
MITSUBISHI

REVISIONS

N.

$\ensuremath{{\ensuremath{\mathbb X}}}$ The manual number is given on the bottom left of the back cover.

Print	Date	*Manua	l Number	Revision	
Jan.,	1989	IB (NA)	66189-A	First edition	
		-			

INTRODUCTION

Thank you for choosing the Mitsubishi MELSEC-A Series of General Purpose Programmable Controllers. Please read this manual carefully so that the equipment is used to its optimum. A copy of this manual should be forwarded to the end User.

2. SYSTEM CONFIGURATION
3. SPECIFICATIONS
4. PRE-START UP PROCEDURES
5. WIRING
6. AD51 PROGRAMMING NOTES
7. COMMUNICATION WITH PROGRAMMABLE CONTROLLER CPU
8. TROUBLESHOOTING
9. MAINTENANCE

1. INTRODUCTION

CONTENTS

1.	INTRODUCTION ·······1-1	~ 1-6
1.1	Notes on Character Sets	1-6
2.	SYSTEM CONFIGURATION 2-1	~ 2-6
2.1	Overall Configuration ·····	···· 2-1 [·]
2.2	Applicable & Series Systems	···· 2-4
2.3		2-5
3.	SPECIFICATIONS ····································	
3.1	Performance Specifications	3-1
3.2	Instruction Set	3-2
	3.2.1 GPC-BASIC commands	3-2
	3.2.2 System subroutines	3-6
3.3	Software Configuration	3-9
3.4	Memory Map	3-10
	3.4.1 Memory configuration	3-10
	3.4.2 Memory map with ROM loaded	3-11
	3.4.3 Storing system data on ROM	3-13
3.5	Interface Specifications	3-14
	3.5.1 RS-422 connector specifications (CH1)·····	··· 3-14
	3.5.2 RS-422 terminal block specifications (CH2)	3-15
	3.5.3 RS-232C connector performance specifications (CH3 and 4)	··· 3-16
3.6	I/O Interface with Programmable Controller CPU	··· 3-17
3.7	Buffer Memory	··· 3-19
3.8	Communication between AD51 and PC CPU	··· 3-20
	3.8.1 Transmission time in MELSECNET	3-22
3.9	AD51 Communication	3-23
3.1	0 Communication Control	3-25
	3.10.1 DTR control	
	3.10.2 Xon/Xoff control ······	3-26
4.	PRE-START UP PROCEDURES 4-1	~ 4-11
4.1	General Procedure ······	••••• 4-1
4.2	Nomenclature	4-2
4.3	B Hardware Settings	4-5
	4.3.1 Memory protect range ·····	••••• 4-5
	4.3.2 Console channel·····	••••• 4-7
	4.3.3 Terminal resistor ······	••••• 4-7
	4.3.4 Setting system data transfer	4-8
	4.3.5 BOM installation	4-9
	4.3.6 Loading the battery	··· 4-11

5.	WIRING
5.1	Wiring Instructions ·······5-1
5.2	RS-232C Connection ····································
5.3	RS-422 Connection
6.	AD51 PROGRAMMING NOTES
6.1	BASIC Program Address Data ······6-1 Start Conditions ······6-4
6.2	Start Conditions
	6.2.1 Program runs once after power on ······6-4
	6.2.2 Program runs continuously after power on6-4
	6.2.3 Program runs after an interrupt signal from the PC CPU
	6.2.4 Program runs at preset intervals in real time
6.3	Notes on the Use of BASIC Commands ······6-6
	6.3.1 Key input commands ······6-6
	6.3.2 Printing commands ·······6-6
	6.3.3 CRT display commands 6-8
	6.3.4 OPEN and CLOSE commands
	6.3.5 Z commands
6.4	Transmission Commands to External Device
	6.4.1 PRINT command
	6.4.2 LPRINT command
	6.4.3 System subroutine SWB····································
6.5	AD51 and PC CPU Reset ···································
6.6	Notes on BASIC Programming ·······6-12
7.	COMMUNICATION WITH PROGRAMMABLE CONTROLLER CPU
7.1	General-Purpose I/O Read/Write······7-1
	7.1.1 General-purpose I/O addresses ······7-2
	7.1.2 Write to general-purpose input
	7.1.3 Read from general-purpose output ······7-5
7.2	Read/Write of Buffer Memory ····································
	7.2.1 Read/write with BASIC program ······7-6
	7.2.2 Read/write with sequence program ······7-7
7.3	Device Memory Read/Write ····································
7.0	7.3.1 System subroutines and device ranges······7-9
	7.3.2 BASIC program examples 7.12
7.4	Extension File Register Read/Write ······ 7-22
/.4	7.4.1 System subroutines and functions
	7.4.2 BASIC program examples 7.22
7.5	Special Function Module Buffer Memory Read/Write ····································
7.5	
70	7.5.2 BASIC program examples 7-33 Read/Write of Sequence Program and T/C Set Values 7-34
7.6	
	7.6.1 System subroutines and functions ······7-34
	7.6.2 Bood and write procedures
	7.6.2Read and write procedures7-367.6.3BASIC program example7-37

7.7	Micro	computer Program Read/Write ······ 7-40
	7.7.1	System subroutines and functions
		BASIC program examples 7-41
7.8	Comm	nent Read/Write ······ 7-43
	7.8.1	System subroutines and functions
	7.8.2	BASIC program examples 7-44
7.9		upt from PC CPU to AD51 7-46
7.10		upt from AD51 to PC CPU······7-47
7.11	Remo	te RUN/STOP of PC CPU······7-48
8. T	ROUBL	ESHOOTING
8.1	Scree	n Error Messages ······8-1
8.2	Error (Code List
8.3	Troub	leshooting ······8-6
	8.3.1	Troubleshooting flow chart
	8.3.2	Start-up troubleshooting 8-7
	8.3.3	FDD troubleshooting 8-8
	8.3.4	ROM troubleshooting
	8.3.5	Multi task troubleshooting
	8.3.6	CRT troubleshooting
	8.3.7	Print-out troubleshooting ······ 8-12
9. N	IAINTE	NANCE9-1 ~ 9-3
9.1	Batter	y Life9-1
9.2	Batter	y Changing Procedure 9-2
APPE	NDICE	SAPP-1 ~ APP-12
APPE	NDIX 1	
APPE	NDIX 2	
APPE	NDIX 3	GPP/HGP Display Control Codes ······ APP-7
APPE	NDIX 4	· · · · · · · · · · · · · · · · · · ·
APPE	NDIX 5	· · · · · · · · · · · · · · · · · · ·
APPE	NDIX 6	External View ······APP-12

1. INTRODUCTION

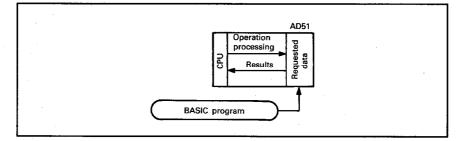
The AD51-S3 intelligent communication module (referred to as "AD51") has two RS-232C and two RS-422 interfaces and allows multitask processing of BASIC programs.

User application programs running in the AD51 allow the following functions:

(1) The A series peripheral devices can be shared.

The A6GPP intelligent graphic programming panel (GPP), A6HGP LCD handy graphic programmer (HGP) or A6PHP plasma handy graphic programmer (PHP) started up by the SW-AD51P system disk (SW-AD51P) can be used the an I/O console of the AD51 and allows AD51 programs and data to be stored on disk (and ROM (GPP only)). The VT-220 terminal can also be used as an I/O console.

The above indicated units may be connected as shown below:

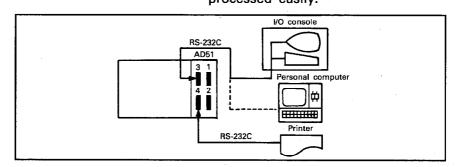

	BASIC Program, Data			
Connection Example	Input	Storage on disk	Storage on ROM	
AD51 GPP/HGP/PHP AD51 RS-422 Printer RS-232C	gpp/hgp/php	GPP/HGP/PHP	GPP (disallowed for HGP/PHP)	
AD51 3 1 4 2 RS-232C Printer RS-232C	GPP/HGP/PHP	Disallowed	Disallowed	
General-purpose I/O console	General- urpose I/O console	Disallowed	Disallowed	
General-purpose I/O console RS-232C AD51 GPP/HGP/PHP 4 2 RS-422 Printer RS-232C Printer	General- purpose I/O console GPP/HGP/PHP	GPP/HGP/PHP	GPP (disallowed for HGP/PHP)	

MELSEC[.]

(2) Can be used as a sub-CPU of the PC CPU.

The AD51 reads data (e.g. complicated numerical operation, function operation) from the PC and calculates and stores it as required so that the PC CPU is relieved from processing burden.

- 1) Storage of set value, positioning data, etc.
- 2) Collection, analysis and compensation of measurement data
- 3) Function operation of sine, log, square root, etc.
- 4) Logging and storage of production data
- 5) Logging and analysis of inspection data

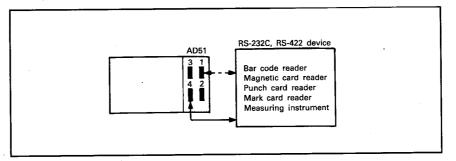

(3) Can be used as a monitoring module.

Connected with an I/O console (GPP/HGP/PHP or generalpurpose I/O console), personal computer and printer, the AD51 allows the operating status to be monitored and control data to be printed out.

1) Monitor display Indicates the production status, operating conditions, fault definition, etc.

2) Keyboard entry ……… Inputs the production schedule, production quantity, operating procedure and data setting.

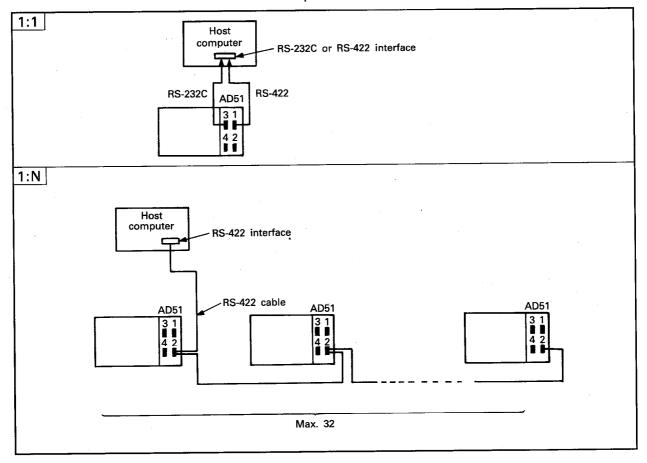
4) Clock function ……… The AD51 includes an on-board, 24hour, real-time clock with leap year compensation which allows data to be transferred by the BASIC program so that the time-of-the-day data may be processed easily.



(4) Data input from bar code reader, etc.

The AD51 allows data to be entered from the bar code reader, magnetic card reader, etc. via RS-232C or RS-422. The AD51 can be matched with the protocol of the connected

device for communication by the BASIC program.

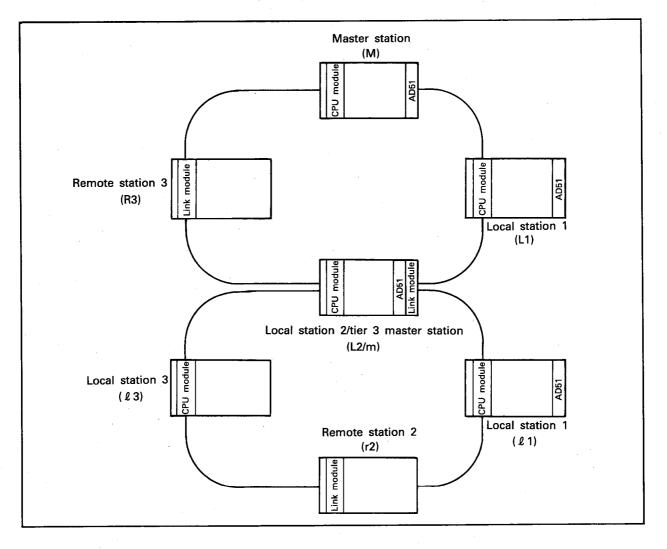

Entry of production lot number, product name, quantity, etc
 Collection of measured values, test data.

(5) Connection of AD51 and external device

The AD51 has one RS-422 and two RS-232C interfaces for 1:1 link with the external device, and one RS-422 for 1:N multidrop link.

The application programs running in the AD51 allows data to be transferred via the four channels by the sequence program. The following examples show 1:1 and 1:N link configurations of the computer and AD51s:

1. INTRODUCTION


POINT

- (1) In the 1:1 link configuration, RS-422 is used for distances up to 500m and RS-232C for distances up to 15m.
- (2) In the 1:N link configuration, the RS-232C port may be connected with the host computer by using an RS-232C/RS-422 converter between the host computer and AD51.

MELSEC-

(6) Communication with other stations in MELSECNET

The AD51 loaded on the PC CPU in MELSECNET allows communication with the other stations.

PC CPUs allowed for communication

(PC used with AD51)

- Station L/m (local station/tier 3 master station) (1) Host station

(MELSECNET station allowed for communication)

- (2) All local stations in tier 2 (L1, L2/m)
- (3) Remote I/O station used with special function module in tier 2 (R3)
- (2) Master station in tier 2 (station M)
- (2) Master station in tier 2 (station M)
- (3) All local stations in tier 3 (ℓ 1, ℓ 3)
- (4) Remote I/O station used with special function module in tier 3 (r2)
- Station (tier 3 local station) (1) Host station
 - (2) Master station in tier 3 (L2/m)

1.1 Notes on Character Sets

In this manual some of the characters used may differ from those which appear on the screen, depending on the character set chosen (i.e. Japanese, English, German, Swedish).

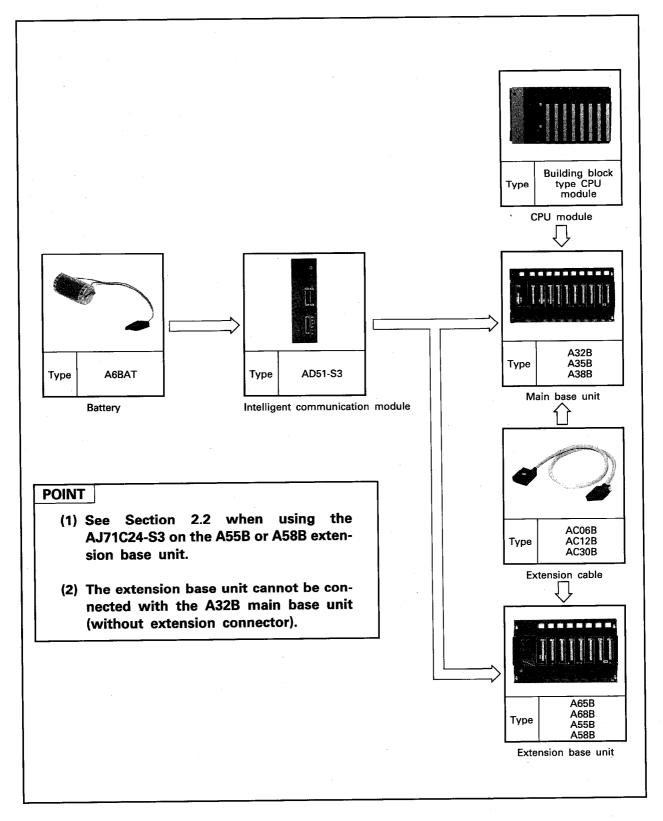
The keyboard operations follow the standard for the character set chosen, so, for example to input @ with English characters press [SFT], @

Key codes are given in Appendix 4, paragraph 3.

Key operations for the different character sets are shown below.

Kau	Character Set				
Кеу	English	German	Swedish	Japanese	
	Λ	^	Ü	~	
(∼βü ∧Ü	~	ß	ü	^	
		Ö	Ö		
		ö	ö	\mathbf{X}	
SFT (* é @ \$ É	@	§	É		
é esé			é	@	
	E	Ä	Ä	ł	
	{	ä	ä	[
SFT]	Ü	Å	}	
	}	ü	à]	
SFT \$ 0.4	£	#	#	#	
SFT #	\$	\$	Ö	\$	

In this manual, all examples use the Japanese character set.


