n\) " ("2n" in 32-bit operation) points starting from the device specified by (s1 (error code: K6706).
3) When data registers starting from the device specified by \(\mathbb{C}\) specified as "D \(\square . b\) " overlap " \(n\) " (" \(2 n\) " in 32-bit operation) points starting from the device specified by \(s 2\) (error code: K6706).
4) When a 32-bit counter ( C 200 to C 255 ) is specified in the devices specified by s 1 and/or s22 in 16-bit operation (error code: K6705).
For comparing 32-bit counters, be sure to use an instruction for 32-bit operation (such as DBKCMP=, DBKCMP> and DBKCMP<).

\section*{Program examples}
1) In the program shown below, four 16-bit binary data starting from D100 are compared with four 16-bit binary data starting from D200 by BKCMP= instruction when X020 is set to ON, and the comparison result is stored in four points starting from M10.
When the comparison result is "ON (1)" in all of the four points starting from M10, Y000 is set to ON.
[Structured ladder]


BKCMP=(X020,D100,D200,K4,M10);
Y000:=M8090;

(When all of M10 to M13 are ON, Y000 is set to ON.)
2) In the program shown below, the constant K1000 is compared with four data starting from D10 when X010 is set to ON, and the comparison result is stored in b4 to b7 of D0.
[Structured ladder]



\subsection*{7.20 Character String Control}

\subsection*{7.20.1 STR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts binary data into character strings (ASCII codes).
On the other hand, the ESTR instruction converts floating point data into character strings.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{3}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & & ST \\
\hline STR & 16 bits & Continuous &  & STR(EN,s1,s2,d); & \\
\hline STRP & 16 bits & Pulse &  & STRP(EN,s1,s2,d); & \\
\hline DSTR & 32 bits & Continuous &  & DSTR(EN,s1,s2,d); & \\
\hline DSTRP & 32 bits & Pulse & \begin{tabular}{lr} 
& \multicolumn{2}{c|}{ DSTRP } \\
- EN & ENO- \\
-s 1 & d \\
-s 2 & \\
\hline
\end{tabular} & DSTRP(EN,s1,s2,d); & \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit & 32-bit \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Head device storing the number of digits of a numeric value to be converted & ANY16 & ANY16 \\
\hline & (s2) & Device storing binary data to be converted & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Head device storing converted character string & String & String \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|r|}{System user} & \multirow[t]{2}{*}{Special unit U \(\square \mathbf{I G}\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\) \\
口"
\end{tabular}} & \multirow[t]{2}{*}{Pointer} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & X & Y & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & \(\bullet\) & - & - & \(\bullet\) & & & & \(\bullet\) & & & & & \\
\hline (s2) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & \(\bullet\) & & \(\bullet\) & - & \(\bullet\) & - & \(\bullet\) & & & \\
\hline (d) & & & & & & & & & & & & - & - & - & - & & & & - & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (STR/STRP)}
1) All digits (specified by (s1) ) of 16-bit binary data of the device specified by s2 are converted into character string while the decimal point is added to the position specified by the device storing the number of digits of the decimal part \((s 1)+1)\), and stored in the device specified by \(\mathbb{d}\) and later.

*1. This defines the head of the device that stores the number of digits of the value to be converted.
*2. This defines the head of the device that stores the data converted into character strings.

2) Set the number of all digits \(\$ 1\) in the range from 2 to 8 .
3) Set the number of digits of the decimal part \(s 1+1\) in the range from 0 to 5 . Be sure to satisfy "(number of digits of decimal part) \(\leq\) (number of all digits - 3 )".
4) 16-bit binary data to be converted stored in s2 should be within the range from -32768 to 32767 .
5) Converted character string data is stored in (d) and later as shown below.
a) As the sign, "space" \((20 \mathrm{H})\) is stored when the 16 -bit binary data stored in s2 is positive, and "-" \((2 \mathrm{DH})\) is stored when the 16-bit binary data stored in s2) is negative.
b) When the number of digits of the decimal part s1 + 1 is set to any value other than " 0 ", the decimal point "." (2EH) is automatically added in "number of digits of decimal part + 1 "th digit.
When the number of digits of the decimal part s1 + 1 is set to " 0 ", the decimal point is not added.
c) When the number of digits of the decimal part \(\$ 1+1\) is larger than the number of digits of 16 -bit binary data stored in s2, "0" (30H) is automatically added, and the data is shifted to the right end during conversion.
d) When the number of all digits stored in (s1 excluding the sign and decimal point is larger than the number of digits of 16-bit binary data stored in s2, "space" (20H) is stored in each digit between the sign and the numeric value.
When the number of all digits stored in s1 excluding the sign and decimal point is smaller than the number of digits of 16-bit binary data stored in s2, an error is caused.
e) " OOH " indicating the end of a character string is automatically stored at the end of a converted character string.
When the number of all digits is even, " 0000 H " is stored in the device after the last character.
When the number of all digits is odd, " 00 H " is stored in the high-order byte ( 8 bits) of the device storing the last character.


\section*{2. 32-bit operation (DSTR/DSTRP)}
1) All digits (specified by s1) of 32-bit binary data stored in the device specified by s2 are converted into ASCII codes while the decimal point is added to the position specified by the device storing the number of digits of the decimal part \((s 1+1)\), and stored in the device specified by \(d\) and later.

*1. This defines the head of the device that stores the number of digits of the value to be converted.
*2. This defines the device that stores the binary data to be converted.
*3. This defines the head of the device that stores the data converted into character strings.

2) Set the number of all digits \(s 1\) in the range from 2 to 13.
3) Set the number of digits of the decimal part \(s 1+1\) in the range from 0 to 10 . Be sure to satisfy "(Number of digits of decimal part) \(\leq\) (Number of all digits -3 )".
4) 32-bit binary data to be converted stored in s2 should be within the range from -2,147,483,648 to +2,147,483,647.
5) Converted character string data is stored in (d) and later as shown below.
a) For the sign, "space" \((20 \mathrm{H})\) is stored when the 32-bit binary data stored in s2 is positive, and "-" \((2 \mathrm{DH})\) is stored when the 32-bit binary data stored in s2) is negative.
b) When the number of digits of the decimal part s1 +1 is set to any all digits value other than " 0 ", the decimal point Number of digits "." (2EH) is automatically added in "number of digits of decimal part + 1 "th digit.
When the number of digits of the \begin{tabular}{l|l|}
\hline & \\
\hline
\end{tabular} decimal part (s1) +1 is set to " 0 ", the decimal point is not added.
c) When the number of digits of the decimal part s1 +1 is larger than the number of digits of 32-bit binary data stored in s2, "0" (30H) is automatically added, and the data is shifted to the right end during conversion.
d) When the number of all digits stored in S1 excluding the sign and decimal point is larger than the number of digits of 32-bit binary data stored in (s2), "space" \((20 \mathrm{H})\) is stored in each digit between the sign and the numeric
 value.
When the number of all digits stored in (s1) excluding the sign and decimal point is smaller than the number of digits of binary data stored in s2), an error is caused.
e) " OOH " indicating the end of a character string is automatically stored at the end of a converted character string.
When the number of all digits is even, " 0000 H " is stored in the device after the last character.
When the number of all digits is odd, " 00 H " is stored in the high-order byte ( 8 bits) of the device storing the last character.

\section*{Cautions}
1) When handling array data or 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle array data or 32-bit data. A 32-bit counter can be specified directly as it is a 32-bit long device. A 32-bit counter can be specified directly
Use a global label to specify a device.
2) The FX3UC PLC of V. 2.20 or later supports this instruction.

Cautions

\section*{Related instruction}
\begin{tabular}{c|l}
\hline Instruction & \multicolumn{1}{c}{ Description } \\
\hline DESTR & Converts binary floating point data into a character string (ASCII codes) with a specified number of digits. \\
\hline DEVAL & Converts a character string (ASCII codes) into binary floating point data. \\
\hline VAL & Converts a character string (ASCII codes) into binary data. \\
\hline
\end{tabular}

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When the number of all digits stored in \(s 1\) is outside the following range (error code: K6706).
\begin{tabular}{c|c}
\hline & Setting range \\
\hline 16-bit operation & 2 to 8 \\
\hline 32-bit operation & 2 to 13 \\
\hline
\end{tabular}
2) When the number of digits of the decimal part stored in \(s\) + 1 is outside the following range (error code: K6706).
\begin{tabular}{c|c}
\hline & Setting range \\
\hline 16-bit operation & 0 to 5 \\
\hline 32-bit operation & 0 to 10 \\
\hline
\end{tabular}
3) When the relationship between the number of all digits stored in s1 and the number of digits of the decimal part stored in \(s\) + 1 does not satisfy the following (error code: K6706). (Number of all digits - 3 ) \(\geq\) number of digits of decimal part
4) When the number of all digits stored in © \(s\) including the digit for sign and the digit for decimal point is smaller than the number of digits of the binary data stored in s2 (error code: K6706).
5) When the devices \((d\) and later storing a character string exceed the corresponding device range (error code: K6707).

\section*{Program examples}

In the program below, the 16-bit binary data stored in D10 is converted into a character string in accordance with the digit specification by D0 and D1 when X000 is set to ON, and then stored in D20 to D23.
[Structured ladder]

*1. VAR_01 is a global label and is defined as D0.
*2. VAR_02 is a global label and is defined as D20.

16-bit binary data


Number of all digits Number of digits of decimal part

D0

[ST]

MOVP(X000,K12672,D10);
MOVP(X000,K6,D0);
MOVP(X000,K0,D1);
VAR_02:=STRP(X000,VAR_01,D10);
\begin{tabular}{c|c|c|}
\multicolumn{2}{c}{ b15------ b8 b7------- b0 } \\
\cline { 2 - 3 } D20 & \(31 \mathrm{H}(1)\) & \(20 \mathrm{H}(\) Space \()\) \\
D21 & \(36 \mathrm{H}(6)\) & \(34 \mathrm{H}(2)\) \\
D22 & \(32 \mathrm{H}(2)\) & \(37 \mathrm{H}(7)\) \\
\cline { 2 - 3 } & \multicolumn{2}{|c|}{0000 H} \\
D23
\end{tabular}

\subsection*{7.20.2 VAL}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts a character string (ASCII codes) into binary data.
On the other hand, EVAL instruction converts a character string (ASCII codes) into floating point data.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{3}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & & ST \\
\hline VAL & 16 bits & Continuous & \begin{tabular}{lr}
\multicolumn{2}{c|}{VAL} \\
-EN & \(\mathrm{ENO}-\) \\
s & \(\mathrm{d} 1-\) \\
& d 2
\end{tabular} & VAL(EN,s,d1,d2); & \\
\hline VALP & 16 bits & Pulse & \begin{tabular}{lr|r}
\hline \multicolumn{2}{|c|}{ VALP } & \\
- EN & ENO & - \\
s & d1 & - \\
& & d2 \\
\hline
\end{tabular} & VALP(EN,s,d1,d2); & \\
\hline DVAL & 32 bits & Continuous &  & DVAL(EN,s,d1,d2); & \\
\hline DVALP & 32 bits & Pulse & \begin{tabular}{lr}
\hline \multicolumn{2}{c|}{ DVALP } \\
-EN & \(\mathrm{ENO}-\) \\
s & \(\mathrm{d} 1-\) \\
& d 2
\end{tabular} & DVALP(EN,s,d1,d2); & \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|c|}{Data type} \\
\hline & & & 16-bit & 32-bit \\
\hline \multirow[b]{2}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s) & Head device storing a character string to be converted into binary data. & String & String \\
\hline \multirow{3}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d1) & Head device storing the number of digits of the binary data acquired by conversion. & ANY16 & ANY16 \\
\hline & (d2) & Head device storing the binary data acquired by conversion. & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|r|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square \mathbf{I G} \square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & c & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & X & Y & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & \(\bullet\) & - & - & - & & & & - & & & & & \\
\hline (d1) & & & & & & & & & & & & \(\bullet\) & - & - & \(\bullet\) & & & & \(\bullet\) & & & & & \\
\hline (d2) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & - & - & - & \(\bullet\) & & & - & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (VAL/VALP)}
1) A character string stored in the device specified by \(S\) and later is converted into 16-bit binary data. The number of all digits of the binary data acquired by conversion is stored in the device specified by (d1), the number of digits of the decimal part is stored in the device specified by d1 +1 , and the converted binary data is stored in the device specified by (d2).
In conversion from a character string into binary data, the data from the device specified by \(s\) to a device number storing " 00 H " is handled as a character string in byte units.

*1. This defines the head of the device that stores the character string to be converted into binary data.
*2. This defines the head of the device that stores the number of digits of the binary data converted.


For example, when a character string "-123.45" is specified in the device specified by \(s\) and later, the conversion result is stored in the devices specified by d1 and (d2) as shown below.

2) Character string to be converted
a) Number of characters of character string and the numeric range when the decimal point is ignored.
\begin{tabular}{l|l}
\hline & \multicolumn{1}{c}{ Description } \\
\hline Number of all characters (digits) & 2 to 8 \\
\hline Number of characters (digits) of decimal part & 0 to 5 and smaller than "number of all digits - 3" \\
\hline Numeric range when decimal point is ignored & \begin{tabular}{l}
-32768 to 32767 \\
Example) "123.45" \(\rightarrow\) "12345"
\end{tabular} \\
\hline
\end{tabular}
b) Character types used in characters to be converted
\begin{tabular}{l|l|l}
\hline \multicolumn{2}{l|}{} & \multicolumn{1}{c}{ Character type } \\
\hline \multirow{2}{*}{ Sign } & Positive numeric value & "Space (20H)" \\
\cline { 3 - 3 } & Negative numeric value & "-(2DH)" \\
\hline \multicolumn{2}{l}{ Decimal point } & ".(2EH)" \\
\hline Number & "0(30H)" to \(9(39 \mathrm{H}) "\) \\
\hline
\end{tabular}
3) The device specified by (d1) stores the number of all digits. The number of all digits indicates the number of all characters (including the number, sign and decimal point).
4) The device specified by \(\mathbb{d 1}+1\) stores the number of digits of the decimal part. The number of digits of the decimal part indicates the number of all characters after the decimal point "." (2EH).
5) The device specified by (d2 stores 16-bit binary data converted from a character string with the decimal point ignored.
In the character string located in the device specified by \(s\) and later, "space" \((20 \mathrm{H})\) and " 0 " \((30 \mathrm{H})\) characters between the sign and the first number other than " 0 " are ignored in the conversion to 16 -bit binary data.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\left\{\begin{array}{l}\text { Number of } \\ \text { all digits }\end{array}\right.\) & 8 & & \[
\left\{\begin{array}{l}
\text { Number of } \\
\text { all digits }
\end{array}\right.
\] & 7 \\
\hline 123.45 & Number of digits of decimal part & 2 & \(\sqcup 0.0012 \square\) & Number of digits of decimal part & 4 \\
\hline \[
\pi_{\text {Ignored }}
\] & \[
\begin{aligned}
& \text { 16-bit } \\
& \text { binary data }
\end{aligned}
\] & -12345 & \[
\text { Sign } \frac{1}{飞_{\text {Ignored }}}
\] & 16-bit binary data & 12 \\
\hline
\end{tabular}

\section*{2. 32-bit operation (DVAL/DVALP)}
1) A character string stored in the device specified by \(\leftrightarrows\) and later is converted into 32-bit binary data. The number of all digits of the binary data acquired by conversion is stored in the device specified by (d1), the number of digits of the decimal part is stored in the device specified by d1 +1 , and the binary data is stored in the device specified by (d2).
In conversion from a character string into binary data, the data from the device specified by \(\circlearrowleft\) to a device number storing " 00 H " is handled as a character string in byte units.

*1. This defines the head of the device that stores the character string to be converted into binary data.
*2. This defines the head of the device that stores the number of digits of the binary data converted.
*3. This defines the head of the device that stores the binary data converted.


For example, when a character string "-12345.678" is specified in the device specified by and later, the conversion result is stored in the devices specified by (d1) and (d2) as shown below.
\begin{tabular}{|c|c|c|}
\hline (s) +0 & 31H(1) & 2DH(-) \\
\hline +1 & 33H(3) & 32H(2) \\
\hline +2 & 35H(5) & \(34 \mathrm{H}(4)\) \\
\hline +3 & \(36 \mathrm{H}(6)\) & 2EH(.) \\
\hline +4 & \(38 \mathrm{H}(8)\) & 37H(7) \\
\hline +5 & & 00H \\
\hline
\end{tabular}

2) Character string to be converted
a) Number of characters of character string and the numeric range when the decimal point is ignored.
\begin{tabular}{l|l}
\hline & \multicolumn{1}{c}{ Description } \\
\hline Number of all characters (digits) & 2 to 13 \\
\hline Number of characters (digits) of decimal part & 0 to 10 and smaller than "number of all digits \(-3 "\) \\
\hline \begin{tabular}{ll} 
Numeric range when decimal point is & \(-2,147,483,648\) to \(2,147,483,647\) \\
ignored & Example) "12345.678" to "12345678" \\
\hline
\end{tabular}
\end{tabular}
b) Character types used in characters to be converted
\begin{tabular}{l|l|l}
\hline \multicolumn{2}{l|}{} & \multicolumn{1}{c}{ Character type } \\
\hline \multirow{2}{*}{ Sign } & Positive numeric value & "Space \((20 \mathrm{H})\) " \\
\cline { 2 - 3 } & Negative numeric value & "-(2DH)" \\
\hline Decimal point & \(" .(2 \mathrm{EH})\) " \\
\hline \multicolumn{2}{l}{ Number } & " \(0(30 \mathrm{H})\) " to "9(39H)" \\
\hline
\end{tabular}
3) The device specified by (d1 stores the number of all digits. The number of all digits indicates the number of all characters (including the number, sign and decimal point).
4) The device specified by (d1 +1 stores the number of digits of the decimal part. The number of digits of the decimal part indicates the number of all characters after the decimal point "." (2EH).
5) The device specified by d2 stores 32-bit binary data converted from a character string with the decimal point ignored.
For the character string located in the device specified by \(S\) and later, the "space" \((20 \mathrm{H})\) and " 0 " \((30 \mathrm{H})\) characters between the sign and the first number other than " 0 " are ignored in the conversion to 32 -bit binary data.


Related instruction
\begin{tabular}{c|l}
\hline Instruction & \multicolumn{1}{c}{ Description } \\
\hline DESTR & Converts binary floating point data into a character string (ASCII codes) with a specified number of digits. \\
\hline DEVAL & Converts a character string (ASCII codes) into binary floating point data. \\
\hline STR & Converts binary data into a character string (ASCII codes). \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling array data or 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle array data or 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
2) The FX3UC PLC of V. 2.20 or later supports this instruction.
3) Sign data "space \((20 \mathrm{H})\) " or "- \((2 \mathrm{DH})\) " must be stored in the first byte (lower order 8 bits of the head device set in the device specified by (S).
Only the ASCII code data "0 \((30 \mathrm{H})\) " to "9 \((39 \mathrm{H})\) ", "space \((20 \mathrm{H})\) " and "decimal point \((2 \mathrm{EH})\) " can be stored from the second byte to the " 00 H " at the end of the character string of the device specified by s . If "- (2DH)" is stored in the second byte or later, an operation error occurs (error code: K6706).

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When the number of characters of the character string to be converted (device specified byand later) is outside the following ranges.
(Error code: K6706)
\begin{tabular}{c|c}
\hline & Setting range \\
\hline 16-bit operation & 2 to 8 \\
\hline 32-bit operation & 2 to 13 \\
\hline
\end{tabular}
2) When the number of characters after the decimal point of the character string to be converted (device specified by \(\Omega\) and later) is outside the following ranges.
(Error code: K6706)
\begin{tabular}{c|c}
\hline & Setting range \\
\hline 16-bit operation & 0 to 5 \\
\hline 32-bit operation & 0 to 10 \\
\hline
\end{tabular}
3) When the relationship between the number of all characters in the character string to be converted (device specified by \(\circlearrowleft\) and later) and the number of characters after the decimal point does not satisfy the following (error code: K6706).
(Number of all characters - 3 ) \(\geq\) Number of characters after the decimal point
4) When the sign is set to any ASCII code other than "space" (20H) and "-" (2DH). (Error code: K6706)
5) When a digit of a number is set to any ASCII code other than " 0 " \((30 \mathrm{H})\) to " 9 " \((39 \mathrm{H})\) or a decimal point "." (2EH).
(Error code: K6706)
\(6)\) When the decimal point "." (2EH) is set two or more times in the character string to be converted (device specified by \(S\) and later).
(Error code: K6706)
7) When the binary data acquired by conversion is outside the following ranges. (Error code: K6706)
\begin{tabular}{l|l}
\hline & \multicolumn{1}{c}{ Setting range } \\
\hline 16-bit operation & -32768 to 32767 \\
\hline 32-bit operation & \(-2,147,483,648\) to \(2,147,483,647\) \\
\hline
\end{tabular}
8) When " 00 H " is not present in the location from the device specified by \(\Omega\) to the final device number. (Error code: K6706)

\section*{Program examples}
1) In the program below, the character string data stored in D20 to D22 is regarded as an integer value, converted into a binary value, and stored in D0 when X000 is set to ON.
[ Structured ladder]

*1. VAR_01 is a global label and is defined as D20.
*2. VAR_02 is a global label and is defined as D10.

2) In the program below, the character string data stored in D20 to D24 is regarded as an integer value, converted into a binary value, and stored in D0 when X000 is set to ON.
[Structured ladder]
*1. VAR_03 is a global label and is defined as D20.
*2. VAR_02 is a global label and is defined as D10.
*3. VAR_04 is a global label and is defined as D0.


VAR_02:=DVALP(X000,VAR_03);
VAR_04:=DVALP(X000,VAR_03);

"3. VAR_U4 is a glodal ladel and is detined as DU.

\section*{[ST]}

VAR_02:=VALP(X000,VAR_01);
DO:=VALP(X000,VAR_01);

\subsection*{7.20.3 \$+}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction links a character string to another character string.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline \$+ & 16 bits & Continuous &  & \$+(EN,s1,s2,d1); \\
\hline \$+P & 16 bits & Pulse & \begin{tabular}{lrr|}
\hline & \(\$+\mathrm{P}\) & \\
EN & & ENO- \\
- 1 & & d1 \\
- 2 & & \\
\hline
\end{tabular} & \$+P(EN,s1,s2,d1); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & s1 & \begin{tabular}{l} 
Head device storing the link source data (character string) or directly \\
specified character string
\end{tabular} & String \\
\cline { 2 - 4 } & s2 & \begin{tabular}{l} 
Head device storing the link data (character string) or directly \\
specified character string
\end{tabular} & String \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 4 } & (d1 & Head device storing the linked data (character string) & String \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & X & Y & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & \(\bullet\) & \\
\hline (s2) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & \(\bullet\) & \\
\hline (d1) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & & & - & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (\$+/\$+P)}

The character string data stored in the device specified by s2 and later is linked to the end of the character string data stored in the device specified by s1 and later, and the linked data is stored to devices starting from the device specified by \(d\).
A character string specified by s1 and s2 indicates the data from the specified device to the first " 00 H " in units of byte.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Command input} & \multicolumn{2}{|c|}{\$+} & \\
\hline & EN & ENO & - \\
\hline Label \(1^{* 1}\) & & d1 & - Label \(3^{* 3}\) \\
\hline Label \(2^{* 2}\) & & & \\
\hline
\end{tabular}
*1. This defines the head of the device that stores the link source data (character string) or defines the directly specified character string.
*2 This defines the head of the device that stores the link data (character string) or defines the directly specified character string.
*3. This defines the head of the device that stores the linked data (character string).

1) In linking, " 00 H " indicating the end of a character string specified in \(s 1\) is ignored, and a character string specified in s2 is linked to the last character specified in s1.
When a character string is linked, " 00 H " is automatically added at the end.
a) When the number of characters after linking is odd, " 00 H " is stored in the high-order byte of the device storing the last character.
b) When the number of characters after linking is even, " 0000 H " is stored in the device after the last character.

\section*{Cautions}
1) When handling character string data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle character string data. Use a global label to specify a device.
2) When directly specifying a character string, up to 32 characters can be specified (input).

However, this limitation in the number of characters is not applied when a word device is specified in s1 or \(s 2\).
3) When the number of characters in both devices specified by s1 and s2 start from " 00 H " (that is, when the number of characters is " 0 "), " 0000 H " is stored in the device specified by \(\mathbb{d}\).

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When the number of devices after a device number specified by \(d\) is smaller than the number of devices required to store all linked character strings (that is, when " 00 H " cannot be stored after all character strings and the last character).
(Error code: K6706)
2) When the same device is specified in (s1), s2) and \((d)\) as a device for storing a character string. (Error code: K6706)
3) When " 00 H " is not set within the corresponding device range after the device specified by \(\mathrm{sin}^{1}\) or \(\mathrm{s}^{2}\). (Error code: K6706)

\section*{Program examples}

In the program example shown below, a character string stored in D10 to D12 (abcde) is linked to the character string "ABCD", and the result is stored to D100 and later when X000 turns ON.
[Structured ladder]

[ST]

VAR_03:=\$+(X000,VAR_01,VAR_02);
*1. VAR_01 is a global label and is defined as D10.
*2. VAR_02 is a global label and is defined as "ABCD".
*3. VAR_03 is a global label and is defined as D100.


\subsection*{7.20.4 LEN}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction detects the number of characters (bytes) of a specified character string.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline LEN & 16 bits & Continuous &  & LEN(EN,s,d); \\
\hline LENP & 16 bits & Pulse &  & LENP(EN,s,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & s & \begin{tabular}{l} 
Head device storing a character string whose number of characters is \\
to be detected
\end{tabular} & String \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Device storing the detected character string length (number of bytes) & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{5}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Cons \\
tant
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & c & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & - & - & - & - & - & - & & - & \(\bullet\) & - & & & - & & & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & - & - & - & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (LEN/LENP)}

The length of a character string stored in the device specified by \(s\) and later is detected, and stored to the device specified by \(d\). Data starting from the device specified by \(\circlearrowleft\) until the first device storing " 00 H " is handled as a character string in units of byte.



For example, when "ABCDEFGHI" is stored in the device specified by \(s\) and later as shown below, K9 is stored in the device specified by ©.


\section*{Caution}
1) This instruction can handle character codes other than ASCII codes, but the character string length is handled in byte units ( 8 bits). Accordingly, in the case of character codes in which two bytes express one character such as shift JIS codes, the length of one character is detected as "2".

\section*{Errors}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When " 00 H " is not set within the corresponding device range after a device specified by s .
(Error code: K6706)
2) When the detected number of characters is "32768" or more. (Error code: K6706)

\section*{Program examples}

In the program example shown below, the length of a character string stored in D0 and later is output in 4-digit BCD to Y040 to Y057 when X000 turns ON.

[ST]

The length of the character string is output to the display unit.


\subsection*{7.20.5 RIGHT}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction extracts a specified number of characters from the right end of a specified character string. \(\rightarrow\) For handling of character strings, refer to "FX Structured Programming Manual (Device \& Common)."
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline RIGHT & 16 bits & Continuous &  & RIGHT(EN,s,n,d); \\
\hline RIGHTP & 16 bits & Pulse &  & RIGHTP(EN,s,n,d); \\
\hline
\end{tabular}

\section*{2. Set data}
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
\multirow{2}{*}{ variable }
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & s & Head device storing a character string & String \\
\cline { 2 - 5 } & n & Number of characters to be extracted & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Head device storing extracted character string & String \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{5}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Special \\
unit
\end{tabular} \\
\hline U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c}
\hline Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & & & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & - & - & & & - & - & & & - & & & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & - & & & - & - & & & - & & & & & \\
\hline ( n & & & & & & & & & & & & & & & & \(\bullet\) & & & & & - & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16 -bit operation (RIGHT/RIGHTP)}
" n " characters are extracted from the right end (that is, from the end) of the character string data stored in the device specified by and later, and stored to the device specified by d and later.
If the number of characters specified by " n " is " 0 ", the NULL code \((0000 \mathrm{H}\) ) is stored to the device specified by (d).

When characters are extracted from a character string, " 00 H " is automatically added at the end of the extracted characters.
1) When the number of extracted characters is odd, " OOH " is stored in the high-order byte of a device storing the last character.
2) When the number of extracted characters is even, " 0000 H " is stored in the device after the last character.

o be extracted
*1. This defines the head of the device that stores the number of characters.
*2. This defines the head of the device that stores the extracted character string.

a) A character string stored in the device specified by \(S\) and later indicates data stored in devices from the specified device until " 00 H " is first detected in byte units.

\section*{Cautions}
1) When handling character string data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle character string data. Use a global label to specify a device.
2) When handling character codes other than ASCII codes, note the following contents:
a) The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which two bytes express one character such as shift JIS codes, the length of one character is detected as "2".
b) When extracting characters from a character string including character codes in which two bytes express one character such as shift JIS codes, consider the number of characters to be extracted in units of character codes for one character.
Note that the expected character code is not given if only one byte is extracted out of a 2-byte character code.

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When " 00 H " is not set within the corresponding device range after a device specified by s . (Error code: K6706)
2) When " \(n\) " exceeds the number of characters specified by \(\subseteq\). (Error code: K6706)
3) When the number of devices after a device number specified by \(d\) is smaller than the number of devices required to store extracted " \(n\) " characters (that is, when " 00 H " cannot be stored after all character strings and the last character).
(Error code: K6706)
4) When " \(n\) " is a negative value. (Error code: K6706)

\section*{Program examples}

In the program example shown below, 4 characters are extracted from the right end of the character string data stored in R0 and later, and stored to D0 and later when X000 turns ON.
[Structured ladder]


VAR_02:=RIGHTP(X000,K4);
*1. VAR_01 is a global label and is defined as R0.
*2. VAR_02 is a global label and is defined as D0.


\subsection*{7.20.6 LEFT}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction extracts a specified number of characters from the left end of a specified character string.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline LEFT & 16 bits & Continuous &  & LEFT(EN,s,n,d); \\
\hline LEFTP & 16 bits & Pulse &  & LEFTP(EN,s,n,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Head device storing a character string \\
\cline { 2 - 5 } & s & Number of characters to be extracted & Bit \\
\cline { 2 - 5 } & Output \\
\multirow{2}{*}{\begin{tabular}{l} 
Oniable
\end{tabular}} & ENO & Execution state & ANY16 \\
\cline { 2 - 5 } & d & Head device storing extracted character string & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
11 \\
口"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & \(\mathbf{Y}\) & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & X & Y & M & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & - & - & \(\bullet\) & - & & & - & & & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & & \(\bullet\) & \(\bullet\) & & & - & & & & & \\
\hline ( & & & & & & & & & & & & & & - & \(\bullet\) & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (LEFT/LEFTP)}
" n " characters are extracted from the left end (that is, from the head) of the character string data stored in the device specified by S and later and stored to the device specified by \((d)\) and later.
If the number of characters specified by " n " is " 0 ", the NULL code \((0000 \mathrm{H}\) ) is stored to the device specified by (d).

When characters are extracted from a character string, " 00 H " is automatically added at the end of the extracted characters.
1) When the number of extracted characters is odd, " 00 H " is stored in the high-order byte of a device storing the last character.
2) When the number of extracted characters is even, " 0000 H " is stored in the device after the last character.

to be extracted
*1. This defines the head of the device that stores the number of characters.
*2. This defines the head of the device that stores the extracted character string.

a) A character string stored in the device specified by \(s\) and later indicates data stored in devices from the specified device until " 00 H " is first detected in byte units.

\section*{Cautions}
1) When handling character string data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle character string data. Use a global label to specify a device.
2) When handling character codes other than ASCII codes, note the following contents:
a) The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which two bytes express one character such as shift JIS codes, the length of one character is detected as "2".
b) When extracting characters from a character string including character codes in which two bytes express one character such as shift JIS codes, consider the number of characters to be extracted in units of character codes for one character.
Note that the expected character code is not given if only one byte is extracted out of a 2-byte character code.

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When " 00 H " is not set within the corresponding device range after a device specified by s . (Error code: K6706)
2) When " \(n\) " exceeds the number of characters specified by \(\subseteq\). (Error code: K6706)
3) When the number of devices after a device number specified by \(d\) is smaller than the number of devices required to store extracted " \(n\) " characters (that is, when " 00 H " cannot be stored after all character strings and the last character). (Error code: K6706)
4) When " \(n\) " is a negative value. (Error code: K6706)

\section*{Program examples}

In the program example shown below, the number of characters which is equivalent to the number stored in D0 is extracted from the left end of the character string data stored in D100 and later, and stored to R10 and later when X010 turns ON.
[Structured ladder]
[ST]

*1. VAR_01 is a global label and is defined as D100.
*2. VAR_02 is a global label and is defined as R10.


\subsection*{7.20.7 MIDR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction extracts a specified number of characters from arbitrary positions of a specified character string.
1. Format and operation, execution form

2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow[b]{3}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s1) & Head device storing a character string & String \\
\hline & s2 & \begin{tabular}{l}
Head device specifying the head position and number of characters to be extracted \\
- s2 : Head character position \\
- s2+1 : Number of characters
\end{tabular} & ARRAY [1..2] OF ANY16 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Head device storing extracted character string & String \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|r|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
17 \\
口"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline (s2) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & - & - & - & \(\bullet\) & & & - & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (MIDR/MIDRP)}
"s2 + 1" characters are extracted leftward from the position specified by s2 of the character string data stored in the device specified by s1 and later, and stored to the device specified by da and later.
When characters are extracted from a character string, " 00 H " is automatically added at the end of the extracted characters.
1) When the number of extracted characters of the device specified by "s2 +1 " is odd, " 00 H " is stored in the high-order byte of a device storing the last character.
2) When the number of extracted characters of the device specified by "s2 +1 " is even, " 0000 H " is stored in the device after the last character.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Command input} & \multicolumn{2}{|c|}{MIDR} & \\
\hline & EN & ENO & - \\
\hline Label \(1^{* 1}\) & s1 & d & - Label 3*3 \\
\hline Label \(2^{* 2}\) & & & \\
\hline
\end{tabular}
*1. This defines the head of the device that stores the character string.
*2. This defines the head of the device that specifies the head character position and the number of characters to be extracted.
*3. This defines the head of the device that stores the extracted character string.

a) A character string specified by s1 indicates data stored in devices from the specified device until " 00 H " is first detected in units of byte.
b) When the number of characters to be extracted specified by "s2 +1 " is " 0 ", the extraction processing is not executed.
c) When the number of characters to be extracted specified by "s2 +1 " is " -1 ", the entire character string specified by \(\$ 1\) is stored to the device specified by d and later.

\begin{tabular}{r|r|}
\hline\((\mathrm{s} 2)\) & +0 \\
\cline { 2 - 3 } & 5 \\
\hline & \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling array data or character string data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project.
Use a label to handle array data or character string data.
Use a global label to specify a device.
2) When handling character codes other than ASCII codes, note the following contents:
a) The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which two bytes express one character such as shift JIS codes, the length of one character is detected as "2".
b) When extracting characters from a character string including character codes in which two bytes express one character such as shift JIS codes, consider the number of characters to be extracted in units of character codes for one character.
Note that the expected character code is not given if only one byte is extracted out of a 2-byte character code.

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When " 00 H " is not set within the corresponding device range after a device specified by s 1 . (Error code: K6706)
2) When the value specified by exceeds the number of characters specified by \(s 1\). (Error code: K6706)
3) When the number of characters specified by "s2 +1 " from the position specified by the device specified by \((d\) exceeds the device range specified by \(\mathbb{C}\). (Error code: K6706)
4) When the number of devices after a device number specified by \(d\) is smaller than the number of devices required to store extracted characters as many as the number specified by "s2) +1" (that is, when " 00 H " cannot be stored after all character strings and the last character) (Error code: K6706)
5) When the contents of the device specified by \(s 2\) is a negative value. (Error code: K6706)
6) When the contents of the device specified by "s2 +1 " is "-2" or less. (Error code: K6706)
7) When the contents of the device specified by "s2 +1 " is a number larger than the number of characters specified by S1. (Error code: K6706)

\section*{Program examples}

In the program example shown below, four characters are extracted from the third character from the left end of the character string data stored in D10 and later, and then stored to D0 and later when X000 turns ON.
[Structured ladder] [ST]


VAR_03:=MIDR(X000,VAR_01,VAR_02);
*1. VAR_01 is a global label and is defined as D10.
*2. VAR_02 is a global label and is defined as R0.
*3. VAR_03 is a global label and is defined as D0.


\subsection*{7.20.8 MIDW}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction replaces the characters in arbitrary positions inside designated character string with a specified character string.
\(\rightarrow\) For handling of character strings, refer to "FX Structured Programming Manual (Device \&
Common)."
1. Format and operation, execution form

2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Head device storing a character string used in overwriting
\end{tabular} String \begin{tabular}{l} 
(s1 \\
\cline { 2 - 5 }
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & c & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & - & & & - & & & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline (s2) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & - & - & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (MIDW/MIDWP)}

Character data specified by "s2 +1" are extracted from the left end (that is, the head) of the character string data stored in the device specified by \(\$ 1\) and later, and stored to the position specified by s2 and later of the character string data stored in the device specified by \((d)\) and later.

*1. This defines the head of the device that stores the character string used in overwriting.
*2. This defines the head of the device that defines the head position and the number of the characters to be overwritten
*3. This defines the head of the device that stores the character string overwritten.

Before execution


6th character
(s2) \(\qquad\) Position from the left end in the character string stored in d and later
Number of characters from the left end in the character string stored in (s1) and later

\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{(d) +0} & ---- & --- & \multirow[b]{2}{*}{} \\
\hline & 42H(B) & 41H(A) & \\
\hline +1 & 44H(D) & \(43 \mathrm{H}(\mathrm{C})\) & \(\leftarrow 3 \mathrm{rd}\) \\
\hline +2 & 46H(F) & 45H(E) & character \\
\hline +3 & \(48 \mathrm{H}(\mathrm{H})\) & 47H(G) & \\
\hline +4 & 00H & 49H(I) & \\
\hline
\end{tabular}


Six characters starting from 3rd character (overwritten character string)
1) The character string specified by \(s 1\) or \((d\) indicates data stored in devices from the specified device until " 00 H " is first detected in byte units.
2) When the number of characters to be overwritten specified by "s2 +1 " is " 0 ", the overwriting processing is not executed.
3) When the number of characters to be overwritten specified by " \(s 2+1\) " exceeds the last character of the character string stored in the device specified by \(d\) and later, data is stored up to the last character.

Before execution
\begin{tabular}{|c|c|c|c|}
\hline (s1) +0 & \(31 \mathrm{H}(1)\) & \(30 \mathrm{H}(0)\) & \multirow[t]{2}{*}{\[
\leftarrow \begin{aligned}
& \text { 1st } \\
& \text { character }
\end{aligned}
\]} \\
\hline +1 & 33H(3) & \(32 \mathrm{H}(2)\) & \\
\hline +2 & 35H(5) & \(34 \mathrm{H}(4)\) & \\
\hline +3 & \(37 \mathrm{H}(7)\) & 36H(6) & \\
\hline +4 & 00H & \(38 \mathrm{H}(8)\) & \\
\hline & haracter & & \\
\hline
\end{tabular}


After execution


Characters from the 5th character to the last character are overwritten. Excessive characters, " \(35 \mathrm{H}(5)\) " to " \(37 \mathrm{H}(7)\) ", are not stored.
4) When "s2 +1 " (the number of characters to be overwritten) is "-1", the entire character string stored in (s1) and later is stored to the device specified by (d) and later.


\begin{tabular}{|c|c|c|}
\hline 2nd ch &  & tion \\
\hline (d) +0 & \(30 \mathrm{H}(0)\) & 41H(A) \\
\hline +1 & \(32 \mathrm{H}(2)\) & \(31 \mathrm{H}(1)\) \\
\hline +2 & \(34 \mathrm{H}(4)\) & \(33 \mathrm{H}(3)\) \\
\hline +3 & \(48 \mathrm{H}(\mathrm{H})\) & 35H(5) \\
\hline +4 & 4AH(J) & 49H(I) \\
\hline +5 & 00H & 4BH(K) \\
\hline \multicolumn{3}{|c|}{"A012345HIJK"} \\
\hline
\end{tabular}

Six characters from the 2nd character are overwritten.

\section*{Cautions}
1) When handling array data or character string data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project.
Use a label to handle array data or character string data.
Use a global label to specify a device.
2) When handling character codes other than ASCII codes, note the following contents:
a) The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which two bytes express one character such as shift JIS codes, the length of one character is detected as "2".
b) When extracting characters from a character string including character codes in which two bytes express one character such as shift JIS codes, consider the number of characters to be extracted in units of character codes for one character.
Note that the expected character code is not given if only one byte is extracted out of a 2-byte character code.

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When " 00 H " is not set within the corresponding device range after a device specified by \(s 1\) or \(\mathbb{C}\). (Error code: K6706)
2) When the value of the device specified by s2 exceeds the number of characters specified by \(\mathbb{C}\). (Error code: K6706)
3) When the value of the device specified by "s2 + 1" exceeds the number of characters specified by (s1).
(Error code: K6706)
4) When the value of the device specified by is a negative value (Error code: K6706)
5) When the value of the device specified by "s2 + 1" is "-2" or less

\section*{Program examples}

In the program example shown below, four characters are extracted from the character string data stored in D0 and later, and stored to the third character (from the left end) and later for the character string data stored in D100 and later when X010 turns ON.
[Structured ladder]
*1. VAR_01 is a global label and is defined as D0.
*2. VAR_02 is a global label and is defined as R0.
*3. VAR_03 is a global label and is defined as D100.

Before execution

[ST]
VAR_03:=MIDW(X010,VAR_01,VAR_02);


\subsection*{7.20.9 INSTR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction searches a specified character string within another character string.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline INSTR & 16 bits & Continuous &  & INSTR(EN,s1,s2,n,d); \\
\hline INSTRP & 16 bits & Pulse & \begin{tabular}{lr}
\multicolumn{2}{c}{ INSTRP } \\
- EN & ENO- \\
-s 1 & d \\
-s 2 & \\
-n & \\
\end{tabular} & INSTRP(EN,s1,s2,n,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & s1 & Head device storing a character string to search for & String \\
\cline { 2 - 5 } & s2 & Head device storing a character string to be searched & String \\
\cline { 2 - 5 } & n & Search start position & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Head device storing search result & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c}
\hline Pointer \\
\(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D口.b & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & & & & \(\bullet\) & & & & \(\bullet\) & \\
\hline (s2) & & & & & & & & & & & & \(\bullet\) & - & - & \(\bullet\) & & & & - & & & & & \\
\hline (d) & & & & & & & & & & & & \(\bullet\) & - & - & \(\bullet\) & & & & - & & & & & \\
\hline ( n & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (INSTR/INSTRP)}
1) The character string stored in the device specified by \(\$ 1\) and later is searched for within the character string of the device specified by s2 and later. The search begins at the " \(n\) "th character from the left end (head character) of the device specified by s2 and the search result is stored in the device specified by (d).

The search result provides the first matching character (located from the left end (head character)) in the device specified by s2).

1. This defines the head of the device that stores the character string to search for
*2. This defines the head of the device that stores the character string to be searched.

Character string to be searched


Character string to search for

2) When the searched character string is not detected, " 0 " is stored in the device specified by \(\mathbb{d}\).
3) When the search start position " \(n\) " is a negative number or " 0 ", search processing is not executed.
4) A character string can be directly specified in the character string to search for specified by s1.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Character string to be searched
b15----b8 b7-----b0} \\
\hline (s2) +0 & 32H(2) & 31H(1) & \multirow[t]{2}{*}{\begin{tabular}{l}
Search is started from \\
\(\leftarrow\) the 3rd character. ( \(\mathrm{n}=3\) )
\end{tabular}} \\
\hline +1 & 34H(4) & 33H(3) & \\
\hline +2 & 42H(B) & \(41 \mathrm{H}(\mathrm{A})\) & \(\leftarrow 5\) th character from \\
\hline +3 & 36H(6) & \(35 \mathrm{H}(5)\) & he head character \\
\hline +4 & 42H(B) & 41H(A) & \\
\hline +5 & & 00H & \\
\hline & "1234A & 56AB" & \\
\hline
\end{tabular}

Character string to search for


\section*{Cautions}
1) When handling character string data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle character string data. Use a global label to specify a device.
2) The \(F X_{3} U C\) PLC of \(V 2.20\) or later supports this instruction.

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When the search start position " \(n\) " exceeds the number of characters stored in s2
(Error code: K6706)
2) When " 00 H (NULL)" is not located within the corresponding device range starting from the device specified by
(Error code: K6706)
3) When " 00 H (NULL)" is not located within the corresponding device range starting from the device specified by
(Error code: K6706)

\section*{Program examples}
1) In the program example below, the character string "C123" (D0 and later) is searched from the fifth character from the left end (head character) of the character string "CI2312CIM" (R0 and later) when X000 is set to ON. The search result is stored in D100.
[Structured ladder]

*1. VAR_01 is a global label and is defined as D0.
*2. VAR_03 is a global label and is defined as D100.

\section*{Character string to be searched}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { These characters are not } \\
& \text { searched because the } \\
& \text { search start position is "5" } \\
& \text { Searched from }
\end{aligned}
\]} \\
\hline & & & \\
\hline R1 & 33H(3) & \(32 \mathrm{H}(2)\) & \\
\hline R2 & 32H(2) & \(31 \mathrm{H}(1)\) & \\
\hline R3 & \(49 \mathrm{H}(\mathrm{I})\) & 43H(C) & \\
\hline R4 & 00H & 4DH(M) & \\
\hline
\end{tabular}
"Cl2312CIM"
D100:=INSTR(X000,VAR_01,VAR_02,K5);

Character string to search for


Because the searched character string is not detected, " 0 " is stored.

\subsection*{7.20.10 \$MOV}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction transfers character string data.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline \$MOV & 16 bits & Continuous & \begin{tabular}{lrr}
\hline & \multicolumn{2}{c|}{ \$MOV } \\
-EN & \(\mathrm{ENO}-\) \\
-s & \(\mathrm{d}-\) \\
\hline
\end{tabular} & \$MOV(EN,s,d); \\
\hline \$MOVP & 16 bits & Pulse & \begin{tabular}{lr}
\hline & \multicolumn{2}{c|}{ \$MOVP } \\
- ENO- & ENO \\
-s & d \\
\hline
\end{tabular} & \$MOVP(EN,s,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & s & \begin{tabular}{l} 
Directly specified character string (up to 32 characters) or head \\
device storing character string which is handled as the transfer source
\end{tabular} & String \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Head device storing transferred character string & String \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\) \\
\(\square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & - & \(\bullet\) & - & & & - & & & & \(\bullet\) & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & - & - & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (\$MOV/\$MOVP)}

The character string data stored in the device specified by \(\triangle\) and later is transferred to the device specified by (d) and later.
From the device number specified by s to a device after that which stores " 00 H " in its high-order or loworder byte are transferred at one time.

*1. This defines the directly specified character string or head device that stores the character string which is handled as transfer source.
*2. This defines the head of the device that stores the transferred character string.


Even if the device range storing the character string data to be transferred overlaps the device range storing the transferred character string data, transfer is executed.
For example, when a character string stored in D10 to D13 is transferred to D11 to D14, the transfer is executed as shown below.

*1. VAR_01 is a global label and is defined as D10.
*2. VAR_02 is a global label and is defined as D11.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{b15-------b8 b7--------b0} & \multicolumn{2}{|l|}{b15-------b8 b7--------b0} \\
\hline D10 & \(32 \mathrm{H}(2)\) & 31H(1) & D10 & \(32 \mathrm{H}(2)\) & \(31 \mathrm{H}(1)\) \\
\hline D11 & \(34 \mathrm{H}(4)\) & 33 H (3) & D11 & \(32 \mathrm{H}(2)\) & \(31 \mathrm{H}(1)\) \\
\hline D12 & \(36 \mathrm{H}(6)\) & \(35 \mathrm{H}(5)\) & \(\square \mathrm{D} 12\) & \(34 \mathrm{H}(4)\) & \(33 \mathrm{H}(3)\) \\
\hline D13 & & 00H & D13 & 36 H (6) & \(35 \mathrm{H}(5)\) \\
\hline D14 & & & D14 & 00H & 00H \\
\hline
\end{tabular}

It is same as the character string before transfer.

\section*{Cautions}
1) When handling character string data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle character string data. Use a global label to specify a device.
2) When " 00 H " is stored in the low-order byte of the device specified by "s2 +n ", " 00 H " is stored to both the high-order byte and low-order byte of the device specified by " \(\mathbb{C}+\mathrm{n}\) ".

*1. This defines the directly specified character string or head device that stores the character string which is handled as transfer source.
*2. This defines the head of the device that stores the transferred character string.


\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When " OOH " does not exist in the range specified from device specified byto the last device (Error code: K6706)
2) When the specified character string cannot be stored in devices from the device specified by \(\mathbb{d}\) to the last device. (Error code: K6706)

\section*{Program examples}

In the program example shown below, character string data stored in D10 to D12 is transferred to D20 through D22 when X000 is set to ON.
[Structured ladder]
[ST]


VAR_02:=\$MOV(X000,VAR_01);

\subsection*{7.21 Data Operation 3}

\subsection*{7.21.1 FDEL}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction deletes an arbitrary piece of data from a data table.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladde & ST \\
\hline FDEL & 16 bits & Continuous &  & FDEL(EN,s,n,d); \\
\hline FDELP & 16 bits & Pulse &  & FDELP(EN,s,n,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{l|}{ Variable } & \multicolumn{1}{c|}{ Description } & Data type \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Device storing deleted data \\
\cline { 2 - 4 } & s & Position of deleted data in table & Bit \\
\cline { 2 - 5 } & n & Execution state \\
\multirow{2}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & d & Head device in data table \\
\cline { 2 - 4 } & & &
\end{tabular}

\section*{3. Applicable devices}


\section*{Function and operation explanation}

\section*{1. 16 -bit operation (FDEL/FDELP)}
" n "th data is deleted from a data table (stored in the device specified by \(\mathbb{C}\) and later), and the deleted data is stored in the device specified by \(s\). . \(\mathrm{n}+1\) "th data and later in the data table are shifted forward one by one, and the number of stored data is subtracted by "1".



\section*{Cautions}
1) The device range used in a data table should be controlled by the user.

The data table has the number of pieces of data, which is stored in \(\mathbb{d}\), starting from the next device ( \(d+1\) ) after the device storing the number of pieces of data \(\mathbb{d}\).
2) The \(F X_{3} \cup c\) PLC of \(V 2.20\) or later supports this instruction.

\section*{Related instruction}
\begin{tabular}{c|l}
\hline Instruction & \\
\hline FINS & Inserts data into an arbitrary position in a data table \\
\hline
\end{tabular}

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When the table position " \(n\) " from the device specified by d exceeds the "amount of data stored plus one"
(Error code: K6706)
2) When the value " \(n\) " exceeds the range of the number of pieces of data specified by \(d\). (Error code: K6706)
3) When the FDEL instruction is executed under the condition " \(\mathrm{n} \leq 0\) " (Error code: K6706)
4) When the amount of data stored specified by \((d)\) is " 0 ". (Error code: K6706)
5) When the data table range exceeds the corresponding device range (Error code: K6706)

\section*{Program examples}

In the program example shown below, the second data is deleted from the data table stored in D100 to D105, and the deleted data is stored in D0 when X010 is set to ON.
When the amount of data stored is " 0 ", however, the FDEL instruction is not executed.
(The device range used in the data table is D100 to D107.)
[Structured ladder]


\footnotetext{
[ST]
IF((IF(AND<(X010,K0,D100)THEN AND<=(TRUE,K7,D100))) THEN FDELP(TRUE,D0,K2,D100);
}


\subsection*{7.21.2 FINS}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction inserts data into an arbitrary position in a data table.
1. Format and operation, execution form

2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & Data type \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Device storing inserted data \\
\cline { 2 - 4 } & s & Data insertion position in table & Bit \\
\cline { 2 - 5 } & n & Execution state & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & d & Head device in data table \\
\cline { 2 - 5 } & & & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & & & & & & & & & & - & \(\bullet\) & - & \(\bullet\) & & & & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & - & - & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (FINS/FINSP)}
1) 16-bit data of the device specified by \(S\) is inserted in " \(n\) "th position in a data table (stored in the device specified by \((d)\) and later).
" \(n\) "th data and later in the data table are shifted backward one by one, and the number of stored data is added by "1".


\section*{Cautions}
1) The device range used in a data table should be controlled by the user.

The data table has the number of pieces of data, which is stored in \(\mathbb{C}\), starting from the device after the device that indicates the number of stored data \((d\).
\(\rightarrow\) Refer to the program example below.
2) The \(F_{3} 3 \cup C\) PLC of \(V 2.20\) or later supports this instruction.

\section*{Related instruction}
\begin{tabular}{c|l}
\hline Instruction & \\
\hline FDEL & Deletes an arbitrary data from a data table. \\
\hline
\end{tabular}

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When the table position " \(n\) " from the device specified by \(\mathbb{d}\) exceeds the "amount of data stored plus one"
(Error code: K6706)
2) When the value " \(n\) " exceeds the device range of the data table specified by(Error code: K6706)
3) When the FDEL instruction is executed under the condition " \(\mathrm{n} \leq 0\) " (Error code: K6706)
4) When the data table range exceeds the corresponding device range (Error code: K6706)

\section*{Program examples}

In the program example shown below, data stored in D100 is inserted into the third position of the data table stored in D0 to D4 when X010 is set to ON.
When the amount of data stored exceeds "7", however, the FINS instruction is not executed.
(The device range used in the data table is D0 to D7.)
[Structured ladder]

[ST]
IF(( IF(AND<=(X010,K0,D0)THEN AND<(TRUE,D0,K7)))THEN FINSP(TRUE,D100,K3,D0);


\subsection*{7.21.3 POP}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction reads the last data written by the shift write (SFWR) instruction for the first-in first-out and firstin last-out control
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline POP & 16 bits & Continuous &  & POP(EN,s,n,d); \\
\hline POPP & 16 bits & Pulse &  & POPP(EN,s,n,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & Data type \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 5 } & s & Head device storing first-in data (including pointer data) & ANY16 \\
\cline { 2 - 5 } & n & \begin{tabular}{l} 
Number of pieces of data stored \\
(Add "1" because pointer data is also included.)
\end{tabular} & ANY16 \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Device storing last-out data & ANY16 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & - & - & \(\bullet\) & \(\bullet\) & - & - & \(\bullet\) & - & & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & & - & - & - & - & - & - & - & \(\bullet\) & - & - & - & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. 16-bit operation (POP/POPP)


Data for FILO control
\begin{tabular}{|c|c|}
\hline & Description \\
\hline (s) & Pointer data (amount of data stored) \\
\hline (s) +1 & \multirow{7}{*}{\begin{tabular}{l}
Data area \\
(First-in data written by shift write (SFWR) instruction)
\end{tabular}} \\
\hline (s) +2 & \\
\hline (5) +3 & \\
\hline : & \\
\hline (s) \(+\mathrm{n}-3\) & \\
\hline (S) \(+\mathrm{n}-2\) & \\
\hline (s) \(+\mathrm{n}-1\) & \\
\hline
\end{tabular}
1) Every time the instruction is executed for the word devices specified by " \(s\) to \(s+n-1 "\), a device " \(s\) + Pointer data" is read to the device specified by \(\mathbb{d}\). (The last data entry written by the shift write (SFWR) instruction for first-in first-out control is read to the device specified by © .) Specify " n " in the range from " 2 " to " 512 ".
2) Subtract "1" from the value of the pointer data of the device specified by \(s\).


In the case of K4


\section*{Related device}
\(\rightarrow\) for the zero flag use method, refer to Section 1.3.4.
\begin{tabular}{c|c|l}
\hline Device & Name & \multicolumn{1}{c}{ Description } \\
\hline M8020 & Zero flag & Turns ON when the instruction is executed while the pointer is " 0 ". \\
\hline
\end{tabular}

\section*{Related instruction}
\begin{tabular}{c|ll}
\hline Instruction & & Description \\
\hline SFWR & Shift write [for FIFO/FILO control] \\
\hline SFRD & Shift read [for FIFO control] & \\
\hline
\end{tabular}

\section*{Cautions}
1) When this instruction is programmed in the continuous operation type, the instruction is executed in every operation cycle. As a result, an expected operation may not be achieved.
Usually, program this instruction in the "pulse operation type", or let this instruction be executed by a "pulsed command contact.
2) When the current value of the pointer specified by \(S\) is "0", the zero flag M8020 turns ON and the instruction is not executed.
Check in advance using a comparison instruction whether the current value of the device specified by (s) satisfies " \(1 \leq\) current value \(\leq(n-1)\) ", and then execute this instruction.
3) When the current value of the pointer specified by \(S\) is "1", "0" is written to the pointer and the zero flag M8020 turns ON.

\section*{Error}
1) An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
a) When the pointer is larger than " n -1". (Error code: K6706)
b) When the pointer is smaller than " 0 ". (Error code: K6706)

\section*{Program examples}

In the program example shown below, among value stored in D20 input first to D101 to D106, the last value input is stored to D10, and "1" is subtracted from the number of stored data (pointer D100) every time X000 turns ON.
[Structured ladder]

[ST]
IF(LDP(TRUE,X010))THEN SFWR(TRUE,D20,K7,D100);
IF(LDP(TRUE,X000))THEN POP(TRUE,D100,K7,D10);

When the first-in data is as shown in the table below
\begin{tabular}{c|c|c}
\hline Pointer & D100 & K3 \\
\hline \multirow{4}{*}{ Data } & D101 & H1234 \\
\cline { 2 - 3 } & D102 & H 5678 \\
\cline { 2 - 3 } & D 103 & HABCD \\
\cline { 2 - 3 } & D 104 & H 0000 \\
\cline { 2 - 3 } & D 105 & H 0000 \\
\cline { 2 - 3 } & D 106 & H 0000 \\
\hline
\end{tabular}


\subsection*{7.21.4 SFR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction shifts 16 bits stored in a word device rightward by " n " bits.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline SFR & 16 bits & Continuous &  & SFR(EN,n,d); \\
\hline SFRP & 16 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ SFRP } \\
-EN & ENO \\
n & d \\
\hline
\end{tabular} & SFRP(EN,n,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & Data type \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Number of times of shift \((0 \leq \mathrm{n} \leq 15)\) \\
\cline { 2 - 5 } & n & Execution state & Bit \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Device storing data to be shifted. & ANY16 \\
\cline { 2 - 5 } & d & & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{Special unit U \(\square\) IG \(\square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Cons \\
tant
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square "\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & - & \(\bullet\) & & \(\bullet\) & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & - & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. 16-bit operation (SFR/SFRP)
Number of times \(-\operatorname{ll}\)
of shift
1) 16 bits stored in a word device specified by (d) are shifted rightward by " \(n\) " bits.

Specify a value in the range from " 0 " to " 15 " as " n ".
If "16" or larger value is specified as " n ", 16 bits are shifted rightward by the remainder of " \((\mathrm{n})\) divided by (16)".

For example, when " n " is set to " 18 ", 16 bits are shifted rightward by 2 bits as " 2 " remains when " 18 " is divided by "16".
2) The ON (1) or OFF (0) status of the " n "th bit (bit " \(\mathrm{n}-1\) ") in the word device specified by \((d)\) is transferred to the carry flag M8022.
\(3)\) " 0 " is set to " \(n\) " bits from the most significant bit.


\section*{When a bit device is specified by digit specification}
\((4 \times \mathrm{K} \square)\) bits are shifted according to the data bit specification.)


\section*{Program examples}

In the program example shown below, the contents of Y010 to Y023 are shifted rightward by the number of bits specified by D0 when X020 turns ON.
[Structured ladder]

[ST]
SFR(X020,D0,Y3Y010);


\subsection*{7.21.5 SFL}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction shifts 16 bits stored in a word device leftward by " \(n\) " bits.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Execution } \\
& \text { form }
\end{aligned}
\]} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline SFL & 16 bits & Continuous &  & SFL(EN, \(\mathrm{n}, \mathrm{d}\) ); \\
\hline SFLP & 16 bits & Pulse &  & SFLP(EN, \(\mathrm{n}, \mathrm{d})\); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & Data type \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Number of times of shift \\
\cline { 2 - 4 } & n & Execution state & Bit \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & EN & Device storing data to be shifted. & ANY16 \\
\cline { 2 - 4 } & & & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{5}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Special \\
unit
\end{tabular} \\
\hline U \(\square\) IG \(\square\) \\
\hline
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Character \\
String
\end{tabular} \\
\hline\(" \square "\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M \({ }^{\text {T }}\) & C & S & & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & & D & R & & V & Z & Modifier & K & H & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & & - & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & & & & & \\
\hline (n) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & & - & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (SFL/SFLP)}
Number of times-an
of shift
1) 16 bits stored in a word device specified by \((d)\) are shifted leftward by " \(n\) " bits.

Specify a value in the range from "0" to " 15 " as " n ".
If " 16 " or larger value is specified as " \(n\) ", 16 bits are shifted leftward by the remainder of " \((\mathrm{n})\) divided by (16)".

For example, when " n " is set to "18", 16 bits are shifted leftward by 2 bits as " 2 " remains when " 18 " is divided by "16".
2) The ON (1) or OFF ( 0 ) status of the " \(n+1\) "th bit (bit " \(n\) ") in the word device specified by (d) is transferred to the carry flag M8022.
3) " 0 " is set to " \(n\) " bits from the least significant bit.


\section*{When a bit device is specified by digit specification}
\((4 \times \mathrm{K} \square)\) bits are shifted according to the data bit specification.)


\section*{Related device}
\(\rightarrow\) For the carry flag use method, refer to Section 1.3.4.
\begin{tabular}{c|c|l}
\hline Device & Name & \\
\hline M8022 & Carry flag & Shifts the ON/OFF status of bit "n" \\
\hline
\end{tabular}

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When a negative value is set to "n" (Error code: 6706)

\section*{Program examples}

In the program example shown below, the contents of Y010 to Y017 are shifted leftward by the number of bits specified by D0 when X020 turns ON.
[Structured ladder]


\section*{[ST]}

SFLP(X020,D0,K2Y10);


\subsection*{7.22 Data Comparison}

\subsection*{7.22.1 LD=, LD>, LD<, LD<>, LD<=, LD>=}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

These instructions compare numeric values, and set a contact to ON when the condition agrees so that an operation started.
1. Format and operation, execution form

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[t]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline LDD＜＞ & 32 bits & Continuous &  & LDD＜＞（EN，s1，s2）； \\
\hline LDD＜＝ & 32 bits & Continuous & \begin{tabular}{lr}
\multicolumn{2}{c|}{ LDD＜＝} \\
-EN & ENO \\
-s 1 & \\
s2 & \\
\hline
\end{tabular} & LDD＜＝（EN，s1，s2）； \\
\hline LDD＞＝ & 32 bits & Continuous & \begin{tabular}{ll}
-2 & \multicolumn{2}{c|}{ LDD \(>=\)} \\
-EN & ENO \\
-s 2 & \\
\hline
\end{tabular} & LDD＞＝（EN，s1，s2）； \\
\hline
\end{tabular}

2．Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit & 32-bit \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & （s1） & Device storing comparison data & ANY16 & ANY32 \\
\hline & （s2） & Device storing comparison data & ANY16 & ANY32 \\
\hline Output variable & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline
\end{tabular}

3．Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{c|}
\hline \begin{tabular}{c} 
Special \\
unit
\end{tabular} \\
\hline U \(\square \backslash \square \square\)
\end{tabular}} & \multicolumn{4}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
＂\(\square\)＂
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c}
\hline Pointer \\
\(\mathbf{P}\)
\end{tabular}} \\
\hline & X & \(\mathbf{Y}\) & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & & Modifier & K & H & & & \\
\hline （s1） & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & － & － & －1 & \(\Delta 2\) & － & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline （s2） & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & － & － & － & －1 & \(\triangle 2\) & \(\bullet\) & － & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

\footnotetext{
©：Refer to＂Cautions＂
}

\section*{Function and operation explanation}

These data comparison instructions are connected to bus lines.
The contents of the devices specified by s1 are compared with the contents of the device specified by s2 in the binary format, and a contact becomes conductive (ON) or non-conductive (OFF) depending on the comparison result.
\begin{tabular}{|c|c|c|c|}
\hline 16-bit instruction & 32-bit instruction & ON condition & OFF condition \\
\hline LD= & LDD= & s1 = s2 & (s1) \(\neq\) s2 \\
\hline LD> & LDD> & (s1) \(>\) s2 & (s1) \(\leq\) s2 \\
\hline LD< & LDD< & (s1) < s2 & s1) \(\geq\) s2 \\
\hline LD<> & LDD<> & (s1) \(\neq\) s2 & s1 \(=\) s2 \\
\hline LD<= & LDD<= & (s1) \(\leq\) s2 & (s1) \(>\) s2 \\
\hline LD>= & LDD>= & (s1) \(\geq\) s2 & (s1) < s2 \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data. A 32-bit counter can be specified directly as it is a 32-bit long device. Use a global label to specify a device.
2) Negative values

When the most significant bit is " 1 " in the data stored in the device specified by (s1) or s2), it is regarded as a negative value in comparison.
a) In the 16-bit operation: bit 15
b) In the 32-bit operation: bit 31
3) When using 32-bit counters (including 32-bit high speed counters)

Be sure to execute the 32-bit operation (such as LDD=, LDD> and LDD<) when comparing 32-bit counters.
If a 32-bit counter is specified in the 16-bit operation (such as LD=, LD> and LD<), a program error or operation error will occur.
4) Some restrictions to applicable devices

41: Applicable only to the FX3U, FX3UC and FX3G PLCs.
©2: Applicable only to the FX3U and FX3Uc PLCs.

\section*{Program examples}
[Structured ladder]
[ST]

When the current value of the counter C10 is "200", Y010 is driven.


Y10:=LD=(TRUE,K200,C10);

When the contents of D200 are "-29" or more and X001 is ON, Y011 is set.


Y11:=LD>(X001,D200,K-30);

When the contents of the counter C200 are less than "K678,493" or when M3 turns ON, M50 is driven.


M50:=LDD>(TRUE,VAR_01,VAR_02) OR M3;
*2. VAR_02 is a global label and is defined as C200.

\subsection*{7.22.2 AND=, AND>, AND<, AND<>, AND<=, AND>=}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

These instructions compare numeric values, and set a contact to ON when the condition agrees.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|l|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline AND= & 16 bits & Continuous & \(-\mathrm{EN}^{2} \mathrm{AND}=\)
-s 1
s2 & AND=(EN,s1,s2); \\
\hline AND> & 16 bits & Continuous & \begin{tabular}{ll|}
\hline \multicolumn{2}{|c|}{ AND> } \\
- EN & ENO- \\
-s 1 & \\
-s 2 & \\
\hline
\end{tabular} & AND>(EN,s1,s2); \\
\hline AND< & 16 bits & Continuous &  & AND<(EN,s1,s2); \\
\hline AND<> & 16 bits & Continuous & \begin{tabular}{ll} 
& \multicolumn{2}{c}{ AND<> } \\
EN & ENO \\
-s 1 & \\
-s 2 & \\
\hline
\end{tabular} & AND<>(EN,s1,s2); \\
\hline AND<= & 16 bits & Continuous & \begin{tabular}{ll}
-EN & \(\mathrm{AND}<=\) \\
-s 1 & ENO \\
s2 & \\
\end{tabular} & AND<=(EN,s1,s2); \\
\hline AND>= & 16 bits & Continuous & \begin{tabular}{ll}
\(-2 \mathrm{AND}>=\) \\
-EN & ENO \\
-s 2 & \\
\end{tabular} & AND>=(EN,s1,s2); \\
\hline ANDD= & 32 bits & Continuous & \begin{tabular}{ll} 
& \multicolumn{2}{c|}{ ANDD= } \\
- EN & ENO- \\
-s 1 & \\
-s 2 & \\
\hline
\end{tabular} & ANDD=(EN,s1,s2); \\
\hline ANDD> & 32 bits & Continuous & \[
\] & ANDD>(EN,s1,s2); \\
\hline ANDD< & 32 bits & Continuous & \begin{tabular}{ll} 
& \multicolumn{2}{c|}{ ANDD< } \\
- EN & ENO- \\
-s 1 & \\
-s 2 & \\
\hline
\end{tabular} & ANDD<(EN,s1,s2); \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[t]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution
form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline ANDD<> & 32 bits & Continuous & \begin{tabular}{ll}
-2 & \multicolumn{2}{c}{ ANDD<> } \\
-EN & ENO \\
-s 1 & \\
s2 & \\
\end{tabular} & ANDD<>(EN,s1,s2); \\
\hline ANDD<= & 32 bits & Continuous & \begin{tabular}{ll}
\hline \multicolumn{2}{|c|}{ ANDD<= } \\
EN & ENO \\
- 12 & \\
-s2 & \\
\hline
\end{tabular} & ANDD<=(EN,s1,s2); \\
\hline ANDD>= & 32 bits & Continuous &  & ANDD>=(EN,s1,s2); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit & 32-bit \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Device storing comparison data & ANY16 & ANY32 \\
\hline & (s2) & Device storing comparison data & ANY16 & ANY32 \\
\hline Output variable & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline
\end{tabular}
3. Applicable devices


\footnotetext{
©: Refer to "Cautions"
}

\section*{Function and operation explanation}

These data comparison instructions are connected to other contacts in series.
The contents of the device specified by (s1) are compared with the contents of the device specified by s2 in binary format, and a contact becomes conductive (ON) or non-conductive (OFF) depending on the comparison result.
\begin{tabular}{|c|c|c|c|}
\hline 16-bit instruction & 32-bit instruction & ON condition & OFF condition \\
\hline AND= & ANDD= & s1 \(=\) s2 & (s1) \(\neq\) (s2 \\
\hline AND> & ANDD> & s1 \(>\) s2 & (s1) \(\leq\) s2 \\
\hline AND< & ANDD< & s1 < s2 & (s1) \(\geq\) (s2 \\
\hline AND<> & ANDD<> & s1 \(\neq s 2\) & (s1) \(=\) s2 \\
\hline AND<= & ANDD<= & s1 \(\leq\) s2 & (s1) \(>\) s2 \\
\hline AND>= & ANDD>= & (s1) \(\geq\) s2 & (s1) \(<\) s2 \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data. A 32-bit counter can be specified directly as it is a 32-bit long device. Use a global label to specify a device.
2) Negative values

When the most significant bit is " 1 " in the data stored in the device specified by s1 or s2), it is regarded as a negative value in comparison.
a) In the 16 -bit operation: bit 15
b) In the 32-bit operation: bit 31
3) When using 32-bit counters (including 32-bit high speed counters)

Be sure to execute the 32-bit operation (such as ANDD=, ANDD> and ANDD<) when comparing 32-bit counters.
If a 32-bit counter is specified in the 16-bit operation (such as AND=, AND> and AND<), a program error or operation error will occur.
4) Some restrictions to applicable devices
©1: Applicable only to the \(\mathrm{FX}_{3} \mathrm{U}, \mathrm{FX} 3 \cup \mathrm{C}\) and FX 3 F PLCs.
©2: Applicable only to the FX3U and FX3Uc PLCs.

\section*{Program examples}
[Structured ladder]

When X 000 is ON and the current value of the counter C 10 is "200" Y010 is driven.


When X001 is OFF and the contents of the data register D0 are not "-10", Y011 is set.


When X002 is ON, and the contents of the data registers D11 and D10 are less than "K678,493", or when M3 turns ON, M50 is driven.

*1. VAR_01 is a global label and is defined as K678493.
*2. VAR_02 is a global label and is defined as D10.
[ST]

Y10:=AND=(X000,K200,C10);

AND<>(NOT X001,K-10,D0,M40);
Y11:=SET(M40);

Y11:=ANDD>(X002,VAR_01,VAR_02) OR M3;

\subsection*{7.22.3 OR=, OR>, OR<, OR<>, OR<=, OR>=}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

These instructions compare numeric values, and set a contact to ON when the condition agrees.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|l|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline \(\mathrm{OR}=\) & 16 bits & Continuous & \begin{tabular}{ll|}
\hline EN & \(\mathrm{OR}=\) \\
-ENO \\
-s 2 & \\
\end{tabular} & \(\mathrm{OR}=(\mathrm{EN}, \mathrm{s} 1, \mathrm{~s} 2)\); \\
\hline OR> & 16 bits & Continuous & \begin{tabular}{ll|} 
& \multicolumn{2}{c|}{ OR> } \\
-EN & ENO \\
-s 2 & \\
\hline
\end{tabular} & OR>(EN,s1,s2); \\
\hline \(\mathrm{OR}<\) & 16 bits & Continuous &  & \(\mathrm{OR}<(\mathrm{EN}, \mathrm{s} 1, \mathrm{~s} 2)\); \\
\hline OR<> & 16 bits & Continuous &  & OR<>(EN,s1,s2); \\
\hline \(\mathrm{OR}<=\) & 16 bits & Continuous &  & OR<=(EN, s1,s2); \\
\hline OR>= & 16 bits & Continuous &  & OR>=(EN,s1,s2); \\
\hline ORD= & 32 bits & Continuous &  & ORD=(EN, s1,s2); \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|l|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline ORD> & 32 bits & Continuous &  & ORD>(EN,s1,s2); \\
\hline ORD< & 32 bits & Continuous & \begin{tabular}{ll|}
\hline \multicolumn{2}{c|}{ ORD< } \\
- EN & ENO \\
-s 1 & \\
s2 & \\
\end{tabular} & ORD<(EN,s1,s2); \\
\hline OR<> & 32 bits & Continuous & \begin{tabular}{ll} 
& \multicolumn{2}{c}{ OR<> } \\
- EN 1 & \(\mathrm{ENO}-\) \\
-s 2 & \\
&
\end{tabular} & OR<>(EN,s1,s2); \\
\hline ORD<= & 32 bits & Continuous & \begin{tabular}{ll} 
& \multicolumn{2}{c}{ ORD<= } \\
- EN 1 & ENO \\
-s 2 & \\
&
\end{tabular} & ORD<=(EN,s1,s2); \\
\hline ORD>= & 32 bits & Continuous & \begin{tabular}{ll} 
& \multicolumn{2}{c}{\(\mathrm{LD}=\)} \\
-EN & \(\mathrm{ENO}-\) \\
-s 1 & \\
-s 2 & \\
\end{tabular} & ORD>=(EN,s1,s2); \\
\hline
\end{tabular}

\section*{2. Set data}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Device storing comparison data & ANY16 & ANY32 \\
\hline & (s2) & Device storing comparison data & ANY16 & ANY32 \\
\hline Output variable & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{Special unit
\[
\mathbf{U} \square \mathbf{I G} \square
\]} & \multicolumn{4}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & c & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & -1 & -2 & - & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & -1 & -2 & - & - & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions"

\section*{Function and operation explanation}

These data comparison instructions are connected to other contacts in parallel.
The contents of the device specified by s1 is compared with the contents of the device specified by s2 in binary format, and a contact becomes conductive (ON) or non-conductive (OFF) depending on the comparison result.
\begin{tabular}{|c|c|c|c|}
\hline 16-bit instruction & 32-bit instruction & ON condition & OFF condition \\
\hline OR= & ORD= & s1) = s2 & s1 \(=\mathrm{s} 2\) \\
\hline OR> & ORD> & (s1) \(>\) s2 & s1) \(\leq\) s2 \\
\hline OR< & ORD< & (s1) < s2 & s1) \(\geq\) s2 \\
\hline OR<> & OR<> & (s1) \(\neq\) (s2 & s1 \(=\) s2 \\
\hline OR<= & ORD<= & (s1) \(\leq\) s2 & (s1) \(>\) s2 \\
\hline OR>= & ORD>= & (s1) \(\geq\) s2 & s1 \(<\) s2 \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data. A 32-bit counter can be specified directly as it is a 32-bit long device. Use a global label to specify a device.
2) Negative values

When the most significant bit is "1" in the data stored in the device specified by s1 or s2, it is regarded as a negative value in comparison.
a) In the 16-bit operation: bit 15
b) In the 32-bit operation: bit 31
3) When using 32 -bit counters (including 32-bit high speed counters)

Be sure to execute the 32-bit operation (such as ORD=, ORD> and ORD<) when comparing 32-bit counters.
If a 32-bit counter is specified in the 16-bit operation (such as \(\mathrm{OR}=, \mathrm{OR}>\) and \(\mathrm{OR}<\) ), a program error or operation error will occur.
4) Some restrictions to applicable devices

A1: Applicable only to the \(F X_{3} \cup, F X_{3} \cup C\) and \(F X_{3}\) PLCs.
A2: Applicable only to the FX3U and FX3Uc PLCs.