2. SYSTEM CONFIGURATION

2. SYSTEM CONFIGURATION

2.1 Overall Configuration

(1) Building block type PC

Fig. 2.1 Building Block CPU Configuration

(2) Compact type PC

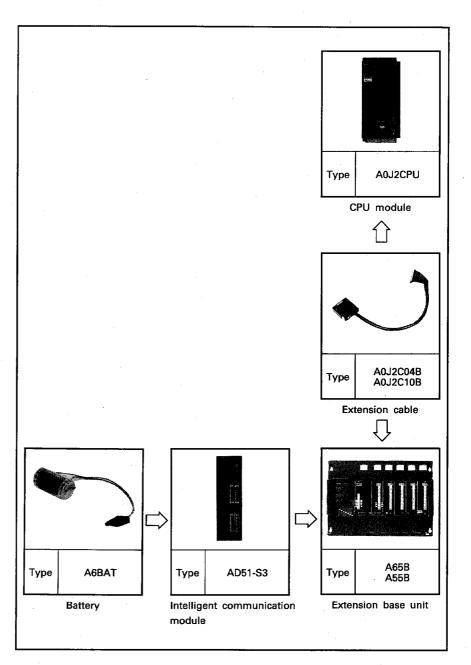


Fig. 2.2 Compact CPU Configuration

2. SYSTEM CONFIGURATION

(3) Peripherals

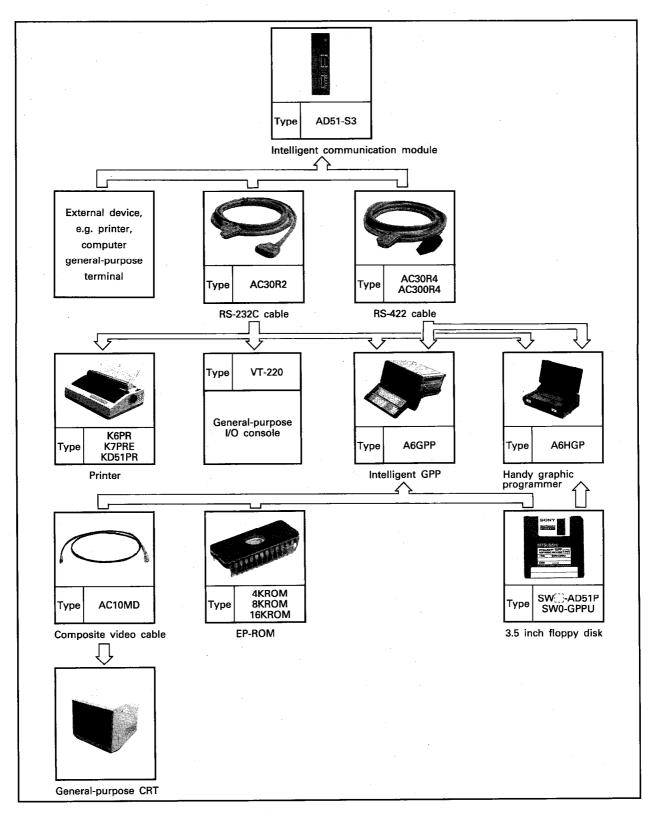


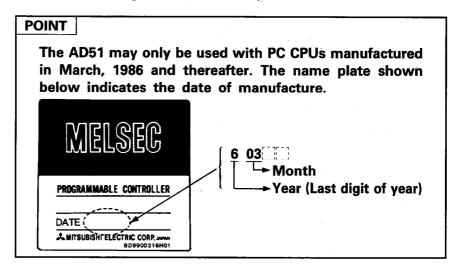
Fig. 2.3 Peripheral Device Configuration

POINT

The console select switch must be set to determine which programming terminal is to be used.

2.2 Applicable A Series Systems

The AD51 can be used with the following CPU modules.


Applicable mode	els		· · · · · · · · · · · · · · · · · · ·	
A0J2CPU	A1NCPU	A1CPU	A1ECPU	
	A2NCPU	A2CPU	A2ECPU	
	A3NCPU	A3CPU	A3ECPU	
	A3HCPU			

The AD51 may be loaded into any slot on the base unit with the following precautions:

- (1) When using the AD51 with the A55B or A58B extension bases (i.e. those without power supplies) select the power supply for the main base unit in accordance with the CPU User's manual.
- (2) The AD51 may be loaded into the master station or a local station but not into a remote I/O station in a MELSECNET system. The following CPU modules are required for the MELSECNET data link system.

Applicable mode	els	
Master/Local	A1NCPUP21/R21	A1(E)CPUP21/R21
station	A2NCPUP21/R21	A2(E)CPUP21/R21
	A3NCPUP21/R21	A3(E)CPUP21/R21
	A3HCPUP21/R21	
	A0J2CPUP23/R23	(local station only)

- (3) One AD51 or A0J2C214 (computer/multidrop link module) may be used with the A0J2 PC. The A1, A2, A3HCPUs can accomodate two AD51s or two AJ71C24-S3s or one of each.
- (4) The AD51 cannot be used in the last slot of the seventh extension stage in an A3CPU system.

2.3 Peripheral Equipment

The following table lists the peripheral equipment suitable for use with the AD51.

Description	Туре		Remarks	
Intelligent communication module	AD51-S3	Main unit RAM support battery supplied		
	8KROM	16K bytes, for channels 1 and 2		
EP-ROM	16KROM	32K bytes, for channels 1 and 2 24K bytes available to AD51 For details, refer to Section 3.4.2		
Battery	A6BAT	For ICRAM support and real time clock		
		○ Consists of the	e following models:	
		Туре	Rémarks	
		A6GPP	 Programming unit with CRT. Equipped with ROM writer, FDD, and printer interface functions. 	
Intelligent GPP	A6GPPE-SET	SW[]-GPPAEE/EG	A series system disk	
		SW[]-GPPKEE/EG	K series system disk	
		SW∏-GPPU	User disk (3.5 inch, formatted)	
		AC30R4	Cable for connection of AD51 and A6HGP, ACPU, AJ71C24-S3	
			Note: —EE; English version, EG; Germany version	
	A6HGPE-SET	○ Consists of the		
		Туре	Remarks	
		A6HGP	 Programming unit with LCD. Equipped with FDD and printer interface functions. 	
Handy graphic		SW[]]-HGPAEE/EG	A series system disk	
programmer		SW:::-HGPKEE/EG	K series system disk	
		SW[]-GPPU	User disk (3.5 inch, formatted)	
	•	AC30R4	Cable for connection of AD51 and A6HGP, ACPU, AJ71C24-S3	
		1	Note: —EE; English version, EG; Germany version	
System disk	SW[]]-AD51P[]]	Sy	vstem software package for the A6GPP or A6HGP (back-up copy provided)	
User disk	SW0-GPPU	U	ser disk (already formatted) for storing programs.	
Composite video cable	AC10MD	Optio	nal cable for GPP external monitor 1m(3.28ft) length	
General-purpose I/O console	VT-220	Display control codes equivalent to VT-220.		
Printer	K6PRE K7PRE	For program hard copy and data print out		
	KD51PR		For printing data	
RS-422 cable	AC300R4		Cable between AD51 and A6GPP 3m(9.84ft) length	
RS-232C cable	AC30R2	Connec	ction cable between AD51 and printer and for VT-220. 3m(9.84ft) length	

Table 2.1 System Equipment List (Continue)

2. SYSTEM CONFIGURATION

Description	Туре	Remarks
	K6PR-R	Ink ribbon for K6PRE
Ink ribbon	K7PR-R	Ink ribbon for K7PRE
	KD51PR-R	Ink ribbon for KD51PR
	K6PR-Y	Printer paper for K6PR
rinter paper	KD51PR-Y	Printer paper for KD51PR
rface connector	232-CON	Connector for RS-422 and RS-232C interfaces

Table 2.1 System Equipment List

3. SPECIFICATIONS

3.1 Performance Specifications

ltem		Specification
Processor		HD64180
Program language		GPC-BASIC
Number of tasks		Maximum 8
		Power on
		Interrupt from PC CPU
lask start	conditions	Real time interrupt { Set in the range 0.01 to 9.99 seconds in } units of 0.01 second.
Internal	memory	Maximum: 114K bytes=64K bytes+2K bytes+48K bytes Common work area → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
General-p	urpose I/O	General-purpose input : 13 points General-purpose output: 10 points *For details, refer to Section 3.6.
Buffer	memory	3K words (6K bytes) *For details, refer to Section 3.7.
Memory address	v protect s range	4F00 to 4FFF (system data area) 8000 to DFFF (channel 1 to 4)
Interfaces	RS-422	Conforms to EIA. RS-422. Channel 1: D shell connector. Channel 2: Terminal block Transmission distance: ≦500m
	RS-232C	Conforms to EIA. RS-232C. Channel 3, 4: D shell connector. Transmission distance: ≦15m
	nd logic unit _U)	Performs high-speed processing of BASIC's intrinsic func- tions (trigonometric, inverse trigonometic, logarithm, ex- ponential, $\sqrt{\ }$, absolute value).
Clock e	element	Year, month, day, hour, minute, second Read/write 24 hour mode, automatic leap year compensation
Power failure compensation		Internal memory, lithium battery for back-up of real time clock Total back-up time: 130 days Battery life : 5 years
Con	sole	A6GPP, A6HGP, A6PHP VT-220
	per of ccupied	48
	t consumption V)	1.3A
Size mr	n (inch)	250 (9.84) (H)×76 (2.99) (W)×120 (4.72) (D)
Weight	kg (lb)	1.1 (2.42)

Table 3.1 AD51 Performance Specifications

3.2 Instruction Set

The AD51 is programmed in GPC-BASIC. In addition to the BASIC commands a series of subroutines are available which can be called from the BASIC program.

3.2.1 GPC-BASIC commands

The following table lists the GPC-BASIC commands. For full information refer to the "GPC-BASIC Handbooks". The graphics commands described in the "GPC-BASIC" Handbooks are not available on the AD51.

Command			Function		
	AUTO		Automatic generation of line number		
	BYE		Returns to BASIC program address data screen.		
	CONT		Resumes program run after BREAK		
	COMPILE		Compiles multitask executable program		
	DELETE		Deletes program from specified line number to specified line number		
	EDIT		Corrects statement in one line		
	EXECUT	=	Run of program after "RUN" or "COMPILE"		
Key command KEY	LIST	A B C	Displays program on screen		
	LLIST		Prints out program		
	NEW		Erases program		
	RENUM B		Renumbers line numbers		
	RUN		Executes program		
	ZDV		Displays I/O console		
	_		Deletes line		
	BREAK		Resumes program run after stop and "CONT"		
	CALL		Calls machine language program		
	CLS	A B	Clears CRT screen		
Program		Α			
PRG	CLOSE	B C	Closes specified RS-232C/RS-422 channel.		
		D			
	END		Declares end of program run		
	FOR···NE	κт	Repeats program run from "FOR" to "NEXT"		
	GOTO		Moves to specified line number		

Table 3.2 BASIC Command List (Continue)

Command			Function		
	GOSUB ···· ····· RETU		Moves to specified subroutine Returns from subroutine		
	IF .		Judges result of expression		
	A INPUT B		Input from keyboard		
	INKEY		Assigns input from keyboard to variable		
	LET		Assigns value of expression to variable		
	LOCATE	A B C D	Moves cursor position		
	LPRINT	A B C	Prints out data		
	ONGOSU	в	Moves to subroutine in line number specified by value of expression		
	ONGOTO		Moves to line number specified by value of expression		
Program command PRG	OPEN C		Opens specified RS-232C/RS-422 channel.		
	PEEK		Reads 1-byte data from specified memory address		
	POKE		Writes 1-byte data to specified memory address		
	PRINT B		Displays data on screen		
	REM		Used to write comment.		
	SIZE A STOP		Displays text program capacity		
			Stops program run		
	ZCOFF	A B	Underline Type A when the console is GPP/HGP. Type B when the console is VT-220.		
	ZCON	A B	Resets underline (used after "ZCOFF"). Type A when the console is GPP/HGP. Type B when the console is VT-220.		
	ZCRV		Reverses character color on CRT screen		
	ZDATE		Reads year, month, day, hour, and minute		
	ZIDV	A B C D	Changes input console		
	ZMOV		Transfers data from memory to memory		
	ZNOR		Returns the character reversed after "ZCRV" to its original color		

Table 3.2 BASIC Command List (Continue)

Command			Function		
	ZODV	A B C	Changes output console		
Program	ZRD1		Reads 1-byte data from specified channel		
PRG	ZRD2		Reads 2-byte data from specified channel		
	ZTIME		Stops execution for specified interval of time		
	ZWR1		Writes 1-byte data to specified channel		
	ZWR2		Writes 2-byte data to specified channel		
	ABF		Absolute value of real number in mathematical expression		
	ABS		Absolute value of integer in mathematical expression		
	ACOS		Arccosine (cos ⁻¹) of mathematical expression		
	ASIN		Arcsine (sin ⁻¹) of mathematical expression		
	ATAN		Arctangent (tan ⁻¹) of mathematical expression		
	COS		Cosine (cos) of mathematical expression		
Intrinsic function	EXP		Value of Exponential to base "e" (e=2.718281)		
	LN		Value of natural logarithm (loge)		
	LOG		Value of common logarithm (log10)		
	NOT		Generates "1" when value of mathematical expression is "0 and generates "0" when the value is not "0".		
	RND		Assigns random number to variable		
	SIN		Sine (sin) of mathematical expression		
	SORT		Value of square root of mathematical expression		
	TAN		Tangent (tan) of mathematical expression		
	. +		Addition		
	_		Subtraction		
Arith- metic	*		Multiplication		
operator	1		Division		
ALU	^		Exponent		
			Sign reversion		
	%		Remainder calculation		

MELSEC-

Table 3.2 BASIC Command List (Continue)

Command		Function
	_	Is equal to
	#	Is not equal to
Com- parison	<	Is less than
operator	>	Is greater than
СОМ	<=	Is not greater than
	>=	Is not less than
	#	Negation (NOT)
Logical operator	&	Logical product (AND)
LOG	l	Logical sum (OR)
· .	¥	Exclusive logical sum (EXOR)

Table 3.2 BASIC Command List

Where commands have several options (indicates as A, B, C etc.) only those shaded (

3.2.2 System subroutines

System subroutines are machine code programs used for special AD51 functions (for example PC CPU transactions etc.). They are already written in channel 0 of the AD51 at specified address locations.

System subroutine operation is initiated by using the "CALL" command in the BASIC program.

System subroutines on the AD51 are shown in Table 3.3.

[Initializing the system subroutine]

- 1) The system subroutine is called from the GPC-BASIC program using the "CALL" command.
- 2) The format of the CALL statement is as follows.

A=CALL (variable 1, variable 2, [variable 3, variable 4])

- Variable 1: Always 0. All system subroutines are located in channel 0.
- Variable 2: Head address of system subroutine in channel 0 (see table 3.3)
- Variable 3: Variable for system subroutine stored in (D)(E) registers.
- Variable 4: Variable for system subroutine stored in (B)(C) registers.
- 3) For information on variable 3 and variable 4, refer to the GPC-BASIC Handbooks.
- 4) Before executing the CALL command, transfer variables to the work area.