\section*{Program examples}
[Structured ladder]
When X001 turns ON or when the current value of the counter C10 is "200", Y000 is driven.


> Y000:=X001 OR OR=(TRUE,K200,C10);

When X002 and M30 turn ON or when the contents of the data registers D101 and D100 are more than "K100,000", M60 is driven.

*1. VAR_01 is a global label and is defined as D100.
*2. VAR_02 is a global label and is defined as K100000.

\subsection*{7.23 Data Table Operation}

\subsection*{7.23.1 LIMIT}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction provides the upper limit value and lower limit value for an input numeric value, and control the output value using these limit values.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline LIMIT & 16 bits & Continuous & \begin{tabular}{lr|} 
& \multicolumn{2}{c|}{ LIMIT } & \\
EN & ENO \\
- 1 & \\
s2 & \\
- & \\
s3 & \\
\hline
\end{tabular} & LIMIT(EN,s1,s2,s3,d); \\
\hline LIMITP & 16 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{|c|}{ LIMITP } \\
EN & ENO-_ \\
-s 1 & \\
s2 & \\
-s 3 & \\
\hline
\end{tabular} & LIMITP(EN,s1,s2,s3,d); \\
\hline DLIMIT & 32 bits & Continuous &  & DLIMIT(EN,s1,s2,s3,d); \\
\hline DLIMITP & 32 bits & Pulse & \begin{tabular}{lr}
\hline \multicolumn{2}{|c|}{ DLIMITP } \\
EN & ENO-_ \\
- s1 & d \\
-s 2 & \\
-s 3 & \\
\hline
\end{tabular} & DLIMITP(EN,s1,s2,s3,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit & 32-bit \\
\hline \multirow{4}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Lower limit value (minimum output value) & ANY16 & ANY32 \\
\hline & (s2) & Upper limit value (maximum output value) & ANY16 & ANY32 \\
\hline & (s3) & Input value controlled by the upper and lower limit values & ANY16 & ANY32 \\
\hline & ENO & Execution state & Bit & \\
\hline variable & (d) & Head device storing the output value controlled by the upper and lower limit values & ANY16 & ANY32 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{c} 
Special \\
unit
\end{tabular}
U \(\square \backslash \square \square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{Character String
\[
\text { " } \square \text { " }
\]
\(\square\)} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & X & \(\mathbf{Y}\) & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & - & - & - & \(\bullet\) & - & & & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & & & - & - & \(\bullet\) & & & \\
\hline (s3) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & - & - & \(\bullet\) & \(\bullet\) & & & - & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (LIMIT/LIMITP)}

Depending on how the input value (16-bit binary value) of the device specified by s3 compares to the upper and lower limit range between the devices specified by \(s 1\) and \(s 2\), the output value stored in the device specified by \(\quad\) is controlled.
The output value is controlled as shown below.



(s1) S

4) When controlling the output value using only the upper limit value, set "-32768" to the lower limit value of the device specified by (s1).
5) When controlling the output value using only the lower limit value, set "32767" to the upper limit value of the device specified by (s2).

\section*{2. 32-bit operation (DLIMIT/DLIMITP)}

Depending on how the input value (32-bit binary value) of the device specified by s3 compares to the range between the upper and lower limits specified by \(s 1\) and s2), the output value to be stored in the device specified by \(\square\) is controlled.
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Command input} & DLIMIT \\
\hline & ENO \\
\hline Label \(1^{* 1}\)-s 1 & d \\
\hline Label 2*2-s2 & \\
\hline Label 3*3 \({ }^{\text {- }}\) 3 & \\
\hline
\end{tabular}
*1. This defines the lower limit value.
*2. This defines the upper limit value.
*3. This defines the control input value depending on the upper and lower limit control.
*4. This defines the head of the device that stores the output value depending on the result from the upper and lower limit control.

4) When controlling the output value using only the upper limit value, set "-2,147,483,648" to the lower limit value specified in s1).
5) When controlling the output value using only the lower limit value, set "2,147,483,647" to the upper limit value specified in s2.

\section*{Caution}

When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.

\section*{Error}

An operation error is caused when the instruction is executed in the setting status shown below. The error flag M8067 turns ON, and the error code (K6706) is stored in D8067.
" (Contents of the device specified by s1) > (contents of the device specified by s2)

\section*{Program example}

\section*{1. Program example 1}

In the program example shown below, the BCD data set in X020 to X037 is controlled by the limit values " 500 " to "5000", and the controlled value is output to D1 when X000 turns ON.
[Structured ladder]

[ST]
BIN(X000,K4X020,DO);
D10:=DLIMIT(X000,K500,K5000,D0);

\section*{Operation}
1) In the case of "D0 < 500", " 500 " is output to D1.
2) In the case of " \(500 \leq \mathrm{DO} \leq 5000\) ", the value of D 0 is output to D1.
3) In the case of " \(5000<\) D0", " 5000 " is output to D1.


\section*{2．Program example 2}

In the program example shown below，the BCD data set in X020 to X057 is controlled by the limit values ＂10000＂and＂1，000，000＂，and the controlled value is output to D11 and D10 when X000 turns ON．
［Structured ladder］


DBIN（X000，VAR＿01，VAR＿02）：
VAR＿14：＝DLIMIT（X000，VAR＿11，VAR＿12，VAR＿13）；
＊1．VAR＿01 is a global label and is defined as K8X020．
＊2．VAR＿02 is a global label and is defined as D0．
＊3．VAR＿11 is a global label and is defined as K10000．
＊4．VAR＿12 is a global label and is defined as K1000000．
＊5．VAR＿13 is a global label and is defined as D0．
＊6．VAR＿14 is a global label and is defined as D10．

\section*{Operation 1}

1）In the case of＂（D1，D0）＜10000＂，＂10000＂is set to（D11， D10）．
2）In the case of＂10000 \(\leq(D 1, D 0) \leq 1,000,000\)＂，the value of （D1，D0）is output to（D11，D10）．
3）In the case of＂ \(1,000,000<(D 1, D 0) ", " 1,000,000\)＂is output to（D11，D10）


\subsection*{7.23.2 BAND}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction provides the upper limit value and lower limit value of the dead band for an input numeric value, and controls the output value using these limit values.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline BAND & 16 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c}{ BAND } \\
- EN & ENO- \\
-s 1 & d \\
-s 2 & \\
-s 3 & \\
\hline
\end{tabular} & BAND(EN,s1,s2,s3,d); \\
\hline BANDP & 16 bits & Pulse &  & BANDP(EN,s1,s2,s3,d); \\
\hline DBAND & 32 bits & Continuous &  & DBAND (EN,s1,s2,s3,d); \\
\hline DBANDP & 32 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DBANDP } \\
- & \\
-sN 1 & ENO \\
-s 2 & \\
-s 3 & \\
\hline
\end{tabular} & DBANDP(EN,s1,s2,s3,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit & 32-bit \\
\hline \multirow{4}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s1) & Lower limit value of the dead band (no-output band) & ANY16 & ANY32 \\
\hline & (s2) & Upper limit value of the dead band (no-output band) & ANY16 & ANY32 \\
\hline & (53) & Input value controlled by the dead band & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Device storing the output value controlled by the dead band. & ANY16 & ANY32 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(11 \square\) \\
口"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & c & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & - & - & \(\bullet\) & - & & & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & - & - & - & - & & & - & \(\bullet\) & - & & & \\
\hline (3) & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & - & - & - & - & - & & & - & & & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & - & - & - & - & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. 16-bit operation (BAND/BANDP)

Depending on how the input value (16-bit binary value) of the device specified by s3 compares to the upper and lower limit dead band range between the devices specified by \(s 1\) and \(s 2\), the output value to be stored in the device specified by (d) is controlled.
The output value is controlled as shown below.

1) In the case of " sis \(\begin{gathered}\text { lower limit } \\ \text { value }\end{gathered}\)

\(\qquad\)

2) In the case of " (s2 \(\begin{gathered}\text { upper limit } \\ \text { value }\end{gathered}\) < s3 \(\begin{gathered}\text { input } \\ \text { value }\end{gathered}\) \(\qquad\)
 - s2 \begin{tabular}{|c|}
\hline upper limit \\
value
\end{tabular} \(\rightarrow\) (d) \(\qquad\)
3) In the case of " s1 \(\begin{gathered}\text { lower limit } \\ \text { value }\end{gathered}\) \(\leq\) s3 \(\begin{gathered}\text { input } \\ \text { value }\end{gathered}\) (s2) upper limit \(\qquad\) \(0 \rightarrow\) (d) \(\begin{aligned} & \text { output } \\ & \text { value }\end{aligned}\)


\section*{2. 32-bit operation (DBAND/DBANDP)}

Depending on how the input value (32-bit binary value) specified by s3 compares to the upper and lower limit dead band range between the devices specified by s1 and s2), the output value to be stored in the device specified by \((d)\) is controlled.
The output value is controlled as shown below.

*1. This defines the lower limit value of the dead band.
*2. This defines the upper limit value of the dead band.
*3. This defines the input value controlled by the dead band.
*4. This defines the device storing the output value controlled by the dead band.


\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
2) When the output value overflows, it is handled as follows:
a) In the 16-bit operation

The output value is a 16-bit binary value with sign. Accordingly, if the operation result is outside the range from -32768 to 32767 , it is handled as follows:

Lower limit value of dead band s1 =10
Input value s3 \(=-32,768\)

Output value \(=-32,768-10\)
\(=8000 \mathrm{H}-\mathrm{AH}\)
=7FF6H
\(=32,758\)
b) In the 32-bit operation

The output value is a 32-bit binary value with sign. Accordingly, if the operation result is outside the range from \(-2,147,483,648\) to \(2,147,483,647\), it is handled as follows:

Lower limit value of dead band s1 =1000


Output value=-2,147,483,648-1000
\(=8000000 \mathrm{H}-000003 \mathrm{E} 8 \mathrm{H}\)
Input value s3 =-2, 147, 483,648

> =7FFFFC18H
\(=2,147,482,648\)

\section*{Error}

An operation error is caused when the instruction is executed in the setting status shown below. The error flag M8067 turns ON, and the error code (K6706) is stored in D8067.
(Contents of the device specified by \(\$ 1\) ) \(>\) (contents of the device specified by s2)

\section*{Program example}

\section*{1. Program example 1}

In the program example shown below, the BCD data set in X020 to X037 is controlled by the dead band from "-1000" to "1000", and a controlled value is output to D1 when X000 turns ON.
[Structured ladder]

[ST]
BIN(X000,K4X020,D0); D1:=BAND(X000,K-1000,K1000,D0);

\section*{Operation}
1) In the case of "D0 < (-1000)", "D0 - (-1000)" is set to D1.
2) In the case of " \((-1000 \leq D 0 \leq 1000\) ", " 0 " is output to \(D 1\).
3) In the case of " \(1000<\) D0", "D0 - 1000" is output to D1.




\section*{2. Program example 2}

In the program example shown below, the BCD data set in \(\mathrm{X020}\) to X 057 is controlled by the dead band from "-10000" to "10000", and a controlled value is output to D11 and D10 when X000 turns ON.
[Command input]

*1. VAR_01 is a global label and is defined as K8X020.
*2. VAR_02 is a global label and is defined as D0.
*3. VAR_11 is a global label and is defined as K-10000.
*4. VAR_12 is a global label and is defined as K10000.
*5. VAR_13 is a global label and is defined as D0.
*6. VAR_14 is a global label and is defined as D10.
[ST]
DBIN(X000,VAR_01,VAR_02);
VAR_14:=DBAND(X000,VAR_11,VAR_12,VAR_13);

\section*{Operation}
1) In the case of "(D1, D0) < (-10000)", "(D1, D0) - (-10000)" is set to (D11, D10).
2) In the case of " \((-10000 \leq(D 1, D 0) \leq 10000\) ", " 0 " is output to (D11, D10).
3) In the case of "10000 < (D1, D0)", "(D1, D0) - 10000" is output to (D11, D10).


\subsection*{7.23.3 ZONE}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

Depending on whether the input value is positive or negative, the output value is controlled by the bias value specified.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline ZONE & 16 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ ZONE } \\
- EN & ENO- \\
-s 1 & d \\
-s 2 & \\
-s 3 & \\
\hline
\end{tabular} & ZONE(EN,s1,s2,s3,d); \\
\hline ZONEP & 16 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ ZONEP } \\
EN & ENO- \\
- 1 & \\
- & \\
s2 & \\
s3 & \\
\end{tabular} & ZONEP(EN,s1,s2,s3,d); \\
\hline DZONE & 32 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DZONE } \\
EN & ENO- \\
-s 1 & d \\
s2 & \\
-s 3 & \\
\hline
\end{tabular} & DZONE(EN,s1,s2,s3,d); \\
\hline DZONEP & 32 bits & Pulse & \begin{tabular}{lr}
\multicolumn{2}{c|}{ DZONEP } \\
EN & ENO- \\
-s 1 & d \\
-s 2 & \\
-s 3 & \\
\hline
\end{tabular} & DZONEP(EN,s1,s2,s3,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l|l|l}
\hline \multirow{2}{*}{ Variable } & \multirow{2}{c|}{ Description } & \multicolumn{2}{c}{ Data type } \\
\cline { 3 - 6 } & & & \begin{tabular}{c} 
16-bit \\
operation
\end{tabular} & \begin{tabular}{c} 
32-bit \\
operation
\end{tabular} \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit & ANY16 & ANY32 \\
\cline { 2 - 6 } & s1 & s2 & Negative bias value to be added to the input value & ANY16 & ANY32 \\
\cline { 2 - 6 } & s3 & Positive bias value to be added to the input value & ANY16 & ANY32 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Input value controlled by the zone & Bit & \\
\cline { 2 - 6 } & d & Execution state & ANY16 & ANY32 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{5}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11}\) \\
口"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & & - & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & & - & - & \(\bullet\) & & & \(\bullet\) & - & - & & & \\
\hline (s3) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & & - & - & - & & & - & & & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & - & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (ZONE/ZONEP)}

The bias value specified by s1 or s2 is added to the input value specified by s3, and output to the device specified by d .
The bias value is added as shown below.

1) In the case of "
 \(0 "\).....s3

2) In the case of " (s3) \(\begin{gathered}\text { input } \\ \text { value }\end{gathered}=0 "\) \(\qquad\) \(0 \rightarrow\) (d) \(\begin{gathered}\text { output } \\ \text { value }\end{gathered}\)
3) In the case of "
 0 ".....s3


\section*{2. 32-bit operation (DZONE/DZONEP)}

The bias value specified by \(s 1\) or s2 is added to the input value of the device specified by \(s 3\), and output to the device specified by (d).
The bias value is added as shown below:

*1. This defines the negative bias value to be added to the input value.
*2. This defines the positive bias value to be added to the input value.
*3. This defines the input value controlled by the zone.
*4. This defines the head device that stores the output value controlled by the zone.




\section*{Cautions}
1) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
2) When the output value overflows, it is handled as follows:
a) In the 16-bit operation

The output value is a 16-bit binary value with sign. Accordingly, if the operation result is outside the range from -32768 to 32767 , it is handled as follows:

Negative bias value \(s 1\) s \(=-100 \quad \square\)
Input value (s3) \(=-32,768\)\(\quad \begin{aligned} \text { Output value } & =-32,768+(-100) \\ & =8000 \mathrm{H}+\mathrm{FF9CH} \\ & =7 \mathrm{F9CH} \\ & =32,668\end{aligned}\)
b) In the 32-bit operation

The output value is a 32-bit binary value with sign. Accordingly, if the operation result is outside the range from \(-2,147,483,648\) to \(2,147,483,647\), it is handled as follows:

Negative bias value \(s 1=-1000\)
Input value s3 =-2,147,483,648


Output value \(=-2,147,483,648+(-1000)\)
\(=80000000 \mathrm{H}+\) FFFFFC18H
=7FFFFC18
\(=2,147,482,648\)

\section*{Program example}

\section*{1. Program example 1}

In the program example shown below, the BCD data set in X020 to X037 is controlled by the zone from "-1000" to "1000", and the controlled value is output to D1 when X000 turns ON.
[Structured ladder]


\section*{[ST]}

BIN(X000,K4X020,D0);
D1:=ZONEP(X000,K-1000,K1000,D0);

\section*{Operation}
1) In the case of "D0 < 0", "D0 + (-1000)" is output to D1.
2) In the case of " \(D=0\) ", " 0 " is output to \(D 1\).
3) In the case of " \(0<D 0\) ", "D0 + 1000" is output to D1.

2. Program example 2

In the program example below, the BCD data set in X020 to X057 is controlled by the zone from "-10000" to "10000", and the controlled value is output to D11 and D10 when X000 turns ON.
[Structured ladder]

*1. VAR_01 is a global label and is defined as K8X020.
*2. VAR_02 is a global label and is defined as D0.
*3. VAR_11 is a global label and is defined as K-10000.
*4. VAR_12 is a global label and is defined as K10000.
*5. VAR_13 is a global label and is defined as D0.

\section*{Operation}
1) In the case of "(D1, D0) < 0", "(D1, D0) + (-10000)" is output to (D11, D10).
2) In the case of "(D1, D0) = 0", "0" is output to (D11, D10).
3) In the case of " \(0<(D 1, D 0)\) ", "(D1, D0) + 10000" is output to (D11, D10)
[ST]
DBIN(X000,VAR_01,VAR_02);
VAR_14:=DZONEP(X000,VAR_11,VAR_12,VAR_13);

\subsection*{7.23.4 SCL}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction executes scaling of the input value using a specified data table, and outputs the result.
SCL2 is also available with a different data table configuration for scaling.
\(\rightarrow\) For SCL2 instruction, refer to Section 7.23.7.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{3}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & & ST \\
\hline SCL & 16 bits & Continuous &  & SCL(EN,s1,s2,d); & \\
\hline SCLP & 16 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c}{ SCLP } \\
EN & ENO \\
-s 1 & d \\
s 2 & \\
\hline
\end{tabular} & SCLP(EN,s1,s2,d); & \\
\hline DSCL & 32 bits & Continuous &  & DSCL(EN,s1,s2,d); & \\
\hline DSCLP & 32 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c}{ DSCLP } \\
EN & ENO \\
-s 1 & d \\
s 2 & \\
\hline
\end{tabular} & DSCLP(EN,s1,s2,d); & \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit & 32-bit \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s) & Input value used in scaling or device storing the input value & ANY16 & ANY32 \\
\hline & (s2) & Head device storing the conversion table used in scaling & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Device storing the output value controlled by scaling & ANY16 & ANY32 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{5}{|c|}{System user} & \multirow[t]{2}{*}{Special unit
\[
\mathbf{U} \square \mathbf{I G} \square
\]} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1 & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & - & \(\bullet\) & \(\bullet\) & & & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & & & & & & & & - & \(\bullet\) & & & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & - & - & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (SCL/SCLP)}

The input value of the device specified by s1 is processed by scaling for the specified conversion characteristics, and stored to a device number specified by \(d\). Conversion for scaling is executed based on the data table stored in a device specified in s2 and later.
If the output data is not an integer, however, the number in the first decimal place is rounded.
\(\rightarrow\) For the method to set the conversion table for scaling, refer to the next page.
\begin{tabular}{|c|c|c|c|}
\hline Command & \multicolumn{3}{|l|}{Conversion setting data table for scaling} \\
\hline  & \multicolumn{2}{|c|}{Set item} & Device assignment in setting data table \\
\hline  & \multicolumn{2}{|l|}{Number of coordinate points ("5" in the case shown in the left figure)} & (s2) \\
\hline \multirow[b]{2}{*}{*1. Input value used in scaling or device storing the input value} & \multirow[b]{2}{*}{Point 1} & \(X\) coordinate & (s2) +1 \\
\hline & & Y coordinate & (s2) +2 \\
\hline *2. Head device storing the conversion table used in scaling & \multirow[b]{2}{*}{Point 2} & X coordinate & (s2) +3 \\
\hline *3. Device storing the output value controlled by scaling & & Y coordinate & (s2) +4 \\
\hline Point 2 & \multirow{2}{*}{Point 3} & \(X\) coordinate & (s2) +5 \\
\hline  & & Y coordinate & (s2) +6 \\
\hline (d) & \multirow{2}{*}{Point 4} & X coordinate & (s2) +7 \\
\hline - Point 3 & & Y coordinate & (s2) +8 \\
\hline Point 4 & \multirow{2}{*}{Point 5} & X coordinate & (s2) +9 \\
\hline & & Y coordinate & (s2) +10 \\
\hline Operation \(\rightarrow\) Opror & & & \\
\hline
\end{tabular}

\section*{2. 32-bit operation (DSCL/DSCLP)}

The input value specified by (s1) is processed by scaling for the specified conversion table, and stored to a device number specified in \((d\). Conversion for scaling is executed based on the data table stored in a device specified in \(\mathrm{s}^{2}\) and later.
If the output data is not an integer, however, the number in the first decimal place is rounded.

*1. This defines the input value used in scaling or device storing the input value.
*2. This defines the head device storing the conversion table used in scaling.
*3. This defines the device storing the output value controlled by scaling.


\section*{3. Setting the conversion table for scaling}

The conversion table for scaling is set based on the data table stored in a device specified in s2 and later. The data table has the following configuration:
\(\rightarrow\) For a setting example, refer to the next page.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Set item}} & \multicolumn{2}{|l|}{Device assignment in setting data table} \\
\hline & & 16-bit operation & 32-bit operation \\
\hline \multicolumn{2}{|l|}{Number of coordinate points} & (s2) & [ s2 +1, s2)] \\
\hline \multirow{2}{*}{Point 1} & X coordinate & (s2) +1 & [s2) +3, s2 +2] \\
\hline & Y coordinate & (s2) +2 & [s2) +5, s2 +4\(]\) \\
\hline \multirow{2}{*}{Point 2} & X coordinate & (s2) +3 & [ \(s 2\) +7, s2 +6] \\
\hline & Y coordinate & (s2) +4 & [ \(\mathrm{s} 2^{\text {2 }}+9\), s2 +8 ] \\
\hline : & : & : & ! \\
\hline \multirow{2}{*}{Point n (last)} & X coordinate & (s2) \(+2 n-1\) & [s2) \(+4 n-1\), s2 \(+4 n-2]\) \\
\hline & Y coordinate & (s2) \(+2 n\) & [s2) \(+4 n+1\), s2 \(+4 n\) ] \\
\hline
\end{tabular}

\section*{4. Setting example of the conversion table for scaling}

A setting example for the 16-bit operation is shown below.
For the 32-bit operation, set each item using a 32-bit binary value.
In the case of the conversion characteristics for scaling shown in the figure below, set the following data table.


Setting the conversion setting data table for scaling
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Set item}} & \multicolumn{3}{|l|}{Setting device and setting contents} & \multirow[b]{2}{*}{Remarks} \\
\hline & & \multicolumn{2}{|l|}{When R0 is specified in s2} & Setting contents & \\
\hline \multicolumn{2}{|l|}{Number of coordinate points} & (s2) & R0 & K10 & \\
\hline \multirow{2}{*}{Point 1} & X coordinate & (s2) +1 & R1 & K5 & \\
\hline & Y coordinate & (s2) +2 & R2 & K7 & \\
\hline \multirow{2}{*}{Point 2} & X coordinate & (s2) +3 & R3 & K20 & \\
\hline & Y coordinate & (s2) +4 & R4 & K30 & \\
\hline \multirow{2}{*}{Point 3} & X coordinate & (s2) +5 & R5 & K50 & \\
\hline & Y coordinate & (s2) +6 & R6 & K100 & \\
\hline \multirow{2}{*}{Point 4} & \(X\) coordinate & (s2) +7 & R7 & K200 & \multirow{6}{*}{\begin{tabular}{l}
When coordinates are specified using three points in this way, the output value can be set to an intermediate value. In this example, the output value (intermediate value) is specified by the \(Y\) coordinate of the point 5 . \\
If the \(x\) coordinate is the same at three points or more, the value at the second point is also output.
\end{tabular}} \\
\hline & Y coordinate & (s2) +8 & R8 & K25 & \\
\hline \multirow{2}{*}{Point 5} & X coordinate & (s2) +9 & R9 & K200 & \\
\hline & Y coordinate & (s2) +10 & R10 & K70 & \\
\hline \multirow{2}{*}{Point 6} & \(X\) coordinate & (s2) +11 & R11 & K200 & \\
\hline & Y coordinate & (s2) +12 & R12 & K250 & \\
\hline \multirow{2}{*}{Point 7} & \(X\) coordinate & (s2) +13 & R13 & K250 & \\
\hline & Y coordinate & (s2) +14 & R14 & K90 & \\
\hline \multirow{2}{*}{Point 8} & X coordinate & (s2) +15 & R15 & K350 & \multirow{4}{*}{When coordinates are specified using two points in this way, the output value is the Y coordinate at the next point. In this example, the output value is specified by the Y coordinate of the point 9 .} \\
\hline & Y coordinate & (s2) +16 & R16 & K90 & \\
\hline \multirow{2}{*}{Point 9} & \(X\) coordinate & (s2) +17 & R17 & K350 & \\
\hline & Y coordinate & (s2) +18 & R18 & K30 & \\
\hline \multirow{2}{*}{Point 10} & \(X\) coordinate & (s2) +19 & R19 & K400 & \\
\hline & Y coordinate & (s2) +20 & R20 & K7 & \\
\hline
\end{tabular}

\section*{Cautions}

When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When the Xn data is not set in the ascending order in the data table (error code: K6706)

The data table is searched from the low-order side of device numbers in the data table in the operation. Accordingly, even if only some Xn data is set in the ascending order in the data table, the instruction is executed without operation error up to the area of the data table in which the Xn data is set in the ascending order.
2) When the device specified by s 1 is outside the data table range (error code: K6706)
3) When the value exceeds the 32-bit data range in the middle of operation (error code: K6706) In this case, check whether the distance between points is not "65535" or more. If the distance is "65535" or more, reduce the distance between points.

\section*{Program example}

In the program example shown below, the value input to D 0 is processed by scaling based on the conversion table for scaling set in R0 and later, and output to D10.

\section*{Program}

[ST]
SCL (M8000, D0, R0, D10)

\section*{Operation}


Conversion setting data table for scaling
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Set item} & Device & Setting contents \\
\hline \multicolumn{2}{|l|}{Number of coordinate points} & R0 & K6 \\
\hline \multirow{2}{*}{Point 1} & X coordinate & R1 & K0 \\
\hline & Y coordinate & R2 & K0 \\
\hline \multirow{2}{*}{Point 2} & X coordinate & R3 & K10 \\
\hline & Y coordinate & R4 & K50 \\
\hline \multirow{2}{*}{Point 3} & X coordinate & R5 & K30 \\
\hline & Y coordinate & R6 & K100 \\
\hline \multirow{2}{*}{Point 4} & X coordinate & R7 & K40 \\
\hline & Y coordinate & R8 & K45 \\
\hline \multirow{2}{*}{Point 5} & X coordinate & R9 & K50 \\
\hline & Y coordinate & R10 & K30 \\
\hline \multirow{2}{*}{Point 6} & X coordinate & R11 & K60 \\
\hline & Y coordinate & R12 & K0 \\
\hline
\end{tabular}

\subsection*{7.23.5 DABIN}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts numeric data expressed in decimal ASCII codes \((30 \mathrm{H}\) to 39 H\()\) into binary data.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DABIN & 16 bits & Continuous &  & DABIN(EN,s,d); \\
\hline DABINP & 16 bits & Pulse &  & DABINP(EN,s,d); \\
\hline DDABIN & 32 bits & Continuous &  & DDABIN(EN,s,d); \\
\hline DDABINP & 32 bits & Pulse &  & DDABINP(EN, \(\mathrm{s}, \mathrm{d})\); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit operation & 32-bit operation \\
\hline \multirow[b]{2}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s) & Head device storing data (ASCII codes) to be converted into binary data & String & String \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Device storing conversion result & ANY16 & ANY32 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{5}{|c|}{System user} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Special } \\
\text { unit }
\end{array} \\
\hline \text { U } \square \backslash G \square \\
\hline
\end{array}
\]} & \multicolumn{4}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c|c}
\hline \begin{tabular}{c} 
Character \\
String
\end{tabular} \\
\hline\(" \square "\) \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{Pointer} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & & D & R & & V & Z & & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & - & - & & - & \(\bullet\) & & & & & - & & & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & & - & \(\bullet\) & \(\bullet\) & - & - & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (DABIN/DABINP)}
1) Data expressed in decimal ASCII codes \((30 \mathrm{H}\) to 39 H\()\) and stored in the device specified by S is converted into 16-bit binary data, and stored in the device specified by \(\mathbb{C}\).

*1. This defines the head device that stores data (ASCII codes) to be converted into binary data.


For example, when the device specified by stores ASCII codes expressing "-25108", 16-bit binary data is stored in the device specified by (d) as follows:

2) The numeric range of data stored in the device specified by \(s\) is from "-32768" to "32767".
3) As "sign data", "20H (space)" is set when the data to be converted is positive, and "2DH (-)" is set when the data to be converted is negative.
4) An ASCII code for each digit is within the range from 30 H to 39 H .
5) When an ASCII code for each digit is " 20 H (space)" or " 00 H (NULL)", it is handled as " 30 H ".

\section*{2. 32-bit operation (DDABIN/DDABINP)}
1) Data expressed in decimal ASCII codes \((30 \mathrm{H}\) to 39 H\()\) and stored in the device specified by s is converted into 32-bit binary data, and stored in the device specified by \(\mathbb{d}\).

*1. This defines the head device that stores data (ASCII codes) to be converted into binary data.
*2. This defines the device storing conversion result.


For example, when the device specified by s stores ASCII codes expressing "-1,234,543,210", 32-bit binary data is stored in the device specified by (d) as follows:

2) The numeric range of data stored in the device specified by \(S\) is from "-2,147,483,648" to "2,147,483,647".
The high-order byte of \((5+5\) is ignored.
3) As "sign data", "20H (space)" is set when the data to be converted is positive, and "2DH (-)" is set when the data to be converted is negative.
4) An ASCII code for each digit is within the range from 30 H to 39 H .
5) When an ASCII code for each digit is " 20 H (space)" or " 00 H (NULL)", it is handled as " 30 H ".

\section*{Related instructions}
\begin{tabular}{c|l}
\hline Instruction & \multicolumn{1}{c}{ Description } \\
\hline ASCI & Converts hexadecimal codes into ASCII codes. \\
\hline HEX & Converts ASCII codes into hexadecimal codes. \\
\hline STR & Converts binary data into a character string (ASCII codes). \\
\hline VAL & Converts a character string (ASCII codes) into binary data. \\
\hline BINDA & Converts binary data into decimal ASCII codes (30H to 39H). \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling array data or 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle array data or 32-bit data. A 32-bit counter can be specified directly as it is a 32-bit long device. Use a global label to specify a device
2) The FX3UC PLC of \(\vee 2.20\) or later supports the DABIN instruction.

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When the sign data is any value other than " 20 H (space)" or "2DH (-)".
(Error code: K6706)
2) When an ASCII code for each digit stored in \(\triangle\) to \(\circlearrowleft+2\) (5) is any value other than " 30 H " to " 39 H ", "20H (space)", or "00H (NULL)". (Error code: K6706)
3) When the numeric range of \(s\) to \(\circlearrowleft+2(5)\) is outside the following range. (Error code: K6706)
\begin{tabular}{c|l}
\hline & \multicolumn{1}{|c}{ Setting range } \\
\hline 16-bit operation & -32768 to 32767 \\
\hline 32-bit operation & \(-2,147,483,648\) to \(2,147,483,647\) \\
\hline
\end{tabular}
4) When the device specified by \(s\) exceeds the device range. (Error code: K6706)

\section*{Program example}

In the program example below, the sign and decimal ASCII codes in five digits stored in D20 to D22 are converted into a binary value and stored in D0 when X000 turns ON.
[Structured ladder]

*1. VAR_01 is a global label and is defined as D20.


\subsection*{7.23.6 BINDA}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction converts binary data into decimal ASCII codes ( 30 H to 39 H ).
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured Iadder & ST \\
\hline BINDA & 16 bits & Continuous &  & BINDA(EN,s,d); \\
\hline BINDAP & 16 bits & Pulse &  & BINDAP(EN,s,d); \\
\hline DBINDA & 32 bits & Continuous &  & DBINDA(EN,s,d); \\
\hline DBINDAP & 32 bits & Pulse & \begin{tabular}{lr}
-2 DBINDAP \\
-s & ENO \\
\hline
\end{tabular} & DBINDAP(EN,s,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l|l|l}
\hline \multirow{2}{*}{ Variable } & \multirow{2}{*}{ Description } & \multicolumn{2}{c}{ Data type } \\
\cline { 4 - 6 } & & \begin{tabular}{c} 
16-bit \\
operation
\end{tabular} & \begin{tabular}{c} 
32-bit \\
operation
\end{tabular} \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit & \\
\cline { 2 - 6 } \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Device storing binary data to be converted into ASCII codes & ANY16 & ANY32 \\
\cline { 2 - 6 } & (d) & Execution state & String & String \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|l|}{Special unit} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square \mathbf{I G} \square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & - & - & \(\bullet\) & - & - & & \(\bullet\) & - & - & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & & & & & & & & & & \(\bullet\) & - & - & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (BINDA/BINDAP)}
1) Each digit of 16 -bit binary data stored in the device specified by \(S\) is converted into an ASCII code \((30 \mathrm{H}\) to 39 H\()\), and stored in the device specified by \((d)\) and later.



For example, when the device specified by stores "-12345", the conversion result is stored in the device specified by (d) and later as follows:

2) The numeric range of 16 -bit binary data stored in the device specified by \(s\) is from " -32768 " to "32767".
3) The conversion result stored in the device specified by \((d)\) is as follows:
a) As "sign data", "20H (space)" is set when the 16-bit binary data stored in the device specified by s is positive, and "2DH (-)" is set when 16-bit binary data stored in the device specified by \(\subseteq\) is negative.
b) " 20 H (space)" is stored for " 0 " on the left side of the effective digits (zero suppression).

00325

c) d +3 is set as follows depending on the ON/OFF status of M8091.
\begin{tabular}{c|ll}
\hline ON/OFF status & & Contents of processing \\
\hline M8091 \(=\mathrm{OFF}\) & d +3 is set to " \(0000 \mathrm{H}(\mathrm{NULL}) "\). \\
\hline M8091 \(=\mathrm{ON}\) & d +3 does not change \\
\hline
\end{tabular}

\section*{2. 32-bit operation (DBINDA/DBINDAP)}
1) Each digit of 32-bit binary data stored in the device specified by \(\square\) is converted into an ASCII code (30H to 39H), and stored in the device specified by \(\qquad\) and later.

*1. This defines the device that stores binary data to be converted into ASCII codes.
*2. This defines the head device that stores the conversion result.