\setminus	System Subroutine	Function	Channel	Address
1	SAI	ASCII (hexadecimal) → BIN	0	8060H
2	SIA	BIN \rightarrow ASCII (hexadecimal)	0	8063H
3	SAN	ASCII (decimal) → BIN	0	8072н
4	SNA	BIN → ASCII (decimal)	0	8075 _H
5	SAF	ASCII → real number	0	8066н
6	SFA	Real number → ASCII	0	8069н
7	SBF	Integer → real number	0	806Сн
8	SFB	Real number → integer	0	806Fн
9	SFLTD	32-bit integer → 32-bit floating point number	0	80DEH
10	SFIXD	32-bit floating point number → 32-bit integer	0	80E1H
11	SBD4	BIN → 4-digit BCD	0	8042н
12	SDB4	4-digit BCD → BIN	0	8045н
13	SBD6	BIN → 6-digit BCD	0	8048н
14	SDB6	6-digit BCD → BIN	0	804Вн

Table 3.3 System Subroutine List (Continue)

\backslash	System Subroutine	Function	Channel	Address
15	SBA	BIN addition (24 bits)	0	804Eн
16	SBS	BIN subtraction (24 bits)	. 0	8051 н
17	SBM	BIN multiplication (24 bits)	0	8054 н
18	SBW	BIN division (24 bits)	0	8057 н
19	SCA B	Write to clock element (year, month, day, hour, minute, second)	0	803Сн
20	SCB B	Read from clock element (year, month, day, hour, minute, second)	0	803Fн
21	SPC B	Discrimination of programmable controller CPU	0	8078 н
22	SKC B	Programmable controller CPU run/stop check	0	8030н
23	SKR –	Remote run of programmable controller CPU	0	8033 н
24	SKP B	Remote stop of programmable controller CPU	0	8036н
25	SRB A	Receives specified byte length of data sent to specified channel	• 0	8009н
26	SWB B	Sends specified byte length of data from specified channel	0	800Сн
27	SRC	Reads the number of bytes of data received by specified channel	0	800 Г н
28	SRF	Reads the number of vacant bytes in receive buffer of specified channel	0	8012н
29	SHX –	Controls send/receive data of specified channel by Xon/Xoff codes	0	8015 +
30	SHD –	Controls send/receive data of specified channel by DR terminal	0	8018 ।
31	SAE	Converts all send/receive data of specified channel to EBCDIC code	0	801Ен
32	SEA	No code conversion of send/receive data of specified channel	0	8021 н
33	STC	Reads the number of remaining bytes in send buffer of specified channel	0	801Bн
34	SRP	Reads status of specified channel	0	8027 н
35	SR2	Reads data from buffer memory	0	8000 н
36	SW2	Writes data to buffer memory	0	8003H
37	SADR	Reads data from data memory of programmable controller CPU	.0	807Bн
38	SADW	Writes data to data memory of programmable controller CPU	0	807 Ен
39	SADT	Randomly writes data to data memory of programmable controller CPU	0	8081 ਮ
40	SADM0	Enters data randomly read from data memory of programmable controller CPU	0	8084 н

Table 3.3 System Subroutine List (Continue)

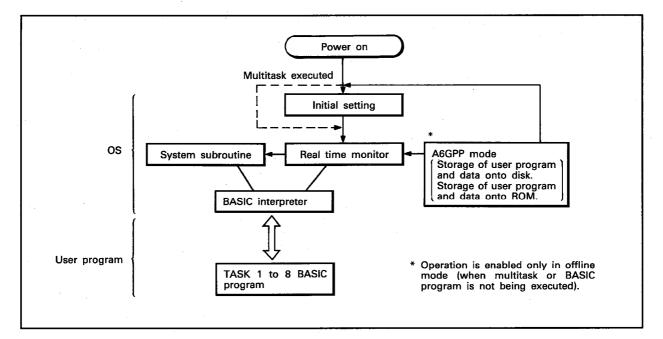
\backslash	System Subroutine	Function	Channel	Address
41	SADM1	Randomly reads data from data memory of programmable controller CPU	0	8087 _H
42	SAAR	Reads sequence program	. 0	808А н
43	SAAW	Writes sequence program	0	808Dн
44	SAPR	Reads programmable controller CPU parameters	Q	8090 н
45	SAPW	Writes programmable controller CPU parameters	0	8093ri
46	SAPS	Analysis request of programmable controller CPU parameters	0	8096н
47	SIT	Interruption to programmable controller CPU	0	802Ан
48	SIR	Reads error code	0	8024 ⊬
49	SC2	Sets SR2/SW2 retry time	0	8006 н
50	* ¹ SAER	Reads data from extension file registers of PC CPU	0	80BDн
51	*1 SAEW	Writes data to extension file registers of PC CPU	0	80С0н
52	*1 SAET	Randomly writes data to extension file registers of PC CPU	0	80С3 н
53	*1 SAEM0	Defines PC CPU extension file registers to be monitored	0	80C6н
54	*1 SAEM1	Monitors PC CPU extension file registers specified in monitor data entry	0	80C9н
55	* ² SAMR	Reads microcomputer program from PC CPU	0	80ССн
56	* ² SAMW	Writes microcomputer program to PC CPU	0	80CFH
57	SACR	Reads comments from PC CPU	0	80D2н
58	SACW	Writes comments to PC CPU	0	80D5н
59	SATR	Reads data from special function module buffer memory	0	80D8н
60	SATW	Writes data to special function module buffer memory	0	80DBH

MELSEC-

Table 3.3 System Subroutine List

Where system subroutines have several options (indicated as \overline{A} , \overline{B}) only those shaded ($\overline{\Box}$) may be used on the AD51.

REMARKS

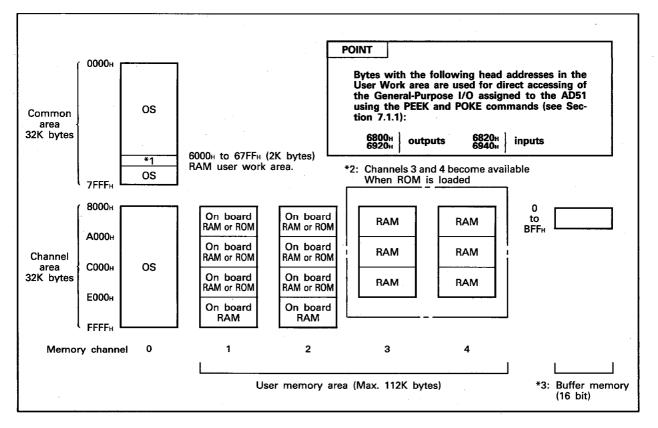

- (1) System subroutines indicated as \boxed{B} are covered in the GPC-BASIC Handbooks.
- (2) System subroutines marked *1 may only have access to the A3ECPU, A3CPU, A3NCPU and A3HCPU.

System subroutines marked *2 may only have access to the A1ECPU, A1CPU, A1NCPU, A2ECPU, A2CPU, A2NCPU, A3ECPU, A3CPU, A3NCPU and A3HCPU.

3.3 Software Configuration

The following shows a block diagram of the AD51 software configuration indicating how the various areas interact.

Fig. 3.1 Software Configuration


- (1) As shown in Fig. 3.1, a maximum of 8 user programs may be processed in parallel under the control of the real time monitor.
- (2) "Power on", "interrupt from ACPU", and "real time interrupt" are available as starting conditions for the user program.
- (3) Each task can only be written in BASIC.

MELSEC

3.4 Memory Map

3.4.1 Memory configuration

The AD51 is a Z-80 based system. To expand the memory size from 64K bytes the second 32K bytes are duplicated in additional channels as shown in Fig. 3.2 below.

Fig. 3.2 Memory Map

POINT *(1) The RAM user work area, (addresses 6000₄ to 67FF₄) is in the common area and can be accessed by the user programs in any of channels 1 to 4.

- *(2) The memory area may be expanded by adding ROM to channels 1 and/or 2.
- *(3) The buffer address range is 000₊ to BFF₊ which represents 3K words (6K bytes) of buffer memory. Each buffer memory address represents 1 word. (i.e. 16 bits)

3.4.2 Memory map with ROM loaded

The user memory area can be expanded by loading ROM into channels 1 and/or 2. The memory map will vary as shown below depending on the location and size of the ROMs. 8K and 16KROMs may be used.

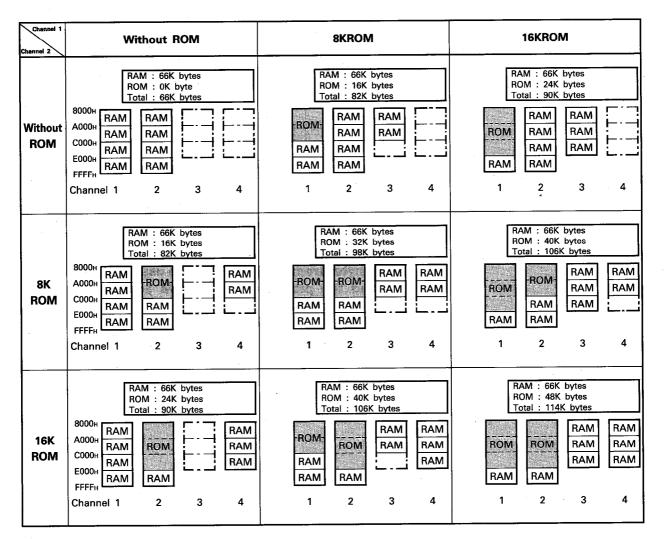


Table 3.4 Memory Map When ROM is Used.

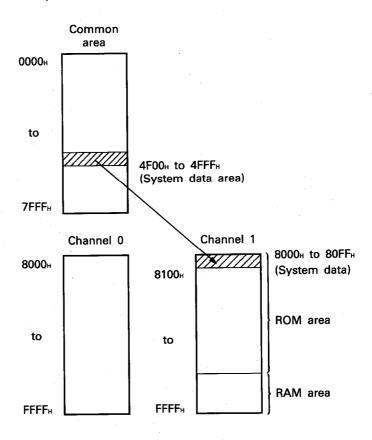
POINT

- (1) The installation of a ROM shifts the corresponding RAM address range to a different channel. (e.g. Installing 8K of ROM at channel 1 addresses 8000_H to BFFF_H moves the RAM area to channel 3 addresses 8000_H to BFFF_H.
- (2) Two shorting pins are used to specify RAM or ROM in channels 1 and 2. The RAM area is moved as follows depending on the pin setting in each channel.

ROM loading RAM/ ROM setting pin	With ROM	Without ROM
RAM position	RAM and ROM areas coincide.	Correct
ROM position	Correct	The RAM area changes channels as though ROM was installed.

(3) Only 24K bytes are valid (addresses 8000_{*} to DFFF_{*}) when 16KROM is used.

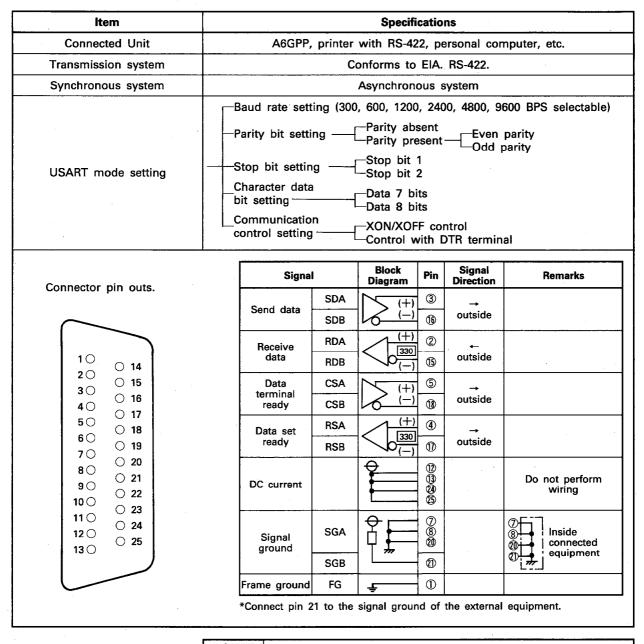
The 8K bytes from E000 $_{\rm H}$ to FFFF $_{\rm H}$ are used in the RAM area and the program in this ROM address range cannot be executed.


(4) For RAM area memory protect, refer to Section 4.3.1.

3.4.3 Storing system data on ROM

System data (e.g. multitask set data) required for program execution of each task may be stored to ROM.

The system data located in the common area is stored to the first 256-byte area of the ROM installed on channel 1.



- (1) After the system data is stored on ROM, addresses 8100_{H} to FFFF_H are used as a user memory area and 8000_{H} to $80FF_{\text{H}}$ cannot be used as a user area (program area, work area).
- (2) After the system data is stored on ROM, the RAM area of channel 4 can be used as a program area but that of channel 3 may only be used as a work area.
- (3) With the system data transfer switch ON, multitask is executed after the system data is transferred from 8000_{H} to $80FF_{\text{H}}$ of channel 1 to the system data area (4F00_{\tot} to 4FFF_{\tot}) at power on.

3.5 Interface Specifications

3.5.1 RS-422 connector specifications (CH1)

POINT

- (1) The maximum transmission speed from the AD51 is 9600 BPS, the maximum receiving speed is 4800 BPS.
- (2) When channel 1 has been set as an I/O console (DIP switch 16 set to ON), the AD51 operating system automatically sets the USART mode:
 4800 BPS, even parity, stop bit 1, character data 8

3

3.5.2 RS-422 terminal block specifications (CH2)

Item				Specificatio	ns	
Connected Unit	Connected Unit		AD51, personal computer etc.			
Transmission system			Confor	ms to EIA.	RS-422.	
Synchronous system		· ·	Asyn	chronous s	system	
USART mode setting		Baud rate setting (300, 600, 1200, 2400, 4800, 9600 BPS selectable) Parity bit setting Parity absent Parity present Odd parity Stop bit setting Stop bit 1 Character data Data 7 bits bit setting Data 8 bits				narity
Terminal block pin outs.						
SDA SDA		Signal	Block Diagram	Terminal Number	Signal Direction	Remarks
SDB		Send data (SDA)		TB1	→ to	
		Send data (SDB)	(-)	TB2	outside	
ПВ		Receive data (RDA)	(+)	ТВЗ	← from	
⊖ sg		Receive data (RDB)		TB4	outside	
FG		Signal ground (SG)	,,,,	TB5		
		Frame ground (FG)		TB6		
	I					140 M

POINT

The maximum transmission baud rate from the AD51 is 9600 BPS. The maximum receiving baud rate is 4800 BPS.

3.5.3 RS-232C connector performance specifications (CH3 and 4)

ltem	Specifications
Connected Unit	Console (CH3 only), computer with RS-232C interface, personal computer, printer, modem, etc.
Transmission system	Conforms to EIA. RS-232C.
Transmission speed	300, 600, 1200, 2400, 4800, 9600 selectable
Synchronous system	Asynchronous system
USART mode setting	Baud rate setting (300, 600, 1200, 2400, 4800, 9600 BPS selectable) Parity bit setting Parity absent Parity present Odd parity Stop bit setting Data 7 bits bit setting Data 7 bits Communication XON/XOFF control control setting Control with DTR terminal *Set CH3 with the front DIP switches (SW1 to 8).

Connector pin outs.

$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 \\ 10 & 20 & 30 & 40 & 50 & 60 & 70 & 8 & 9 & 010 & 10 & 12 & 13 & 0 \\ \end{pmatrix}$

Pin Number	Signal Abbreviation	Signal Direction Inside-outside	Description
1	FG		Frame ground
2	SD	→	Send data
3	RD	←	Receive data
4	RTS		Request to send
5	CTS	-	Clear to send
6	DSR	←	Data set ready
7	SG		Signal ground
20	DTR	→	Data terminal ready

POINT

- (1) The maximum transmission speed from the AD51 is 9600 BPS, the maximum receiving speed is 4800 BPS.
- (2) When channel 3 has been set as an I/O console (DIP switch 16 set to OFF), the AD51 operating system automatically sets the USART mode:
 4800 BPS, parity absent, stop bit 1, character data bit 8

3.6 I/O Interface with Programmable Controller CPU

The digital I/O bus may be used for communication between the PC CPU and the AD51. The following table indicates the function of each signal. The drive number will vary depending on the AD51 slot location; in the table the AD51 is assumed to be in slots 0 and 1 of the main base unit.

(1) There are 48 input signals to the PC CPU (X00 to X2F) from the AD51.