For example, when the device specified by stores "-12,345,678", the conversion result is stored in the device specified by (d) and later as follows:

2) The numeric range of 32 -bit binary data stored in the device specified bay \(S\) is from "-2,147,483,648" to " \(2,147,483,647\) ".
3) The conversion result stored in the device specified by \((d\) is as follows:
a) As "sign data", " 20 H (space)" is set when the 32-bit binary data stored in the device specified by s is positive, and "2DH (-)" is set when 32-bit binary data stored in the device specified by \(S\) is negative.
b) " 20 H (space)" is stored for " 0 " on the left side of the effective digits (zero suppression).

c) The high-order byte of \(\mathbb{d}+5\) is set as follows depending on the ON/OFF status of M8091.
\begin{tabular}{c|l}
\hline ON/OFF status & \multicolumn{1}{c}{ Contents of processing } \\
\hline M8091=OFF & The high-order byte of \(\triangle+5\) is set to " \(00 \mathrm{H}(\mathrm{NULL}) "\). \\
\hline M8091 \(=\) ON & The high-order byte of \(\triangle+5\) is set to " 20 H (space)". \\
\hline
\end{tabular}

\section*{Related devices}
\begin{tabular}{|c|c|c|}
\hline Device & Name & Description \\
\hline M8091 & Output character quantity selector signal & \begin{tabular}{l}
- For 16-bit operation \\
- When M8091 is OFF, d +3 is set to " 0000 H (NULL)". \\
- When M8091 is ON, d +3 does not change. \\
- For 32-bit operation \\
- When M8091 is OFF, the high-order byte of \((d)+5\) is set to " 00 H (NULL)". \\
- When M8091 is ON, the high-order byte of (d + 5 is set to " 20 H (space)".
\end{tabular} \\
\hline
\end{tabular}

\section*{Related instructions}
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Instruction } & \multicolumn{1}{c}{ Description } \\
\hline ASCI & Converts hexadecimal codes into ASCII codes. \\
\hline HEX & Converts ASCII codes into hexadecimal codes. \\
\hline DESTR & Converts binary floating point data into a character string data (ASCII code) with the specified number of digits. \\
\hline DEVAL & Converts character string data (ASCII code) into binary floating point data. \\
\hline DABIN & Converts numeric value data expressed in decimal ASCII codes (30H to 39 H\()\) into binary data. \\
\hline
\end{tabular}

\section*{Cautions}
1) When handling array data or 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle array data or 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device
2) The FX3UC PLC of \(V 2.20\) or later supports the DABIN instruction.
3) Occupied device points

The table below shows the occupied device points of the device specified by \(\mathbb{C}\) for 16-bit operation (BINDA/BINDAP) when M8091 is ON or OFF and 32-bit operation (DBINDA/DBINDAP).
\begin{tabular}{l|l|c}
\hline \multicolumn{2}{|c|}{} & Occupied points of \(\mathbb{d}\) \\
\hline \multirow{2}{*}{ 16-bit operation } & M8091=ON & 3 \\
\cline { 2 - 3 } & M8091=OFF & 4 \\
\hline 32-bit operation & 6 \\
\hline
\end{tabular}

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When the occupied device points of the ASCII code character string in the device specified by (d) exceed the corresponding device range. (Error code: K6706)

\section*{Program example}

In the program example below, 16-bit binary data stored in D1000 is converted into decimal ASCII codes when X000 is set to ON, and the ASCII codes converted by PR (FNC77) instruction are output one by one in the time division method to Y040 to Y051.
By setting to OFF the output character selector signal M8091 and setting to ON PR mode flag M8027, ASCII codes up to " 00 H " are output.
\(\rightarrow\) For PR mode flag and PR instruction, refer to Section 7.8.8.
[Structured ladder]

[ST]

RST(X000,M8091);
SET(X000,M8027);
BINDA(X000,D1000,VAR_02);
Y040:=PR(X000,D0);
*1. VAR_02 is a global label and is defined as D0.



\footnotetext{
"__5126" is output.
}

\subsection*{7.23.7 SCL2}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction executes scaling of the input value using a specified data table, and outputs the result.
SCL instruction is also available with a different data table configuration for scaling.
\(\rightarrow\) For SCL instruction, refer to Section 7.23.4.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{3}{|c|}{Expression in each language} \\
\hline & & & Structured ladder & & T \\
\hline SCL2 & 16 bits & Continuous & \begin{tabular}{lr}
\hline \multicolumn{2}{c|}{ SCL2 } \\
-EN & ENO- \\
-s 1 & d \\
-s 2 & \\
\hline
\end{tabular} & SCL2(EN,s1,s2,d); & \\
\hline SCL2P & 16 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ SCL2P } \\
EN & ENO- \\
- s1 & d \\
s2 & \\
\hline
\end{tabular} & SCL2P(EN,s1,s2,d); & \\
\hline DSCL2 & 32 bits & Continuous &  & DSCL2(EN,s1,s2,d); & \\
\hline DSCL2P & 32 bits & Pulse & \begin{tabular}{lr}
\hline \multicolumn{2}{c}{ DSCL2P } \\
EN & ENO- \\
-s 1 & d \\
s 2 & \\
\hline
\end{tabular} & DSCL2P(EN,s1,s2,d); & \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Variable}} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Data type} \\
\hline & & & 16-bit & 32-bit \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & \multicolumn{2}{|l|}{Bit} \\
\hline & (s) & Input value used in scaling or device storing the input value & ANY16 & ANY32 \\
\hline & (s2) & Head device storing the conversion table used in scaling & ANY16 & ANY32 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & \multicolumn{2}{|l|}{Bit} \\
\hline & (d) & Device storing the output value controlled by scaling & ANY16 & ANY32 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{5}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square \mathbf{I G}\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{Character String
} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & c & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & & - & \(\bullet\) & - & & & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & & & & & & & & - & \(\bullet\) & & & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & - & - & & - & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (SCL2/SCL2P)}

The input value specified in s1 is processed by scaling for the specified conversion characteristics, and stored to a device number specified in \(\mathbb{C}\). Conversion for scaling is executed based on the data table stored in a device specified in s2 and later.
If the output data is not an integer, however, the number in the first decimal place is rounded.
\(\rightarrow\) For the method to set the conversion table for scaling, refer to the next page.

*1. Input value used in scaling or device storing the input value
*2. Head device storing the conversion table used in scaling
*3. Device storing the output value controlled by scaling


Conversion setting data table for scaling
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{Set item} & Device assignment in setting data table \\
\hline \multicolumn{2}{|l|}{Number of coordinate points ("5" in the case shown in the left figure)} & (s2) \\
\hline \multirow{5}{*}{X coordinate} & Point 1 & (s2) +1 \\
\hline & Point 2 & (s2) +2 \\
\hline & Point 3 & (s2) +3 \\
\hline & Point 4 & (s2) +4 \\
\hline & Point 5 & (s2) +5 \\
\hline \multirow{5}{*}{Y coordinate} & Point 1 & (s2) +6 \\
\hline & Point 2 & (s2) +7 \\
\hline & Point 3 & (s2) +8 \\
\hline & Point 4 & (s2) +9 \\
\hline & Point 5 & (s2) +10 \\
\hline
\end{tabular}

\section*{2. 32-bit operation (DSCL2/DSCL2P)}

The input value specified by (si) is processed by scaling for the specified conversion table, and stored to a device number specified in (d). Conversion for scaling is executed based on the data table stored in a device specified in \(\mathrm{S}_{2}\) and later.
If the output data is not an integer, however, the number in the first decimal place is rounded.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Command input} & \multicolumn{2}{|c|}{DSCL2} \\
\hline & EN & ENO \\
\hline Label \(1^{* 1}\) & s1 & d \\
\hline Label \({ }^{*}{ }^{2}\) & & \\
\hline
\end{tabular}
*1. This defines the input value used in scaling or device storing the input value.
*2. This defines the head device storing the conversion table used in scaling.
*3. This defines the device storing the output value controlled by scaling.


Conversion setting data table for scaling
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{Set item} & Conversion setting data table for scaling \\
\hline \multicolumn{2}{|l|}{Number of coordinate points ("5" in the case shown in the left figure)} & [s2) +1, s2 ] \\
\hline \multirow{5}{*}{X coordinate} & Point 1 & [s2) \(\left.+3, s^{2}+2\right]\) \\
\hline & Point 2 & [s2) \(\left.+5, s^{2}+4\right]\) \\
\hline & Point 3 & [ \(s 2\) +7, s2 +6] \\
\hline & Point 4 & [s2) +9, s2 + 8 ] \\
\hline & Point 5 & [s2) +11, s2 + +10] \\
\hline \multirow{5}{*}{Y coordinate} & Point 1 & [s2) +13, s2 + +12] \\
\hline & Point 2 & [ (s2) +15, s2 +14] \\
\hline & Point 3 & [s2) +17, s2 +16] \\
\hline & Point 4 & [ \(\mathrm{s} 2^{\text {2 }}+19, \mathrm{~s} 2\) +18] \\
\hline & Point 5 & [s2) +21, s2 +20\(]\) \\
\hline
\end{tabular}

\section*{3. Setting the conversion table for scaling}

The conversion table for scaling is set based on the data table stored in a device specified in (s2) and later. The data table has the following configuration:
\(\rightarrow\) For a setting example, refer to the next page.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Set item}} & \multicolumn{2}{|l|}{Device assignment in setting data table} \\
\hline & & 16-bit operation & 32-bit operation \\
\hline \multicolumn{2}{|l|}{Number of coordinate points} & (s2) & [ s2 +1, s2] \\
\hline \multirow{4}{*}{X coordinate} & Point 1 & (s2) +1 & [s2) \(\left.+3, s^{2}+2\right]\) \\
\hline & Point 2 & (s2) +2 & [ s 2 ) +5, (s2 +4\(]\) \\
\hline & ! & \(\vdots\) & : \\
\hline & Point n (last) & (s2) +n & [s2) \(\left.+2 n+1, s^{2}+2 n\right]\) \\
\hline \multirow{4}{*}{Y coordinate} & Point 1 & (s2) \(+\mathrm{n}+1\) & [s2) \(+2 n+3, s^{\text {s }}\) ) \(\left.+2 n+2\right]\) \\
\hline & Point 2 & (s2) \(+\mathrm{n}+2\) & [ s2) \(+2 n+5\), s2 \(+2 n+4]\) \\
\hline & : & : & : \\
\hline & Point n (last) & (s2) \(+2 n\) & [s2 \(+4 n+1\), s2 \(+4 n]\) \\
\hline
\end{tabular}

\section*{Setting example of the conversion table for scaling}

A setting example for the 16-bit operation is shown below.
For the 32-bit operation, set each item using a 32-bit binary value.
In the case of the conversion characteristics for scaling shown in the figure below, set the following data table.


Setting the conversion setting data table for scaling
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & Set & e and settin & ntents & \\
\hline Set & item & When R0 & fied in s2 & Setting contents & Remarks \\
\hline Number of co & ordinate points & (s2) & R0 & K10 & \\
\hline & Point 1 & (s2) +1 & R1 & K5 & \\
\hline & Point 2 & (s2) +2 & R2 & K20 & \\
\hline & Point 3 & (s2) +3 & R3 & K50 & \\
\hline & Point 4 & (s2) +4 & R4 & K200 & \\
\hline X coordinate & Point 5 & (s2) +5 & R5 & K200 & Refer to *1. \\
\hline coor & Point 6 & (s2) +6 & R6 & K200 & \\
\hline & Point 7 & (s2) +7 & R7 & K250 & \\
\hline & Point 8 & (s2) +8 & R8 & K350 & Refor to *2 \\
\hline & Point 9 & (s2) +9 & R9 & K350 & Refer to 2. \\
\hline & Point 10 & (s2) +10 & R10 & K400 & \\
\hline \multirow{10}{*}{Y coordinate} & Point 1 & (s2) +11 & R11 & K7 & \\
\hline & Point 2 & (s2) +12 & R12 & K30 & \\
\hline & Point 3 & (s2) +13 & R13 & K100 & \\
\hline & Point 4 & (s2) +14 & R14 & K25 & \multirow{3}{*}{Refer to *1.} \\
\hline & Point 5 & (s2) +15 & R15 & K70 & \\
\hline & Point 6 & (s2) +16 & R16 & K250 & \\
\hline & Point 7 & (s2) +17 & R17 & K90 & \\
\hline & Point 8 & (s2) +18 & R18 & K90 & \multirow[t]{2}{*}{Refer to *2.} \\
\hline & Point 9 & (s2) +19 & R19 & K30 & \\
\hline & Point 10 & (s2) +20 & R20 & K7 & \\
\hline
\end{tabular}
*1. When coordinates are specified using three points as shown in the points 4,5 and 6 , the output value can be set to an intermediate value.
In this example, the output value (intermediate value) is specified by the Y coordinate of the point 5. If the \(X\) coordinate is same at three points or more, the value at the second point is output also.
*2. When coordinates are specified using two points as shown in the points 8 and 9 , the output value is the Y coordinate at the next point.
In this example, the output value is specified by the Y coordinate of the point 9.

\section*{Cautions}

When handling 32－bit data in a structured program，a 16－bit device cannot be specified directly as in the case of a simple project．Use a label to handle 32－bit data．
A 32－bit counter can be specified directly as it is a 32－bit long device．
Use a global label to specify a device．

\section*{Error}

An operation error is caused in the following cases．The error flag M8067 turns ON，and the error code is stored in D8067．
1）When the Xn data is not set in the ascending order in the data table（error code：K6706）
The data table is searched from the low－order side of device numbers in the data table in the operation． Accordingly，even if only some Xn data is set in the ascending order in the data table，the instruction is executed without operation error up to the area of the data table in which the Xn data is set in the ascending order．

2）When the device specified by s 1 is outside the data table range（error code：K6706）
3）When the value exceeds the 32－bit data range in the middle of operation（error code：K6706） In this case，check whether the distance between points is not＂65535＂or more． If the distance is＂65535＂or more，reduce the distance between points．

\section*{Program example}

In the program example shown below，the value input to D 0 is processed by scaling based on the conversion table for scaling set in R0 and later，and output to D10．

\section*{Program}
［Structured ladder］


\section*{Operation}


Conversion setting data table for scaling
\begin{tabular}{l|l|c|c}
\hline \multicolumn{2}{c|}{ Set item } & Device & \begin{tabular}{c} 
Setting \\
contents
\end{tabular} \\
\hline Number of coordinate points & R0 & K6 \\
\hline \multirow{4}{*}{ X coordinate } & Point 1 & R1 & K0 \\
\cline { 2 - 4 } & Point 2 & R2 & K10 \\
\cline { 2 - 4 } & Point 3 & R3 & K30 \\
\cline { 2 - 4 } & Point 4 & R4 & K40 \\
\cline { 2 - 4 } & Point 5 & R5 & K50 \\
\cline { 2 - 4 } & Point 6 & R6 & K60 \\
\hline \multirow{4}{*}{ Y coordinate } & Point 1 & R7 & K0 \\
\cline { 2 - 4 } & Point 2 & Point 3 & R9 \\
\cline { 2 - 4 } & Point 4 & R10 & K50 \\
\cline { 2 - 4 } & Point 5 & R11 & K30 \\
\cline { 2 - 4 } & Point 6 & R12 & K0 \\
\hline
\end{tabular}

\subsection*{7.24 External Device Communication (Inverter Communication)}

\subsection*{7.24.1 IVCK}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\Delta\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction reads the operation status of an inverter to a PLC using the computer link operation function of the inverter. Applicable inverters vary depending on the version.
This instruction corresponds to the EXTR (K10) instruction in the FX2N and FX2NC series.
\(\rightarrow\) For detailed explanation of the instruction, refer to the Data Communication Edition manual.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline IVCK & 16 bits & Continuous &  & IVCK(EN,s1,s2,n,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Inverter station number \\
\cline { 2 - 4 } & s1 & Inverter instruction code & Bit \\
\cline { 2 - 4 } & s2 & Channel to be used (K1:ch1,K2:ch2*1) & ANY16 \\
\cline { 2 - 4 } & n & Execution state & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Device storing the read value & ANY16 \\
\cline { 2 - 5 } & & d &
\end{tabular}
*1. "ch2" is not available for use for the FX3G PLCs of 14- and 24-point types.
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{5}{|c|}{System user} & \multirow[t]{2}{*}{Special unit U \(\square \mathbf{I G} \square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(11 \square\) \(\square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & & & - & - & -1 & -2 & & & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & & & & & & & - & - & -1 & -2 & & & - & - & - & & & \\
\hline (d) & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & - & - & -1 & -2 & & & - & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & & - & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{\(\rightarrow\) For detailed explanation of the instruction, refer to the Data Communication Edition manual.}
1. 16-bit operation (IVCK)

The operation status corresponding to the instruction code \({ }^{* 2}\) specified in the device specified by s2 of an inverter \({ }^{* 1}\) connected to communication port \(n\) whose station number is specified in the device specified by (s1) is read and transferred to the device specified by \(\mathbb{d}\).

*1. Mitsubishi Electric's FREQROL - F700, A700, E700, D700, V500, F500, A500, E500 and S500 series general purpose inverters
*2. Refer to the instruction code list.
Refer to the pages in the inverter manual on which the computer link function is explained in detail.

\section*{2. Instruction codes of inverters}

The table below shows the inverter instruction codes specified in s2 along with their functions.
For instruction codes, refer to the pages in the inverter manual where the computer link function is explained in detail.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction code specified in} & \multirow{2}{*}{Read contents} & \multicolumn{9}{|c|}{Corresponding inverter} \\
\hline & & F700 & A700 & E700 & D700 & V500 & F500 & A500 & E500 & S500 \\
\hline H7B & Operation mode & \(\checkmark\) \\
\hline H6F & Output frequency (number of rotations) & \(\checkmark\) \\
\hline H70 & Output current & \(\checkmark\) \\
\hline H71 & Output voltage & \(\checkmark\) & - \\
\hline H72 & Special monitor & \(\checkmark\) & - & - \\
\hline H73 & Special monitor selection number & \(\checkmark\) & - & - \\
\hline H74 & Abnormal contents & \(\checkmark\) \\
\hline H75 & Abnormal contents & \(\checkmark\) \\
\hline H76 & Abnormal contents & \(\checkmark\) & - \\
\hline H77 & Abnormal contents & \(\checkmark\) & - \\
\hline H79 & Inverter status monitor (extension) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & - & - & - & - \\
\hline H7A & Inverter status monitor & \(\checkmark\) \\
\hline H6E & Set frequency (read from E2PROM) & \(\checkmark\) \\
\hline H6D & Set frequency (read from RAM) & \(\checkmark\) \\
\hline
\end{tabular}
3. Related devices
\(\rightarrow\) For the instruction execution complete flag use method, refer to Section 1.3.4.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Number} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{Number} & \multirow[b]{2}{*}{Description} \\
\hline ch1 & ch2 & & ch1 & ch2 & \\
\hline \multicolumn{2}{|c|}{M8029} & Instruction execution complete & D8063 & D8438 & Error code of serial communication error \\
\hline M8063 & M8438 & Serial communication error & D8150 & D8155 & Response wait time in inverter communication \\
\hline M8151 & M8156 & Inverter communicating*1 & D8151 & D8156 & Step number in inverter communication \({ }^{*}\) \\
\hline M8152 & M8157 & Inverter communication error*1 & D8152 & D8157 & Error code of inverter communication error \({ }^{* 1}\) \\
\hline M8153 & M8158 & Inverter communication error latch*1 & D8153 & D8158 & Latch of inverter communication error occurrence step \(^{* 2}\) \\
\hline M8154 & M8159 & IVBWR instruction error* \({ }^{*}\) & D8154 & D8159 & IVBWR instruction error parameter number \({ }^{*}\) \\
\hline
\end{tabular}
*1. Cleared when the PLC mode switches from STOP to RUN.
*2. Initial value: -1

\section*{Cautions}
\(\rightarrow\) For other cautions, refer to the Data Communication Edition manual.
1) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
2) It is not permitted to use the RS and RS2 instructions and an inverter communication instruction (IVCK, IVDR, IVRD, IVWR and IVBWR) for the same port.
3) Two or more inverter communication instructions (IVCK, IVDR, IVRD, IVWR and IVBWR) can be driven for the same port at the same time.
4) Some restrictions to applicable devices
©1: Applicable to the FX3U, FX3UC and FX3G PLCs only.
©2: Applicable to the FX3U and FX3Uc PLCs only.

\section*{PLC applicable version}

The table below shows PLC versions applicable to each inverter.
\begin{tabular}{c|c|c|c}
\hline PLC & FREQROL-V500/F500/A500/E500/S500 & FREQROL-F700/A700 & FREQROL-E700/D700 \\
\hline FX3G & \multicolumn{3}{c}{ Ver.1.10 or later } \\
\hline FX3U & \multicolumn{3}{c|}{ Ver.2.20 or later } \\
\hline FX3UC & Ver.1.00 or later & Ver.2.20 or later & Ver.2.32 or later \\
\hline
\end{tabular}

\subsection*{7.24.2 IVDR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\Delta\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction writes a inverter operation required control value to the PLC using the computer link operation function of the inverter.
This instruction corresponds to the EXTR (K11) instruction in the FX2N and FX2NC series PLCs.
\(\rightarrow\) For detailed explanation of the instruction, refer to the Data Communication Edition manual.
1. Format and operation, execution form

2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Inverter station number \\
\cline { 2 - 5 } & s1 & Inverter instruction code & \begin{tabular}{l} 
Set value to be written to the inverter parameter or device storing the data \\
to be set.
\end{tabular} \\
\cline { 2 - 5 } & s3 & Channel to be used (K1:ch1,K2:ch2*1 \()\) & ANY16 \\
\cline { 2 - 5 } & n & Execution state & ANY16 \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & & ANY16 \\
\hline
\end{tabular}
*1. "ch2" is not available for use for the FX3G PLCs of 14- and 24-point types.

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|l|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(1 \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & - & \(\Delta 1\) & -2 & & & - & - & - & & & \\
\hline (s2) & & & & & & & & & & & & & & \(\bullet\) & -1 & -2 & & & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (s3) & & & & & & & & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & & & - & \(\Delta 1\) & -2 & & & - & - & \(\bullet\) & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{\(\rightarrow\) For detailed explanation of the instruction, refer to the Data Communication Edition manual.}
1. 16-bit operation (IVDR)

The control value specified in the device specified by \(s 3\) is written to the instruction code \({ }^{* 2}\) in the device specified by s2 of an inverter \({ }^{* 1}\) connected to a communication port \(n\) whose station number is specified in the device specified by ©1).

*1. Mitsubishi Electric's FREQROL - F700, A700, E700, D700, V500, F500, A500, E500 and S500 series general purpose inverters
*2. Refer to the instruction code list.
Refer to the pages in the inverter manual on which the computer link function is explained in detail.

\section*{2. Instruction codes of inverters}

The table below shows the inverter instruction codes specified in s2 along with their functions.
For instruction codes, refer to the pages in the inverter manual where the computer link function is explained in detail.
\begin{tabular}{c|l|c|c|c|c|c|c|c|c|c}
\hline \begin{tabular}{c} 
Hexadecimal instruction \\
\begin{tabular}{c} 
code of inverter \\
specified in (s2)
\end{tabular} \\
\end{tabular} & \multicolumn{8}{|c}{ Written contents } & \multicolumn{6}{|c}{ Corresponding inverter } \\
\hline HFB & Operation mode & F700 & A700 & E700 & D700 & V500 & F500 & A500 & E500 & S500 \\
\hline HF3 & Special monitor selection number & \(\checkmark\) & - \\
\hline HF9 & Operation command (extension) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & - & - & - & - \\
\hline HFA & Operation command & \(\checkmark\) \\
\hline HEE & Set frequency (written to EEPROM) & \(\checkmark\) \\
\hline HED & Set frequency (written to RAM) & \(\checkmark\) \\
\hline HFD & Inverter reset & \(\checkmark\) \\
\hline HF4 & Abnormal contents all clear & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline HFC & Parameter all clear & \(\checkmark\) \\
\hline HFC & User clear & - & - & - & - & - & \(\checkmark\) & \(\checkmark\) & - & - \\
\hline
\end{tabular}

\section*{3. Related devices}
\(\rightarrow\) For the instruction execution complete flag use method, refer to Section 1.3.4.
\begin{tabular}{c|c|l}
\hline \multicolumn{2}{c|}{ Number } & \multicolumn{2}{c}{ Description } \\
\cline { 1 - 2 } ch1 & ch2 & \\
\hline \multicolumn{2}{c|}{ M8029 } & Instruction execution complete \\
\hline M8063 & M8438 & Serial communication error \\
\hline M8151 & M8156 & Inverter communicating \({ }^{* 1}\) \\
\hline M8152 & M8157 & Inverter communication error \({ }^{* 1}\) \\
\hline M8153 & M8158 & Inverter communication error latch \({ }^{* 1}\) \\
\hline M8154 & M8159 & IVBWR instruction error \({ }^{* 1}\) \\
\hline
\end{tabular}
\begin{tabular}{c|c|l}
\hline \multicolumn{2}{c|}{ Number } & \multicolumn{2}{c}{ Description } \\
\cline { 1 - 2 } ch1 & ch2 & \\
\hline D8063 & D8438 & Error code of serial communication error \\
\hline D8150 & D8155 & Response wait time in inverter communication \\
\hline D8151 & D8156 & Step number in inverter communication \({ }^{* 2}\) \\
\hline D8152 & D8157 & Error code of inverter communication error \({ }^{* 1}\) \\
\hline D8153 & D8158 & \begin{tabular}{l} 
Latch of inverter communication error occurrence \\
step
\end{tabular} \\
\hline D8154 & D8159 & IVBWR instruction error parameter number \({ }^{* 2}\) \\
\hline
\end{tabular}
*1. Cleared when the PLC mode switches from STOP to RUN.
*2. Initial value: -1

\section*{Cautions}
\(\rightarrow\) For other cautions, refer to the Data Communication Edition manual.
1) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
2) It is not permitted to use the RS and RS2 instructions and an inverter communication instruction (IVCK, IVDR, IVRD, IVWR and IVBWR) for the same port.
3) Two or more inverter communication instructions (IVCK, IVDR, IVRD, IVWR and IVBWR) can be driven for the same port at the same time.
4) Some restrictions to applicable devices
©1: Applicable to the FX3U, FX3UC and FX3G PLCs only.
©2: Applicable to the \(\mathrm{FX}_{3} \mathrm{U}\) and \(\mathrm{FX} 3 \cup c\) PLCs only.

\section*{PLC applicable version}

The table below shows PLC versions applicable to each inverter.
\begin{tabular}{c|c|c|c}
\hline PLC & FREQROL-V500/F500/A500/E500/S500 & FREQROL-F700/A700 & FREQROL-E700/D700 \\
\hline FX3G & \multicolumn{3}{c}{ Ver.1.10 or later } \\
\hline FX3U & \multicolumn{3}{c}{ Ver.2.20 or later } \\
\hline FX3UC & Ver.1.00 or later & Ver.2.20 or later & Ver.2.32 or later \\
\hline
\end{tabular}

\subsection*{7.24.3 IVRD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\triangle\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction reads an inverter parameter to the PLC using the computer link operation function of the inverter.
This instruction corresponds to the EXTR (K12) instruction in the FX2N and FX2NC series PLCs.
\(\rightarrow\) For detailed explanation of the instruction, refer to the Data Communication Edition manual.
1. Format and operation, execution form


\section*{2. Set data}
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Inverter station number \\
\cline { 2 - 4 } & s 1 & Inverter parameter number & Bit \\
\cline { 2 - 4 } & s 2 & Channel to be used (K1:ch1,K2:ch2*1 \()\) & ANY16 \\
\cline { 2 - 5 } & n & Execution state & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Device storing the read value & ANY16 \\
\cline { 2 - 5 } & d & &
\end{tabular}
*1. "ch2" is not available for use for the FX3G PLCs of 14- and 24-point types.

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{8}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{5}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Cons \\
tant
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\) \\
■"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & C & S & & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & & & & - & & -1 & -2 & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & & & & & & & & - & & -1 & -2 & & & - & - & - & & & \\
\hline (d) & & & & & & & & & & & & & & & - & & -1 & -2 & & & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & & & - & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{\(\rightarrow\) For detailed explanation of the instruction, refer to the Data Communication Edition manual.}
1. 16-bit operation (IVRD)

The value of the parameter in the device specified by s2 is read from an inverter* \({ }^{* 1}\) connected to a communication port n whose station number is in the device specified by \(s 1\), and output to the device specified by d.

*1. Mitsubishi Electric's FREQROL - F700, A700, E700, D700, V500, F500, A500, E500 and S500 series general purpose inverters

\section*{2. Related devices}
\(\rightarrow\) For the instruction execution complete flag use method, refer to Section 1.3.4.
\begin{tabular}{c|c|l}
\hline \multicolumn{2}{c|}{ Number } & \multicolumn{2}{c}{ Description } \\
\cline { 1 - 2 } ch1 & ch2 & \multicolumn{1}{c}{} \\
\cline { 1 - 2 } M8029 & Instruction execution complete \\
\hline M8063 & M8438 & Serial communication error \\
\hline M8151 & M8156 & Inverter communicating \({ }^{* 1}\) \\
\hline M8152 & M8157 & Inverter communication error*1 \\
\hline M8153 & M8158 & Inverter communication error latch*1 \\
\hline M8154 & M8159 & IVBWR instruction error*1 \\
\hline
\end{tabular}
\begin{tabular}{c|c|l}
\hline \multicolumn{2}{c|}{ Number } & \multirow{2}{*}{ Description } \\
\cline { 1 - 2 } ch1 & ch2 & \\
\hline D8063 & D8438 & Error code of serial communication error \\
\hline D8150 & D8155 & Response wait time in inverter communication \\
\hline D8151 & D8156 & Step number in inverter communication*2 \\
\hline D8152 & D8157 & Error code of inverter communication error*1 \\
\hline D8153 & D8158 & \begin{tabular}{l} 
Latch of inverter communication error occurrence \\
step*2
\end{tabular} \\
\hline D8154 & D8159 & IVBWR instruction error parameter number*2 \\
\hline
\end{tabular}
*1. Cleared when the PLC mode switches from STOP to RUN.
*2. Initial value: -1

\section*{Cautions}
\(\rightarrow\) For other cautions, refer to the Data Communication Edition manual.
1) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
2) It is not permitted to use the RS and RS2 instructions and an inverter communication instruction (IVCK, IVDR, IVRD, IVWR and IVBWR) for the same port.
3) Two or more inverter communication instructions (IVCK, IVDR, IVRD, IVWR and IVBWR) can be driven for the same port at the same time.
4) Some restrictions to applicable devices
©1: Applicable to the FX3U, FX3UC and FX3G PLCs only.
©2: Applicable to the FX3U and FX3Uc PLCs only.

\section*{PLC applicable version}

The table below shows PLC versions applicable to each inverter.
\begin{tabular}{|c|c|c|c|}
\hline PLC & FREQROL-V500/F500/A500/E500/S500 & FREQROL-F700/A700 & FREQROL-E700/D700 \\
\hline FX3G & \multicolumn{3}{|c|}{Ver.1.10 or later} \\
\hline FX3U & \multicolumn{2}{|l|}{Ver.2.20 or later} & Ver.2.32 or later \\
\hline FX3UC & Ver.1.00 or later & Ver.2.20 or later & Ver.2.32 or later \\
\hline
\end{tabular}

\subsection*{7.24.4 IVWR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\triangle\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction writes a parameter of an inverter using the computer link operation function of the inverter. This instruction corresponds to the EXTR (K13) instruction in the FX2N and FX2NC series PLCs.
\(\rightarrow\) For detailed explanation of the instruction, refer to the Data Communication Edition manual.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[t]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline IVWR & 16 bits & Continuous & \begin{tabular}{ll} 
& \multicolumn{2}{c|}{ IVWR } \\
& EN \\
- s1 & \\
-s2 & \\
- s3 & \\
-n & \\
\hline
\end{tabular} & IVWR(EN,s1,s2,s3,n); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Inverter station number \\
\cline { 2 - 4 } & s1 & Inverter parameter number & \begin{tabular}{l} 
Set value to be written to the inverter parameter or device storing the data \\
to be set
\end{tabular} \\
\cline { 2 - 4 } & s3 & Channel to be used (K1:ch1,K2:ch2*1 \()\) & ANY16 \\
\hline & n & ANY16 \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & ANY16 \\
\hline
\end{tabular}
*1. "ch2" is not available for use for the FX3G PLCs of 14- and 24-point types.

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{c|}
\hline Special \\
unit
\end{tabular}\(|\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\) \\
"
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & \(\mathbf{Y}\) & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R. & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & & & \(\bullet\) & -1 & \(\triangle 2\) & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & & & & & & & \(\bullet\) & -1 & \(\triangle 2\) & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s3) & & & & & & & & & & & & & & \(\bullet\) & -1 & -2 & & & - & \(\bullet\) & \(\bullet\) & & & \\
\hline ( m & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}
: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{\(\rightarrow\) For detailed explanation of the instruction, refer to the Data Communication Edition manual.}
1. 16-bit operation (IVWR)

A value specified in the device specified by s3 is written to a parameter in the device specified by s2 in an inverter \({ }^{* 1}\) connected to a communication port \(n\) whose station number is in the device specified by \(s 1\).

*1. Mitsubishi Electric's FREQROL - F700, A700, E700, D700, V500, F500, A500, E500 and S500 series general purpose inverters
2. Related devices
\(\rightarrow\) For the instruction execution complete flag use method, refer to Section 1.3.4.
\begin{tabular}{c|c|l}
\hline \multicolumn{2}{c|}{ Number } & \multicolumn{2}{c}{ Description } \\
\cline { 1 - 2 } ch1 & ch2 & \\
\cline { 1 - 2 } M8029 & Instruction execution complete \\
\hline M8063 & M8438 & Serial communication error \\
\hline M8151 & M8156 & Inverter communicating*1 \\
\hline M8152 & M8157 & Inverter communication error*1 \\
\hline M8153 & M8158 & Inverter communication error latch*1 \\
\hline M8154 & M8159 & IVBWR instruction error*1 \\
\hline
\end{tabular}
\begin{tabular}{c|c|l}
\hline \multicolumn{2}{c|}{ Number } & \multicolumn{2}{c}{ Description } \\
\cline { 1 - 2 } ch1 & ch2 & \\
\hline D8063 & D8438 & Error code of serial communication error \\
\hline D8150 & D8155 & Response wait time in inverter communication \\
\hline D8151 & D8156 & Step number in inverter communication*2 \\
\hline D8152 & D8157 & Error code of inverter communication error*1 \\
\hline D8153 & D8158 & \begin{tabular}{l} 
Latch of inverter communication error occurrence \\
step*2
\end{tabular} \\
\hline D8154 & D8159 & IVBWR instruction error parameter number*2 \\
\hline
\end{tabular}
*1. Cleared when the PLC mode switches from STOP to RUN.
*2. Initial value: -1

\section*{Cautions}

\section*{\(\rightarrow\) For other cautions, refer to the Data Communication Edition manual.}
1) The instruction is provided in the FX3G PLC Ver. 1.10 or later.
2) It is not permitted to use the RS and RS2 instructions and an inverter communication instruction (IVCK, IVDR, IVRD, IVWR and IVBWR) for the same port.
3) Two or more inverter communication instructions (IVCK, IVDR, IVRD, IVWR and IVBWR) can be driven for the same port at the same time.
4) Some restrictions to applicable devices

A1: Applicable to the FX3U, FX3UC and FX3G PLCs only.
42: Applicable to the FX3U and FX3UC PLCs only.

\section*{PLC applicable version}

The table below shows PLC versions applicable to each inverter.
\begin{tabular}{c|c|c|c}
\hline PLC & FREQROL-V500/F500/A500/E500/S500 & FREQROL-F700/A700 & FREQROL-E700/D700 \\
\hline FX3G & \multicolumn{3}{c}{ Ver.1.10 or later } \\
\hline FX3U & Ver.2.20 or later & Ver.2.32 or later \\
\hline FX3UC & Ver.1.00 or later & Ver.2.20 or later & Ver.2.32 or later \\
\hline
\end{tabular}

\subsection*{7.24.5 IVBWR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction writes parameters of an inverter at one time using the computer link operation function of the inverter.
\(\rightarrow\) For detailed explanation of the instruction, refer to the Data Communication Edition manual.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline IVBWR & 16 bits & Continuous &  & IVBWR(EN,s1,s2,s3,n); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{ Input variable } & EN & Execution condition & Inverter station number \\
\cline { 2 - 4 } & s 1 & Number of parameters in an inverter to be written at one time. & ANY16 \\
\cline { 2 - 5 } & s 3 & Head device of a parameter table to be written to an inverter & ANY16 \\
\cline { 2 - 5 } & n & Channel to be used (K1:ch1,K2:ch2) & ANY16 \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & ANY16 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|r|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{Character String
\[
\text { " } \square
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s3) & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{\(\rightarrow\) For detailed explanation of the instruction, refer to the Data Communication Edition manual.}
1. 16-bit operation (IVBWR)

A data table (parameter numbers and set values) specified in (s2) and (s3) is written to an inverter* \({ }^{*}\) connected to a communication port n whose station number is in the device specified by (sil all at once.