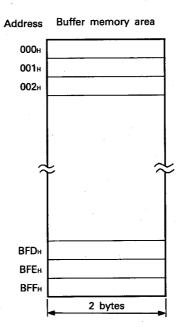
Input Number	Description	Address
X00 to X0F	Unused	
X10		Address 6940 _H Address 6920 _H
X11		B7 B6 B5 B4 B3 B2 B1 B0 B7 B6 B5 B4 B3 B2 B1 B0
X12		Input number > X10
X13		
X14		X12
X15	Switched on/off by the BASIC program and the contacts	X13
X16		×115
X17	used in the sequence program.	X16 X17
X18	(Known as General- purpose inputs)	×17 ×18
X19		×19
X1A		X1A
X1B		× X1C
X1C		
X1D	Switched on to indicate an AD51 CPU fault	
X1E	Unused	
X1F	Unuseu	
X20 to X2F	Unused	

3. SPECIFICATIONS

(2) There are 48 output signals from the PC CPU to the AD51.

Output Number	Description	Address
Y00 to Y0F	Unused	
Y10 to Y1F	May be used by the PC CPU as extra internal relays (M).	
Y20		Address 6820 H Address 6800 H
Y21		B7 B6 B5 B4 B3 B2 B1 B0 B7 B6 B5 B4 B3 B2 B1 B0
Y22		
Y23	Switched on/off in the sequence program	Y20
¥24	and read by the BASIC program	Y21 Y22
Y25	(known as General- purpose outputs)	Y23
Y26	Parpoor sarpara,	Y24
Y27		Y25
Y28		Y26
Y29	This output may be used to start one task in the AD51 designated as an interrupt program by its task start condition.	Y29
Y2A to Y2F	Unused	

POINT


- (1) Input X1D is switched on when an error is detected by the AD51 hardware. This signal may be used as an interlock in the PC sequence program to control PC accessing of the AD51 buffer memory (i.e. FROM / TO instructions).
- (2) Switching output Y29 on will start the task which has its start condition specified as "interrupt from ACPU". The start condition is defined during "multi task setting".
- (3) Output signals Y2A to Y2F are used by the operating system and must not be switched on or off.

3.7 Buffer Memory

The AD51 uses a buffer memory for data communication with the PC CPU. (The buffer memory is not battery backed.)

- (1) Buffer memory addresses are 000_{H} to BFF_H (3K words). See the memory map in Section 3.4.
- (2) Buffer memory data is made up of 16 bits per address.
- (3) The buffer memory is accessed by the AD51 using system subroutines (SR2, SW2). For details, refer to Section 7.2.1.
- (4) The buffer memory is accessed by the PC CPU using the FROM and TO application instructions.
 For read and write procedures, refer to Section 7.2.2.
 For details of the FROM TO instructions, refer to the ACPU Programming Manual.

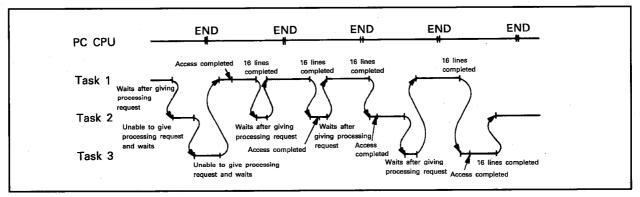
3.8 Communication between AD51 and PC CPU

Any AD51 initiated requests for communication transactions between the AD51 and PC CPU are processed once when the END, FEND or COM instruction is executed by the PC. The time taken to process a system subroutine and the delay times caused by multiple accessing of the PC CPU are explained in this section.

(1) The following table shows the number of scans taken by the AD51 to process PC transaction subroutines.

	ltem			Number of Scans Required for Processing
		Bit		
	Batch read	Word	SADR	
		Bit		1 scan
•	Batch write	Word	- SADW	(2 scans for device "R")
	Test	Bit		
Device	(random write)	Word	SADT	
memory		Bit		Independent of scan
	Monitor data entry	Word	SADMO	1 scan for device "R" only (Independent of scan for other devices.)
	Maritan	Bit	0.001/	
	Monitor	Word	SADM1	1 scan
	Deed	Main	CAAD	4
Sequence	Read	Sub	SAAR	1 scan
program		Main		2 scans
	Write	Sub	SAAW	(1 scan for T/C set value)
	Read		SAPR	2 scans
Parameter	Batch write		SAPW	2 scans
	Analysis request		SAPS	2 scans
	Remote		SKR	
Parameter (PC)	Remote stop		SKP	1 scan
	PC type mode		SPC	
Buffer	Batch read		SR2	Independent of scan
memory	Batch write		SW2	
	Batch read		SAER	
Extension	Batch write		SAEW	2 scans
file register	Random write		SAET	
	Monitor data entry		SAEM0	1 scan
	Monitor	-	SAEM1	
	Read	Main	SAMR	1 scan
Micro- computer program	ncau	Sub	0/4Will	r scan
	W/rito	Main	SAMW	2 00000
	Write Sub		SAIVIV	2 scans
Comment	Batch read		SACR	2 00000
	Batch write		SACW	2 scans
Special module	Batch read		SATR	1 scan
buffer memory	Batch write		SATW	. 3001

3. SPECIFICATIONS


POINT

System subroutines SR2 and SW2 (buffer memory read, write) allow max. 3K words (6K bytes) to be transferred between the PC CPU and AD51 at one time independently of the END, FEND or COM instruction execution in the sequence program.

- (2) Requests for communication transactions with the PC CPU may also come from other sources, these are listed below and are processed in the same way as AD51 transaction requests. Only one transaction may be processed per PC CPU scan so that a delay of 1 to 5 scans is possible before the AD51 transaction is processed if several of these requests overlap. The following list gives the transaction requests in priority order.
 - 1. Programmable controller CPU OS program
 - 2. Peripheral equipment (e.g. A6GPP)
 - 3. Optical or coaxial data link unit incorporated in CPU module
 - 4. Optical or coaxial data link module in 3 hierarchy system AJ71P22/R22
 - 5. Processing request from AJ71C24-S3 or second AD51

Hence, if continuous processing requests are received from the A6GPP and AJ71C24-S3, communication between the AD51 and PC CPU is only made once every three scans.

(3) When a system subroutine is called which accesses the PC CPU there is a delay while the PC CPU prepares the appropriate data. During this delay time, the AD51 switches tasks to optimize scan time. In the example shown below, three tasks are executing subroutine which access the PC CPU. Task one provides the first processing request to the PC CPU which prepares the requested data. During this delay the AD51 switches to task 2 which is unable to pass its processing request to the PC which is still dealing with the one from task 1. The AD51 therefore switches to task 3 for which the same situation exists. Only after task 1s request has been fully processed can task 2s request be dealt with. Similarly task 3 must wait until task 2 been processed. For details of other task switching, refer to the GPC-BASIC Handbook.

MELSEC-

3.8.1 Transmission time in MELSECNET

Transmission time (T_1) is calculated as follows if data transmission is made to the specified PC CPU which is not used with the AD51 in MELSECNET.

Master station ↔ local station

Transmission time $(T_1) = ((period equivalent to <u>LRDP</u>) instruction processing time) + (1 scan time of station used with AD51)) <math>\times 2$

Master station ↔ remote station

Transmission time $(T_1) = ((period equivalent to RFRP) instruction processing time) + (1 scan time of MELSECNET master station)) <math>\times 2_{c}$

Read "2" marked www as "3" when communication is made to the corresponding station for the first time after power on or CPU reset.

Read "2" as "1" from the second communication on when the number of stations communicating is 64 or less.

• Factor of transmission time (T₁) delay

Transmission time obtained from any of the above expressions should be doubled if the command executed requires two scans for transmission (e.g. device "R" write). Transmission time should be multiplied by the (number of stations monitored + 1) if the other link stations are monitored by the A6GPP.

*For more information on data link, see the Data Link System User's Manual.

Example: Reading local station device memory with the AD51 loaded on the MELSECNET master station (Conditions: L < LS < M, M = 80ms, $\alpha 1 = 10ms$)

Transmission time $(T_1) = (M \times 4 + \alpha 1 \times 4 + M) \times 2$

 $= (80 \times 4 + 10 \times 4 + 80) \times 2 = 880$

where M = MELSECNET master station scan time $\alpha 1$ = MELSECNET master station link refresh time

- LS = link scan time
- L = MELSECNET local station scan time

POINT

On some conditions, a considerable delay will occur for data transmission to the PC CPU which is not used with the AD51 in MELSECNET.

Transmission time can be reduced by performing communication only between the AD51 and the PC CPUs used with the AD51 (PC No. FF_{*}) and using MELSECNET data link (B, W) for communication with the other PC CPUs.

3.9 AD51 Communication

Data communication between the AD51 and external devices (e.g. computer, I/O console, printer) is made using RS-232C and RS-422.

Data communication is made via the transmission and receive buffers which are controlled by the OS of the AD51. The transmission and receive buffers are controlled individually for channels 1 to 4.

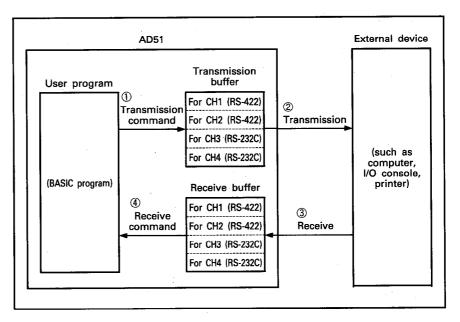
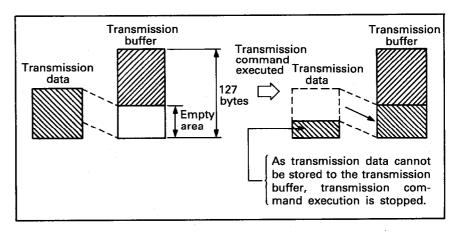
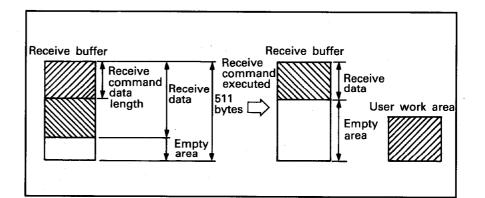



Fig. 3.3 AD51 Communication

(1) When the transmission command (PRINT, LPRINT, SWB) is executed in the user program, transmission data is stored to the transmission buffer.

If the empty area of transmission buffer is less than the transmission data length, the transmission command execution is stopped after as much data is stored to the transmission buffer.

The remaining transmission data is stored when an empty area is made in the transmission buffer by data transmission to the external device.



- (2) Data is transmitted in the same order as stored to the transmission buffer when the external device is enabled to receive data by communication control (DTR control or Xon/Xoff control).
- (3) Data received from the external device is stored to the buffer memory.

When the empty area of the receive buffer is reduced, communication control alerts the external device to receive disable.

(4) Execution of the receive command (INPUT, INKEY, SRB) in the user program transfers data from the receive buffer to the user work area.

3. SPECIFICATIONS

MELSEC-

3.10 Communication Control

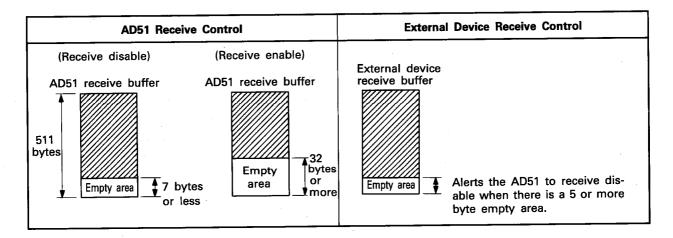
The AD51 has two types of communication control, DTR control and Xon/Xoff control. Communication control defaults to DTR control.

Either control may be selected by executing the corresponding system subroutine as follows:

- DTR control······Execute SHD.
- Xon/Xoff control······Execute SHX.

Channel 2 (RS-422 terminal block) is not allowed for communication control change.

(1) AD51 transmission


The AD51 sends data after confirming that the external device is ready to receive.

The external device used must be capable of alerting the AD51 to receive disable when there is an empty area of 5 or more bytes in the receive buffer.

(2) AD51 receive

The AD51 receive buffer has 511 bytes.

The AD51 notifies the external device of receive disable when the empty area of the receive buffer is 7 bytes or less. The AD51 alerts the external device to receive enable when the empty area of the receive buffer is 32 bytes or more.

POINT

The external device connected to the AD51 must have a receive buffer and be capable of alerting the AD51 to receive disable when there is 5 bytes or more left as an empty area.

Any external device that performs communication handshake in units of 1 byte cannot be connected to the AD51.

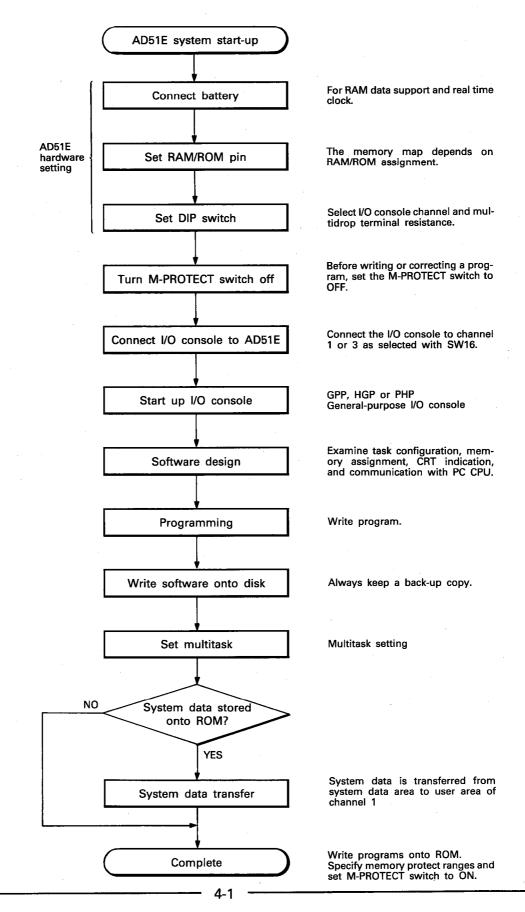
3.10.1 DTR control

Performs communication control using the data device ready signal and terminal ready notice signal.

RS-422 : RSA/RSB and CSA/CSB RS-232C: DSR and DTR

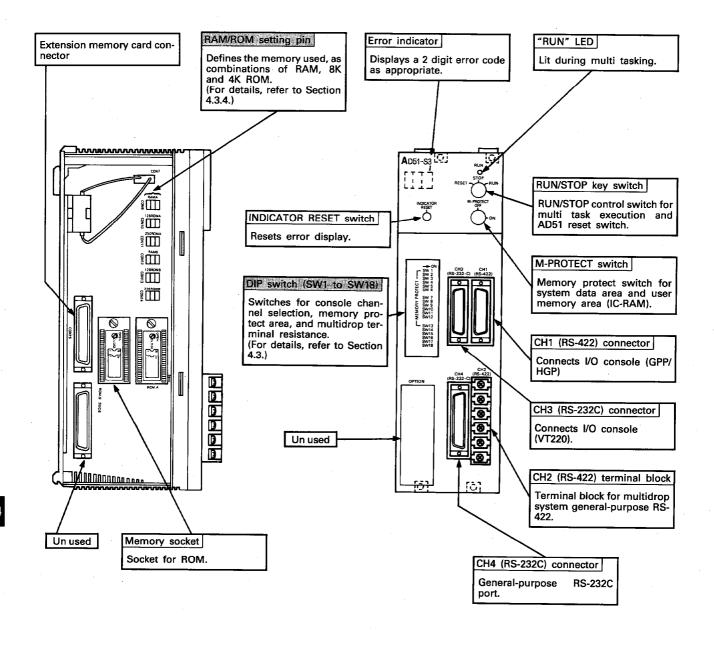
- (a) The data device ready signal is switched on to send data from the transmission buffer to the external device.
 The data device ready signal is switched off to stop the transmission.
- (b) The terminal ready notice signal is switched off when the empty area of the receive buffer has become 7 bytes or less. The terminal ready notice signal is switched on when the receive buffer empty area increases to 32 bytes or more after the receive command (INPUT, INKEY, SRB) is executed in the user program.

3.10.2 Xon/Xoff control


Performs communication control using the Xon code (11_{H}) and Xoff code (13_{H}) .

- (a) Transmission is stopped when the Xoff code is received during transmission of data from the transmission buffer to the external device.
 Transmission is resumed when the Xon code is received.
- (b) When the receive buffer empty area is reduced to 7 bytes or less, the AD51 sends the Xoff code to alert the external device to receive disable.

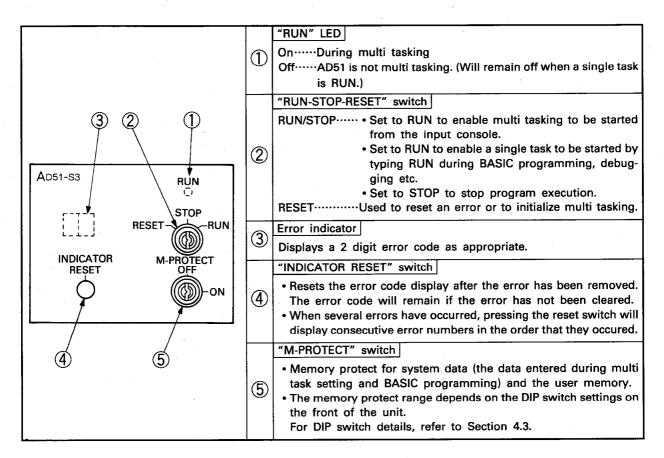
The AD51 sends the Xon code to notify the external device of receive enable when the empty area increases to 32 bytes or more after the receive command (INPUT, INKEY, SRB) is executed in the user program.


4.1 General Procedure

4.2 Nomenclature

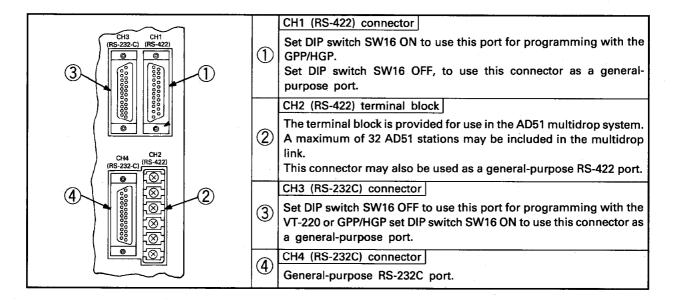
For the setting switches, refer to Section 4.3.

MELSEC-



REMARKS

It is necessary to set or load method before starting operation.


(1) Switch details

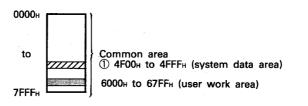
4-3

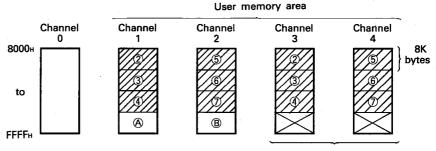
(2) Connector details

4-4

4.3 Hardware Settings

4.3.1 Memory protect range


The maximum user program memory capacity is 114K bytes (48K bytes for ROM + 66K bytes for RAM). 48K bytes of the RAM area may be memory protected in units of 8K bytes.


The system data area (for multi task setting data etc.) may also be memory protected.

To set memory protection to the required area, use the DIP switches on the front of the unit as described below:

(1) Memory protect area

Areas marked 2000 in the memory maps below can be memory protected.

RAM area when ROM is installed.

REMARKS

- (1) The memory protect DIP switch number is shown as 1 to 7 in the above memory map.
- (2) The memory protect DIP switch numbers for a given RAM address range remain unchanged when ROM is loaded although the channel number has changed from channel 1 to 2 or from 3 to 4.

(2) Memory protect range

Protected RAM address ranges are shown below. The DIP switch is on when the lever points to the right, this is marked on the switch cover.

			Memory Protect Range		
Division	DIP Switch Details		Memory	channel	
		Number	For RAM only	ROM loaded	Memory address
		SW1	Commo	on area	4F00H to 4FFFH
2		SW2	1	3	8000н to 9FFFн
3	sw1	SW3	1	3	A000 _H to BFFF _H
4	to	SW4	1	3	C000 _H to DFFF _H
5	SW6	SW5	2	4	8000н to 9FFFн
6	SW7	SW6	2	4	A000H to BFFFH
\bigcirc	to	SW7	2	4	C000н to DFFFн
	SW12	SW8			
	SW13	SW9	Unused		
Unused	sw18	.SW10			
Unused		SW11			
		SW12			
		SW13			

POINT

 BASIC program address data and multi task setting data is stored in the system data area 4F00_H to 4FFF_H (256 bytes).

Set memory protect with SW1 after starting multi tasking.

- (2) SW1 must be set to OFF when the system data area data has been stored to ROM.
- (3) Switching the memory protect key to ON protects all areas defined by the DIP switch settings.
- (4) Keep the memory protect switch OFF during BASIC program writing and editing.
- (5) The RAM areas marked \widehat{A} and \widehat{B} on the preceeding page and the user work area cannot be memory protected.

4.3.2 Console channel

DIP switch SW16 determines which of the two channels, CH1 and CH3 is to be used for the programming console.

When the VT-220 is used SW16 should be switched OFF defining CH3 (RS-232C) as the programming console port. When the GPP/HGP is used the switch is generally switched ON defining CH1 (RS-422) as the programming console port. (RS-232C may also be used)

DIP Switch Details	SW16 Position	CH1 (RS-422)	CH3 (RS-232C)
	ON	GPP/HGP	General-purpose port
SW16	OFF	General-purpose port	VT-220 (GPP/HGP)

POINT

The console setting switch is valid after the AD51 is powered up or reset.

When the console setting has been changed, reset the AD51.

4.3.3 Terminal resistor

A terminal resistor is fitted to prevent distortion of the transmission signal waveform. When a number of AD51s are connected together via an RS-422 link, the two end stations should be set with "terminal resistor present", the remainder with "terminal resistance absent." DIP switches SW14 and SW15 are used to set the terminal resistance as shown below.

DIP Switch Details	SW14 Position	SW15 Position	Description
	ON	ON	With terminal resistor
SW14 SW15	OFF	OFF	Without terminal resistor

POINT Both switches should be either on or off.

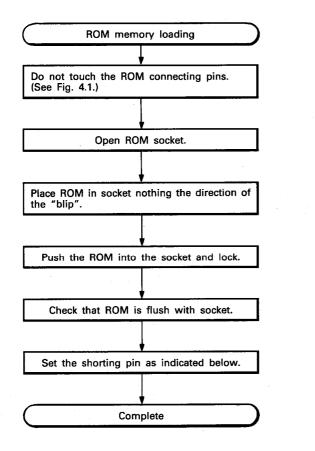
4.3.4 Setting system data transfer

Set the DIP switch SW17 to ON or OFF as indicated below depending on whether or not the system data is transferred from the ROM of channel 1 to the system data area at power on.

DIP Switch	SW17 Position	8000н to 8004н Data	Description
	ON	Specific pattern	System data is transferred from channel 1 addresses 8000н to 80FFн to system data area addresses 4F00н to 4FFFн.
		Unspecific pattern	Not transferred.
B B Sw17	0.55	Specific pattern	Not transferred.
	OFF	Unspecific pattern	Not transferred.

When the system data exists in channel 1 address range 8000_{H} to $80FF_{\text{H}}$, data in 8000_{H} to 8004_{H} is in a specific pattern to indicate that the system data exists.

POINT


SW17 must be set to ON when the system data has been stored on ROM and set to OFF when not stored on ROM.

4.3.5 ROM installation

This section describes the installation and settings required for using the ROM.

The ROM sockets should be empty if ROM is not being used.

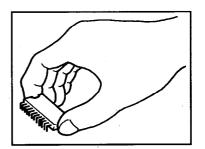


Fig. 4.1 How to Hold ROM

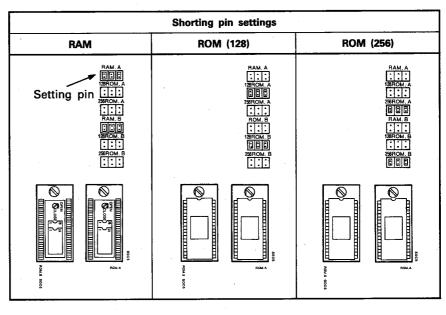


Fig. 4.2 Pin Settings Depending on Memories

4-9

IMPORTANT

- (1) Before ROM is installed, the shorting pin must be set in accordance with the ROM type used.
- (2) After ROM has been installed, setting the shorting pin to RAM may clear the battery backed data.
- (3) ROM installation

ROM should be installed after setting the shorting pin in accordance with the ROM type used.

(4) ROM removal

After ROM has been removed, the shorting pin should be set to RAM.

POINT

- (1) RAM is built into the unit, there is no need to load RAM into either socket.
- (2) The correct direction of the "blip" on the ROM is indicated on the ROM socket.
- (3) ROM may be loaded into either socket and ROM sizes (27128, 27256) may be mixed providing the address ranges are noted.
- (4) When ROM is installed some RAM address ranges change. (For details, refer to Section 3.4.)
- (5) Cover the EPROM window after it has been programmed.
- (6) Ensure that ROMs are correctly stored and protected.
- (7) Keep the ROM away from static electricity—use antistatic foam where possible.
- (8) The shorting pin is factory-set to RAM (RAM.A and RAM.B connectors).
- (9) Channel 1 shorting pins are marked RAM.A and channel 2, RAM.B.

4.3.6 Loading the battery

The battery is disconnected before leaving the factory to prevent unneccessary battery consumption. The battery plug should be connected to pins CON7 on the circuit board before the AD51 is used. The red wire is positive and the connector is keyed to prevent wrong connection.

- 5. WIRING
- **5.1 Wiring Instructions**
- All AD51 external wiring should be protected against noise.
- Keep cables carrying data at least 100mm(3.94inch) away from main circuit wiring, high voltage cables and PC input and output wiring.
- (2) Ground shield wires or cable shields at one point only.
- (3) Use M4 solderless terminals for connection to the RS-422 terminal block.

5.2 RS-232C Connection

RS-232C connection

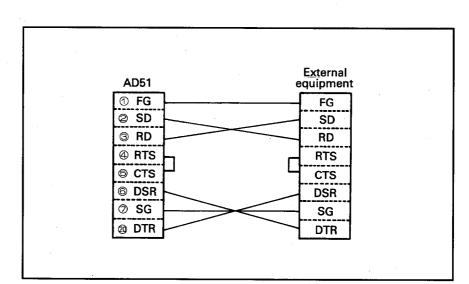
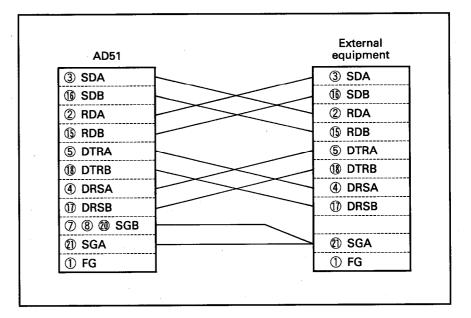
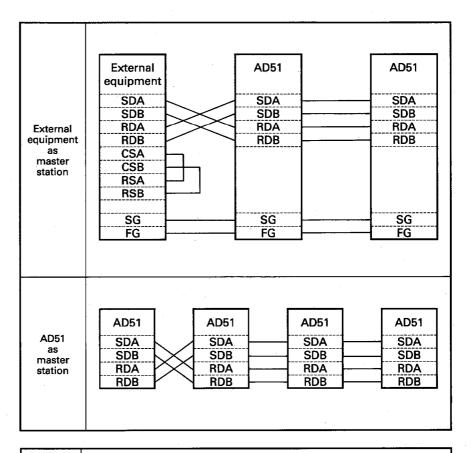


Fig. 5.1 RS-232C Connection Diagram


POINT

A maximum of 32 stations may be included in the multidrop system with an overall link distance of 500m(547Yd).

MELSEC-


5.3 RS-422 Connection

(1) RS-422 connector

(2) RS-422 multidrop connection.

POINT

A maximum of 32 stations may be included in the multidrop system with an overall link distance of 500m(547Yd).

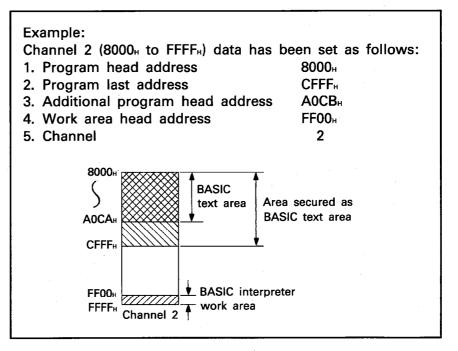
REMARKS

RS-422 multidrop cabling should conform to the following specifications.

ltem	Specifications
Cable type	Shielded cable
Conductor resistance (20°C)	88.0Ω/km or less
Insulation resistance	10,000MΩ·km or less
Dielectric strength	500V DC for 1 minute
Electrostatic capacity (1kHz)	60nF/km or less on average
Characteristic impedance (100kHz)	$110 \pm 10\Omega$

6. AD51 PROGRAMMING NOTES

6.1 BASIC Program Address Data

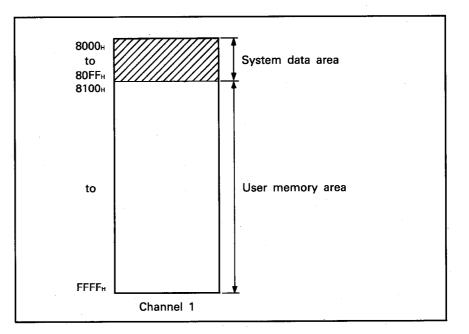

The following information must be specified before a GPC-BASIC program can be written: program number, program head address, program last address, additional program head address, work area head address, and channel. For further details on setting the data, refer to AD51 Operating Manual.

REMARKS

The following table indicates the function of each of the addresses. Before the BASIC program can be written a BASIC text area must be defined as well as an interpreter work area. The operating system automatically asigns the additional program head address depending on how much of the BASIC text area is vacant.

ltem	Description
Program number	BASIC text number (1 to 8)
Program head address	The first address of the BASIC text area (8000 _H onwards)
Program last address	The last address of the BASIC text area
Additional program head address	Head address of vacant area in BASIC text area. (Automatically set by the O.S.)
Work area head address	Work area used for BASIC interpreter. Fixed to 256 bytes. (Not available for user)
Channel	Channel for the BASIC text

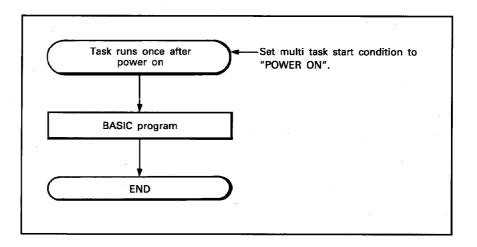
- (1) Direct variables (A to Z) are allotted in the BASIC interpreter work area.
- (2) Use the address range D000_H to FEFF_H for @ array variables and indirect variables. The hatched areas in the example below may not be used.


- (3) The work area must come after the text area and the work area head address must have 00 in the two least significant digits. 256 bytes are used for the BASIC interpreter work area starting at the work area head address.
- (4) When two or more tasks are written in the same channel make sure that the program areas and BASIC interpreter work areas do not overlap each other.
 - a) Program data will be corrupted in overlapping memory areas.
 - b) Multitasking results will be invalid if the BASIC interpreter work area for a given task is overlapped by program data from a different task. Independent running of that task however is valid.