*1. Mitsubishi Electric's FREQROL - F700, A700, E700, D700, V500, F500, A500, E500 and S500 series general purpose inverters
*2. The table below shows the data table format.
(s2) : Number of parameters to be written
(s3) : Head device number of data table
\begin{tabular}{|c|c|c|}
\hline Device & \multicolumn{2}{|l|}{Parameter numbers to be written and set values} \\
\hline (s3) & \multirow{2}{*}{1st parameter} & Parameter number \\
\hline (53) +1 & & Set value \\
\hline (53) +2 & \multirow{2}{*}{2nd parameter} & Parameter number \\
\hline (53) +3 & & Set value \\
\hline ! & \(\vdots\) & ! \\
\hline (s3) +2 s2 -4 & \multirow[b]{2}{*}{(s2) - 1"th parameter} & Parameter number \\
\hline (s3) +2 s2 -3 & & Set value \\
\hline (s3) +2 (s2) -2 & \multirow[b]{2}{*}{(s2) th parameter} & Parameter number \\
\hline (s3) +2 (s2) -1 & & Set value \\
\hline
\end{tabular}
2. Related devices
\(\rightarrow\) For the instruction execution complete flag use method, refer to Section 1.3.4.
\begin{tabular}{c|c|l}
\hline \multicolumn{2}{c|}{ Number } & \multicolumn{2}{c}{ Description } \\
\cline { 1 - 2 } ch1 & ch2 & \\
\cline { 1 - 2 } M8029 & Instruction execution complete \\
\hline M8063 & M8438 & Serial communication error \\
\hline M8151 & M8156 & Inverter communicating*1 \\
\hline M8152 & M8157 & Inverter communication error*1 \\
\hline M8153 & M8158 & Inverter communication error latch*1 \\
\hline M8154 & M8159 & IVBWR instruction error*1 \\
\hline
\end{tabular}
\begin{tabular}{c|c|l}
\hline \multicolumn{2}{c|}{ Number } & \multicolumn{2}{c}{ Description } \\
\cline { 1 - 2 } ch1 & ch2 & \\
\hline D8063 & D8438 & Error code of serial communication error \\
\hline D8150 & D8155 & Response wait time in inverter communication \\
\hline D8151 & D8156 & Step number in inverter communication*2 \\
\hline D8152 & D8157 & Error code of inverter communication error*1 \\
\hline D8153 & D8158 & \begin{tabular}{l} 
Latch of inverter communication error occurrence \\
step*2
\end{tabular} \\
\hline D8154 & D8159 & IVBWR instruction error parameter number*2 \\
\hline
\end{tabular}
*1. Cleared when the PLC mode switches from STOP to RUN.
*2. Initial value: -1

\section*{Cautions}
\(\rightarrow\) For other cautions, refer to the Data Communication Edition manual.
1) It is not permitted to use the RS and RS2 instructions and an inverter communication instruction (IVCK, IVDR, IVRD, IVWR and IVBWR) for the same port.
2) Two or more inverter communication instructions (IVCK, IVDR, IVRD, IVWR and IVBWR) can be driven for the same port at the same time.

\section*{Applicable models depending on the PLC version}

Available inverter models are added depending on the version, as shown in the table below.
\begin{tabular}{c|c|c|l}
\hline \multicolumn{2}{c|}{ Applicable version } & \multirow{2}{c}{ Item } & \multicolumn{1}{c}{ Outline of function } \\
\hline FX3U & FX3UC & & \\
\hline Ver.2.32 or later & Ver.2.32 or later & \begin{tabular}{c} 
Addition of \\
applicable models
\end{tabular} & Mitsubishi FREQROL-E700 Series general-purpose inverters are supported. \\
\hline Ver.2.20 or later & Ver.2.20 or later & \begin{tabular}{c} 
Addition of \\
applicable models
\end{tabular} & \begin{tabular}{l} 
Mitsubishi FREQROL-F700/A700 Series general-purpose inverters are \\
supported.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{7.25 Data Transfer 3}

\subsection*{7.25.1 RBFM}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction reads data from continuous buffer memories (BFM) in a special function block and unit over several operation cycles by the time division method. This instruction is convenient for reading received data, etc. stored in buffer memories in a special function block and unit for communication by the time division method. FROM instruction is also available to read the buffer memory (BFM) data.
\(\rightarrow\) For FROM instruction, refer to Section 7.8.9.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline RBFM & 16 bits & Continuous &  & BFM(EN,m1,m2,n1,n2,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & m1 & Unit number [0 to 7] & Head buffer memory (BFM) number \\
\cline { 2 - 4 } & m1 & Number of all buffer memories (BFM) to be read [1 to 32767] & ANY16 \\
\cline { 2 - 5 } & n2 & Number of points transferred in one operation cycle [1 to 32767] & ANY16 \\
\cline { 2 - 5 } & \begin{tabular}{ll} 
Output \\
variable
\end{tabular} & ENO & Execution state \\
\cline { 2 - 5 } & d & Head device storing data to be read from buffer memory (BFM) & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (m1) & & & & & & & & & & & & & & - & \(\bullet\) & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (m2) & & & & & & & & & & & & & & - & \(\bullet\) & & & & & - & - & & & \\
\hline (d) & & & & & & & & & & & & & & \(\Delta 1\) & \(\bullet\) & & & & - & & & & & \\
\hline (n1) & & & & & & & & & & & & & & - & \(\bullet\) & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (n2) & & & & & & & & & & & & & & - & \(\bullet\) & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}
: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (RBFM)}
"n1" buffer memory (BFM) units at location No. "m2" in special function block/unit No. "m1" are transferred (read) to the device specified by \(\mathbb{d}\) in the PLC. While transferring, " n 1 " is divided by " n 2 " so \(\mathrm{n} 1 / \mathrm{n} 2\) buffer memories (rounded up when there is a remainder) are transferred per scan time.

1) When the instruction is finished normally, the instruction execution complete flag M8029 turns ON. When the instruction is finished abnormally, the instruction execution abnormally complete flag M8329 turns ON.
2) When RBFM or WBFM instruction in another step is executed for the same unit number, the instruction non-execution flag M8328 is set to ON, and execution of such an instruction is paused.
When execution of the other target instruction is complete, the paused instruction resumes.

\section*{Related devices}
\begin{tabular}{c|c|l}
\hline Device & Name & \multicolumn{1}{c}{ Description } \\
\hline M8029 & Instruction execution complete & Turns ON when an instruction is finished normally. \\
\hline M8328 & Instruction non-execution & \begin{tabular}{l} 
Turns ON when RBFM or WBFM instruction in another step is executed for the same unit \\
number.
\end{tabular} \\
\hline M8329 & \begin{tabular}{c} 
Instruction execution abnor- \\
mally complete
\end{tabular} & Turns ON when an instruction is finished abnormally. \\
\hline
\end{tabular}

\section*{Related instructions}
\begin{tabular}{c|l}
\hline Instruction & \\
\hline FROM & Read from a special function block \\
\hline TO & Write to a special function block \\
\hline WBFM & Divided BFM write \\
\hline
\end{tabular}

\section*{Cautions}
1) The instruction is provided in the FX3Uc PLC Ver. 2.20 or later.
2) Some restrictions to applicable devices

41: Except special data register D

\section*{Error}

An operation error is caused in the following case. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When the unit number "m1" does not exist. (Error code: K6708)

\section*{Common items between RBFM instruction and WBFM instruction}

Specification of unit number of special function block and unit and buffer memory
\(\rightarrow\) For the connection method of special extension units and blocks, number of connectable units and blocks, and handling of I/O numbers, refer to the manual of the PLC used and special function block and unit.
1. Unit number "m1" of a special extension unit and block

Use the unit number to specify to which equipment the RBFM and/or WBFM instruction works.
Setting range: K0 to K7


A unit number is automatically assigned to each special extension unit and block connected to the PLC.
The unit number is assigned in the way "No. \(0 \rightarrow\) No. \(1 \rightarrow\) No. \(2 \ldots\)..." starting from the equipment nearest to the main unit.
Since the FX3UC-32MT-LT(-2) PLC has a built-in CC-Link/LT master, the unit number is given "No. \(1 \rightarrow\) No. 2 \(\rightarrow\) No. 3 ..." from the equipment nearest to the main unit.

\section*{2. Buffer memory (BFM) number "m2"}

Up to 32767 16-bit RAM memories are built in a special extension unit and block, and they are called buffer memories (BFM).
The buffer memory number is from " 0 " to " 32766 ", and the contents are determined according to each special function unit and block.
Setting range: K0 to K32766
\(\rightarrow\) For the contents of buffer memories, refer to the manual of the special function block and unit used.

\section*{Cautions}
1) A watchdog timer error may occur when many numbers of points are transferred in one operation cycle. In such a case, take either of the following countermeasures.
a) Change the watchdog timer time

By overwriting the contents of D8000 (watchdog timer time), the watchdog timer detection time is changed (initial value: K200).
When the program shown below is input, the sequence program will be monitored with the new watchdog timer time.

b) Change the number of transferred points " n 2 " in each operation cycle.

Change the number of transferred points " n 2 " in each operation cycle to a smaller value.
2) Do not stop the driving of the instruction while it is being executed. If driving is stopped, the buffer memory (BFM) reading/writing processing is suspended, but the data acquired in the middle of reading/ writing processing is stored in the device specified by \(d\) and later and buffer memories (BFM).

3) When indexing is executed, the contents of index registers at the beginning of execution are used. Even if the contents of index registers are changed after the instruction is executed, such changes do not affect the process of the instruction.
4) The contents of " n 1 " devices starting from the device specified by \(\mathbb{d}\) change while RBFM instruction is executed. After execution of the instruction is completed, execute another instruction for "n1" devices starting from the device specified by d.
5) Do not update (change) the contents of " n 1 " devices starting from the device specified by © while WBFM instruction is executed. If the contents are updated, the intended data may not be written to the buffer memories (BFM).
6) Do not update (change) the contents of " \(n 1\) " buffer memories (BFM) starting from the buffer memory NO. "m2" while RBFM instruction is executed. If the contents are updated, the intended data may not be read.
7) The \(\mathrm{FX}_{3} \cup \mathrm{C}\) PLCs of \(\vee 2.20\) or later support the RBFM instruction.

\section*{Program example}

In the program example shown below, data is read from and written to the buffer memories (BFM) in the unit No. 2 as follows:
1) When X 000 is set to ON, data stored in D100 to D179 (80 points) are written to the buffer memories (BFM) \#1001 to \#1080 in the special function block and unit whose unit number is No. 2 by 16 points in each operation cycle.
[Structured ladder]

[ST]
IF(LDP(TRUE,X000) THEN SET(TRUE,M0));
WBFM(M0,K2,K1001,D100,K80,K16);
RST(M8029,M0);
Y000:=M8328;
M0:=RST(M8329);

D100 to D179 (80 points) are written to the buffer memories \#1001 to \#1080 in the unit No. 2 (in 5 operation cycles).

2) When X001 is set to ON, the buffer memories (BFM) \#2001 to \#2080 (80 points) in the special function block and unit whose unit number is No. 2 are written to D200 to D279 by 16 points in each operation cycle.

\section*{[Structured ladder]}

[ST]
IF(LDP(TRUE,X000) THEN SET(TRUE,M5)); RBFM(M5,K2,K2001,K80,K16,D200);

RST(M8029,M5);
Y001:=M8328;
M5:=RST(M8329);

The buffer memories \#2001 to \#2080 (80 points) in the unit No. 2 are read to D200 to D279 (in 5 operation cycles).


\subsection*{7.25.2 WBFM}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction writes data to continuous buffer memories (BFM) in a special function block and unit over several operation cycles by the time division method. This instruction is convenient for writing send data, etc. to buffer memories in a special function block and unit for communication by the time division method.
TO instruction is also available for writing data to the buffer memory (BFM).
\(\rightarrow\) For TO instruction, refer to Section 7.8.10.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline WBFM & 16 bits & Continuous &  & WBFM(EN,m1,m2,s,n1,n2); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Unit number \\
\cline { 2 - 4 } & m1 & Head buffer memory (BFM) number & Head device storing data to be written to buffer memory (BFM) \\
\cline { 2 - 5 } & m & Number of all buffer memories (BFM) to be written & ANY16 \\
\cline { 2 - 5 } & n1 & Number of points transferred in one operation cycle & ANY16 \\
\cline { 2 - 5 } & n2 & Execution state & ANY16 \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{Character String
} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (m1 & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (m2) & & & & & & & & & & & & & & - & \(\bullet\) & & & & & - & \(\bullet\) & & & \\
\hline (s) & & & & & & & & & & & & & & \(\triangle 1\) & \(\bullet\) & & & & \(\bullet\) & & & & & \\
\hline (n1) & & & & & & & & & & & & & & - & \(\bullet\) & & & & & - & - & & & \\
\hline (n2) & & & & & & & & & & & & & & - & \(\bullet\) & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 16-bit operation (WBFM)}
"n1" word units from the device specified by \(s\) in the PLC are transferred (written) to buffer memory (BFM) location No. "m2" in special function unit and block No. "m1". While transferring, "n1" is divided by "n2" so n1/ n 2 words (rounded up when there is a remainder) are transferred per scan time.
\(\rightarrow\) For the unit number, buffer memory (BFM) number, cautions and program example, refer to
Section 7.25.1.



*1. "n2" points are written in each operation cycle. Writing is executed in "n1/n2" times.
(" \(\mathrm{n} 1 / \mathrm{n} 2\) " is rounded up if it is not an integer.)
1) When the instruction is finished normally, the instruction execution complete flag M8029 turns ON. When the instruction is finished abnormally, the instruction execution abnormally complete flag M8329 turns ON.
2) When RBFM or WBFM instruction in another step is executed for the same unit number, the instruction non-execution flag M8328 is set to ON, and execution of such an instruction is paused.
When execution of the other target instruction is complete, the paused instruction resumes.

\section*{Related devices}
\begin{tabular}{c|c|l}
\hline Device & Name & \multicolumn{1}{c}{ Description } \\
\hline M8029 & Instruction execution complete & Turns ON when an instruction is finished normally. \\
\hline M8328 & Instruction non-execution & \begin{tabular}{l} 
Turns ON when RBFM or WBFM instruction in another step is executed for the same unit \\
number.
\end{tabular} \\
\hline M8329 & \begin{tabular}{c} 
Instruction execution abnor- \\
mally complete
\end{tabular} & Turns ON when an instruction is finished abnormally. \\
\hline
\end{tabular}

\section*{Related instructions}
\begin{tabular}{c|ll}
\hline Instruction & \multicolumn{1}{c}{ Error } \\
\hline FROM & Read from a special function block \\
\hline TO & Write to a special function block \\
\hline RBFM & Divided BFM write \\
\hline
\end{tabular}

\section*{Cautions}
1) The instruction is provided in the FX3Uc PLC Ver. 2.20 or later.
2) Some restrictions to applicable devices

41: Except special data register D

\section*{Error}

An operation error is caused in the following case. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When the unit number "m1" does not exist. (Error code: K6708)

\subsection*{7.26 High Speed Processing 2}

\subsection*{7.26.1 DHSCT}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction compares the current value of a high speed counter with a data table of comparison points, and then sets or resets up to 16 output devices.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline DHSCT & 32 bits & Continuous & \begin{tabular}{lr|}
\hline \multicolumn{2}{c|}{ DHSCT } \\
EN & ENO \\
-s 1 & d \\
-m & \\
-s 2 & \\
-n & \\
& \\
& \\
\end{tabular} & DHSCT(EN,s1,m,s2,n,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{ Input variable } & EN & Execution condition & Head device storing the data table \\
\cline { 2 - 4 } & s1 & Number of comparison points in data table \((1 \leq \mathrm{m} \leq 128)\) & Bit \\
\cline { 2 - 4 } & m & High speed counter (C235 to C255) & ANY32 \\
\cline { 2 - 5 } & s2 & Number of devices to which the operation status is output \\
\cline { 2 - 5 } & n & Execution state & ANY32 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Head device to which the operation status is output & ANY32 \\
\cline { 2 - 5 } & & &
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{Real
Number Number} & \multirow[t]{2}{*}{Character String " \(\square\) "} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointe \\
P
\end{tabular}} \\
\hline & X & & M & T C & S & Dロ.b & KnX & KnY & KnM & KnS & T & C & D & R & UपIG] & V & z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & & - & \(\bullet\) & & & & \(\bullet\) & & & & & \\
\hline (m) & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & & & & & 41 & & & & & & \(\bullet\) & & & & & \\
\hline (d) & & - - & & & \(\bullet\) & & & & & & & & & & & & & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

A: Refer to "Cautions".

\section*{Function and operation explanation}

\section*{1. 32-bit operation (DHSCT)}

The current value of a high speed counter specified in s2 is compared with the data table shown below which has " \(m\) " points stored in the device specified by \(s 1\) ) and later, and the operation output set value (ON or OFF) specified in the data table is output to the devices specified by \((d\).


Data table used for comparison
\begin{tabular}{|c|c|c|c|}
\hline Comparison point number & Comparison data & Operation output set value (SET [1] or RESET [0]) & Operation output destination \\
\hline 0 & (s1) \(+1, \mathrm{~s} 1\) & (s1) +2 & \multirow{6}{*}{(d) to d +n-1} \\
\hline 1 & (s1) +4, s1 +3 & (s1) +5 & \\
\hline 2 & (s1) +7, s1 +6 & (s1) +8 & \\
\hline ! & \(\vdots\) & ! & \\
\hline m-2 & (s1) \(+3 m-5\), s1 \(+3 m-6\) & (s1) \(+3 \mathrm{~m}-4\) & \\
\hline m-1 & (s1) \(+3 m-2\), s1 \(+3 m-3\) & (s1) \(+3 \mathrm{~m}-1\) & \\
\hline
\end{tabular}

Operation output set value (SET [1] or RESET [0]) [Up to 16 points]

1) When this instruction is executed, the uppermost data table of the data tables is set as the comparison target.
2) When the current value of the high speed counter, specified in s2, becomes equivalent to the comparison value in the data table, the corresponding operation output specified in the data table is output to the device specified by \((d\).
If an output \((\mathrm{Y})\) is specified in \((d)\), the output processing is executed immediately without waiting for the output refresh executed by the END instruction.
When specifying and output \((\mathrm{Y})\), make sure that the least significant digit of the device number is " 0 ".
Examples: Y000, Y010 and Y020
3) Immediately after step 2), "1" is added to the current table counter value D8138.
4) The next comparison point is set as the comparison target data.
5) Steps 2) and 3) are repeated until the current value of the table counter D8138 becomes "m". When the current value becomes " m ", the instruction execution complete flag M8138 turns ON, and the execution returns to step 1). At this time, the table counter D8138 is reset to " 0 ".
6) When the command contact is set to OFF, execution of the instruction is stopped and the table counter D8138 is reset to " 0 ".

Operation example

*1. VAR_01 is a global label and is defined as D200.
*2. VAR_02 is a global label and is defined as K900.
\begin{tabular}{c|c|c|c|c|c}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Comparison \\
point \\
number
\end{tabular}} & \multicolumn{2}{|c|}{ Comparison data } & \multicolumn{2}{c}{ SET/RESET pattern } & \multirow{2}{*}{ Table counter (D8138) } \\
\cline { 2 - 4 } & Device & \begin{tabular}{c} 
Comparison \\
value
\end{tabular} & Device & \begin{tabular}{c} 
Operation \\
output set value
\end{tabular} & \\
\hline 0 & D201, D200 & K321 & D202 & H0001 & \(0 \downarrow\) \\
\hline 1 & D204, D203 & K432 & D205 & H 0007 & \(1 \downarrow\) \\
\hline 2 & D207, D206 & K543 & D208 & H 0002 & \(2 \downarrow\) \\
\hline 3 & D210, D209 & K764 & D211 & H 0000 & \(3 \downarrow\) \\
\hline 4 & D213, D212 & K800 & D214 & H 0003 & \(4 \downarrow\) (repeated from "0") \\
\hline
\end{tabular}

Current value of C235

*1. If this instruction is not executed, no processing is executed for outputs. In the operation example shown above, the command contact is "OFF".

\section*{2. Related devices}
\begin{tabular}{l|l|l}
\hline Device & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c}{ Description } \\
\hline M8138 & DHSCT Instruction execution complete flag & Turns ON when the operation for the final table No. "m-1" is completed. \\
\hline D8138 & DHSCT Table counter & Stores the comparison point number handled as the comparison target. \\
\hline
\end{tabular}

\section*{Cautions}
1) This instruction can be executed only once in a program.

If this instruction is programmed two or more times, an operation error is caused by the second instruction and later, and the instruction will not be executed.
2) This instruction constructs the data table at the END instruction after the first execution of the instruction. Accordingly, the operation output works after the second scan and later.
3) With regard to DHSCT, DHSCS, DHSCR and DHSZ instructions, up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33rd instruction and later, and the instruction will not be executed.
4) If an output \((Y)\) is specified in \((d\), the output processing is executed immediately without waiting for the output refresh executed by END instruction.
When specifying an output (Y), make sure that the least significant digit of the device number is " 0 ".
Examples: Y000, Y010 and Y020
5) When a high speed counter specified in s2 is indexed with index, all high speed counters are handled as software counters.
6) For this instruction, only one comparison point (one line) is handled as the comparison target at one time. Processing will not move to the next comparison point until the current counter value becomes equivalent to the comparison point currently selected as the comparison target.
If the current value of a high speed counter executes up counting using the comparison data table shown in the operation example on the previous page, be sure to execute the instruction while the current value of the high speed counter is smaller than the comparison value in comparison point No. 1.
7) When handling 32-bit data in a structured program, a 16-bit device cannot be specified directly as in the case of a simple project. Use a label to handle 32-bit data.
A 32-bit counter can be specified directly as it is a 32-bit long device.
Use a global label to specify a device.
8) When this instruction operates in the FX3U and FX3uc PLCs, the hardware counters (C235, C236, C237, C238, C239, C240, C244(OP), C245(OP), C246, C248(OP), C251 and C253) switches automatically to software counters, and the maximum frequency and total frequency are affected.
9) Some restrictions to applicable devices
© 1: Only high speed counters C235 to C255 are available for use.

\section*{Error}

An operation error occurs in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When any devices other than high speed counters C 235 to C 255 are specified in s2). (Error code: K6706)
2) When the " \(3 m-1\) "th device from a device specified in © \(s\) ) exceeds the last number of the device. (Error code: K6706)
3) When the "n"th device from a device specified in (d) exceeds the last number of the device. (Error code: K6706)
4) When this instruction is used two or more times in a program. (Error code: K6705)
5) With regard to DHSCT, DHSCS, DHSCR and DHSZ instructions, up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33rd instruction and later, and the instruction will not be executed. (Error code: K6705)

\section*{Program example}

In the program example shown below, the current value of C 235 (counting X000) is compared with the comparison data table set in R0 and later, and a specified pattern is output to Y010 to Y013.
[Structured ladder]

[ST]
M8235:=M8000;
OUT_C(M8000,CC235,K0);
MOVP(M8000,H0008,K1Y10);
DHSCR(VAR_01,C235,C235);
Y010:=DHSCT(M8000,VAR_02,K5,C235,K4);
*1. VAR_01 is a global label and is defined as K400.
*2. VAR_02 is a global label and is defined as C235.
Operation example
\begin{tabular}{c|c|c|c|c|c}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Comparison \\
point \\
number
\end{tabular}} & \multicolumn{2}{|c|}{ Comparison data } & \multicolumn{2}{c}{ SET/RESET pattern } & \multirow{2}{*}{ Table counter (D8138) } \\
\cline { 2 - 4 } & Device & \begin{tabular}{c} 
Comparison \\
value
\end{tabular} & Device & \begin{tabular}{c} 
Operation \\
output set value
\end{tabular} & \\
\hline 0 & \(\mathrm{R} 1, \mathrm{R} 0\) & K 100 & R 2 & H 0007 & \(0 \downarrow\) \\
\hline 1 & \(\mathrm{R} 4, \mathrm{R} 3\) & K 150 & R 5 & H 0004 & \(1 \downarrow\) \\
\hline 2 & \(\mathrm{R} 7, \mathrm{R} 6\) & K 200 & R 8 & H 0003 & \(2 \downarrow\) \\
\hline 3 & \(\mathrm{R} 10, \mathrm{R} 9\) & K 250 & R 11 & H 0006 & \(3 \downarrow\) \\
\hline 4 & \(\mathrm{R} 13, \mathrm{R} 12\) & K 300 & R 14 & H 0008 & \(4 \downarrow\) (repeated from "0") \\
\hline
\end{tabular}


\subsection*{7.27 Extension File Register Control}

\subsection*{7.27.1 LOADR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction reads the current values of extension file registers (ER) stored in a memory cassette (flash memory and EEPROM) or the file registers (ER) in the PLC's built-in EEPROM, and transfers them to extension registers ( \(R\) ) stored in the PLC's built-in RAM.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline LOADR & 16 bits & Continuous & \begin{tabular}{ll} 
& \multicolumn{2}{c|}{ LOADR } \\
-EN & ENO \\
-n & \\
\end{tabular} & LOADR(EN,s,n); \\
\hline LOADRP & 16 bits & Pulse & \begin{tabular}{ll} 
& \multicolumn{2}{c|}{ LOADRP } \\
-EN & ENO \\
-s & \\
-n & \\
\hline
\end{tabular} & LOADRP(EN,s,n); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline & EN & Execution condition & \begin{tabular}{l} 
Device of extension register (transfer destination) to which data is to be \\
transferred. \\
(The extension file register having the same number is handled as the \\
transfer source.)
\end{tabular} \\
\cline { 2 - 4 } \begin{tabular}{l} 
Input \\
variable
\end{tabular} & S & \begin{tabular}{l} 
Number of points to be read (transferred) \\
(FX3G: \(1 \leq \mathrm{n} \leq 24000\), FX3U•FX3UC: \(0 \leq \mathrm{n} \leq 32767)\)
\end{tabular} \\
\cline { 2 - 5 } & n & Execution state & ANY16 \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\hline \begin{array}{c}
\text { Special } \\
\text { unit }
\end{array} \\
\hline \text { U } \square \text { IG } \square \\
\hline
\end{array}
\]} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Cons \\
tant
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & & - & & & & \(\bullet\) & & & & & \\
\hline n & & & & & & & & & & & & & & \(\bullet\) & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16 -bit operation (LOADR/LOADRP)}
Device of extension register to which data is to be transferred \(-\infty\)
1) For the \(\mathrm{FX}_{3} \mathrm{u}\) and \(\mathrm{FX}_{3} \cup \mathrm{C}\) PLCs

The contents (current values) of extension file registers (ER) stored in a memory cassette (flash memory) having the same numbers with the extension registers specified by \(s\) to \(s+n-1\) are read, and transferred to the extension registers \((R)\) specified by \(s\) to \(s+n-1\) stored in the PLC's built-in RAM.

- Reading and transfer are executed in units of device. Up to 32768 devices can be read and transferred.
- Different from SAVER, INITR and LOGR instructions, it is not necessary to execute this instruction in units of sector.
- If " n " is set to " 0 ", it is handled as " 32768 " when the instruction is executed.
2) For the \(\mathrm{FX}_{3}\) g PLCs
a) When connecting to a memory cassette

The contents (current values) of extension file registers (ER) stored in a memory cassette (EEPROM) having the same numbers with the extension registers \((R)\) specified by \(S\) to \(S+n-1\) are read, and transferred to the extension registers specified by \(S\) to \(S+n-1\) stored in the PLC's built-in RAM.
\begin{tabular}{|c|c|c|}
\hline Extension file registers inside memory cassette & & tension regi ide built-in \\
\hline E S & \(\xrightarrow{\text { Read (transfer) }}\) & (S) \\
\hline \(E \bigcirc+1\) & \(\longrightarrow\) & (s) +1 \\
\hline \(E\) S +2 & \(\rightarrow\) & (s) +2 \\
\hline \(E\) (S +3 & \(\longrightarrow\) & (s) +3 \\
\hline ) & \} & ) \\
\hline \(E \triangle\) +n-2 & \(\longrightarrow\) & (S) \(+\mathrm{n}-2\) \\
\hline \(E\) (S +n-1 & \(\longrightarrow\) & (s) \(+\mathrm{n}-1\) \\
\hline
\end{tabular}

\footnotetext{
- Reading and transfer are executed in units of device. Up to 24000 devices can be read and transferred.
}
b) When not connecting to a memory cassette The contents (current values) of extension file registers (ER) stored in PLC's built-in EEPROM having the same numbers with the extension registers specified by \(s\) to \(s+n-1\) are read, and transferred to the extension registers \((R)\) specified by \(\Omega\) to \(s+n-1\) stored in the PLC's built-in RAM.
\begin{tabular}{|c|c|c|}
\hline Extension file regis inside PLC's built-in & & Extension registers ( R ) inside built-in RAM \\
\hline E S & \(\xrightarrow{\text { Read (transfer) }}\) & (s) \\
\hline \(E\) (s) +1 & \(\rightarrow\) & (s) +1 \\
\hline E (s) +2 & \(\rightarrow\) & (s) +2 \\
\hline E (s) +3 & \(\longrightarrow\) & (s) +3 \\
\hline ? & ? & ? \\
\hline \(E\) (s) \(+\mathrm{n}-2\) & \(\rightarrow\) & (s) \(+\mathrm{n}-2\) \\
\hline \(E\) (s) \(+\mathrm{n}-1\) & \(\longrightarrow\) & (s) \(+\mathrm{n}-1\) \\
\hline
\end{tabular}
- Reading and transfer are executed in units of device. Up to 24000 devices can be read and transferred.

\section*{Cautions}

\section*{1. About the allowable number of times of writing operations in memory}

Note the following when accessing the extension file registers:
- For the FX3U and FX3uc PLCs

The memory cassette (flash memory) allows up to 10,000 times of writing operations.
The number of times of writing operations counts up each time the INITR, RWER or INITER instruction is executed. Do not exceed the allowable number of times of writing operations.
When a continuous operation type instruction is executed, writing operation to the memory occurs for each operation cycle of the PLC. To avoid this, be sure to use pulse operation type instructions.
The number of times of writing operations does not count up when the LOADR, SAVER or LOGR instruction is executed. However, the SAVER and LOGR instructions require the target write sectors to be initialized before executing the instructions. Note that, when initializing by using the INITR or INITER instruction, the number of times of writing operations in the memory counts up every time the NITR or INITER instruction is executed.
- For the FX3G PLCs

The memory cassette (EEPROM) and PLC's built-in memory (EEPROM) allow up to 10,000 times and 20,000 times of writing operations, respectively. The number of times of writing operations counts up each time the RWER instruction is executed. Do not exceed the allowable number of times of writing operations.
When a continuous operation type instruction is executed, writing operation to the memory occurs for each operation cycle of the PLC. To avoid this, be sure to use pulse operation type instructions. The number of times of writing operations does not count up when the LOADR instruction is executed.

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When the last device number to be transferred exceeds "32767" (error code: K6706). At this time, devices up to the last one (R32767) are read and transferred.
2) When a memory cassette is not connected. (Error code: K6771) \({ }^{* 1}\)
*1. This does not cause an error with the FX3G PLCs because the PLCs read the contents of the extension file registers stored in the PLC's built-in EEPROM when a memory cassette is not connected.

\section*{Program example}

In the program example shown below, the contents (current values) of 4000 extension file registers ER1 to ER4000 inside the memory cassette are read, and transferred to 4000 extension registers R1 to R4000 inside the built-in RAM.
[Structured ladder]


\section*{[ST]}

IF(LDP(TRUE,M0)THEN LOADR(TRUE,R1,K4000));
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Extension file registers (ER) inside memory cassette} & \multirow[b]{3}{*}{\(\xrightarrow{\text { Read (transfer) }}\)} & \multicolumn{2}{|l|}{Extension registers ( R ) inside built-in RAM} \\
\hline Device number & Current value & & Device number & \[
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Current } \\
\text { value }
\end{array} \\
\hline
\end{array}
\] \\
\hline ER1 & K100 & & R1 & K100 \\
\hline ER2 & K50 & & R2 & K50 \\
\hline ER3 & H0003 & \(\longrightarrow\) & R3 & H0003 \\
\hline ER4 & H0101 & & R4 & H0101 \\
\hline ) & ? & ? & ? & ? \\
\hline ER3999 & K55 & & R3999 & K55 \\
\hline ER4000 & K59 & \(\longrightarrow\) & R4000 & K59 \\
\hline
\end{tabular}

\subsection*{7.27.2 SAVER}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\bigcirc\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction writes the current values of extension registers (R) stored in the PLC's built-in RAM to extension file registers (ER) stored in a memory cassette (flash memory) in units of sector (2048 points).
RWER instruction provided in FX3Uc PLCs Ver. 1.30 or later and FX3u PLCs writes (transfers) only arbitrary number of points. It is not necessary to execute INITR or INITER instruction every time when RWER instruction is used.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline SAVER & 16 bits & Continuous &  & SAVER(EN,s,n,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bit \\
\cline { 2 - 4 } & s & \begin{tabular}{l} 
Device of extension register to which data is to be written (Only the head \\
device of a sector of extension registers can be specified.)
\end{tabular} & ANY16 \\
\cline { 2 - 4 } & n & Number of points written (transferred) in one operation cycle. & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & Execution state & Bit \\
\cline { 2 - 5 } & d & Device storing the number of already written points & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{c|}
\hline \begin{tabular}{c} 
Special \\
unit
\end{tabular} \\
\hline U \(\square \backslash \square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Cons \\
tant
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & & - & & & & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & - & & & \\
\hline (d) & & & & & & & & & & & & & & \(\bullet\) & & & & & - & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (SAVER)}

The contents (current values) of 2,048 extension registers (R) starting from the device specified by \(S\) are written (transferred) to extension file registers (ER) inside a memory cassette (flash memory) having the same device numbers in " \(2048 / n\) " operation cycles (" \(2048 / n+1\) " cycles if there is the remainder).
When the instruction is being executed, the number of already written points is stored in \(\mathbb{d}\).


Operation execution complete flag


SAVER instruction operation complete flag

Extension registers (R) inside built-in RAM


Extension file registers (ER)
inside memory cassette

*1. " n " points are written (transferred) in each operation cycle.
(Number of points specified by \(\cap\) )
1) Extension file registers are written in units of sector (2048 points).

The table below shows the head device number in each sector.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sector number & Head device number & Written device range & Sector number & Head device number & Written device range \\
\hline Sector 0 & R0 & ER0 to ER2047 & Sector 8 & R16384 & ER16384 to ER18431 \\
\hline Sector 1 & R2048 & ER2048 to ER4095 & Sector 9 & R18432 & ER18432 to ER20479 \\
\hline Sector 2 & R4096 & ER4096 to ER6143 & Sector 10 & R20480 & ER20480 to ER22527 \\
\hline Sector 3 & R6144 & ER6144 to ER8191 & Sector 11 & R22528 & ER22528 to ER24575 \\
\hline Sector 4 & R8192 & ER8192 to ER10239 & Sector 12 & R24576 & ER24576 to ER26623 \\
\hline Sector 5 & R10240 & ER10240 to ER12287 & Sector 13 & R26624 & ER26624 to ER28671 \\
\hline Sector 6 & R12288 & ER12288 to ER14335 & Sector 14 & R28672 & ER28672 to ER30719 \\
\hline Sector 7 & R14336 & ER14336 to ER16383 & Sector 15 & R30720 & ER30720 to ER32767 \\
\hline
\end{tabular}
2) If " \(n\) " is set to " 0 ", it is handled as " 2048 " when the instruction is executed.
3) When writing (transfer) of 2048 points is finished, execution of the instruction is completed and the instruction execution complete flag M8029 turns ON.
4) The number of already written points is stored in the device specified by \(\mathbb{d}\).

\section*{2. Related devices}
\begin{tabular}{c|c|l}
\hline Device number & Name & \multicolumn{1}{c}{ Description } \\
\hline \multirow{3}{*}{ M8029 } & \begin{tabular}{c} 
Instruction execution \\
complete
\end{tabular} & \begin{tabular}{l} 
When execution of the target instruction is completed, the instruction execution complete \\
flag M8028 turns ON. \\
In a program, however, there may be two or more instructions which can use the flag \\
M8029. To avoid confusion, be sure to use the NO (normally open) contact of this flag \\
immediately under SAVER instruction so that this flag works only for SAVER instruction
\end{tabular} \\
\hline
\end{tabular}

\section*{Cautions}
1. Cautions on writing data to a memory cassette

Memory cassettes adopt flash memory. Note the following contents when writing data to extension file registers in a memory cassettes with the SAVER instruction.
1) It takes about 340 ms to write all points (2048 points). If " \(n\) " is set to K0 or K2048, the operation cycle for executing this instruction becomes about 340 ms longer than normal. If the operation cycle is severely affected, write data in two or more operation cycles. When writing data in two or more operation cycles, set " n " in the range from K1 to K1024.
2) Do not abort execution of this instruction in the middle of operation. If execution is aborted, unexpected data may be written to extension file registers.
If execution of this instruction is aborted by turning OFF the power, execute the instruction again using step [2] described on the next page after turning ON the power again.

3) Execute INITER or INITR instruction to target extension file registers (ER) before executing SAVER instruction. If SAVER instruction is driven before INITER or INITR instruction is executed, an operation error (error code: K6770) may be caused.
To avoid such an operation error, make a program for executing SAVER instruction in the following sequence

\section*{When the FX3u and FX3uc PLCs are Ver. 1.30 or later}
[1] When storing data of 2048 extension registers ( \(R\) ) in one sector to extension file register (ER).
a) Execute INITER instruction to extension file registers (ER) specified as targets in SAVER instruction.
b) Execute SAVER instruction.
[2] When storing the contents of an arbitrary number of extension registers ( R ) to extension file registers (ER)
Use RWER instruction.