	BASIC Program Addresses	TASK 1	TASK 2	Memory Map
Correct example	Task Program head address Program last address Additional program head address Work area head address Channel	1 8000н АFFFн А74Сн F000н 1	2 В000н DFFFн C851н F800н 1	8000 _H BO00 _H DFFF _H F000 _H F800 _H F800 _H FFFF _H BASIC text area (task 1) BASIC text area (task 2) BASIC interpreter work area (task 1) BASIC interpreter work area (task 2)
Over- lapping program area	Task Program head address Program last address Additional program head address Work area head address Channel	1 8000н АFFFн А74Сн F000н 1	2 A000+ DFFF+ B851+ F800+ 1	BASIC text area (task 1) BFFFH BASIC text area (task 1) DFFFH F000H F800H FFFFH FFFFH FFFFH BASIC interpreter work area (task 2)
Over- lapping interpreter work area	Task Program head address Program last address Additional program head address Work area head address Channel	1 8000н АFFFн А74Сн F000н 1	2 В000н DFFFн С851н F000н 1	8000 _H B000 _H DFFF _H F000 _H FFFF _H BASIC text area (task 1) BASIC text area (task 2) BASIC interpreter work area (task 1) BASIC interpreter work area (task 2)

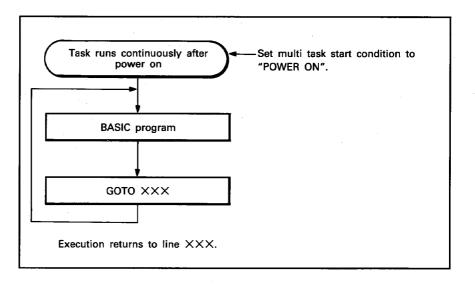
(5) When the system data is stored onto ROM, the program head address must be 8100_H or a subsequent address because addresses 8000_H to 80FF_H of channel 1 are used as a system data area.

Setting the program head address between 8000_{H} and $80FF_{\text{H}}$ will corrupt the BASIC program and disable normal program execution.


6.2 Start Conditions

There are 4 types of BASIC program execution formats:

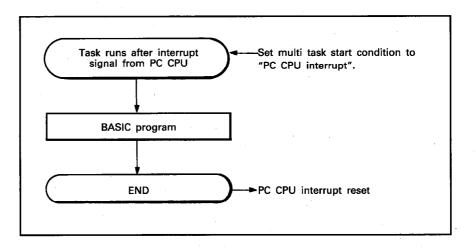
- (1) Program runs once after power on.
- (2) Program runs continuously after power on.
- (3) Program runs after an interrupt signal from the PC CPU.
- (4) Program runs at preset intervals in real time.


6.2.1 Program runs once after power on

Write the BASIC program so that "END" is executed as the final instruction and set the task start condition to "POWER ON".

6.2.2 Program runs continuously after power on

Write the BASIC program using the "GOTO" command to continue program execution and set the task start condition to "POWER ON".



6.2.3 Program runs after an interrupt signal from the PC CPU

Set the task start condition to "CPU INT" (CPU interrupt). The program is then run when the rising edge of the AD51 interrupt signal is received from the PC CPU.

For programming information see Section 7.4.

(1) Write the BASIC program so that "END" is executed as the final instruction. When "END" is executed the AD51 interrupt condition is reset. The interrupt program will not run again until the rising edge of the AD51 interrupt signal is received from the PC CPU.

(2) Only one task may be defined as PC interrupt start. More than one will generally lead to "ORST" error.

6.2.4 Program runs at preset intervals in real time

Select starting condition "REAL TIME INT" (real time interrupt).

The real time interrupt interval (i.e. the time between interrupt signals) should be longer than the total time taken for the interrupt program to reach the END instruction including the time required by other tasks. An "ORST" error is detected if a second real time interrupt signal is given before the interrupt program has executed its END command.

POINT

For tasks other than the one started by the interrupt signal from the PC CPU (Section 6.2.3), any system subroutine must not be executed to access the PC CPU within five seconds after the PC CPU is run.

A PC down error will occur if the system subroutine is executed within five seconds.

6.3 Notes on the Use of BASIC Commands

6.3.1 Key input commands

Key inputs (INPUT and INKEY commands) to the AD51 via one channel (as specified by the ZIDV command) should only be made to one task.

Since tasks are executed in order of task numbers, any data keyed in to a task can only be read at certain intervals. If a key is pressed and more than one task is waiting for data from the specified channel, only the first task to execute the INKEY or INPUT instruction will read the key input.

The other tasks will then continue waiting until a key is pressed while they are being run.

Task 1

Task 2

100	REM "TASK 1"	100 REM "TASK 2"
	to	to
200	ZIDV 1	500 ZIDV 1
210	A=INKEY	510 B=INKEY
	to	to

Example: When both task 1 and task 2 are waiting for key input from channel 1, pressing a key will only write data to one of variables A or B.

6.3.2 Printing commands

The printing commands are "PRINT" and "LPRINT".

(1) Difference between PRINT and LPRINT commands

[PRINT]

Used when the printer is connected to the console channel (channel 1 or 3 set with DIP switch 16) or the channel specified with ZODV.

[LPRINT]

Used when the printer is connected to the channel specified in the printer setting.

(2) Sharing of a single printer between tasks.

When several tasks are sharing the use of a printer ensure that interlock flags are provided in the work area to prevent two or more tasks attempting to access the printer simultaneously.

(3) Note that with printers that use the CR code (0D₊) to initiate printing (K6PRE, K7PRE etc.), writing a comma (,) after the statement in the PRINT or LPRINT command, stops the AD51 from sending the CR code. Printing is therefore not initiated.

(4)Notes on the use of the KD51PR

The KD51PR may be connected to either of the two AD51 RS-232C ports. When using the KD51PR note the following:

(a) The KD51PR will print "?" if data is sent from the AD51 while it is printing or during paper feed. This may be avoided by using the program shown in Example 2.
 Example 1 shows a program which repeatedly prints the letters "ABCDE" and the resultant KD51PR print out.

[Example 1]				
uffer OFF, buffer full set" mode				
·				
Print data and control codes (CR code, LF code) are sent from AD51.				
Print control code 03 _H is sent from AD51.				
LUpon execution of line 120, execution returns to line 100. Data is continuously written to the KD51PR while it is still printing.				

--[Example 2]-----KD51PR setting 2K buffer ON, buffer full set BASIC program --Print data and control codes (CR code, LF 100 LPRINT "ABCDE"-code) are sent from AD51. 110 LPRINT X \$03, -L-Print control code 03_H is sent from AD51. 120 ZTIME 400 -130 GOTO 100 The KD51PR starts printing after it receives the 03H code. The ZTIME instruction allows a time delay before the next set of data is Print result sent. In this case, it takes 4 seconds from 1-time ABCDE print command to print termination. ABCDE ("ABCDE" CR, LF print 2 seconds (line feed) 2 seconds ABCDE

MELSEC

(b) When the 2K buffer is set to OFF in the KD51PR, any string of characters sent which is more than one line long will lead to an overrun error when the LF code is given. (The receive buffer is 32 characters long). See below:

100 LPRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEF"

To overcome this, write a comma (,) after the PRINT statement to stop the LF code from being given as below:

100 LPRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEF,"

6.3.3 CRT display commands

Any commands addressed to a CRT on a given channel should come from one task only.

There is no management of display commands between tasks.

[CRT display commands]

CLS, ZCON, ZCOFF, ZNOR, ZCRV, PRINT, LOCATE

POINT

Any program controlling the display on one CRT should be written in one task only.

6.3.4 OPEN and CLOSE commands

Note the following precautions when using the OPEN and CLOSE commands.

- (1) The channel specified as that for the console by DIP switch SW16 and the channel selected for the printer on the printer setting screen are automatically opened by the AD51 OS. The communication mode for other channels must be set in the user program using the OPEN command. These two channels default to closed.
- (2) The OPEN command is used to specify the communication control at the RS-232C or RS-422 port. It also initializes the AD51 send and receive buffers. Executing this command therefore re-defines the communication mode for the specified port and clears both AD51 buffers at that port.
- (3) The CLOSE command initializes the AD51 communication control and buffers in the same way as the OPEN command however in this case the port is left in a read/write disable state.

POINT

Before using the CLOSE command, ensure that the transmit buffer is empty be using subroutine "STC". Data will be lost if the buffer is initialized while it still contains data.

(4) OPEN and CLOSE commands are common to all tasks. Therefore, any channel opened by one task can be used in subsequent tasks without having to repeat the OPEN command.

6.3.5 Z commands

The ZMOV, ZRD1, ZRD2, ZWR1 and ZWR2 commands are not available for AD51, PC CPU transactions. Access to the PC CPU data is via system subroutines. For details refer to Section 3.2.2.

6.4 Transmission Commands to External Device

The PRINT, LPRINT and SWB commands are used to transmit data from AD51's RS-422 or RS-232C to the external device.

POINT

Any transmission command is complete when transmission data is stored to the transmission buffer. Use system subroutine STC to check that the transmission data has been sent to the external device.

6.4.1 PRINT command

- (1) The channel used is determined by the console channel (set with DIP switch 16) or ZODV command.
- (2) Data transmitted depends on the PRINT command designation form as described below:

Designation	Processing
Expression (variable)	Value of expression (variable) is converted into a 6-digit decimal ASCII code and transmitted to the external device.
\$ expression (variable)	Value of expression (variable) is converted into a 4-digit hexadecimal ASCII code and transmitted to the external device.
? expression (variable)	Value of expression (variable) is converted into a 2-digit hexadecimal ASCII code and transmitted to the external device.
. expression (variable)	Value of expression (variable) is converted into a real ASCII code and transmitted to the external device.
# expression (variable)	Value of expression (variable) is converted into a decimal ASCII code of specified digits and transmitted to the external device.
∦ expression (variable)	Value of expression (variable) is regarded as an ASCII code and transmitted unchanged to the external device.
(Character string variable)	Data stored in character string variable is regarded as an ASCII code and transmitted unchanged to the external device.

- (3) The PRINT command may be used with ASCII codes 00_{H} to FF_H. Note that 00_{H} and $0D_{H}$ are transmitted as indicated below:
 - When transmission data is 00_{H} , $0D_{H}$ is sent. When transmission data is $0D_{H}$, $0D_{H}$ and $0A_{H}$ are sent.

POINT

The following program should be written when sending0D_H or 0D_H and 0A_H by the PRINT command.0D_H: PRINT *0, 0D_H, 0A_H: PRINT *\$D

6.4.2 LPRINT command

 (1) Transmits data from the channel specified on the printer setting screen.
 The LPRINT and LLIST commands cannot be used if NOTHING

has been selected for the printer type.

- (2) Data transmitted in accordance with the LPRINT command designation is as indicated in Section 6.4.1.
- (3) Data transmitted by the LPRINT command is as indicated in Section 6.4.1.
- (4) The LPRINT command is not controlled on a task basis.

6.4.3 System subroutine SWB

- (1) Transmits data of the specified length from the specified channel.
- (2) The transmission time can be set in increments of 10ms. A time-out occurs if transmission is not completed (data is not stored to the transmission buffer) within the transmission period.

The error status and untransmitted data byte length can be read.

(3) Transmission data is stored to the AD51's common area 6000_{H} to $67FF_{\text{H}}$.

Data in 00_{H} to FF_H is regarded as an ASCII code and sent unchanged.

6.5 AD51 and PC CPU Reset

The following explains the effects of resetting the AD51 and the PC CPU.

- (1) AD51 reset operation
 - 1) The AD51 processes its programs as though the power has been switched on.

With multi task start already set ···· Executes multi task. Without multi task start ······ Displays the mode select menu on the console.

2) All the AD51 general-purpose inputs are switched off.

- 3) During reset, there is no accessing of the PC CPU.
- 4) There is no signal by which the PC CPU can know that the AD51 has been reset.
- 5) Any FROM or TO instructions executed by the PC CPU when the AD51 is reset will be invalidated.

(2) PC CPU reset operation

- 1) All the AD51 general-purpose outputs are switched off.
- Resetting the PC CPU disables access by the AD51 to the PC CPU for about five seconds after the PC CPU is set to RUN.
 If the PC CPU is accessed during this period, "PC DOWN ERROR" or "TIME OUT ERROR" is detected.

6.6 Notes on BASIC Programming

- (1) Before making additions or corrections to the BASIC program or changing the program to its final format with the RUN or COMPILE command, set the "M-PROTECT" switch to OFF.
- (2) Before executing multi task, remove all STOP and BREAK commands.
- (3) Always RUN or COMPILE the BASIC program after it has been completed.

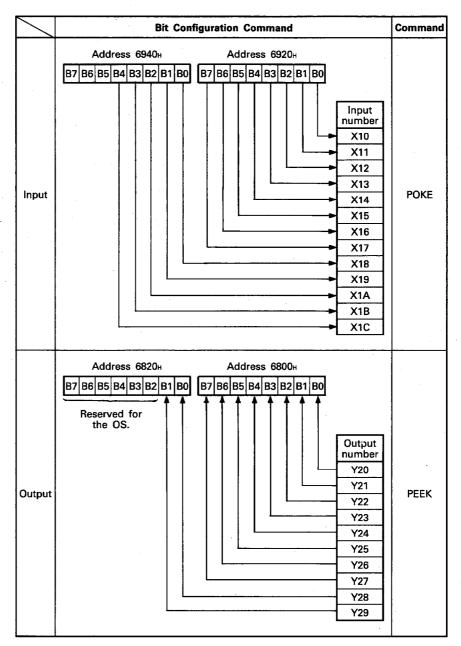
The RUN or COMPILE commands change the program into a format suitable for multitasking. If the program is not formatted the CPU may misoperate. Remember to RUN or COMPILE programs before writing them to ROM.

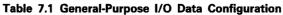
7. COMMUNICATION WITH PROGRAMMABLE CONTROLLER CPU

The AD51 occupies 48 I/O points and is provided with 13 digital inputs and 10 digital outputs as well as a 3K word buffer memory. The following section describes communication between the PC CPU and the AD51. It is assumed that the AD51 is located at slot 0 and 1 of the main base unit and that any BASIC program is written in channel 1.

MELSEC

7.1 General-Purpose I/O Read/Write


The AD51 can access the general-purpose I/O immediately and continuously using the "PEEK" and "POKE" commands. This eliminates the need to use the data memory read/write system subroutines which are only processed when the "END" or "COM" instruction is executed in the PC CPU.

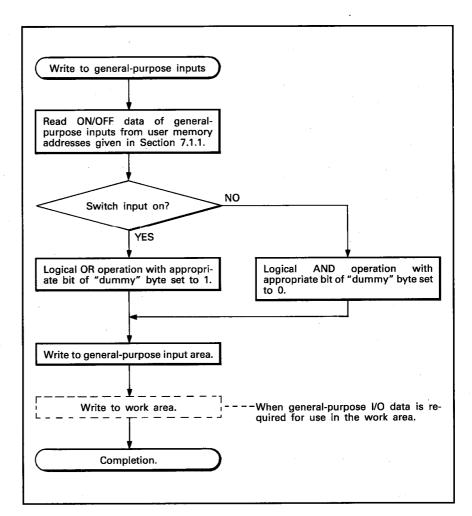

Output Y29 from the PC CPU can be used as an interrupt signal to the AD51, see Section 7.9.

7.1.1 General-purpose I/O addresses

The general-purpose I/O assigned to the AD51 are accessed via the following addresses in the user work area:

MELSEC-

IB (NA) 66189-A


7-2

7.1.2 Write to general-purpose input

To wrote to a specified general-purpose input the appropriate bit in the relevant byte of memory must be set or reset. The memory addresses for general-purpose inputs and outputs are given in Section 7.1.1.

MELSEC-

This section describes the direct accessing of general-purpose I/O data using the PEEK and POKE commands. The system subroutine "SADR" may also be used to access this data but system subroutines are only processed after the "END" or "COM" instruction has been executed in the PC CPU.

[Program example]

Inputs X13 and X1B are turned on and off respectively and the resultant on/off condition is stored in head addresses $6000_{\rm H}$ and $6001_{\rm H}.$

MELSEC-

(1) Program to switch on X13

		Bit pattern
	representation of 8 a	as follow:
	6000⊩ and a "dummy	" byte containing the binary
110 B=A! \$ 08 ······	· Executes a logical (OR operation with address
	byte is all '0's).	
100 A=PEEK(\$ 6000)	• Reads address 6000H	from the common area (This

Address 6000H	0000000
8 ₂	00001000
OR result	00001000
The result is written to	variable B.
Variable B is written to user work area reserved f al-purpose I/O).	
The result is also written	n to address 6000н.
	8 ₂ OR result The result is written to Variable B is written to user work area reserved f al-purpose I/O).