When the FX3uc PLCs are former than Ver. 1.30.
[1] When storing data of 2048 extension registers (R) in one sector to extension file registers (ER)
If the extension registers ( \(R\) ) have data to be stored in extension file registers (ER), use the procedure [2].
a) Execute INITR instruction to extension registers (R) and extension file registers (ER) specified as targets in SAVER instruction.
b) Store data to extension registers (R) specified as targets.
c) Execute SAVER instruction.
[2] When storing data of 2048 extension registers ( \(R\) ) in one sector to extension file registers (ER)
a) Temporarily withdraw the data of extension registers (R) specified as targets in SAVER instruction to data registers or unused 2048 extension registers \((R)\) by using BMOV instruction.
b) Execute INITR instruction to extension registers (R) and extension file registers (ER) specified as targets in SAVER instruction.
c) Return the data of 2048 points temporarily withdrawn in step a) to extension registers (R) specified as targets by using BMOV instruction.
d) Execute SAVER instruction.
2. About the allowable number of times of writing operations in memory

Note the following when accessing the extension file registers:
- The memory cassette (flash memory) allows up to 10,000 times of writing operations.

The number of times of writing operations counts up each time the INITR, RWER or INITER instruction is executed. Do not let the number of times of writing operations exceed the allowable number of times of writing operations.
When a continuous operation type instruction is executed, writing operation to the memory occurs for each operation cycle of the PLC. To avoid this, be sure to use pulse operation type instructions.
- The number of times of writing operations does not count up when the LOADR, SAVER or LOGR instruction is executed. However, the SAVER and LOGR instructions require the target write sectors to be initialized before executing the instructions. Note that, when initializing by using the INITR or INITER instruction, the number of times of writing operations in the memory counts up every time the NITR or INITER instruction is executed.

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When any device number other than the head device number of a sector of extension file registers is set to \(s\).
(Error code: K6706)
2) When a memory cassette is not connected. (Error code: K6771)
3) When the protect switch of the memory cassette is set to ON. (Error code: K6770)
4) When the collation result after data writing is "mismatch" due to omission of initialization or for another reason. (Error code: K6770)

\section*{Program example}
1) In the case of \(\mathrm{FX}_{3} \cup \mathrm{C}\) PLCs Ver. 1.30 or later and \(\mathrm{FX}_{3} \mathrm{PLCs}\) Ver. 2.20 or later In the program example shown below, the changed contents of extension registers R10 to R19 (sector 0) used for setting data are reflected on the extension file registers (ER) when X000 is set to ON. (128 points are written in one operation cycle.)

Program
[Structured ladder]

1)

Operation execution complete flag

[ST]
SET(X000,M0);
INTERP(M0,R0,K1);
WDT(MO);
SAVER(M0,R0,K128,D0);
RST(M8029,M0);

2) In the case of \(\mathrm{FX}_{3} \cup \mathrm{C}\) PLCs former than Ver. 1.30

In the program example shown below, the changed contents of the extension registers R10 to R19 (sector 0) used for setting data are reflected on extension file registers (ER) when X000 is set to ON. (128 points are written in one operation cycle.)

\section*{Program}
[Structured ladder]

2)
3)
4)

Operation execution complete flag


Operation example


*1. Use unused devices as an area to which data is temporarily withdrawn.

To the next page


\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Extension file registers (ER)} & \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline \begin{tabular}{l} 
Number of \\
already \\
written \\
points (DO)
\end{tabular} \\
\hline
\end{tabular}} \\
\hline Device number & Current value & \\
\hline ER0 & K100 & \\
\hline ER1 & K105 & \\
\hline : & : & \\
\hline ER10 & K200 & \\
\hline ER11 & K215 & \\
\hline ER12 & K400 & \\
\hline : & : & \\
\hline ER19 & K350 & \\
\hline ! & : & \\
\hline ER99 & K1000 & \\
\hline ER100 & HFFFF & \\
\hline : & . & K128 \\
\hline ER127 & HFFFF & \\
\hline ER128 & HFFFF & \\
\hline ! & : & \\
\hline ER255 & HFFFF & K256 \\
\hline ER256 & HFFFF & \\
\hline ! & . &  \\
\hline ER1919 & HFFFF & K1920 \\
\hline ER1920 & HFFFF & \\
\hline \(\vdots\) & : & \\
\hline ER2047 & HFFFF & K2048 \\
\hline
\end{tabular}

\subsection*{7.27.3 INITR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction initializes (to "HFFFF <K-1>") extension registers (R) in the RAM built in a PLC and extension file registers in a memory cassette (flash memory) before data logging by LOGR instruction.
In FX3UC PLCs former than Ver. 1.30, use this instruction to initialize extension file registers (ER) before writing data to them using SAVER instruction.
In FX3uc PLCs Ver. 1.30 or later and FX3u PLCs, INITER instruction is also provided to initialize (to "HFFFF" \(<\mathrm{K}-1>\) ) only extension file registers (ER) in a memory cassette (flash memory) in units of sector.
\(\rightarrow\) For SAVER instruction, refer to Section 7.27.2.
\(\rightarrow\) For LOGR instruction, refer to Section 7.27.4.
\(\rightarrow\) For INITER instruction, refer to Section 4.27.6.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline INITR & 16 bits & Continuous &  & INITR(EN,s,n); \\
\hline INITRP & 16 bits & Pulse &  & INITRP(EN,s,n); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline & EN & Execution condition & \begin{tabular}{l} 
Device of extension register and extension file register to be initialized \\
It is possible to specify only the head device in a sector of extension \\
registers.
\end{tabular} \\
\cline { 2 - 5 } \begin{tabular}{l} 
Input \\
variable
\end{tabular} & s & \begin{tabular}{l} 
Number of sectors of extension registers and extension file registers to be \\
initialized.
\end{tabular} & ANY16 \\
\cline { 2 - 5 } & n & Execution state & Bit \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & & \\
\hline
\end{tabular}

\section*{3. Applicable devices}


\section*{Function and operation explanation}

\section*{1. 16-bit operation (INITR/INITRP)}
" n " sectors of extension registers in the PLC's built-in RAM starting from the one specified by \(s\) and " n " sectors of extension file registers in a memory cassette (flash memory) having the same device numbers are initialized (initial value "HFFFF" <K-1> is written.).
Initialization is executed in units of sector.
extension file registers to be initialized.

The table below shows the head device number in each sector.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sector number &  & Initialized device range & Sector number &  & Initialized device range \\
\hline Sector 0 & R0 & R0 to R2047, ER0 to ER2047 & Sector 8 & R16384 & R16384 to R18431, ER16384 to ER18431 \\
\hline Sector 1 & R2048 & R2048 to R4095, ER2048 to ER4095 & Sector 9 & R18432 & R18432 to R20479, ER18432 to ER20479 \\
\hline Sector 2 & R4096 & R4096 to R6143, ER4096 to ER6143 & Sector 10 & R20480 & R20480 to R22527, ER20480 to ER22527 \\
\hline Sector 3 & R6144 & R6144 to R8191, ER6144 to ER8191 & Sector 11 & R22528 & R22528 to R24575, ER22528 to ER24575 \\
\hline Sector 4 & R8192 & R8192 to R10239, ER8192 to ER10239 & Sector 12 & R24576 & R24576 to R26623, ER24576 to ER26623 \\
\hline Sector 5 & R10240 & R10240 to R12287, ER10240 to ER12287 & Sector 13 & R26624 & R26624 to R28671, ER26624 to ER28671 \\
\hline Sector 6 & R12288 & R12288 to R14335, ER12288 to ER14335 & Sector 14 & R28672 & R28672 to R30719, ER28672 to ER30719 \\
\hline Sector 7 & R14336 & R14336 to R16383, ER14336 to ER16383 & Sector 15 & R30720 & R30720 to R32767, ER30720 to ER32767 \\
\hline
\end{tabular}

\section*{Operation (when a memory cassette is used)}
1) Extension registers ( \(R\) ) [inside the built-in RAM memory]
\begin{tabular}{l|c|c}
\hline \multirow{2}{*}{ Device number } & \multicolumn{2}{|c}{ Current value } \\
\cline { 2 - 3 } & \begin{tabular}{c} 
Before \\
execution
\end{tabular} & \begin{tabular}{c} 
After \\
execution
\end{tabular} \\
\hline\(S\) & H0010 & HFFFF \\
\hline\(S+1\) & H0020 & HFFFF \\
\hline\(S+2\) & H0011 & HFFFF \\
\hline \multicolumn{2}{c}{\(\vdots\)} & \(\vdots\) \\
\hline\(S+(2048 \times n)-1\) & HABCD & HFFFF \\
\hline
\end{tabular}
2) Extension file registers (ER) [inside the memory cassette]
\begin{tabular}{l|c|c}
\hline \multirow{2}{*}{ Device number } & \multicolumn{2}{|c}{ Current value } \\
\cline { 2 - 3 } & \begin{tabular}{c} 
Before \\
execution
\end{tabular} & \begin{tabular}{c} 
After \\
execution
\end{tabular} \\
\hline\(s\) & H1234 & HFFFF \\
\hline\(s+1\) & H5678 & HFFFF \\
\hline\(s+2\) & H90AB & HFFFF \\
\hline\(s+(2048 \times n)-1\) & HCDEF & HFFFF \\
\hline\(\left(\begin{array}{l}\text { S }\end{array}\right.\) \\
\hline
\end{tabular}

\section*{Cautions}
1. Initializing two or more sectors

When a memory cassette is attached, 18 ms is required to initialize one sector.
(When a memory cassette is not attached, only 1 ms is required to initialize one sector.)
When initializing two or more sectors, take either measures shown below.
1) Set a large value to the watchdog timer D8000 using the following program.


Guideline of the watchdog timer set value
A value acquired by the following procedure can be regarded as the guideline of the watchdog timer set value.
If an acquired value is 200 ms or less, however, it is not necessary to change the watchdog timer set value.
a) Write a program to be executed from GX Developer to the PLC.
[Online] \(\rightarrow\) [Write to PLC ...]
b) Set the current value of D8000 (unit: ms) to "1000" using the device test function in GX Developer. [Online] \(\rightarrow\) [Debug] \(\rightarrow\) [Device test ...] \(\rightarrow\) "Word device / buffer memory" in Device test dialog box
c) Set the PLC mode to RUN, and execute the program. (Execute this instruction also.)
d) Monitor the maximum scan time D8012 (unit: 0.1 ms ) using the device batch monitoring function in GX Developer.
e) Set the watchdog timer to the maximum scan time (D8012) or more.

D8012 stores the maximum scan time in increments of 0.1 ms .
Rough guide to the watchdog timer set value D8000 (unit: ms) is the "value stored in D8012 divided by 10 " added by 50 to 100 .
2) Setting WDT instruction just before and after INITR instruction as shown below.

input

*1. Device of registers to be initialized
*2. Number of sectors of registers to be initialized

If the processing time of the INITR instruction exceeds 200 ms , set the value of D8000 (unit: ms) to the processing time or more.
2. About the allowable number of times of writing operations in memory

Note the following when accessing the extension file registers:
- The memory cassette (flash memory) allows up to 10,000 times of writing operations.

The number of times of writing operations counts up each time the INITR, RWER or INITER instruction is executed. Do not let the number of times of writing operations exceed the allowable number of times of writing operations.
When a continuous operation type instruction is executed, writing operation to the memory occurs for each operation cycle of the PLC. To avoid this, be sure to use pulse operation type instructions.
- The number of times of writing operations does not count up when the LOADR, SAVER or LOGR instruction is executed. However, the SAVER and LOGR instructions require the target write sectors to be initialized before executing the instructions. Note that, when initializing by using the INITR or INITER instruction, the number of times of writing operations in the memory counts up every time the NITR or INITER instruction is executed.

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When any device number other than the head device number of a sector of extension file registers is set to s .
(Error code: K6706)
2) When a device number to be initialized exceeds "32767". In this case, devices up to R32767 (ER32767) are initialized.
(Error code: K6706)
3) When the protect switch of the memory cassette is set to ON. (Error code: K6770)

\section*{Program example}

In the program example shown below, the extension registers R0 to R2047 in the sector 0 are initialized. Note that the extension file registers ER0 to ER2047 are also initialized if a memory cassette is attached.
[Structured ladder]

1) Extension registers \((R)\) [inside the built-in RAM memory]
\begin{tabular}{l|c|c}
\hline \multirow{2}{*}{ Device number } & \multicolumn{2}{|c}{ Current value } \\
\cline { 2 - 3 } & \begin{tabular}{c} 
Before \\
execution
\end{tabular} & \begin{tabular}{c} 
After \\
execution
\end{tabular} \\
\hline RO & H1234 & HFFFF \\
\hline R1 & H5678 & HFFFF \\
\hline R2 & H90AB & HFFFF \\
\hline & \(\vdots\) & \(\vdots\) \\
\hline R2047 & HCDEF & HFFFF \\
\hline
\end{tabular}

IF(LDP(TRUE,X000) THEN WDT(TRUE);
IF(LDP(TRUE,X000) THEN INITR(TRUE,R0,K1)); IF(LDP(TRUE,X000) THEN WDT(TRUE);

\subsection*{7.27.4 LOGR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(○\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction logs specified devices, and stores the logged data to extension registers \((R)\) and extension file registers (ER) in a memory cassette.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Variable & ST \\
\hline LOGR & 16 bits & Continuous &  & LOGR(EN,s,m,n,d1,d2); \\
\hline LOGRP & 16 bits & Pulse & \begin{tabular}{lr|}
\hline \multicolumn{2}{c}{ LOGRP } \\
-EN & ENO \\
-m & - \\
-m & d 1
\end{tabular} & LOGRP(EN,s,m,n,d1,d2); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Head device to be logged \\
\cline { 2 - 5 } & s & Number of devices to be logged \((1 \leq \mathrm{m} \leq 8000)\) & Bit \\
\cline { 2 - 5 } & m & Number of sectors of devices used in logging \((1 \leq \mathrm{n} \leq 16)\) & ANY16 \\
\cline { 2 - 5 } & n & Execution state & ANY16 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Output \\
variable
\end{tabular}} & ENO & d1 & Head device used in logging \\
\cline { 2 - 5 } & d2 & Number of pieces of logged data & Ait \\
\cline { 2 - 5 } & & &
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{c|}
\hline \begin{tabular}{c} 
Special \\
unit
\end{tabular} \\
\hline U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square .6\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & \(\bullet\) & & & & & \\
\hline (m) & & & & & & & & & & & & & & - & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & & & & & & & & & & & & & \(\bullet\) & & & & & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline (d2) & & & & & & & & & & & & & & \(\bullet\) & & & & & \(\bullet\) & & & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (LOGR/LOGRP)}

While the instruction is driven, " \(m\) " devices starting from the device specified by \(s\) are logged until " \(n\) " sectors of extension registers (R) starting from the device specified by (d1) and extension file registers (ER) in a memory cassette are filled.
The number of pieces of logged data is stored to the device specified by (d2).
If a memory cassette is not used, data is not written to extension file registers (ER).


\section*{Logging data format}


The table below shows the head device number in each sector.
\begin{tabular}{l|l|l}
\hline \begin{tabular}{c} 
Sector \\
number
\end{tabular} & \begin{tabular}{c} 
Head \\
device \\
number
\end{tabular} & \multicolumn{1}{|c}{ Written device range } \\
\hline Sector 0 & R0 & R0 to R2047, ER0 to ER2047 \\
\hline Sector 1 & R2048 & R2048 to R4095, ER2048 to ER4095 \\
\hline Sector 2 & R4096 & R4096 to R6143, ER4096 to ER6143 \\
\hline Sector 3 & R6144 & R6144 to R8191, ER6144 to ER8191 \\
\hline Sector 4 & R8192 & R8192 to R10239, ER8192 to ER10239 \\
\hline Sector 5 & R10240 & R10240 to R12287, ER10240 to ER12287 \\
\hline Sector 6 & R12288 & R12288 to R14335, ER12288 to ER14335 \\
\hline Sector 7 & R14336 & R14336 to R16383, ER14336 to ER16383 \\
\hline
\end{tabular}
\begin{tabular}{l|c|l}
\hline \begin{tabular}{c} 
Sector \\
number
\end{tabular} & \begin{tabular}{c} 
Head \\
device \\
number
\end{tabular} & Written device range \\
\hline Sector 8 & R16384 & R16384 to R18431, ER16384 to ER18431 \\
\hline Sector 9 & R18432 & R18432 to R20479, ER18432 to ER20479 \\
\hline Sector 10 & R20480 & R20480 to R22527, ER20480 to ER22527 \\
\hline Sector 11 & R22528 & R22528 to R24575, ER22528 to ER24575 \\
\hline Sector 12 & R24576 & R24576 to R26623, ER24576 to ER26623 \\
\hline Sector 13 & R26624 & R26624 to R28671, ER26624 to ER28671 \\
\hline Sector 14 & R28672 & R28672 to R30719, ER28672 to ER30719 \\
\hline Sector 15 & R30720 & R30720 to R32767, ER30720 to ER32767 \\
\hline
\end{tabular}

\section*{Cautions}

\section*{1. About LOGR instruction}

LOGR instruction executes logging in each operation in the continuous operation type.
When logging should be executed only once by one input, use the pulse operation type.

\section*{2. Cautions on using a memory cassette}

Flash memory is adopted in a memory cassette. Be sure to initialize the data storage area in units of sector before starting logging.
If this instruction is executed without initialization, an operation error (error code: K6770) may be caused.


\section*{3. About the allowable number of times of writing operations in memory}
- Note the following when accessing the extension file registers:

The memory cassette (flash memory) allows up to 10,000 times of writing operations.
The number of times of writing operations counts up each time the INITR, RWER or INITER instruction is executed. Do not let the number of times of writing operations exceed the allowable number of times of writing operations.
When a continuous operation type instruction is executed, writing operation to the memory occurs for each operation cycle of the PLC. To avoid this, be sure to use pulse operation type instructions.
- The number of times of writing operations does not count up when the LOADR, SAVER or LOGR instruction is executed. However, the SAVER and LOGR instructions require the target write sectors to be initialized before executing the instructions. Note that, when initializing by using the INITR or INITER instruction, the number of times of writing operations in the memory counts up every time the NITR or INITER instruction is executed.

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When any number other than the head device number of a sector of extension file registers is set to the device specified by \(s\).
(Error code: K6706)
2) While data is written, the remaining area and the data quantity to be written are compared with each other. If the remaining storage area is insufficient, only a limited amount of data is written. (Error code: K6706)
3) When the protect switch of the memory cassette is set to ON. (Error code: K6770)
4) When the collation result after data writing is "mismatch" due to omission of initialization or for another reason. (Error code: K6770)

\section*{Program example}

In the program example shown below, D1 and D2 are logged to the area from R2048 to R6143 every time X001 turns ON.
[Structured ladder]

[ST]
LOGR(X001,D1,K2,K2,R2048,D100);


\subsection*{7.27.5 RWER}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction writes the current values of an arbitrary number of extension registers ( \(R\) ) in the PLC's built-in RAM to extension file registers (ER) in a memory cassette (flash memory or EEPROM) or to the extension file registers (ER) in the PLC's built-in EEPROM.
Because RWER instruction is not supported in FX3uc PLCs former than Ver. 1.30, use SAVER instruction instead.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline RWER & 16 bits & Continuous & \begin{tabular}{ll} 
& \multicolumn{2}{c|}{ RWER } \\
-sN & \\
-n & \\
\hline
\end{tabular} & RWER(EN,s,n); \\
\hline RWERP & 16 bits & Pulse &  & RWERP(EN,s,n); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & Bevice of extension register storing data \\
\cline { 2 - 4 } & s & n & \begin{tabular}{l} 
Number of written (transferred) devices \\
{\([\) FX3G: \(1 \leq \mathrm{n} \leq 24000\), FX3U/FX3UC: \(0 \leq \mathrm{n} \leq 32767]\)}
\end{tabular} \\
\cline { 2 - 4 } \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & ANY16 \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & & - & & & & - & & & & & \\
\hline n & & & & & & & & & & & & & & \(\bullet\) & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (RWER)}

1) For the \(\mathrm{FX}_{3} \mathrm{u}\) and \(\mathrm{FX}_{3} \cup \mathrm{C}\) PLCs

The contents (current values) of " n " extension registers (R) starting from \(\triangle\) are written (transferred) to extension file registers having the same device numbers in a memory cassette (flash memory).

Extension registers ( R ) inside built-in RAM


Extension file registers (ER)

*1. All points specified by the instruction are written (transferred).
- When " n " is set to " 0 ", it is handled as " 32768 " when the instruction is executed.
2) For the FX3G PLCs
a) When connecting a memory cassette

The contents (current values) of the " n " points of extension registers \((\mathrm{R})\) starting from \(s\) are written (transferred) to the extension file registers (ER) having the same numbers as the extension registers \((R)\) in the memory cassette (EEPROM).
*1. All points specified by the instruction are written (transferred).
b) When not connecting a memory cassette

The contents (current values) of the " n " points of extension registers \((\mathrm{R})\) starting from s are written (transferred) to the extension file registers (ER) having the same numbers as the extension registers \((R)\) in the PLC's built-in EEPROM.

Extension registers (R)
inside built-in RAM


*1. All points specified by the instruction are written (transferred).


\section*{Cautions}

\section*{1. Cautions on writing data to the memory cassette (flash memory) for the FX3U and FX3uc PLCs}

Memory cassettes adopt flash memory. Note the following contents when writing data to extension file registers in a memory cassette with the RWER instruction.
1) Though extension file registers to be written can be specified arbitrarily, writing is executed in units of sector.
It takes about 47 ms to write one sector. If the extension file registers to be written are located in two sectors, the instruction execution time will be about 94 ms .
Be sure to change the set value of the watchdog timer D8000 before executing this instruction.


The table below shows the device range in each sector.
\begin{tabular}{|c|c|c|c|}
\hline Sector number & Device range & Sector number & Device range \\
\hline Sector 0 & ER0 to ER2047 & Sector 8 & ER16384 to ER18431 \\
\hline Sector 1 & ER2048 to ER4095 & Sector 9 & ER18432 to ER20479 \\
\hline Sector 2 & ER4096 to ER6143 & Sector 10 & ER20480 to ER22527 \\
\hline Sector 3 & ER6144 to ER8191 & Sector 11 & ER22528 to ER24575 \\
\hline Sector 4 & ER8192 to ER10239 & Sector 12 & ER24576 to ER26623 \\
\hline Sector 5 & ER10240 to ER12287 & Sector 13 & ER26624 to ER28671 \\
\hline Sector 6 & ER12288 to ER14335 & Sector 14 & ER28672 to ER30719 \\
\hline Sector 7 & ER14336 to ER16383 & Sector 15 & ER30720 to ER32767 \\
\hline
\end{tabular}
2) Do not turn OFF the power while this instruction is being executed. If the power is turned OFF, execution of this instruction may be aborted. If execution is aborted, the data may be lost.
Be sure to back up the data before executing this instruction.
\(\rightarrow\) For the backup method, refer to the next page.
3) The \(\mathrm{FX}_{3}\) uc PLCs of V 1.30 or later support the RWER instruction.

\section*{2．Cautions on writing data to the memory cassette（EEPROM）for the FX3G PLCs}

Memory cassettes adopt EEPROM．Note the following contents when writing data to extension file registers in a memory cassette with the RWER instruction．
－Do not turn OFF the power while this instruction is being executed．If the power is turned OFF，execution of this instruction may be aborted．If execution is aborted，the data may be lost．
Be sure to back up the data before executing this instruction．
3．About the allowable number of times of writing operations in memory
Note the following when accessing the extension file registers：
－For the FX3u and FX3uc PLCs
The memory cassette（flash memory）allows up to 10，000 times of writing operations．
The number of times of writing operations counts up each time the INITR，RWER or INITER instruction is executed．Do not let the number of times of writing operations exceed the allowable number of times of writing operations．When a continuous operation type instruction is executed，writing operation to the memory occurs for each operation cycle of the PLC．To avoid this，be sure to use pulse operation type instructions．
The number of times of writing operations does not count up when the LOADR，SAVER or LOGR instruction is executed．However，the SAVER and LOGR instructions require the target write sectors to be initialized before executing the instructions．Note that，when initializing by using the INITR or INITER instruction，the number of times of writing operations in the memory counts up every time the NITR or INITER instruction is executed．
－For the FX3G PLCs
The memory cassette（EEPROM）and PLC＇s built－in memory（EEPROM）allow up to 10，000 times and 20,000 times of writing operations，respectively．The number of times of writing operations counts up each time the RWER instruction is executed．Do not let the number of times of writing operations exceed the allowable number of times of writing operations．
When a continuous operation type instruction is executed，writing operation to the memory occurs for each operation cycle of the PLC．
To avoid this，be sure to use pulse operation type instructions．
The number of times of writing operations does not count up when the LOADR instruction is executed．

\section*{Error}

An operation error is caused in the following cases．The error flag M8067 turns ON，and the error code is stored in D8067．
1）When the last device number to be transferred exceeds＂32767＂（Error code：K6706）． At this time，the data up to the last device number of＂R32767＂\({ }^{* 1}\) is read（transferred）．
2）When a memory cassette is not connected．（Error code：K6771）\({ }^{*}{ }^{2}\)
3）When the protect switch of the memory cassette is set to ON．（Error code：K6770）
＊1．For the FX3G PLCs，the last device number is＂23999＂．
＊2．This does not cause an error with the FX3G PLCs because the PLCs read the contents of the extension file registers stored in the PLC＇s built－in EEPROM even if a memory cassette is not connected．

\section*{Program example}

In the program example shown below, the changed contents of extension registers R10 to R19 (sector 0) used for setting data are reflected on extension file registers (ER) when X000 turns ON.

\section*{Program}
[Structured ladder]

[ST]
PLS(X000,M0);
MOV(M0,D8000,D200);
ADD(M0,D8000,K47,D8000);
WDT(MO);
RWER(M0,R10,K10);
MOV(M0,D200,D8000);
WDT(MO);

Operation example
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{13}{*}{} & & Setting da & & \multirow{16}{*}{\[
\overbrace{\begin{array}{c}
\text { Write } \\
\text { (when X000 } \\
\text { turns ON.) }
\end{array}}
\]} & \multicolumn{2}{|l|}{Setting backup data} \\
\hline & & \multicolumn{2}{|l|}{Extension registers (R)} & & \multicolumn{2}{|l|}{Extension file registers (ER)} \\
\hline & & Device number & \[
\begin{aligned}
& \text { Current } \\
& \text { value }
\end{aligned}
\] & & Device number & Current \\
\hline & \multirow{10}{*}{} & R0 & K100 & & ER0 & K100 \\
\hline & & R1 & K105 & & ER1 & K105 \\
\hline & & : & ! & & ! & : \\
\hline & & R10 & K200 & & ER10 & K200 \\
\hline & & R11 & K215 & & ER11 & K215 \\
\hline & & R12 & K400 & & ER12 & K400 \\
\hline & & ! & ! & & ! & ! \\
\hline & & R19 & K350 & & ER19 & K350 \\
\hline & & ! & ! & & ! & ! \\
\hline & & R99 & K1000 & & ER99 & K1000 \\
\hline & & R100 & HFFFF & & ER100 & HFFFF \\
\hline & ¢ & : & ! & & ! & ! \\
\hline & \(\bigcirc\) & R2047 & HFFFF & & ER2047 & HFFFF \\
\hline
\end{tabular}

\subsection*{7.27.6 INITER}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

This instruction initializes extension file registers (ER) to "HFFFF" (<K-1>) in a memory cassette (flash memory) before executing the SAVER instruction.
Because the INITER instruction is not supported in FX3UC PLCs earlier than Ver. 1.30, use INITR instruction instead.
\(\rightarrow\) For SAVER instruction, refer to Section 7.27.2. \(\rightarrow\) For INITR instruction, refer to Section 7.27.3.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline INITER & 16 bits & Continuous &  & INITER(EN,s,n); \\
\hline INITERP & 16 bits & Pulse &  & INITERP(EN,s,n); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline & EN & Execution condition & \begin{tabular}{l} 
Device number of extension register sector with the same device number \\
as the extension file register to be initialized. \\
It is possible to specify only the head device in a sector of extension \\
registers.
\end{tabular} \\
\cline { 2 - 5 } \begin{tabular}{l} 
Input \\
variable
\end{tabular} & S & \begin{tabular}{l} 
Number of sectors of extension registers and extension file registers to be \\
initialized.
\end{tabular} & ANY16 \\
\cline { 2 - 5 } & n & Execution state & Bit \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & & \\
\hline
\end{tabular}

\section*{3. Applicable devices}


\section*{Function and operation explanation}

\section*{1. 16-bit operation (INITER/INITERP)}
" n " sectors of extension file registers (ER) in a memory cassette (flash memory) with the same device number as the device specified by \(\Omega\) are initialized (initial value "HFFFF" (<K-1>) is writen.).
Initialization is executed in sectors.


The table below shows the head device number in each sector.
\begin{tabular}{l|l|l}
\hline Sector number & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Head device \\
number
\end{tabular}} & Initialized device range \\
\hline Sector 0 & R0 & ER0 to ER2047 \\
\hline Sector 1 & R2048 & ER2048 to ER4095 \\
\hline Sector 2 & R4096 & ER4096 to ER6143 \\
\hline Sector 3 & R6144 & ER6144 to ER8191 \\
\hline Sector 4 & R8192 & ER8192 to ER10239 \\
\hline Sector 5 & R10240 & ER10240 to ER12287 \\
\hline Sector 6 & R12288 & ER12288 to ER14335 \\
\hline Sector 7 & R14336 & ER14336 to ER16383 \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Sector number & \multicolumn{1}{|c}{\begin{tabular}{c} 
Head device \\
number
\end{tabular}} & Initialized device range \\
\hline Sector 8 & R16384 & ER16384 to ER18431 \\
\hline Sector 9 & R18432 & ER18432 to ER20479 \\
\hline Sector 10 & R20480 & ER20480 to ER22527 \\
\hline Sector 11 & R22528 & ER22528 to ER24575 \\
\hline Sector 12 & R24576 & ER24576 to ER26623 \\
\hline Sector 13 & R26624 & ER26624 to ER28671 \\
\hline Sector 14 & R28672 & ER28672 to ER30719 \\
\hline Sector 15 & R30720 & ER30720 to ER32767 \\
\hline
\end{tabular}

\section*{Operation example}
1) Extension file registers (ER) [inside the memory cassette]
\begin{tabular}{l|c|c}
\hline \multirow{2}{*}{ Device number } & \multicolumn{2}{|c}{ Current value } \\
\cline { 2 - 3 } & \begin{tabular}{c} 
Before \\
execution
\end{tabular} & \begin{tabular}{c} 
After \\
execution
\end{tabular} \\
\hline\(S\) & H1234 & HFFFF \\
\hline\(S+1\) & H5678 & HFFFF \\
\hline\(S+2\) & H90AB & HFFFF \\
\hline\(S \quad \vdots\) & \(\vdots\) & \(\vdots\) \\
\hline\(S+(2048 \times n)-1\) & HCDEF & HFFFF \\
\hline
\end{tabular}

\section*{Cautions}

\section*{1. About 25 ms is required to initialize one sector.}

When initializing two or more sectors, take either measure shown below.
1) Set a large value to the watchdog timer D8000 using the following program.


\section*{Guideline of the watchdog timer set value}

A value acquired by the following procedure can be regarded as the guideline of the watchdog timer set value.
If an acquired value is 200 ms or less, however, it is not necessary to change the watchdog timer set value.
a) Write a program to be executed from GX Developer to the PLC.
[Online] \(\rightarrow\) [Write to PLC ...]
b) Set the current value of D8000 (unit: ms) to "1000" using the device test function in GX Developer. [Online] \(\rightarrow\) [Debug] \(\rightarrow\) [Device test ...] \(\rightarrow\) "Word device / buffer memory" in Device test dialog box
c) Set the PLC mode to RUN, and execute the program. (Execute this instruction also.)
d) Monitor the maximum scan time D8012 (unit: 0.1 ms ) using the device batch monitoring function in GX Developer.
e) Set the watchdog timer to the maximum scan time (D8012) or more.

D8012 stores the maximum scan time in increments of 0.1 ms .
Rough guide to the watchdog timer set value D8000 (unit: ms) is the "value stored in D8012 divided by 10 " added by 50 to 100 .
2) Setting WDT instruction just before and after INITER instruction as shown below:


If the processing time of the INITR instruction exceeds 200 ms , set the value of D8000 (unit: ms) to the processing time or more.
2. About the allowable number of times of writing operations in memory

Note the following when accessing the extension file registers:
- The memory cassette (flash memory) allows up to 10,000 times of writing operations.

The number of times of writing operations counts up each time the INITR, RWER or INITER instruction is executed. Do not let the number of times of writing operations exceed the allowable number of times of writing operations. When a continuous operation type instruction is executed, writing operation to the memory occurs for each operation cycle of the PLC. To avoid this, be sure to use pulse operation type instructions.
- The number of times of writing operations does not count up when the LOADR, SAVER or LOGR instruction is executed. However, the SAVER and LOGR instructions require the target write sectors to be initialized before executing the instructions. Note that, when initializing by using the INITR or INITER instruction, the number of times of writing operations in the memory counts up every time the NITR or INITER instruction is executed.
3. The \(\mathrm{FX}_{3} \mathbf{4}\) PLCs of V1.30 or later support the RWER instruction.

\section*{Error}

An operation error is caused in the following cases. The error flag M8067 turns ON, and the error code is stored in D8067.
1) When any device number other than the head device number of a sector of extension file registers (ER) is set to
(Error code: K6706)
2) When a device number to be initialized exceeds "32767".

In this case, devices up to ER32767 are initialized. (Error code: K6706)
3) When the protect switch of the memory cassette is set to ON. (Error code: K6770)
4) When a memory cassette is not connected. (Error code: K6771)

\section*{Program example}

In the program example shown below, the extension file registers ER0 to ER2047 in sector 0 are initialized.

\section*{[Structured ladder]}


\section*{[ST]}

IF(LDP(TRUE,X000) THEN WDT(TRUE));
IF(LDP(TRUE,X000) THEN INITER(TRUE,R0,K1));
IF(LDP(TRUE,X000) THEN WDT(TRUE));
1) Extension file registers (ER) [inside the memory cassette]
\begin{tabular}{l|c|c}
\hline \multirow{2}{*}{ Device number } & \multicolumn{2}{|c}{ Current value } \\
\cline { 2 - 3 } & \begin{tabular}{c} 
Before \\
execution
\end{tabular} & \begin{tabular}{c} 
After \\
execution
\end{tabular} \\
\hline ERO & H1234 & HFFFF \\
\hline ER1 & H5678 & HFFFF \\
\hline ER2 & H90AB & HFFFF \\
\hline \multicolumn{1}{c|}{\(\vdots\)} & \(\vdots\) & \(\vdots\) \\
\hline ER2047 & HCDEF & HFFFF \\
\hline
\end{tabular}

\subsection*{7.28 FX3U-CF-ADP}

\subsection*{7.28.1 FLCRT}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

The FLCRT instruction creates a file inside the CompactFlash \({ }^{T M}\) card mounted in the FX3U-CF-ADP. When executed after creation of a new file, the FLCRT instruction checks the association with the file ID, and evaluates it.
\(\rightarrow\) As for explanation of the instruction, see the FX3U-CF-ADP User's Manual.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline FLCRT & 16 bits & Continuous &  & FLCRT(EN,s1,s2,s3,n); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & File ID (Refer to Detailed explanation of setting data) \\
\cline { 2 - 5 } & s 1 & s2 & File name (Refer to Detailed explanation of setting data) \\
\cline { 2 - 5 } & s3 & File creation parameter (Refer to Detailed explanation of setting data) & ANY16(0..3) \\
\cline { 2 - 5 } & n & Used channel number [contents of setting : K1 = ch1, K2 \(=\) ch2] & ANY16 \\
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|c}
\begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\(1 \square^{11}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & - & - & & & & - & - & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & & & & & & & - & \(\bullet\) & & & & \(\bullet\) & & & & \(\bullet\) & \\
\hline (3) & & & & & & & & & & & & & & - & - & & & & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (FLCRT)}

1) When the file ID is "KO"

When (s1) is "KO", the FLCRT instruction creates a FIFO file.
When the PLC creates two or more files for FIFO file, and executes FIFO (first in, first out) in units of files. The PLC keeps the latest file, and deletes older files so that the total capacity of FIFO files and other files does not exceed the specified capacity.
2) When the file ID is "K1" to "K63"

When s1 is "K1" to "K63", the FLCRT instruction creates a file having the specified file name.
Sequence programs use the file ID for specifying a file. Accordingly, each file name saved in the CompactFlash \({ }^{\text {TM }}\) card is associated with the file ID, and controlled by the file ID table.
If a file having the specified file name already exists and is registered in the file ID table, the PLC finishes the FLCRT instruction without executing any processing.
If a file having the specified name already exists but is not registered in the file ID table, the PLC only registers the existing file to the file ID table.