(2) Program to switch off X1B

100 A=PEEK(\$ 6001) ······· Reads address 6001 _H from the common area (This
byte is all '0's).
110 B=A&\$ F7 Executes a logical AND operation with address
6000 _H and a dummy byte containing the binary
representation of F7 as follows:

			Bit pattern
		Address 6000H	0000000
		F7 ₂	11110111
		AND result	0000000
		The result is written	into variable B.
120	POKE \$ 6940, B		to address 6940 _H (i.e. the
		user work area reserv al-purpose I/O).	ved for accessing the gener-
130	POKE \$ 6001, B	The result is also with	ritten to address 6001⊦.
140	END		

POINT

*: X1D to 1F cannot be turned on/off in the BASIC program. The value marked * in line 110 of (2) may also be 17_{H} (bits 5 to 7 = 0). If AND operation is performed, the same result is obtained.

7.1.3 Read from general-purpose output

A similar procedure may be used to read the general-purpose outputs using the logical AND operation. The work area addresses are given in Section 7.1.1. Note that bits 2 to 7 of address 6820_H are reserved for the operating system and should be masked.

MELSEC-

[Program example]

Program for ON/OFF monitor of Y20 to 27

100 A=PEEK(\$6800)..... Reads address 6800_H to variable A.

110 B=1 Variable B set to 1.

120 FOR I=0 TO 7

130 IF (A&B)#0 PRINT "ON" ;

GOTO 150 Performs AND operation of variable A and variable B, and if relevant bit is on, displays "ON".

140 PRINT "OFF"

160 NEXT I 170 END

7.2 Read/Write of Buffer Memory

The buffer memory can be accessed by both the BASIC program and the sequence program.

MELSEC-

A maximum of 3K words can be transferred with one instruction.

7.2.1 Read/write with BASIC program

The following system subroutines are used to access the buffer memory.

For details refer to the GPC-BASIC Supplementary Handbook.

Read from buffer memory	SR2
Write to buffer memory	SW2
Read/write retry time	SC2

REMARKS

The buffer memory cannot be accessed by the AD51 if the PC CPU is already executing a \boxed{FROM} or \boxed{TO} instruction. In this case the AD51 will retry communication according to its retry time setting.

The retry time is set at 10ms unless changed using the SC2 system subroutine.

[Program example]

(1) Program to read 256 words from buffer memory head address 200_H to AD51 memory head address F000_H.

100	A= \$ E000 ······	Indirect variable head address
110	A(0)= \$ 200 ·····	Data source buffer memory head address
120	A(1)= \$ F000	Data destination head address
130	A(2)= \$ 100 ······	Number of words
140	B=CALL(0, \$8000, 1, A)	System subroutine SR2 reads buffer
		memory.
150	IF B#0 PRINT "ERROR",	
	B; GOTO 140	Checks for errors in SR2 execution.
160	END	

(2) Program to write data from work area addresses E700_H to E77F_H in the BASIC program to buffer memory addresses 350_H to 38F_H.

100 C= \$ E100 Indirect variable head address 110 C(0)= \$ 350 Data destination buffer memory head address
120 C(1)= \$ E700 ····· Data source buffer memory head address
130 C(2)= \$40 Number of data words
140 D=CALL(0, \$8003, 1, C) System subroutine SW2 writes data to buffer memory.
150 IF D#0 PRINT "ERROR",
D; GOTO 140 Checks for errors in SW2 execution. 160 END

7.2.2 Read/write with sequence program

Access to the buffer memory from the PC program is via the FROM and TO application instructions.

MELSEC-

D

(1) Read from buffer memory...... FROM, FROMP, DFRO, DFRO, DFROP instructions

Format

FROM instruction executing AD51CPU condition down

Symbol	Description	Usable Devices
n ₁	16th I/O address of the AD51 omitting the least significant digit.	К, Н
n ₂	Buffer memory head address of data source.	К, Н
D	Head device number of data destination.	T, C, D, W, R
n ₃	Number of words of data to be read	К, Н

FROMP

n1 *

n₂

POINT

Note that the location specification for the AD51 is different from other special function modules. To specify the slot location use the number representing the 16th I/O point, omitting the "modules". (So for example, I/O point 120_{μ} is represented as 12_{μ} .)

Hence, if the AD51 is located at I/O addresses. X60 to X8F and Y60 to Y8F, n_1 is defined as H7.

[Program example]

Fig. 7.3 shows a program to read the data from buffer addresses 500_{H} to $54F_{\text{H}}$ to data registers D100 to D179 in the PC CPU. When X13 turns with system configuration shown in Fig. 7.2.

Fig. 7.2 Module Configuration

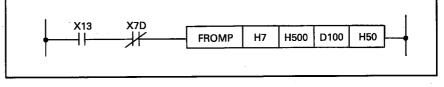


Fig. 7.3 Buffer Memory Read

(2) Write to buffer memory......TO, TOP, DTO, DTOP instructions

MELSEC-

T e>	mat O instruction recuting AD51CPU andition down TOP n ₁ n ₂ S	n ₃
Symbol	Description	Usable Devices

	·	Devices
n ₁	16th I/O address of the AD51 omitting the least significant digit.	К, Н
n ₂	Buffer memory head address of data destination.	К, Н
S	Head device number of data source	Т, С, D, W, R, K, H
Π3	Number of words of data to be written	К, Н

[Program example]

Fig. 7.4 shows a program to write data from PC data registers D200 to D263 to buffer addresses 100_{H} to $13F_{\text{H}}$ when X1F turns on with the system configuration shown in Fig. 7.2.

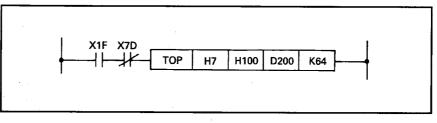


Fig. 7.4 Buffer Memory Write

This section explains how the AD51 communicates with the PC CPU device memory to read present value data and to write new values.

MELSEC-

7.3.1 System subroutines and device ranges

The following system subroutines are used by the AD51 to access the PC CPU device memory.

(1) System subroutine types and functions

ltem				Number of points	PC CPU State		
		System Subroutine	System Processing ubroutine		During STOP	During RUN	
		Bit		Reads data from bit device (such as Y and M) (for 1 point).	256 points		
	Batch read	Word	SADR	Reads data from bit devices (such as Y and M) (for 16 points).	32 words (512 points)	0	0
		wora		Reads data from word device (such as D and R) (for 1 point).	64 points		
		Bit		Write data to bit device (such as Y and M) (for 1 point).	160 points		
	Batch write	Word	SADW	Writes data to bit devices (such as Y and M) (for 16 points).	10 words (160 points)	0	0
		vvora		Writes data to word device (such as D and R) (for 1 point).	64 points		
Device memory		Bit		Sets/resets any specified bit device (such as Y and M) and device number (for 1 point).	20 points		
Test (During random write	(During random	During random SA	SADT	Sets/resets any specified number of blocks of sixteen bit devices (such as Y and M) and device number (for 16 points).	10 words (160 points)	0	0
				Writes data to any specified word device (such as Y and M) and device number (for 1 point).	10 points		
	Monitor data entry	Bit	Bit	Defines the bit device (such as Y and M) to be monitored (for 1 point).	40 points*		
		data SADMO Defines the bit devices (such as Y and r entry Word Word	SADM0	SADM0 Defines the bit devices (such as Y and M) to be 20 w monitored (for 16 points). (320 p		0	0
			Defines the word device (such as D and R) to be monitored (for 1 point).	20 points			
	Monitor	Bit	SADM1	Monitors the device specified in monitor data			0
	Monitor		SADIVIT	entry.			

Table 7.2 System Subroutines and Functions

Key, \bigcirc : indicates available.

*: When the A1(E), A2(E), A3(E), A1N, A2N or A3NCPU is used, half the number of points shown above is processed for device X.

(2) Valid device ranges for device memory transactions are given below:

The device range depends on the PC CPU module used. See the corresponding CPU User's Manual.

MELSEC-

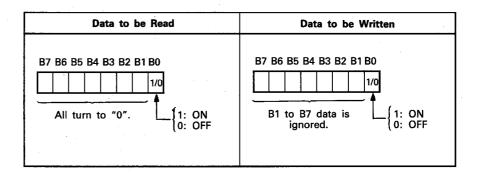
Bit Devices			Word Devices		
Device	Device number range	Reresented in: Decimal/ Hexadecimal	Device	Device number range	Reresented in: Decimal/ Hexadecimal
Input X	X0000 to X07FF	Hexadecimal	Timer (present value) T	TN000 to TN255	Decimal
Output Y	Y0000 to Y07FF	Hexadecimal	Counter (present value) C	CN000 to CN255	Decimal
Internal relay M	M0000 to M2047	Decimal	Data register D	D0000 to D1023	Decimal
Latch relay L	L0000 to L2047	Decimal	Link register W	W0000 to W03FF	Hexadecimal
Link relay B	B0000 to B03FF	Hexadecimal	File register R	R0000 to R8191	Decimal
Step relay S	S0000 to S2047		Special register D	D9000 to D9255	Decimal
Annunciator F	F0000 to F0255]			
Special relay M	M9000 to M9255	.			
Timer (Contact) T	TS000 to TS255	Decimal			
Timer (Coil) T	TC000 to TC255				
Counter (Contact) C	CS000 to CS255				
Counter (Coil) C	CC000 to CC255				

Table 7.3 Valid Device Ranges

POINT	
-------	--

(1) Bit devices and word devices are differentiated as follows.

Bit device X, Y, M, L, S, B, F, T (contact), T (coil), C (contact), C (coil)


Word device ···· T (present value), C (present value), D, W, R

- (2) When reading 16 consecutive bit devices as word data, the bit device number must be a multiple of 16.
- (3) The "0" in the most significant digits of the device number may be specified as spaces (20_{H}) .
- (4) M and L ranges are specified in the PC CPU parameters however AD51 device memory transactions regard the two as the same.
- (5) Different device ranges apply when using the AD51 with the A0J2CPU. (See A0J2 Programming Manual)

(3) Bit/word specification

(a) When a system subroutine has been called with "bit" processing specified, one byte of AD51 memory is used per bit. This is illustrated below, the least significant bit indicates the state of the specified bit device for both reading and writing.

MELSEC-

(b) When a system subroutine has been called with "word" specified, and bit devices are to be processed (i.e. in batches of 16 devices) then one word of AD51 memory is used per 16 bits.

This is illustrated below. The head device number is X10 and state of this device is indicated by the least significant bit. The states of the next 15 bits are stored in consecutive bits from Bit B1 to Bit B15.

 B15
 B14
 B13
 B12
 B11
 B10
 B9
 B8
 B7
 B6
 B5
 B4
 B3
 B2
 B1
 B0

 X1F
 X1E
 X1D
 X1C
 X1B
 X19
 X18
 X17
 X16
 X15
 X14
 X13
 X12
 X11
 X10

7.3.2 BASIC program examples

This section gives some BASIC program examples which use system subroutines SADR (batch read), SADW (batch write), SADM0 (monitor data entry), SADM1 (monitor), and SADT (test). The program examples use channel 1.

MELSEC-

For details of the system subroutines, refer to the GPC-BASIC Handbooks.

(1) Batch read from device memory (SADR)

[Program example 1]

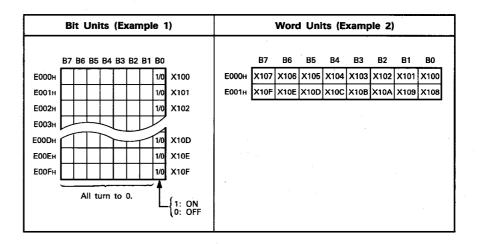
Program to read data from 16 points, X100 to X10F, to AD51 addresses $E000_{H}$ to $E00F_{H}$ as individual bits.

100 A= \$ F000 ······ Head address for system subroutine IN- PUT data.
110 A:0)= \$ FF Defines PC station number as host.
120 A:1)="B" Specifies bit read.
130 B= \$ F002 ······ Sets indirect variable head address.
140 B \$ = "X0100" Sets head device to be read using char- acter string variable.
150 C= \$ F007 Sets indirect variable head address.
160 C(0)=16.
170 C(1)= \$ E000 ······ Sets destination head address for data.
180 C(2)=60 Sets time check period to 60 (600msec).
190 Z=CALL(0, \$807B, 1, A) Calls system subroutine SADR.
200 IF Z#0 PRINT "ERROR",
Z; GOTO 190 Checks for errors in SADR execution.
210 END

POINT

- (1) When specifying the head device using a character string variable, define the number of points to be read after setting the head device.
 (Reason: The character string variable overwrites the bits at the end of the data with "0". This would delete the "number of points" data if this was written first.) For full information, see Section 2.4.4 in the GPC-BASIC Handbook.
- (2) The time check period in line 180 should be set in accordance with the "number of scans required for processing" given in Section 3.8 after taking into account any delays which may occur due to other devices accessing the PC CPU.

MELSEC-


[Program example 2]

Program to read data from 16 points, X100 to X10F to AD51 addresses $E000_{H}$ to $E001_{H}$ in word units. (i.e. batches of 16 bits)

100 A= \$ F000 ·····	Head address for system subroutine IN- PUT data
110 A:0)= \$ FF	Defines PC station number as host.
120 A:1)="W"	· Specifies word read.
130 B= \$ F002 ·····	Sets indirect variable head address.
140 B \$ = "X0100" ······	Sets head device to be read using char-
	acter string variable.
150 C= \$ F007 ·····	· Sets indirect variable head address.
160 C(0)=1	· Sets the number of points to be read as
	1. (
170 C(1)= \$ E000 ·····	· Sets destination head address for data.
180 C(2)=60	· Sets time check period to 60 (600msec).
190 Z=CALL(0, \$807B, 1, A)	· Calls system subroutine SADR.
200 IF Z#0 PRINT "ERROR",	
Z; GOTO 190	Checks for errors in SADR execution.
210 END	

REMARKS

When "bit read" is specified, one byte of AD51 memory is required per bit of data. When "word read" is specified, one byte of AD51 memory contains 8 bits of data. See below:

7

(2) Batch write to device memory (SADW)

[Program example 1]

Program to write on/off data to Y80 to Y9F from the AD51 as individual bits.

Switch on Y80 to Y8F Switch off Y90 to Y9F

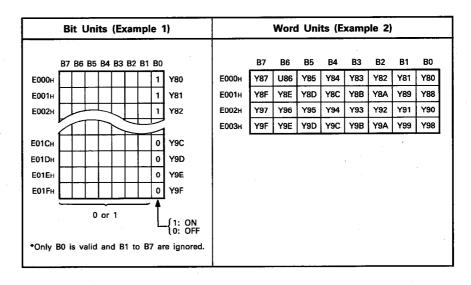
100	A= \$ E800 ······	·······Head address for system subroutine IN- PUT data
110	A:0)= \$ FF	Defines PC station number as host.
120	A:1)="B"	······ Specifies bit write.
130	B= \$ E802	Sets indirect variable head address.
140	B \$ = "Y0080"	······ Sets destination head device using char-
		acter string variable.
150	C= \$ E807	······ Sets indirect variable head address.
160	C(0)=32	Sets the number of points to be written
		to 32.
170	C(1)= \$ E000 ······	Sets source data head address.
180	C(2)=30	Sets time check period to 30 (300msec).
190	D= \$ E000	
200	FOR I=0 TO 15	Concretes data to be written to addres-
210	D:I)=1	Generates data to be written to addres- ses E000 _H to E01F _H .
220	D:I+16)=0	Ses Educia to Ediffa.
230	NEXT I	
240	Z+CALL(0, \$807E	1, A) ······· Calls system subroutine SADW.
250	IF Z#0 PRINT "EI	ROR",
	Z; GOTO 240	Check for errors in SADW execution.
000		

260 END

7-14

MELSEC-

[Program example 2]


Program to write on/off data to Y80 to Y9F from the AD51 as individual bits.