\section*{Detailed explanation of setting data}

Details of the setting data in the FLCRT instruction are as shown below.
\begin{tabular}{|c|c|c|c|}
\hline & Setting items & Description & Data Type \\
\hline & s1 & \begin{tabular}{l}
File ID \\
This ID number is associated with the file name. \\
The FLCRT instruction creates a file, and associates the file name with the file ID at the same time. The user should use the file ID for specifying a file after that. Allowable setting range : K0 to K63 ("K0" indicates "FIFO file".)
\end{tabular} & ANY16 \\
\hline & (s2) & \begin{tabular}{l}
File name \\
When s1 is "K0 (FIFO file)" \\
Not used (ignored) \\
Use an unused device. (D or R) \\
When s1 is "K1" to "K63" \\
Specify the file name in up to 8 characters until "null" or "null + null". \\
Half-width alphanumeric characters and half-width symbols permitted in the MS-DOS are available. \\
Half-width symbols : !, \#, \$, \%, \&, ', (, ), +, -, @, ^, _, ', [, ], ~ \\
The extension is fixed to "CSV"
\end{tabular} & String \\
\hline \multirow{5}{*}{} & (s3) & \begin{tabular}{l}
Time stamp setting \\
Set whether or not the time stamp is added to the file. Specify the format when adding the time stamp. \\
K0 : None (NULL) \\
K1 : yyyy/mm/dd hh:mm:ss \\
K2 : yy/mm/dd hh:mm:ss \\
K3 : dd/mm/yyyy hh:mm:ss \\
K4 : dd/mm/yy hh:mm:ss \\
K5 : mm/dd/yyyy hh:mm:ss \\
K6 : mm/dd/yy hh:mm:ss \\
K7 : hh:mm:ss
\end{tabular} & \\
\hline & s3) +1 & \begin{tabular}{l}
Data type \\
Set the data type to be saved. \\
K0 : No data type specification (mixed type) \\
K1: Bit type \\
K2 : Decimal type (16-bit) \\
K3 : Decimal type (32-bit) \\
K4 : Hexadecimal type (16-bit) \\
K5 : Hexadecimal type (32-bit) \\
K6 : Real numbers(Floating point data) Exponent expression type (32-bit) \\
K7 : Character string
\end{tabular} & ANY16(0..3) \\
\hline & s3) +2 & \begin{tabular}{l}
Maximum number of lines Set the maximum number of lines. \\
Allowable setting range : K1 to K32767*1
\end{tabular} & \\
\hline & \multirow[b]{2}{*}{(s3) +3} & \begin{tabular}{l}
When s1 is "K0 (FIFO file)" \\
Set the CompactFlash \({ }^{\text {TM }}\) card use ratio. \\
Specify the ratio (\%) out of the whole CompactFlash \({ }^{\text {TM }}\) card capacity to be used. Allowable setting range : 10 to 90 (\%)
\end{tabular} & \\
\hline & & \begin{tabular}{l}
When (s1 is "K1" to "K63" \\
File processing to be executed when the specified maximum number of lines is reached. \\
Set the file processing method to be executed when the number of lines reaches the specified maximum value. \\
K0 : Stops execution. (The line position remains the specified maximum line position.) \\
K1 : Returns to the head (ring buffer file).
\end{tabular} & \\
\hline & ( & \begin{tabular}{l}
Channel number used by the CF-ADP \\
K1 : ch1 \\
K2 : ch2
\end{tabular} & ANY16 \\
\hline
\end{tabular}
*1. Adjust the maximum number of lines to specify the file size available in the used application software used.
For the file size calculation formula, refer to FX3u-CF-ADP User's Manual

\section*{Cautions}
1) When the file ID is "KO"
a) The CF-ADP can create up to 1000 files (within the CompactFlash \({ }^{T M}\) card capacity).
b) The file name is set to "FILE0000.CSV" to "FILE0999.CSV".
2) When the file ID is "K1" to "K63"
a) The user can create up to 63 files (within the CompactFlash \({ }^{\text {TM }}\) card capacity).
b) The FLCRT instruction is completed abnormally if different file names are specified for the same file ID or if the same file name is specified for different file IDs.
3) The \(F X_{3} U\) and \(F X_{3} \cup c\) PLCs supports the instruction at \(V 2.61\) or later.

The FX3UC-32MT-LT-2 PLC is due to be upgraded later.

\subsection*{7.28.2 FLDEL}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

The FLDEL instruction deletes files stored in the CompactFlash \({ }^{T M}\) card, or formats the CompactFlash \({ }^{\text {TM }}\) card.
\(\rightarrow\) As for explanation of the instruction, see the FX3U-CF-ADP User's Manual.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline FLDEL & 16 bits & Continuous &  & FLDEL(EN,s1,s2,n); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & File ID (Refer to Detailed explanation of setting data) \\
\cline { 2 - 5 } & s1 & File delete method (Refer to Detailed explanation of setting data) & ANY16 \\
\cline { 2 - 5 } & s2 & Used channel number [contents of setting : K1 = ch1, K2 = ch2] & ANY16 \\
\cline { 2 - 5 } \begin{tabular}{l} 
Output \\
variable
\end{tabular} & ENO & Execution state & Bit \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square \mathbf{I G} \square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
Real \\
Number
\end{tabular} \\
\hline E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
\({ }^{11} \square\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Pointer \\
\hline \(\mathbf{P}\)
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & & \(\bullet\) & \(\bullet\) & - & & & \\
\hline (s2) & & & & & & & & & & & & & & \(\bullet\) & - & & & & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (FLDEL)}


The FLDEL instruction deletes files stored in the CompactFlash \({ }^{\text {TM }}\) card, or formats the CompactFlash \({ }^{\top}{ }^{\top M}\) card in the following method.
1) Specify file deletion or file formatting using \(s 1\).
a) When s1 is "K-1 (H0FFFF)", the FLDEL instruction deletes all files whose ID is 0 to 63 .
b) When (s1 is "K0" to "K63", the FLDEL instruction deletes the file associated with the specified file ID.
c) When s 1 is "K512 (H200)", the FLDEL instruction formats the CompactFlash \({ }^{\text {TM }}\) card.
2) Specify the file deletion method or format type using (s2).
a) When (s1 is "K-1 (H0FFFF)" or "K0" to "K63", specify the deletion method

KO: The FLDEL instruction deletes the specified file.
K1: The FLDEL instruction deletes the association between the file name and the file ID (, but does not delete the file itself).
However, when the file ID specified in s1 is " 0 ", the FLDEL instruction deletes the file without regard to the setting of s2).
b) When (s1 is "K512 (H200)", specify the format type.
k256(H100) : The FLDEL instruction formats the CompactFlash \({ }^{\text {TM }}\) card in FAT16 format.
For details, refer to Detailed explanation of setting data.

\section*{Detailed explanation of setting data}

Details of the setting data in the FLDEL instruction are as shown below.
\begin{tabular}{|c|c|c|}
\hline Setting items & Description & Data Type \\
\hline s1 & \begin{tabular}{l}
File ID \\
K-1(H0FFFF) : The FLDEL instruction deletes all files. \\
K0 to K63 : The FLDEL instruction deletes a file associated with the specified file ID. K512(H200) : The FLDEL instruction formats the CompactFlash \({ }^{\text {TM }}\) card.
\end{tabular} & ANY16 \\
\hline (s2) & \begin{tabular}{l}
When (s1) is "K-1 (H0FFFF)" or "K0" to "K63" \\
Specify the deletion method. \\
K0 : The FLDEL instruction deletes the specified file. \\
K1 : The FLDEL instruction deletes the association between the file name and the file ID (but does not delete the file itself). \\
However, when the file ID specified in s1 is " 0 ", the FLDEL instruction deletes the file itself without regard to the setting of s2. \\
When (s1) is "K512 (H200)" \\
Specify the format type. \\
K256(H100) : The FLDEL instruction formats the CompactFlash \({ }^{\text {TM }}\) card in the FAT16 format.
\end{tabular} & ANY16 \\
\hline (n) & \begin{tabular}{l}
Channel number used by the CF-ADP \\
K1: ch1 \\
K2: ch2
\end{tabular} & ANY16 \\
\hline
\end{tabular}

\section*{Cautions}
1) When the file ID "K0 (FIFO file)" or "K-1 (all files)" is specified, it may take approximately 1 minute to delete the files depending on the number of stored files.
2) The \(F X_{3} U\) and \(F X_{3} U C\) PLCs supports the instruction at V2.61 or later. The FX3UC-32MT-LT-2 PLC is due to be upgraded later.

\subsection*{7.28.3 FLWR}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

The FLWR instruction writes data to the CompactFlash \({ }^{T M}\) card or to the buffer inside the FX3U-CF-ADP. \(\rightarrow\) As for explanation of the instruction, see the FX3U-CF-ADP User's Manual.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline FLWR & 16 bits & Continuous &  & FLWR(EN,s1,s2,s3,n,d); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{5}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s1) & File ID (Refer to Detailed explanation of setting data) & ANY16 \\
\hline & s2) & Head of devices which store data to be written (Refer to Detailed explanation of setting data) & ANY_SIMPLE \\
\hline & (53) & Data write parameter (Refer to Detailed explanation of setting data) & ANY16(0..4) \\
\hline & (n) & Position after data writing (Refer to Detailed explanation of setting data) & ANY16 \\
\hline \multirow[t]{2}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d) & Used channel number [contents of setting : K1 = ch1, K2 = ch2] & ANY16(0..1) \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{Special unit U \(\square\) IG \(\square\)} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{Character String " \(\square\) "} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & \(\mathbf{Y}\) & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & & & - & \(\bullet\) & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & & \(\bullet\) & \(\bullet\) & - & - & & & & \(\bullet\) & & & & & \\
\hline (53) & & & & & & & & & & & & & & \(\bullet\) & - & & & & \(\bullet\) & & & & & \\
\hline (d) & & & & & & & & & & & & & & \(\bullet\) & - & & & & \(\bullet\) & & & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (FLWR)}


The FLWR instruction writes data specified by the device s2 to a file stored in the CompactFlash \({ }^{\text {TM }}\) card specified by the file ID or to the buffer inside the CF-ADP. The FLWR instruction can overwrite data in the line position specified by the device \(s 3+1\), and can write additional data ( \(\mathrm{K}-1\) ). When the writing destination is the buffer inside the CF-ADP, the FLWR instruction can only execute additional writing. When writing is completed, the line position and column position after writing are as follows.
- When data in 1 line is written additionally
- Line position after writing : Written line position + K1
- Column position after writing : K1
- When a line having existing data is overwritten
- Line position after writing :

Written line position if data is not written to the final column position of the specified the line position Line position next to the written line position if data is written to the final column position of the line
- Column position after writing:

Column position next to the final written data point K1 if data is written to the final data point in the line "K1" if data is written to the final data point in the line

Both additional writing and overwriting are executed to the maximum number of lines specified during file creation. If data is written up to the final column position, the line position after writing varies depending on the file type and setting.
- When the processing is stopped by the maximum line position in a normal file Line position after writing = Maximum line position + K1
\(\mathrm{K}-32768\) when the maximum line position is "K32767"
- In the case of a normal file in which processing returns to the head of the file from the end of the file (ring buffer file)
Line position after writing \(=\) K1
- In the case of FIFO file Line position after writing \(=\) K1

In either case, the column position after writing is "K1".

\section*{Detailed explanation of setting data}

Details of the setting data in the FLWR instruction are as shown below.
\begin{tabular}{|c|c|c|c|}
\hline & Setting items & Description & Data Type \\
\hline & (s1) & \[
\begin{aligned}
& \hline \text { File ID } \\
& \text { K0 to K63 }
\end{aligned}
\] & ANY16 \\
\hline & (s2) & \begin{tabular}{l}
Head of devices which store data to be written. \\
Specify the head of devices which store the data to be written to the CompactFlash \({ }^{\mathrm{TM}}\) card.
\end{tabular} & ANY_SIMPLE \\
\hline \multirow{5}{*}{} & (s3) & \begin{tabular}{l}
Specify the data writing type \\
K0: Mixed type \\
K1 : Bit type \\
K2 : Decimal type (16-bit) \\
K3 : Decimal type (32-bit) \\
K4 : Hexadecimal type (16-bit) \\
K5 : Hexadecimal type (32-bit) \\
K6 : Real numbers(Floating point data) Exponent expression type (32-bit) \\
K7 : Character string ( 512 half-width/full-width characters maximum) \\
K8 : Data name :Character string consisting of up to 32 half-width/full-width characters. Index, DATE TIME are added automatically.
\end{tabular} & \multirow{5}{*}{ANY16(0..4)} \\
\hline & (s3) +1 & Specify the line position of the writing destination, or specify additional writing. Line position of the writing destination : K1 to specified maximum number of lines Additional writing : K-1 & \\
\hline & (s3) +2 & Specify the data column position in the writing destination. Column position : K1 to K254 Additional writing : K-1 & \\
\hline & (53) +3 & Number of written data points K1 to K254 & \\
\hline & (s3) +4 & Writing destination
K0 : CompactFlash \({ }^{\text {TM }}\) card
K1 : Buffer inside the CF-ADP & \\
\hline & (d) & Line position after writing K1 to specified maximum number of lines & \multirow[b]{2}{*}{ANY16(0..1)} \\
\hline & (d) +1 & Column position after writing K1 to K254 & \\
\hline & (d) & \begin{tabular}{l}
Channel number used by the CF-ADP \\
K1: ch1 \\
K2 : ch2
\end{tabular} & ANY16 \\
\hline
\end{tabular}

\section*{Cautions}
1) The FLWR instruction is completed abnormally if a CompactFlash \({ }^{T M}\) card is not mounted.
2) The user should pay close attention to the number of times data is written when the writing destination is set to the CompactFlash \({ }^{\text {TM }}\) card because data is written every time the FLWR instruction is executed.
For example, if data is written to the CompactFlash \({ }^{\text {TM }}\) card every one minute, data is written 100,000 times in approximately 2 months.
3) Even if the writing destination is set to the buffer inside the CF-ADP, data is written to the CompactFlash \({ }^{\text {TM }}\) card in the case of overwriting.
4) The FLWR instruction writes data to the CompactFlash \({ }^{\text {TM }}\) card after the internal buffer inside the CF-ADP becomes full when the writing destination is set to the buffer. Data stored in the internal buffer inside the CF-ADP is erased when a (instantaneous or long) power interruption occurs.
5) When the data type is a data name (K8), the user can specify only the head line position before writing other data. Index and DATE TIME are added automatically.
6) The FLWR instruction may require several scans to acquire data. Take proper measures such as saving acquired data in another device if data consistency is required.
7) It is necessary to set the device number in multiples of 16 when a bit device is specified in s2 and the data type is set to anything other than bit type. When a word device is specified in s2 and the data type is set to bit, the FLWR instruction acquires data to be written from the least significant bit of the specified device.
8) When s3 is "K7" or "K8", 00 H , which indicates the end of the string, must be added to the end of the character string.
9) The \(F X_{3} \cup\) and \(F X_{3} \cup c\) PLCs supports the instruction at V2.61 or later. The FX3UC-32MT-LT-2 PLC is due to be upgraded later.

\subsection*{7.28.4 FLRD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

The FLRD instruction reads data from the CompactFlash \({ }^{\text {TM }}\) card.
\(\rightarrow\) As for explanation of the instruction, see the FX3u-CF-ADP User's Manual.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline FLRD & 16 bits & Continuous & \begin{tabular}{lr|r}
\hline \multicolumn{2}{c|}{ FLRD } & \\
- EN & ENO & - \\
-s 1 & d 1 & - \\
-s 2 & d 2 & - \\
-n & & \\
\hline
\end{tabular} & FLRD(EN,s1,s2,n,d1,d2); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{4}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & (s1) & File ID (Refer to Detailed explanation of setting data) & ANY16 \\
\hline & (s2) & Data read parameter (Refer to Detailed explanation of setting data) & ANY16(0..3) \\
\hline & (n) & Used channel number [contents of setting : K1 = ch1, K2 = ch2] & ANY16 \\
\hline \multirow{3}{*}{Output variable} & ENO & Execution state & Bit \\
\hline & (d1) & Device which stores the read data (Refer to Detailed explanation of setting data) & ANY_SIMPLE \\
\hline & (d2) & Number of data points existing in the specified line & ANY16 \\
\hline
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Bit Devices \\
System user
\end{tabular}}} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square\) IG \(\square\)
\end{tabular}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{Character String
"} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & X & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & V & Z & Modifier & K & H & & & \\
\hline (s1) & & & & & & & & & & & & & & - & - & & & & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (s2) & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & & - & & & & & \\
\hline (d1) & & - & - & & & - & & & & & & & & - & - & & & & - & & & & & \\
\hline (d2) & & & & & & & & & & & & & & - & \(\bullet\) & & & & - & & & & & \\
\hline ( m & & & & & & & & & & & & & & & & & & & & \(\bullet\) & - & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. 16-bit operation (FLRD)


The FLRD instruction reads corresponding number of data from the position determined by the line position and column position in the file specified by the file ID, and stores the read data to a device specified in (d1).

When reading data from a file in which only the same type of data exists in one line, refer to FX3U-CF-ADP User's Manual.
When reading data from a file in which different types of data exist in one line, refer to FX3U-CF-ADP User's Manual.

\section*{Detailed explanation of setting data}

Details of the setting data in the FLRD instruction are as shown below.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Setting items} & Description & Data Type \\
\hline \multicolumn{2}{|r|}{(s1)} & File ID K0 to K63 & ANY16 \\
\hline \multirow[t]{4}{*}{} & (s2) & \begin{tabular}{l}
Specify the data reading type \\
K0 : Mixed type \\
K1 : Bit type \\
K2 : Decimal type (16-bit) \\
K3: Decimal type (32-bit) \\
K4 : Hexadecimal type (16-bit) \\
K5 : Hexadecimal type (32-bit) \\
K6: Real numbers(Floating point data) Exponent expression type \\
K7 : Character string ( 512 half-width/full-width characters maximum)
\end{tabular} & \multirow[t]{4}{*}{ANY16(0..3)} \\
\hline & (s2) +1 & Specify the line position from which data is read. Line position : K1 to specified maximum number of lines & \\
\hline & (s2) +2 & Specify the column position from which data is read. Column position : K1 to K254 & \\
\hline & (s2) +3 & Read points K1 to K254 & \\
\hline & d1) & \begin{tabular}{l}
Device which stores the read data \\
Specify the head of devices which store the data read from the CompactFlash \({ }^{\mathrm{TM}}\) card.
\end{tabular} & ANY_SIMPLE \\
\hline & d2) & \begin{tabular}{l}
Number of data points existing in the specified line K1 to K254 \\
K0 : No data
\end{tabular} & ANY16 \\
\hline & n & \begin{tabular}{l}
Channel number used by the CF-ADP \\
K1 : ch1 \\
K2 : ch2
\end{tabular} & ANY16 \\
\hline
\end{tabular}

\section*{Cautions}
1) The FLRD instruction is completed abnormally if a CompactFlash \({ }^{T M}\) card is not mounted.
2) The FLRD instruction may require several scans to acquire data. Use the acquired data only after confirming completion of the FLRD instruction if data consistency is required.
3) It is necessary to set the device number in a multiple of 16 when a bit device is specified in (d1) and the read data type is anything other than bit. When a word device is specified in (d1) and the read data type is bit, the FLRD instruction stores data read from the least significant bit of the specified word device.
4) When the data type is anything other than character string and the number of devices which store the read data is insufficient, the FLRD instruction does not read data from the CF-ADP. An error occurs.
5) When the data type is a character string, the character string length is unknown. The PLC stores as much read data as possible. When reading is not completed even after the final device is reached, an error occurs.
6) The \(F X_{3} U\) and \(F X_{3} U C\) PLCs supports the instruction at \(V 2.61\) or later. The FX3UC-32MT-LT-2 PLC is due to be upgraded later.

\subsection*{7.28.5 FLCMD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

The FLCMD instruction gives instruction for operation to the FX3u-CF-ADP.
\(\rightarrow\) As for explanation of the instruction, see the FX3U-CF-ADP User's Manual.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline FLCMD & 16 bits & Continuous &  & FLCMD (EN,s,n); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Variable} & Description & Data type \\
\hline \multirow{3}{*}{Input variable} & EN & Execution condition & Bit \\
\hline & S & Instruction for operation (Refer to Detailed explanation of setting data) & ANY16 \\
\hline & (n) & Used channel number [contents of setting : K1 = ch1, K2 = ch2] & ANY16 \\
\hline Output variable & ENO & Execution state & Bit \\
\hline
\end{tabular}

\section*{3. Applicable devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & Special unit & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{Cons tant} & \multirow[t]{2}{*}{Real Number} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & U \(\square\) IG \(\square\) & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & \(\bullet\) & - & & & & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (n) & & & & & & & & & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}

\section*{1. 16-bit operation (FLCMD)}


The FLCMD instruction gives instruction for operation to the CF-ADP.
The contents of instruction are as follows.
1) When \(s\) is "K-1", the FLCMD instruction forcibly writes all buffered data (stored in the buffer inside the CF-ADP) to the CompactFlash \({ }^{\text {TM }}\) card.
2) When \(s\) is "K0" to "K63", the FLCMD instruction forcibly writes the buffered data of the specified file ID (stored in the buffer inside the CF-ADP) to the CompactFlash \({ }^{\text {TM }}\) card.
3) When \(s\) is "K256 (H100)", the FLCMD instruction sets the CompactFlash \({ }^{T M}\) card to the mounted status if it is in the unmounted status.
4) When \(S\) is "K512 (H200)", the FLCMD instruction sets the CompactFlash \({ }^{\text {TM }}\) card to the unmounted status if it is in the mounted status.
5) When \(s\) is "K1280 (H500)", the FLCMD instruction clears error codes stored in the CF-ADP.

For details, refer to Detailed explanation of setting data.

\section*{Detailed explanation of setting data}

Details of the setting data in the FLCMD instruction are as shown below.
\begin{tabular}{|c|c|c|}
\hline Setting items & Description & Data Type \\
\hline (d) & \begin{tabular}{l}
Contents of instruction for operation \\
\(\mathrm{K}-1\) : Forcibly writes all buffered data to the CompactFlash \({ }^{\text {TM }}\) card. \\
K0 to K63 : Forcibly writes the buffered data of the specified file ID to the CompactFlash \({ }^{\text {TM }}\) card. \\
K256(H100) : Sets the CompactFlash \({ }^{\text {TM }}\) card to the mounted status \({ }^{* 1}\). \\
K512(H200) : Sets the CompactFlash \({ }^{\text {TM }}\) card to the unmounted status \({ }^{*}\). \\
K1280(H500) : Clears error codes stored in the CF-ADP.
\end{tabular} & ANY16 \\
\hline (n) & \begin{tabular}{l}
Channel number used by the CF-ADP \\
K1 : ch1 \\
K2: ch2
\end{tabular} & ANY16 \\
\hline
\end{tabular}
*1. The CompactFlash \({ }^{\text {TM }}\) card is available in the "mounted" status.
*2. The CompactFlash \({ }^{\text {TM }}\) card is unavailable in the "unmounted" status.

\section*{Caution}
1) The \(F X_{3} U\) and \(F X_{3} \cup c\) PLCs supports the instruction at \(V 2.61\) or later. The FX3UC-32MT-LT-2 PLC is due to be upgraded later.

\subsection*{7.28.6 FLSTRD}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline FX3U(C) & FX3G & FX2N(C) & FX1N(C) & FX1S & FXU/FX2C & FX0N & FX0(S) \\
\hline\(\Delta\) & \(\times\) \\
\hline
\end{tabular}

\section*{Outline}

The FLSTRD instruction reads the status (including the error information and file information) of the FX3UCFADP.
\(\rightarrow\) As for explanation of the instruction, see the FX3U-CF-ADP User's Manual.
1. Format and operation, execution form
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction name} & \multirow[b]{2}{*}{Operation} & \multirow[t]{2}{*}{Execution form} & \multicolumn{2}{|r|}{Expression in each language} \\
\hline & & & Structured ladder & ST \\
\hline FLSTRD & 16 bits & Continuous & \begin{tabular}{lr}
\multicolumn{2}{c|}{ FLSTRD } \\
EN & ENO \\
-s & d \\
-n & \\
\hline
\end{tabular} & FLSTRD(EN,s,d,n); \\
\hline
\end{tabular}
2. Set data
\begin{tabular}{l|l|l|l}
\hline \multicolumn{2}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c}{ Data type } \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Input \\
variable
\end{tabular}} & EN & Execution condition & \begin{tabular}{l} 
Contents of status to be read (Refer to Detailed explanation of setting \\
data)
\end{tabular} \\
\cline { 2 - 4 } & s & Used channel number [contents of setting : K1 = ch1, K2 = ch2] & ANY16 \\
\cline { 2 - 5 } & Output \\
variable
\end{tabular}
3. Applicable devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Operand type} & \multicolumn{7}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{5}{|c|}{Others} \\
\hline & \multicolumn{7}{|c|}{System user} & \multicolumn{4}{|l|}{Digit specification} & \multicolumn{4}{|c|}{System user} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Special unit \\
U \(\square \mathbf{I G} \square\)
\end{tabular}}} & \multicolumn{3}{|r|}{Index} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Cons \\
tant
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Real Number \\
E
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Character String \\
" \(\square\) "
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pointer \\
P
\end{tabular}} \\
\hline & \(\mathbf{X}\) & Y & M & T & C & S & D \(\square . \mathrm{b}\) & KnX & KnY & KnM & KnS & T & C & D & R & & & V & Z & Modifier & K & H & & & \\
\hline (s) & & & & & & & & & & & & & & - & - & & & & & - & \(\bullet\) & \(\bullet\) & & & \\
\hline (d) & & & & & & & & & & & & & & - & - & & & & & \(\bullet\) & & & & & \\
\hline ( & & & & & & & & & & & & & & & & & & & & & \(\bullet\) & - & & & \\
\hline
\end{tabular}

\section*{Function and operation explanation}
1. 16-bit operation (FLSTRD)


The FLSTRD instruction reads the status information of the CF-ADP. The following contents can be read.
The number of data stored in \((d)\) varies depending on the contents of the read status.
1) When \(s\) is "K0" to "K63" the FLSTRD instruction reads the final line number and final column position of each file.
2) When \(\subseteq\) s is "K256 (H100)" the FLSTRD instruction reads file IDs stored in the CompactFlash \({ }^{\text {TM }}\) card.
3) When \(s\) is "K512 (H200)" the FLSTRD instruction reads the data capacity.
4) When \(s\) is "K768 (H300)" the FLSTRD instruction reads the version information of the CF-ADP.
5) When \(S\) is "K1024 (H400)" the FLSTRD instruction reads the error information (error flag) for errors having occurred in the CF-ADP.
6) When \(s\) is "K1280 (H500)" the FLSTRD instruction reads error codes and error code details. Up to 5 of the latest error codes and error code details can be stored.
For details, refer to Detailed explanation of setting data.

\section*{Detailed explanation of setting data}

Details of the setting data in the FLSTRD instruction are as shown below.
\begin{tabular}{|c|c|c|}
\hline Setting items & Description & Data Type \\
\hline (s) & \begin{tabular}{l}
Contents of status to be read \\
K0 to K63 : Final line position of each file \\
K256(H100) : File IDs stored in the CompactFlash \({ }^{\text {TM }}\) card \\
K512(H200) : Capacity of the CompactFlash \({ }^{\text {TM }}\) card \\
K768(H300) : Version of the CF-ADP \\
K1024(H400) : Error information (error flag) \\
K1280(H500) : Error codes
\end{tabular} & ANY16 \\
\hline (d) & \begin{tabular}{l}
Head device to which the read status is written \\
The number of data points stored in (d) varies depending on the contents of the read status.
\end{tabular} & ANY16 \\
\hline n & \begin{tabular}{l}
Channel number used by the CF-ADP \\
K1 : ch1 \\
K2: ch2
\end{tabular} & ANY16 \\
\hline
\end{tabular}
- When \(s\) is "K0" to "K63"

The FLSTRD instruction reads the final line position and final column position of each file.
\begin{tabular}{c|l}
\hline Setting items & \multicolumn{1}{c}{ Description } \\
\hline d & \begin{tabular}{l} 
Final line position \\
K1 to the specified maximum line position
\end{tabular} \\
\hline d +1 & Final column position \\
\hline
\end{tabular}
- When \(s\) is "K256 (H100)"

The FLSTRD instruction reads file IDs stored in the CompactFlash \({ }^{\text {TM }}\) card. For a file ID corresponding to the read data, refer to the file ID correspondence table shown below.
When a file exists, a bit corresponding to the file ID turns ON.
\begin{tabular}{c|l}
\hline Setting items & \\
\hline (d) & \\
\cline { 1 - 1 } (d) +1 & \multirow{3}{*}{ Sescription } \\
\hline (d) +2 & \\
\hline (d) +3 & \\
\hline
\end{tabular}

File ID correspondence table
\begin{tabular}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
\hline \begin{tabular}{c} 
Setting \\
items
\end{tabular} & \(\mathbf{b 1 5}\) & \(\mathbf{b} 14\) & \(\mathbf{b} 13\) & \(\mathbf{b} 12\) & \(\mathbf{b} 11\) & \(\mathbf{b 1 0}\) & \(\mathbf{b} 9\) & \(\mathbf{b} 8\) & \(\mathbf{b} 7\) & \(\mathbf{b 6}\) & \(\mathbf{b 5}\) & \(\mathbf{b 4}\) & \(\mathbf{b 3}\) & \(\mathbf{b 2}\) & \(\mathbf{b 1}\) & \(\mathbf{b 0}\) \\
\hline d & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline d +1 & 31 & 30 & 29 & 28 & 27 & 26 & 25 & 24 & 23 & 22 & 21 & 20 & 19 & 18 & 17 & 16 \\
\hline d +2 & 47 & 46 & 45 & 44 & 43 & 42 & 41 & 40 & 39 & 38 & 37 & 36 & 35 & 34 & 33 & 32 \\
\hline d +3 & 63 & 62 & 61 & 60 & 59 & 58 & 57 & 56 & 55 & 54 & 53 & 52 & 51 & 50 & 49 & 48 \\
\hline
\end{tabular}
- When s is "K512 (H200)"

The FLSTRD instruction reads the data capacity, used space and free space of the CompactFlash \({ }^{\text {TM }}\) card to the following devices respectively.
\begin{tabular}{|c|c|}
\hline Setting items & Description \\
\hline (d) +1 , d & Data capacity of the CompactFlash \({ }^{\text {TM }}\) card (kB) Units, If the data capacity is less than \(1 \mathrm{kB}, " 1 "\) is stored. \\
\hline (d) +3, (d) +2 & Used space of the CompactFlash \({ }^{\text {TM }}\) card (kB) Units, If the data size is less than \(1 \mathrm{kB}, " 1\) " is stored. \\
\hline (d) +5 , d +4 & Free space of the CompactFlash \({ }^{\text {TM }}\) card ( kB ) Units, If the data size is less than \(1 \mathrm{kB}, " 1\) " is stored. \\
\hline
\end{tabular}
- When \(s\) is "K768 (H300)"

The FLSTRD instruction reads the version information of the CF-ADP.
\begin{tabular}{c|ll}
\hline Setting items & \multicolumn{1}{c}{ Description } \\
\hline d & \begin{tabular}{l} 
Stores the version of CF-ADP. \\
(Example) K100 = Ver.1.00
\end{tabular} & \\
\hline
\end{tabular}
- When \(s\) is "K1024 (H400)"

The FLSTRD instruction reads the error information (error flag).
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Setting items } & \multicolumn{1}{c}{ Description } \\
\hline & Error detection signal \\
b0 : The CompactFlash \({ }^{\text {TM }}\) card is not mounted. \\
b1 : The CompactFlash \({ }^{\text {TM }}\) card is full. \\
b2 : An error has occurred in the CF-ADP. \\
& b3 : CF-ADP H/W error \\
b4 : CompactFlash \\
& b5 to b15 card error \\
& \\
\hline
\end{tabular}
- When S is "K1280 (H500)"

The FLSTRD instruction reads the error code and error code details for errors having occurred in the CFADP. Up to 5 of the latest error codes and error code details can be stored.
\begin{tabular}{c|l}
\hline Setting items & Description \\
\hline (d) & Error code 1 \\
\hline d +1 & Error code details 1 \\
\hline d +2 & Error code 2 \\
\hline d +3 & Error code details 2 \\
\hline d +4 & Error code 3 \\
\hline d +5 & Error code details 3 \\
\hline d +6 & Error code 4 \\
\hline d +7 & Error code details 4 \\
\hline d +8 & Error code 5 \\
\hline d +9 & Error code details 5 \\
\hline
\end{tabular}

\section*{Caution}
1) The \(F X_{3} U\) and \(F X_{3} \cup c\) PLCs supports the instruction at \(V 2.61\) or later. The FX3UC-32MT-LT-2 PLC is due to be upgraded later.

\section*{8. Interrupt Function and Pulse Catch Function}

> This chapter explains the built-in interrupt function and pulse catch function in FX PLCs.
> The input, special devices and timers in the explanations relate to the FX3U and FX3UC PLCs. Note that these differ from one model of PLC to another.
\(\rightarrow\) FX Structured Programming Manual (Device \& Common)

\subsection*{8.1 Outline}

This section explains the function to immediately execute an interrupt program (interrupt routine) without being affected by the operation cycle of the sequence program (main) while using an interrupt function as a trigger.
The delay by operation cycle and machine operation affected by uneven time intervals in normal sequence program process can be improved.
1. Input interrupt function (interrupt of external signal input (X))

By the input signal from an input (X000 to X005), the normal sequence program is paused, and an interrupt routine program is executed with priority.
The input interrupt execution timing can be specified on the rising edge or falling edge of the signal by the pointer number.
\(\rightarrow\) For details, refer to Section 8.3.
2. Input interrupt delay function (interrupt of external signal input (X))

By the input signal from an input (X000 to X 005 ), the normal sequence program is paused, and an interrupt routine program is executed with priority after the delay time (set in units of 1 ms ).
The input interrupt execution timing can be specified on the rising edge or falling edge of the signal by the pointer number.
\(\rightarrow\) For details, refer to Section 8.4.

\section*{3. Timer interrupt function (timer interrupt activated in a constant cycle)}

The normal sequence program is paused in a constant cycle of 10 to 99 ms , and an interrupt routine program is executed with priority.
\(\rightarrow\) For details, refer to Section 8.5.
4. High speed counter interrupt function (interrupt function given at counting up)

When the current value of a high speed counter reaches a specified value, the normal sequence program is paused and an interrupt routine program is executed with priority.
\(\rightarrow\) For details, refer to Section 8.6.

\section*{5. Pulse catch function}

When the input signal from an input (X000 to X007) turns ON from OFF, a special auxiliary relay ;M8170 to M8177 is set in the interrupt processing. By a relay M8170 to M8177 in a normal sequence program, a signal that remains ON longer than the receivable range with regular input processing can be easily received.
When processing such a signal that turns ON and OFF several times in one operation cycle, however, use the input interrupt function.
\(\rightarrow\) For details, refer to Section 8.7.

\subsection*{8.2 Common items}

\subsection*{8.2.1 Interrupt function}

Three types of interrupt, namely, input interrupt, timer interrupt and counter interrupt, are available.
Observe the following in creating an interrupt program.
1) Create a task for interrupt and main program.
2) Set an interrupt pointer in the event box for the interrupt program.


For the interrupt pointers set in the event box, refer to their respective explanations.
3) The IRET instruction does not need to be programmed because, at the time of compilation, it is automatically added to the end of the program registered for the interrupt program task.

\subsection*{8.2.2 How to disable interrupt function and pulse catch function}

This section describes how to disable the interrupt function and pulse catch function.
1. Limiting the program interrupt range [interrupt function and pulse catch function]
1) Programming method

Program the DI instruction to set the interrupt disabled zone.
Even if an interrupt is generated between the DI instruction and El instruction (interrupt disabled zone), the interrupt is executed after the El instruction.
2) Program example

3) Cautions
a) The interrupt inputs with special auxiliary relay for interrupt disable (M8050 to M8059) turned ON are excluded.
This special auxiliary relay is not available for pulse catch function.
b) When the disabled zone is long, interrupts are accepted, but the interrupt processing is started after considerable time.
When the interrupt disabling setting is not required, program only El instruction. It is not always necessary to program DI instruction.

\section*{2. Disabling interrupt pointers (for each interrupt routine) [interrupt function]}
1) Programming method

The special auxiliary relays M8050 to M8059 for disabling interrupt are provided.
While an interrupt disable flag (M8050 to M8059) is ON, a corresponding interrupt program is not executed even if the interrupt disable flag is set to OFF after a corresponding interrupt is generated.
\begin{tabular}{l|l}
\hline Input interrupt & \begin{tabular}{l} 
The input interrupts X000 to X005 correspond to M8050 to M8055*1 respectively. When a relay \\
M8050 to M8055 turns ON, a corresponding input interrupt is disabled.
\end{tabular} \\
\hline Timer interrupt & \begin{tabular}{l} 
The timer interrupts 16 \(\square\) to \(18 \square \square\) correspond to M8056 to M8058 \\
\\
M8056 to M8058 turns ON, a corresponding timer interrupt is disabled.
\end{tabular} \\
\hline High speed counter interrupt & When M8059*1 turns ON, all of the high speed counter interrupts 1010 to 1060 are disabled. \\
\hline
\end{tabular}
*1. Cleared when the PLC mode is changed from RUN to STOP.
2) Program example

In the program example shown below, when M8053 is set to ON by M20, the interrupt input I301 triggered by X 003 is disabled.
[Main program]

[Interrupt program] (Event: I301)





\subsection*{8.2.3 Related items}

\section*{1. Using the I/O refresh function (REF instruction)}

When controlling an input relay or output relay in an interrupt program, the I/O refresh instruction REF can be used to acquire the latest input information and immediately output the operation result. As a result, high speed control is achieved without being affected by the operation cycle of the PLC.
2. Interrupt operation while FROM/TO instruction is executed. The interrupt operation is executed as follows depending on the ON/OFF status of the special auxiliary relay M8028.
1) While M8028 is OFF

While FROM/TO instructions are being executed, interrupts are automatically disabled. Input interrupts and timer interrupts are not executed.
Interrupts generated during this period are immediately executed when the execution of FROM/TO instructions are completed.
FROM/TO instruction can be used in an interrupt program when M8028 is OFF.
2) While M8028 is \(O N\)

When an interrupt is generated while FROM/TO instruction is being executed, execution of the FROM/TO instruction is paused and the interrupt program is executed.
FROM/TO instructions cannot be used in an interrupt routine program when M8028 is ON.

\subsection*{8.2.4 Cautions on use (common)}

This section explains common cautions on using the interrupt function or pulse catch function. Specific cautions on each interrupt function are explained in the description of each interrupt function.
1. Processing when many interrupts are generated

When many interrupts are generated in turn, priority is given to the first one. When many interrupts are generated at the same time, priority is given to the one having the smallest pointer number. While an interrupt routine is being executed, other interrupts are disabled.
2. When double interrupt (interrupt during another interrupt) is required [interrupt function] Usually, interrupts are disabled in an interrupt routine (program). When EI and DI instructions are programmed in an interrupt routine, up to two interrupts can be accepted. The FX3G, FX1s, FX1n or FX1nc PLC does not support this function.

\section*{3. Operation when a timer is used [interrupt function]}

Note that counting using a general timer is disabled, even a 1 ms retentive type timer.
In an interrupt routine, use timers for routine program T192 to T199*1.
*1. The FX0, FX0S, FX0N, FX1S, FX1N or FX1NC PLC does not support the timers for routine programs.

\section*{4. Non-overlap of input [input interrupt (with or without delay function) and pulse catch function]}

The inputs X000 to X007 can be used for high speed counters, input interrupts, pulse catch, SPD, ZRN, DSZR and DVIT instructions and for general purpose inputs. Make sure that input terminals do not overlap with each other.
5. Operation of devices latched in the ON status [interrupt function]

Devices which were set to ON in an interrupt routine are held in the ON status even after the interrupt routine is finished. When RST instruction for a timer or counter is executed, the reset status of the timer or counter is also held.
To turn OFF a device held in the ON status or for canceling such a timer or counter held in the reset status, reset such a device or deactivate RST instruction respectively inside or outside routine.

\section*{Example in which outputs are latched}

In the program example shown below, the counter C0 is provided to count X001. When X000 turns ON from OFF, the interrupt program 1001 is executed only in one scan, and then the counter C0 is reset and Y007 is output.
1) Program example
[Main program]

[Interrupt program]
(Event: I001)

2) Timing chart


\section*{Example in which latched outputs are reset (countermeasures)}
1) Program example
[Main program]


Program to reset Y007 at an arbitrary time.
[Interrupt program]
(Event: 1001)

2) Timing chart


\section*{8．3 Input Interrupt（Interrupt Triggered by External Signal）［Without Delay Function］}

\section*{8．3．1 Input Interrupt（Interrupt Triggered by External Signal）［Without Delay Function］}

1．Outline
An interrupt routine is executed by the input signal from an input X000 to X 005 ．

\section*{2．Application}

Because the external input signal can be processed without being affected by the operation cycle of the PLC， this interrupt is suitable to high speed control and receiving of short pulses．

3．Basic program（programming procedure）
［Main program］


Main program
Interrupt inputs are accepted after El instruction． It is not necessary to program DI （disable interrupt） instruction if there is no zone where input interrupts should be disabled．
［Interrupt program］
（Event：I001）

FEND instruction finishes the main program．
［Interrupt program］ \(\qquad\) When the rising edge of X 000 is detected （Event：I001）

Interrupt routine 1） （Interrupt program）

When X000 turns ON，its rising edge is detected， and the interrupt routine 1）is executed．
The program execution returns to the main program after executing routine 1）．


\section*{4. Number and operation of (six) interrupt pointers}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Input number \({ }^{* 1}\)} & \multicolumn{2}{|c|}{Pointer number} & \multirow[b]{2}{*}{Interrupt disable command} \\
\hline & Interrupt at rising edge & Interrupt at falling edge & \\
\hline X000 & 1001 & 1000 & M8050 \({ }^{\text {2 }}\) \\
\hline X001 & 1101 & 1100 & M8051 \({ }^{*}{ }^{2}\) \\
\hline X002 & 1201 & 1200 & M8052 \({ }^{*}\) \\
\hline X003 & 1301 & 1300 & M8053 \({ }^{*}\) \\
\hline X004 & 1401 & 1400 & M8054 \({ }^{\text {2 }}\) \\
\hline X005 & 1501 & 1500 & M8055*2 \\
\hline
\end{tabular}
*1. The input numbers differ from one type of PLC to another. FXo, FXos and FXon PLCs: supports X000 to X003 only.
*2. Cleared when the PLC mode is changed from RUN to STOP.

\section*{5. How to disable each interrupt input}

When either one among M8050 to M8055 is set to ON in a program, interrupts from the corresponding input number are disabled.
(Refer to the above table for the correspondence.)

\section*{6. Cautions}
1) Do not use an input two or more times.

Make sure that an input relay number used as an interrupt pointer is not used in high speed counters, pulse catch functions and pulse density instructions which use the same input range.
2) Automatic adjustment of the input filter

When an input interrupt pointer \(I \square 0 \square\) is specified, the input filter of the input relay is automatically changed to the input filter for high speed receiving.
Accordingly, it is not necessary to change the filter value using REFF instruction or special data register D8020 (input filter adjustment).
The input filter of an input relay not being used as an input interrupt pointer operates at 10 ms (initial value).
3) Pulse width of input interrupt

For executing input interrupt by an external signal, it is necessary to input the ON or OFF signal having the duration shown in the table below or more.

For the FX3u, FX3uc and FX3G PLCs
\begin{tabular}{c|c|c}
\hline PLC & Input number & Input filter value when "0" is set \\
\hline FX3U, FX3UC & \(\times 000\) to \(X 005\) & \(5 \mu \mathrm{~s}^{* 1}\) \\
\hline \multirow{2}{*}{ FX3G } & \(\mathrm{X000,X001,X003,X004}\) & \(10 \mu \mathrm{~s}\) \\
\cline { 2 - 3 } & \(\mathrm{X} 002, \mathrm{X} 005\) & \(50 \mu \mathrm{~s}\) \\
\hline
\end{tabular}
*1. When using the input filter at the filter value of \(5 \mu \mathrm{~s}\) or when receiving a pulse whose response frequency is 50 k to 100 kHz using a high speed counter, perform the following.
- Make sure that the wiring length is 5 m or less.
- Connect a bleeder resistor of \(1.5 \Omega\) ( 1 W or more) to an input terminal, and make sure that the load current of the open collector transistor output in the counterpart equipment is 20 mA or more including the input current in the main unit.

For the FX1s, FX1N, FX2N, FX1NC and FX2NC PLCs
\begin{tabular}{c|c|c}
\hline PLC & Input number & Pulse width \\
\hline \multirow{2}{*}{ FX1S, FX1N, FX1NC } & X000, X001 & \(10 \mu \mathrm{~s}\) \\
\cline { 2 - 3 } & X002 to X005 & \(50 \mu \mathrm{~s}\) \\
\hline \multirow{2}{*}{ FX2N, FX2NC } & X000, X001 & \(20 \mu \mathrm{~s}\) \\
\cline { 2 - 3 } & X002 to X005 & \(50 \mu \mathrm{~s}\) \\
\hline
\end{tabular}

For the FXo, FXos, FXon, FXu and FX2c PLCs
\begin{tabular}{c|c|c}
\hline PLC & Input number & Pulse width \\
\hline FX0, FXOS, FXON & X000 to X003 & \(100 \mu \mathrm{~s}\) \\
\hline FXU, FX2C & X000 to X005 & \(200 \mu \mathrm{~s}\) \\
\hline
\end{tabular}
4) Using a pointer number two or more times

It is not possible to program an interrupt at the rising edge and an interrupt at the falling edge for an input such as 1001 or I000.

\section*{7. Program example}
1) When using both an external input interrupt at the rising edge and the output refresh (REF instruction) In the program example shown below, the output Y000 immediately turns ON when the rising edge of the external input X000 is detected.


Interrupts are enabled by El instruction.
The main program is described.

The main program is finished by FEND instruction.


When an interrupt routine is executed by turning ON of X 000 , Y000 is reset unconditionally.

The outputs Y000 to Y007 are overwritten with the latest information by the output refresh instruction. If the output refresh instruction is not provided, Y000 turns ON after END instruction after the program execution returned to the main routine.

If "SET Y000" is changed to "RST Y000", Y000 is immediately set to OFF by turning ON of X000.
*1. Be sure to specify a multiple of "8" for the number of inputs/outputs to be refreshed by REF instruction. If any value other than a multiple of " 8 " is specified, an operation error occurs and REF instruction is not executed.
2) When using both an input interrupt and the input refresh (REF instruction) In the program example shown below, an interrupt is executed using the latest input information.
[Main program]


Interrupts are enabled by El instruction.

The main program is described.

The main program is finished by FEND instruction.

When an interrupt routine is executed by turning X001 to ON, the input refresh is executed unconditionally, and the ON/OFF information of X010 to X017 at the current time is received.

Y001 is set to ON or OFF according to the ON/OFF status of X010.
*1. Be sure to specify a multiple of "8" for the number of inputs/outputs to be refreshed by REF instruction. If any value other than a multiple of " 8 " is specified, an operation error occurs and REF instruction is not executed.

3）When counting the number of times of input generation（in the same way as single phase high speed counter）
In the program example shown below，external inputs are counted．
［Main program］


Interrupts are enabled by El instruction．
The main program is described．

The main program is finished by FEND instruction．
［Interrupt program］


When the rising edge
（Event：I201） of X 002 is detected


When X002 turns ON，＂1＂is added to the value of D0． INC instruction executes increment in every operation cycle，but the interrupt routine is executed only once by an input signal．
Accordingly，it is not necessary to use INCP（pulse operation type）instruction．

4）When catching a short pulse
In the program example shown below，the ON status is held for a certain period of time after a short pulse turns ON．


MO

［Main program］


Interrupts are enabled by El instruction．

Preparation for measurement
The period of time to hold M0 is specified．

After the timer time，M0 is reset．

The main program is finished by FEND instruction．
［Interrupt program］
（Event：I301）
When the rising edge


When X003 turns ON and the interrupt routine is executed，MO is set to ON unconditionally．

\subsection*{8.3.2 Examples of practical programs (programs to measure short pulse width)}

By using a 1 ms retentive type timer or the special data register D8099 (high speed ring counter), the short pulse width can be measured in 1 ms or 0.1 ms units.
1. Example of measuring short pulse width with retentive 1 ms timer

The sequence diagram below takes the FX3U PLC (sink input) as an example.

[Interrupt program]
When the falling edge



SW(X000, X001)


Interrupts are enabled by El instruction. The main program is described.

The main program is finished by FEND instruction.

When X000 turns ON, the 1 ms timer T246 is started up by the interrupt 1001 .

When X001 turns OFF, the current value of T246 is transferred to the data register D0 for storing the measured value by the interrupt I100, and M0 for the complete signal is set to ON.
2. Example of program to measure the short pulse width using a high speed ring counter (For FX3u and FX3uc PLCs only)
[Main program]


Interrupts are enabled by El instruction.
The main program is described.
The ring counter is set to ON.

When X000 turns ON: The ring counter is reset to OFF, and measurement is started.

When X001 turns OFF: The ring counter value is transferred to D0, and measurement is completed.

The special data register M8099 up-counts the 0.1 ms clock from the next operation cycle after being driven. When the count value exceeds " 32,767 ", it is returned to " 0 ".
[Interrupt program]

> (Event: IO01)
\(\qquad\) When the rising edge of X 000 is detected


\subsection*{8.4 Input Interrupt (Interrupt by External Signal) [With Delay function]}

\section*{1. Outline}

An input interrupt has the function to delay execution of an interrupt routine in units of 1 ms .
The delay time can be specified using the pattern program shown below.
By using the delay function, the mounting position of a sensor used for input interrupts can be adjusted electrically without changing the actual position.
The FX0, FX0S, FX0N, FXU, FX2C, FX1S, FX1N, FX1NC, FX2N, FX2NC or FX3G PLC does not support this function.
2. Programming procedure


\section*{3. Timing chart}


\subsection*{8.5 Timer Interrupt (Interrupt in Constant Cycle)}

\subsection*{8.5.1 Timer Interrupt (Interrupt in Constant Cycle)}
1. Outline

An interrupt routine is executed at every 10 to 99 ms without being affected by the operation cycle of a PLC. The FXo, FXos, FXon, FX1s, FX1N or FX1Nc PLC does not support the timer interrupt function.

\section*{2. Application}

This type of interrupt is suitable when a certain program should be executed at high speed while the main program operation time is long or when a program should be executed at a constant time interval in sequence operations.
3. Basic program (programming procedure)
[Main program]


Main program
Timer interrupts are enabled after El instruction.
It is not necessary to program DI (disable interrupt) if there
is no zone where timer interrupts should be disabled.


FEND instruction indicates the end of the main program. Be sure to describe an interrupt routine after FEND instruction.

\section*{Interrupt program}

The interrupt routine is executed at every 20 ms . Create a program to be executed as interrupt. IRET instruction returns the program execution to the main program.
4. Number and operation of (three) timer interrupt pointers


An interrupt program is executed at every specified interrupt cycle time ( 10 to 99 ms ). Use this type of interrupt in control requiring cyclic interrupt processing regardless of the operation cycle of a PLC.
\begin{tabular}{|c|c|c|}
\hline Input number & Interrupt cycle (ms) & Interrupt disable flag \\
\hline \(16 \square \square\) & \multirow{3}{*}{An integer in the range from 10 to 99 is put in " \(\square \square\) " in the pointer name. Example: "I610" indicates a timer interrupt at every 10 ms .} & M8056* \({ }^{1}\) \\
\hline \(17 \square \square\) & & M8057* \({ }^{\text {1 }}\) \\
\hline \(18 \square \square\) & & M8058*1 \\
\hline
\end{tabular}
*1. Cleared when the PLC mode is changed from RUN to STOP.

\section*{Caution}

If the timer interrupt time is set to 9 ms or less, the timer interrupt processing may not be executed in an accurate cycle in the following cases. Therefore, using a time that is over 10 ms is recommended.
- When the interrupt program processing time is long.
- When the main program contains an applied instruction whose processing time is long.

\section*{5. Cautions}
- Each pointer number ( 16,17 or 18 ) can be used only once.
- When M8056 to M8058 is set to ON in a program, a corresponding timer interrupt is disabled.

\section*{6. Program example}

In the program example shown below, data is added and addition result is compared with the set value at every 10 ms .
1) Program example


Interrupts are enabled by El instruction.
The main program is described.
When M3 is set to ON, INC instruction becomes valid.

The main program is finished by FEND instruction.
" 1 " is added to the current value of D0 at every 10 ms .

When the current value of D0 reaches "1000", M3 is reset.

The current value of D0 is ramp data which changes from " 0 " to " 1000 " in 10 seconds.
In the program example using RAMP instruction shown
later, the ramp data is made using a dedicated instruction.

\subsection*{8.5.2 Example of practical program (timer interrupt program using instruction)}

RAMP, HKY, SEGL, ARWS and PR instructions execute a series of operations in synchronization with the scan time.
Because the total time may be too long or time fluctuation may cause a problem in these instructions, it is recommended to execute these instructions at a constant time interval using the timer interrupt function. When not using the timer interrupt function, use the constant scan mode.
1. Timer interrupt processing of HKY instruction
[Main program]

[Interrupt program]
(Event: I620)


Interrupts are enabled by El instruction. The main program is described.

The main program is finished by FEND instruction.

\section*{2．Timer interrupt processing of RAMP instruction}

The ramp signal output circuit shown below is programmed using the timer interrupt function executed every 10 ms ．
1）Ramp output pattern
D4 is occupied as a register for counting the number of times of execution．


2）Program
［Main program］

［Interrupt program］
When interrupt is
（Event：I610） given at every 10 ms


Interrupts are enabled by El instruction． The main program is described．

With M8026 turned ON，when the value of（D3）reaches the final value（D2），the value of \(Y\) is latched．

As soon as the start command is given，the initial value （D1）and target value（D2）are transferred．

\section*{The main program is finished by FEND instruction．}

While the instruction is executed 1000 times（in 10 seconds）， the contents of D3 are changed from the value of D1 to the value of D2

When the instruction execution complete flag M8029 turns ON，RAMP instruction drive input is set to OFF． If RAMP instruction is continuously executed while M8026 is OFF，the value of D3 returns to the initial value（D1） immediately after it reaches the final value（D2），and then the same operation is repeated．
This program is not necessary when M8026 is ON．

\subsection*{8.6 Counter Interrupt - Interrupt Triggered by Counting Up of High Speed Counter}

\section*{1. Outline}

This type of interrupt utilizes the current value of a high speed counter.
The FXo, FXos, FXon, FX1s, FX1N, FX1NC or FX3G PLC does not support the counter interrupt function.
The FX2C PLC of \(V 3.07\) or later supports the counter interrupt function.

\section*{2. Application}

This type of interrupt is used together with the comparison set instruction DHSCS. When the current value of a high speed counter reaches the specified value, an interrupt routine is executed.
3. Basic program (programming procedure)
[Main program]


Main program
Interrupts are enabled by El instruction. The main program is described.

The coil of a high speed counter is driven, and an interrupt pointer is specified in DHSCS instruction.
[Interrupt program]
(Event: IO10) \(\longleftarrow\) When counter interrupt is specified


When the current value of C 255 changes from " 999 " to "1000", the interrupt routine is executed. For an interrupt program use example, refer to the input interrupt function described in the preceding section.
*1. When the comparison value specified by a data register, etc. is changed, the current value is actually changed to the specified value when END instruction is executed.
4. Number and operation of (six) counter interrupt pointers

*1. Cleared when the PLC mode is changed from RUN to STOP.
5. When setting an interrupt output (Y or M) to ON or OFF using a high speed counter

When only controlling the ON/OFF status of an output relay ( Y ) or auxiliary relay ( M ) according to the current value of a high speed counter, a required program can be easily created using DHSCS, DHSCR or DHSZ instruction.

\section*{6．Cautions}

1）Pointer number
Pointer numbers cannot overlap with each other．
2）Disabling interrupts
When the special auxiliary relay M8059 is set to ON in a program，all counter interrupts are disabled．

\section*{8．7 Pulse Catch Function［M8170 to M8177］}

When the input relay X000 to X007 turns ON from OFF after the El instruction is executed，the special auxiliary relay M8170 to M8177 is set for interrupt processing．
The FX0，FX0S，FX0N，FX1S，FX1N or FX3G PLC does not require the El instruction．
1．Assignment of input numbers and special auxiliary relays
\begin{tabular}{c|c}
\hline Pulse catch input \({ }^{* 1}\) & \begin{tabular}{c} 
Pulse catch relay \\
X000 \\
X001 \\
M8170＊2 \\
（M8065＊2 in the FX0， \\
FX0S and FX0N PLCs）
\end{tabular} \\
\hline X002 & \begin{tabular}{c} 
M8171＊2 \\
（M80572 in the FX0， \\
FX0S and FX0N PLCs）
\end{tabular} \\
\hline X003 & \begin{tabular}{c} 
M8172＊2 \\
（M8058＊2 in the FX0， \\
FX0S and FX0N PLCs）
\end{tabular} \\
\hline X004 & \begin{tabular}{c} 
M8173＊2 \\
（M8059＊2 in the FX0， \\
FX0S and FX0N PLCs）
\end{tabular} \\
\hline X005 & M8174＊2 \\
\hline X006 & M8175＊2 \\
\hline X007 & M8176＊2 \\
\hline M8177＊2 \\
\hline
\end{tabular}
＊1．Differs from one PLC to another．
FXu，FX2C，FX1s，FX1N，FX2N，FX1NC，FX2NC，FX3G ：Supports X000 to X005 only．
FXo，FXos，FXon ：Supports X000 to X003 only．
＊2．Cleared when the PLC mode is changed from STOP to RUN．

\section*{2. Program example}


The FX0, FX0s, FX0N, FX1s or FX3G PLC does not require the El instruction.

When the rising edge of X 000 is detected, M8170 is set as interrupt.
The pulse catch result is reset.

\[
\begin{aligned}
& \text { - FX3U and FX3UC PLCs • FX3G PLCs • FX1S, FX1N, FX1NC, FX2N and FX2NC PLCs } \\
& \text { X000 to X005: } 5 \mu \mathrm{~S} \text { or more }{ }^{\star 1} \quad \mathrm{X} 000, \mathrm{X} 001, \mathrm{X} 003, \mathrm{X} 004: 10 \mu \mathrm{~S} \text { or more } \\
& \text { X006, X007 : } 50 \mu \mathrm{~S} \text { or more } \mathrm{X002}, \mathrm{X} 005 \quad: 50 \mu \mathrm{~S} \text { or more } \\
& \text { X000,X001 : 10 } \mu \mathrm{S} \text { or more (FX1S,FX1N,FX1NC) } \\
& \text { : } 20 \mu \mathrm{~S} \text { or more (FX2N,FX2NC) } \\
& \text { X002 to X005: } 50 \mu \mathrm{~S} \text { or more }
\end{aligned}
\]
\(\begin{array}{cc}\text { - FXU and FX2C PLCs } & \cdot \text { FX0, FX0S and FX0N PLCs } \\ \text { X000 to X005: } 50 \mu \mathrm{~S} \text { or more } & \text { X000 X003: } 50 \mu \mathrm{~S} \text { or more }\end{array}\)
*1. When using the pulse catch function at \(5 \mu\) s or when receiving a pulse whose response frequency is 50 kHz to 100 kHz using a high speed counter, perform the following:
- Make sure that the wiring length is 5 m or less.
- Connect a bleeder resistor of \(1.5 \Omega\) ( 1 W or more) to an input terminal, and make sure that the load current of the open collector transistor output in the counterpart equipment is 20 mA or more including the input current in the main unit.

\section*{3. Cautions on use}
1) When receiving an input again, it is necessary to reset the device which was once set using a program. Accordingly, until a device is reset, a new input cannot be received.
2) When it is necessary to receive continuous short pulses (input signals), use the external input interrupt function or high speed counter function.
3) A filter adjustment program is not required.
4) The pulse catch function is executed regardless of the operations of the special auxiliary relays M8050 to M8055 for respectively disabling interrupts.

\subsection*{8.8 Pulse width/Pulse period measurement function [M8075 to M8083, D8074 to D8097]}

This function is supported only in FX3G PLC Ver. 1.10 or later.
The pulse width/pulse period measurement function stores the values of \(1 / 6 \mu \mathrm{~s}\) ring counters at the input signal rising edge and falling edge to special data registers. This function also divides by " 60 " the difference in the counter value (pulse width) between the rising edge and the falling edge or the difference in the counter value (pulse period) between the previous rising edge and the current rising edge, and stores the obtained pulse width or pulse period in units of \(10 \mu\) s to special data registers.

The pulse width/pulse period measurement function becomes valid when a program is described using M8075 as a contact. Specify the pulse width measurement flag in the subsequent OUT instruction, and set an input terminal to be used.
When the pulse width/pulse period measurement function is valid, it always operates while the PLC mode is RUN.

Assignment of special auxiliary relays and special data registers
\begin{tabular}{|c|c|c|c|c|c|}
\hline Pulse input & Pulse width/ Pulse period measurement flag & Pulse period measurement mode & Ring counter value for rising edge* \({ }^{*}\) [Unit: 1/6 \(\mu \mathrm{s}\) ] & Ring counter value for falling edge \({ }^{* 1}\) [Unit: 1/6 \(\mu \mathrm{s}\) ] & Pulse width /Pulse
period \({ }^{* 1 * 2}\)
[Unit: \(10 \mu \mathrm{~s}\) ] \\
\hline X000 & M8076 & M8080 & D8075, D8074 & D8077, D8076 & D8079, D8078 \\
\hline X001 & M8077 & M8081 & D8081, D8080 & D8083, D8082 & D8085, D8084 \\
\hline X003 & M8078 & M8082 & D8087, D8086 & D8089, D8088 & D8091, D8090 \\
\hline X004 & M8079 & M8083 & D8093, D8092 & D8095, D8094 & D8097, D8096 \\
\hline
\end{tabular}
*1. Cleared when the PLC mode switches from STOP to RUN.
*2. The measurable pulse width is \(10 \mu \mathrm{~s}\) minimum and 100 s maximum.
The measurable pulse period is \(20 \mu \mathrm{~s}\) minimum.

\section*{1. Program example}
1) Pulse width measurement The pulse width of the input signal from X 000 is measured.


This duration is measured.
[Main program]


X000 is used for the pulse width/pulse period measurement function.
[Interrupt program] \(\qquad\)
(Event: IOOO)
When the interrupt routine is executed at the falling edge of the input signal from X000, the pulse width of input signal from X000 stored in D8078 and D8079 is transferred to D1 and D0.

User program

*1. VAR_01 is a global label and is defined as D8078.
*2. \(V A R^{-} 02\) is a global label and is defined as D0.
2) Pulse period measurement

The pulse period of the input signal from X000 is measured.

\(\underset{\text { (Event: l001) }}{\text { [Interrupt program] X000 Rising edge interrupt }}\)
(Event: IO01)

*1. VAR_01 is a global label and is defined as D8078.
*2. VAR_02 is a global label and is defined as D0.
- Timing chart

The pulse period is not measured when the input signal rises for the first time after the PLC mode is changed from STOP to RUN, or when the input signal rises for the first time after the pulse period measurement mode (M8080) is set to ON from OFF. (Accordingly, D8078 and D8079 are not updated.) The pulse period is measured when the input signal rises at the next time. (As a result, D8078 and D8079 are updated.)

Make the pulse width/pulse period measurement setting flag (M8080) remain OFF for 1 operation cycle or more when discontinuing the pulse input.
If M8080 does not remain OFF for 1 operation cycle or more, the "a" period shown below is stored as the pulse period.


The pulse period is measured. The pulse period is measured. (D8078 and D8079 are updated.) (D8078 and D8079 are updated.)
3) Signal delay time measurement

The delay time from the rising edge of the input signal from X000 to the rising edge of the input signal from X001 is measured.

[Main program]


X000 is used for the pulse width/pulse period measurement function.

X001 is used for the pulse width/pulse period measurement function.
[Interrupt program] (Event: I101)


The interrupt routine is executed at the rising edge of the input signal from X001.

The ring counter value at the rising edge of the input signal from X000 stored in D8074 and D8075 is transferred to D1 and D0.

The ring counter value at the rising edge of the input signal from X001 stored in D8080 and D8081 is transferred to D3 and D2.

The value "Ring counter value at the rising edge of the input signal from X001-Ring counter value at the rising edge of the input signal from X 000 " is stored in D9 and D8.

When either one between the ring counter value at the rising edge of the input signal from X000 and the ring counter value at the rising edge of the input signal from X001 is located within the range from H80000000 to HFFFFFFFF, the following process is executed, and the value "Ring counter value at the rising edge of the input signal from X001 - Ring counter value at the rising edge of the input signal from X000" is stored in D9 and D8*2.

*1. VAR_01 to VAR_38 is a global label and define as following.
\begin{tabular}{|c|c|}
\hline Global label & Defined device \\
\hline VAR_03 & D8074 \\
\hline VAR_04 & D0 \\
\hline VAR_05 & D8080 \\
\hline VAR_06 & D2 \\
\hline VAR_07 & D2 \\
\hline VAR_08 & D0 \\
\hline VAR_09 & D8 \\
\hline VAR_11 & D0 \\
\hline VAR_12 & K0 \\
\hline VAR_13 & D2 \\
\hline VAR_14 & K0 \\
\hline VAR_15 & H7FFFFFFF \\
\hline VAR_16 & D0 \\
\hline VAR_17 & D4 \\
\hline VAR_18 & D2 \\
\hline VAR_19 & H80000000 \\
\hline VAR_20 & D6 \\
\hline VAR_21 & D4 \\
\hline VAR_22 & D6 \\
\hline VAR_23 & D8 \\
\hline VAR_24 & D8 \\
\hline VAR_25 & D0 \\
\hline VAR_26 & K0 \\
\hline VAR_27 & D2 \\
\hline VAR_28 & K0 \\
\hline VAR_29 & HFFFFFFFF \\
\hline VAR_30 & D0 \\
\hline VAR_31 & D4 \\
\hline VAR_32 & D2 \\
\hline VAR_33 & D4 \\
\hline VAR_34 & D8 \\
\hline VAR_35 & D8 \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline Global label & Defined device \\
\hline VAR_36 & D8 \\
\hline VAR_37 & K60 \\
\hline VAR_38 & D10 \\
\hline
\end{tabular}
*2. The ring counter offers 32-bit data including the most significant bit.
The DSUB instruction does not give a correct value because it handles the most significant bit as the sign bit. To obtain a correct value, add the processing inside the dotted frame.

\section*{2. Cautions on use}
- The pulse width/pulse period measurement function and input interrupts can be used at the same time in a same input terminal.
- When a same input terminal is used by the pulse width/pulse period measurement function and the SPD, DSZR or ZRN instruction, an operation error occurs when the instruction is executed.
- The input terminal used for the pulse width/pulse period measurement function cannot be used for the pulse catch function.
- When a same input terminal is used by the pulse width/pulse period measurement function and a high speed counter, a grammatical error occurs.
- Make sure that the total frequency of four input channels is 50 kHz or less when using the pulse width/ pulse period measurement function.
- When the pulse width/pulse period measurement function and a high speed counter are used together, the overall frequency of the high speed counter is affected.
\(\rightarrow\) FX Structured Programming Manual (Device \& Common)

\section*{Appendix A: Relationships between devices and addresses}

The table below shows the relationships between devices and addresses.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Device}} & \multicolumn{2}{|r|}{Device and address} & \multicolumn{2}{|l|}{Example of corresponding device and address} \\
\hline & & Device & Address & Device & Address \\
\hline Input relay & X & Xn & \%IXn & X367 & \%IX247 \\
\hline Output relay & Y & Yn & \%QXn & Y367 & \%QX247 \\
\hline Auxiliary relay & M & Mn & \%MX0.n & M499 & \%MX0.499 \\
\hline Contact & TS & Tn & \%MX3.n & TS191 & \%MX3.191 \\
\hline ¢ Coil & TC & Tn & \%MX5.n & TC191 & \%MX5.191 \\
\hline \(i=\) Current value & TN & Tn & \%MW3.n \%MD3.n & \[
\begin{array}{|l|l|}
\hline \text { TN191 } \\
\text { T190 }
\end{array}
\] & \begin{tabular}{l}
\%MW3.191 \\
\%MD3. 190
\end{tabular} \\
\hline Contact & CS & Cn & \%MX4.n & CS99 & \%MX4.99 \\
\hline \(\stackrel{\text { D }}{\sim}\) & CC & Cn & \%MX6.n & CC99 & \%MX6.99 \\
\hline ठ Current value & CN & Cn & \begin{tabular}{l}
\%MW4.n \\
\%MD4.n
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { CN99 } \\
\text { C98 }
\end{array}
\] & \begin{tabular}{l}
\%MW4.99 \\
\%MD4. 98
\end{tabular} \\
\hline Data register & D & Dn & \%MW0.n \%MD0.n & \[
\begin{array}{|l|}
\hline \text { D199 } \\
\text { D198 }
\end{array}
\] & \%MW0. 199
\%MD0. 198 \\
\hline Intelligent function unit device & G & Ux\Gn & \[
\begin{aligned}
& \text { \%MW14.x.n } \\
& \text { \%MD14.x.n }
\end{aligned}
\] & U01G09 & \[
\begin{aligned}
& \text { \%MW14.0.10 } \\
& \text { \%MD14.0.9 }
\end{aligned}
\] \\
\hline Extension register & R & Rn & \[
\begin{aligned}
& \text { \%MW2.n } \\
& \text { \%MD2.n }
\end{aligned}
\] & \[
\begin{array}{|l|}
\text { R32767 } \\
\text { R32766 }
\end{array}
\] & \begin{tabular}{l}
\%MW2.32767 \\
\%MD2.32766
\end{tabular} \\
\hline Extension file register & ER & ERn & Not corresponding & - & - \\
\hline Pointer & P & Pn & " "(blank) & P4095 & Not corresponding \\
\hline Interrupt pointer & I & In & Not corresponding & - & - \\
\hline Nesting & N & Nn & Not corresponding & - & - \\
\hline \multirow[t]{2}{*}{Index register} & Z & Zn & \[
\begin{aligned}
& \text { \%MW7.n } \\
& \text { \%MD7.n }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Z7 } \\
& \text { Z6 }
\end{aligned}
\] & \%MW7. 7 \%MD7. 6 \\
\hline & V & Vn & \%MV6.n & V7 & \%MW6.7 \\
\hline State & S & Sn & \%MX2.n & S4095 & \%MX2.4095 \\
\hline
\end{tabular}

\section*{MEMO}

\section*{Warranty}

Please confirm the following product warranty details before using this product.
1. Gratis Warranty Term and Gratis Warranty Range If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company. However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module.

\section*{[Gratis Warranty Term]}

The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place. Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.

\section*{[Gratis Warranty Range]}
1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
a) Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
b) Failure caused by unapproved modifications, etc., to the product by the user.
c) When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
d) Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
e) Relay failure or output contact failure caused by usage beyond the specified Life of contact (cycles).
f) Failure caused by external irresistible forces such as fires or abnormal voltages, and failure caused by force majeure such as earthquakes, lightning, wind and water damage.
g) Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
h) Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

\section*{2. Onerous repair term after discontinuation of production}
1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued.
Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
2) Product supply (including repair parts) is not available after production is discontinued.
3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.
4. Exclusion of loss in opportunity and secondary loss from warranty liability
Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation of damages caused by any cause found not to be the responsibility of Mitsubishi, loss in opportunity, lost profits incurred to the user or third person by Failures of Mitsubishi products, special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products, replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.
5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

\section*{6. Product application}
1) In using the Mitsubishi MELSEC programmable logic controller, the usage conditions shall be that the application will not lead to a major accident even if any problem or fault should occur in the programmable logic controller device, and that backup and fail-safe functions are systematically provided outside of the device for any problem or fault.
2) The Mitsubishi programmable logic controller has been designed and manufactured for applications in general industries, etc. Thus, applications in which the public could be affected such as in nuclear power plants and other power plants operated by respective power companies, and applications in which a special quality assurance system is required, such as for Railway companies or Public service purposes shall be excluded from the programmable logic controller applications.
In addition, applications in which human life or property that could be greatly affected, such as in aircraft, medical applications, incineration and fuel devices, manned transportation, equipment for recreation and amusement, and safety devices, shall also be excluded from the programmable logic controller range of applications.
However, in certain cases, some applications may be possible, providing the user consults their local Mitsubishi representative outlining the special requirements of the project, and providing that all parties concerned agree to the special circumstances, solely at the users discretion.

\section*{Revised History}


\section*{MEMO}

\section*{FXCPU}

Structured Programming Manual [Basic \& Applied Instruction]
\begin{tabular}{|c|c|}
\hline MODEL & FX-KP-SM-E \\
\hline MODEL CODE & 09R926 \\
\hline
\end{tabular}


EURASIAN REPRESENTATIVES
Kazpromautomatics Ltd. KAZAKHSTAN
Mustafina Str. 7/2
KAZ-470046 Karaganda
Phone: \(+77212 / 501150\)
Fax: \(+77212 / 501150\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{MIDDLE EAST REPRESENTATIVES} \\
\hline TEXEL ELECTRONICS Ltd. & ISRAEL \\
\hline 2 Ha'umanut, P.O.B. 6272 & \\
\hline IL-42160 Netanya & \\
\hline Phone: +972 (0)9/863 3980 & \\
\hline Fax: +972 (0)9/885 2430 & \\
\hline CEG INTERNATIONAL & LEBANON \\
\hline Cebaco Center/Block A Autostrade DORA & \\
\hline Lebanon-Beirut & \\
\hline Phone: +961 (0)1 / 240430 & \\
\hline Fax: +961 (0) \(1 / 240438\) & \\
\hline
\end{tabular}

AFRICAN REPRESENTATIVE
CBI Ltd.
SOUTH AFRICA
Private Bag 2016
ZA-1600 Isando
Phone: + 27 (0) 11 / 9770770
Fax: + 27 (0) 11 / 9770761

OMANIA
Aleea Lacul Morii Nr. 3
RO-060841 Bucuresti, Sector 6
Phone: +40 (0) 21 / 4304006
Fax: +40 (0)21 / 4304002
Bulevar Svetog Cara Konstantina 80-86
SER-18106 Nis
Phone: +381 (0) 18/ 292-24-4/5
Fax: +381 (0) 18/ 292-24-4/5
INEA SR d.0.0. SERBIA
zletnicka 10
SR11300 Smeder
ax: +381 (0)26/617163
SIMAP s.r.o.
Jána Derku 1671
SK-911 01 Trencín
hone: +421 (0)327430472

SLOVAKIA
SK-080 01 Prešov
Phone: +421 (0)517580 611
Fax: +421 (0)517580 650
Stegne 11
SI-1000 Ljubljana
Phone: +386 (0) \(1 / 5138100\)
(0)1/5138170

Box 426
SE-20124 Malmö

Omni Ray AG SWITZERLAND
m Schörli 5
H-860 Dubendor
ax: +41 (0)44/8022828
Bayraktar Bulvari Nutuk Sok. No:5
Phone: +90 (0)2165263990
Fax: +90 (0)216526 3995

4-B, M. Raskovoyi St.

Fax: +380 (0) \(44 / 494-33-66\)```