Switch on Y80 to Y8F Switch off Y90 to Y9F

100	A= \$ E800 ·····	Head address for system subroutine IN- PUT data
110	A:0)= \$ FF	Defines PC station number as host.
120	A:1)="W"	Specifies word write.
130	B= \$ E802	Sets indirect variable head address.
140	B \$ = "Y0080"	Sets destination head device using character string variable.
150	C= \$ E807	Sets indirect variable head address.
160	C(0)=2	Sets the number of words to be written
		to 2.
170	C(1)= \$ E000 ·····	Sets source data head address.
180	C(2)=30	Sets time check period to 30 (300msec).
190	@(\$E000)=\$FFFF @(\$E002)=0	Generates data to be written to addres-
200	@(\$E002)=0)	ses E000н to E003н.
210	Z=CALL(0, \$807E, 1, A)	Calls system subroutine SADW.
220	IF Z#0 PRINT "ERROR",	
	Z; GOTO 210 ·····	Checks for errors in SADW execution.
230	END	

REMARKS

When "bit write" is specified, one byte of AD51 memory is required per bit of data. When "word write" is specified, one byte of AD51 memory contains 8 bits of data. See below:

(3) Data write to any PC device data memory (SADT)

[Program example 1]

Program to write on/off data to the following random bit devices:

MELSEC-

Switch on Y115, switch off M340. Switch off B24C, switch on L875.

100 A= \$ E000 ······ Head address for system subroutine IN- PUT data
110 FOR I=0 TO 3 120 $A(I) = $ E100+1 \times 6 130 NEXT I Sets character string variable head address for destination device.
120 A(I)= \$E100+IX6 } address for destination device.
140 C= \$ E100 ······· Sets indirect variable head address.
150 A \$ (0)="Y0115" Sets device name "Y0115".
160 C:5)=1 Source data for Y115.
170 A \$ (1)="M0340" Sets device name "M0340".
180 C:11)=0 Source data for M340.
190 A \$ (2)="B024C" Sets device name "B024C".
200 C:17)=0 Source data for B24C.
210 A \$ (3)="L0875" Sets device name "L0875".
220 C:23)=1 Source data for L875.
230 B= \$ E200 ······ Sets indirect variable head address.
240 B:0)= \$ FF Defines PC station number as host.
250 B:1)="B" Specifies "bit write".
260 B(1)=4 Specifies 4 pieces of data to be written.
270 B(2)= \$ E100 ······ Sets source data head address.
280 B(3)=70 Sets time check period to 70 (700msec).
290 Z=CALL(0, \$8081, 1, B) ······· Calls system subroutine SADT.
300 IF Z#0 PRINT "ERROR",
Z; GOTO 290 ······ Checks for errors in SADT execution.
310 END

7

[Program example 2]

Program to write numerical data to the following random word devices.

MELSEC-A

D567 ← 0 ,R882 ← 1234 W187 ← 751, C49 ← 0

110FOR I=0 TO 3 120Character string variable head address for destination device.130NEXT IC= \$ E100+1×7 140Sets indirect variable head address.140C= \$ E100Sets indirect variable head address.150A \$ (0)="D0567"Sets device name "D0567".160@(C+5)=0Sets source data for D567.170A \$ (1)="R0882"Sets device name "R0882".180@(C+12)=1234Sets source data for R882.190A \$ (2)="W0187"Sets device name "W0187".200@(C+19)=751Sets source data for W187.210A \$ (3)="CN049"Sets device name "CN049".220@(C+26)=0Sets source data for CN49.230B= \$ E200Sets indirect variable head address.240B:0)= \$ FFDefines PC station number as host.250B:1)="W"Specifies "word write".260B(1)=4Specifies 4 pieces of data to be written.270B(2)= \$ E100Sets source data head address.280B(3)=70Sets time check period to 70 (700msec).290Z=CALL(0, \$ 8081, 1, B)Calls system subroutine SADT.300IF Z#0 PRINT "ERROR", Z; GOTO 290Checks for errors in SADT execution.	100 A= \$ E000 ······· Sets indirect variable head address.
140C= \$ E100Sets indirect variable head address.150A \$ (0)= "D0567"Sets device name "D0567".160@(C+5)=0Sets source data for D567.170A \$ (1)= "R0882"Sets source data for R882".180@(C+12)=1234Sets source data for R882.190A \$ (2)= "W0187"Sets device name "W0187".200@(C+19)=751Sets source data for W187.210A \$ (3)= "CN049"Sets device name "CN049".220@(C+26)=0Sets source data for CN49.230B= \$ E200Sets indirect variable head address.240B:0)= \$ FFDefines PC station number as host.250B:1)= "W"Specifies "word write".260B(1)=4Specifies 4 pieces of data to be written.270B(2)= \$ E100Sets source data head address.280B(3)=70Sets time check period to 70 (700msec).290Z=CALL(0, \$ 8081, 1, B)Calls system subroutine SADT.300IF Z#0 PRINT "ERROR", Z; GOTO 290Checks for errors in SADT execution.	110 FOR I=0 TO 3
140C= \$ E100Sets indirect variable head address.150A \$ (0)= "D0567"Sets device name "D0567".160@(C+5)=0Sets source data for D567.170A \$ (1)= "R0882"Sets source data for R882".180@(C+12)=1234Sets source data for R882.190A \$ (2)= "W0187"Sets device name "W0187".200@(C+19)=751Sets source data for W187.210A \$ (3)= "CN049"Sets device name "CN049".220@(C+26)=0Sets source data for CN49.230B= \$ E200Sets indirect variable head address.240B:0)= \$ FFDefines PC station number as host.250B:1)= "W"Specifies "word write".260B(1)=4Specifies 4 pieces of data to be written.270B(2)= \$ E100Sets source data head address.280B(3)=70Sets time check period to 70 (700msec).290Z=CALL(0, \$ 8081, 1, B)Calls system subroutine SADT.300IF Z#0 PRINT "ERROR", Z; GOTO 290Checks for errors in SADT execution.	120 A(I)= \$ E100+IX7 { for destination device.
150A \$ (0)="D0567"Sets device name "D0567".160 $@(C+5)=0$ Sets source data for D567.170A \$ (1)="R0882"Sets device name "R0882".180 $@(C+12)=1234$ Sets source data for R882.190A \$ (2)="W0187"Sets device name "W0187".200 $@(C+19)=751$ Sets source data for W187.210A \$ (3)="CN049"Sets device name "CN049".220 $@(C+26)=0$ Sets source data for CN49.230B= \$ E200Sets indirect variable head address.240B:0)= \$ FFDefines PC station number as host.250B:1)="W"Specifies "word write".260B(1)=4Specifies 4 pieces of data to be written.270B(2)= \$ E100Sets source data head address.280B(3)=70Sets time check period to 70 (700msec).290Z=CALL(0, \$ 8081, 1, B)Calls system subroutine SADT.300IF Z#0 PRINT "ERROR", Z; GOTO 290Checks for errors in SADT execution.	
160 $@(C+5)=0$ Sets source data for D567.170 $A \$ (1) = "R0882"$ Sets device name "R0882".180 $@(C+12) = 1234$ Sets source data for R882.190 $A \$ (2) = "W0187"$ Sets device name "W0187".200 $@(C+19) = 751$ Sets source data for W187.210 $A \$ (3) = "CN049"$ Sets device name "CN049".220 $@(C+26) = 0$ Sets source data for CN49.230 $B = \$ E200$ Sets indirect variable head address.240 $B:0) = \$ FF$ Defines PC station number as host.250 $B:1) = "W"$ Specifies "word write".260 $B(1) = 4$ Specifies 4 pieces of data to be written.270 $B(2) = \$ E100$ Sets time check period to 70 (700msec).290 $Z = CALL(0, \$ 8081, 1, B)$ Calls system subroutine SADT.300IF $Z # 0$ PRINT "ERROR", Z; GOTO 290Checks for errors in SADT execution.	
170A \$ (1)="R0882"Sets device name "R0882".180@(C+12)=1234Sets source data for R882.190A \$ (2)="W0187"Sets device name "W0187".200@(C+19)=751Sets source data for W187.210A \$ (3)="CN049"Sets device name "CN049".220@(C+26)=0Sets source data for CN49.230B= \$ E200Sets indirect variable head address.240B:0)= \$ FFDefines PC station number as host.250B:1)="W"Specifies "word write".260B(1)=4Specifies 4 pieces of data to be written.270B(2)= \$ E100Sets source data head address.280B(3)=70Sets time check period to 70 (700msec).290Z=CALL(0, \$ 8081, 1, B)Calls system subroutine SADT.300IF Z#0 PRINT "ERROR", Z; GOTO 290Checks for errors in SADT execution.	
180 $@(C+12)=1234$ Sets source data for R882.190A \$ (2)= "W0187"Sets device name "W0187".200 $@(C+19)=751$ Sets source data for W187.210A \$ (3)= "CN049"Sets device name "CN049".220 $@(C+26)=0$ Sets source data for CN49.230B= \$ E200Sets indirect variable head address.240B:0)= \$ FFDefines PC station number as host.250B:1)= "W"Specifies "word write".260B(1)=4Specifies 4 pieces of data to be written.270B(2)= \$ E100Sets source data head address.280B(3)=70Sets time check period to 70 (700msec).290Z=CALL(0, \$ 8081, 1, B)Calls system subroutine SADT.300IF Z#0 PRINT "ERROR", Z; GOTO 290Checks for errors in SADT execution.	
190A \$ (2)="W0187"Sets device name "W0187".200 $@(C+19)=751$ Sets source data for W187.210A \$ (3)="CN049"Sets source name "CN049".220 $@(C+26)=0$ Sets source data for CN49.230B= \$ E200Sets indirect variable head address.240B:0)= \$ FFDefines PC station number as host.250B:1)="W"Specifies "word write".260B(1)=4Specifies 4 pieces of data to be written.270B(2)= \$ E100Sets source data head address.280B(3)=70Sets time check period to 70 (700msec).290Z=CALL(0, \$ 8081, 1, B)Calls system subroutine SADT.300IF Z#0 PRINT "ERROR", Z; GOTO 290Checks for errors in SADT execution.	170 A \$ (1)="R0882" Sets device name "R0882".
200 @(C+19)=751Sets source data for W187.210 A \$ (3)="CN049"Sets device name "CN049".220 @(C+26)=0Sets source data for CN49.230 B= \$ E200Sets indirect variable head address.240 B:0)= \$ FFDefines PC station number as host.250 B:1)="W"Specifies "word write".260 B(1)=4Specifies 4 pieces of data to be written.270 B(2)= \$ E100Sets source data head address.280 B(3)=70Sets time check period to 70 (700msec).290 Z=CALL(0, \$ 8081, 1, B)Calls system subroutine SADT.300 IF Z#0 PRINT "ERROR", Z; GOTO 290Checks for errors in SADT execution.	180 @(C+12)=1234 Sets source data for R882.
210 A\$ (3)="CN049"Sets device name "CN049".220 @(C+26)=0Sets source data for CN49.230 B= \$ E200Sets indirect variable head address.240 B:0)= \$ FFDefines PC station number as host.250 B:1)="W"Specifies "word write".260 B(1)=4Specifies 4 pieces of data to be written.270 B(2)= \$ E100Sets source data head address.280 B(3)=70Sets time check period to 70 (700msec).290 Z=CALL(0, \$ 8081, 1, B)Calls system subroutine SADT.300 IF Z#0 PRINT "ERROR",Checks for errors in SADT execution.	190 A \$ (2)="W0187" Sets device name "W0187".
220 @(C+26)=0Sets source data for CN49.230 B= \$E200Sets indirect variable head address.240 B:0)= \$FFDefines PC station number as host.250 B:1)="W"Specifies "word write".260 B(1)=4Specifies 4 pieces of data to be written.270 B(2)= \$E100Sets source data head address.280 B(3)=70Sets time check period to 70 (700msec).290 Z=CALL(0, \$8081, 1, B)Calls system subroutine SADT.300 IF Z#0 PRINT "ERROR",Checks for errors in SADT execution.	200 @(C+19)=751 Sets source data for W187.
 230 B= \$ E200 ····· Sets indirect variable head address. 240 B:0)= \$ FF ···· Defines PC station number as host. 250 B:1)= "W" ···· Specifies "word write". 260 B(1)=4 ···· Specifies 4 pieces of data to be written. 270 B(2)= \$ E100 ···· Sets source data head address. 280 B(3)=70 ···· Sets time check period to 70 (700msec). 290 Z=CALL(0, \$ 8081, 1, B) ···· Calls system subroutine SADT. 300 IF Z#0 PRINT "ERROR", Z; GOTO 290 ···· Checks for errors in SADT execution. 	210 A \$ (3)="CN049" Sets device name "CN049".
 240 B:0)= \$ FF Defines PC station number as host. 250 B:1)="W" Specifies "word write". 260 B(1)=4 Specifies 4 pieces of data to be written. 270 B(2)= \$ E100 Sets source data head address. 280 B(3)=70 Sets time check period to 70 (700msec). 290 Z=CALL(0, \$ 8081, 1, B) Calls system subroutine SADT. 300 IF Z#0 PRINT "ERROR", Z; GOTO 290 Checks for errors in SADT execution. 	
 250 B:1)="W"	230 B= \$ E200 ······ Sets indirect variable head address.
 260 B(1)=4 Specifies 4 pieces of data to be written. 270 B(2)= \$ E100 Sets source data head address. 280 B(3)=70 Sets time check period to 70 (700msec). 290 Z=CALL(0, \$ 8081, 1, B) Calls system subroutine SADT. 300 IF Z#0 PRINT "ERROR", Z; GOTO 290 Checks for errors in SADT execution. 	240 B:0)= \$ FF Defines PC station number as host.
 270 B(2)= \$ E100 ······ Sets source data head address. 280 B(3)=70 ······ Sets time check period to 70 (700msec). 290 Z=CALL(0, \$ 8081, 1, B) ····· Calls system subroutine SADT. 300 IF Z#0 PRINT "ERROR", Z; GOTO 290 ····· Checks for errors in SADT execution. 	250 B:1)="W" Specifies "word write".
 280 B(3)=70 Sets time check period to 70 (700msec). 290 Z=CALL(0, \$8081, 1, B) Calls system subroutine SADT. 300 IF Z#0 PRINT "ERROR", Z; GOTO 290 Checks for errors in SADT execution. 	
 290 Z=CALL(0, \$8081, 1, B) ······· Calls system subroutine SADT. 300 IF Z#0 PRINT "ERROR", Z; GOTO 290 ······ Checks for errors in SADT execution. 	
300 IF Z#0 PRINT "ERROR", Z; GOTO 290 ······ Checks for errors in SADT execution.	280 B(3)=70······ Sets time check period to 70 (700msec).
Z; GOTO 290 ······ Checks for errors in SADT execution.	290 Z=CALL(0, \$8081, 1, B) ······· Calls system subroutine SADT.
210 END	Z; GOTO 290 ······ Checks for errors in SADT execution.
STO END	310 END

IB (NA) 66189-A

7-17

REMARKS

The data is stored in the AD51 in the following formats depending on whether "bit" or "word" has been specified.

MELSEC-

Bit (Example 1)	Word (Example 2)						
Е100н "Y" Е101н "0"	E100H "D" E101H "0"						
E102H "1" Device name E103H "1" E104H "5"	E102H "5" Device name E103H "6" E104H "7"						
E105H 0 0 0 0 0 0 0 1 ← Data to be written E106H "M"	E105H 0 Data to be written						
E107H "0" E108H "3" Device name	E107H "R" E108H"0"						
E109H _ "4"	E109H "8" Device name E10AH "8" - E10BH "2"						
E10BH 0 0 0 0 0 0 0 0 0 ← Data to be written	E100H 2 E10CH 2 E10CH 2 E10DH 2 Data to be written						
Е112н "L" Е113н "0"							
E114H "8" Device name E115H "7"	E115H "C" E116H "N"						
E116H "5" E117H 0 0 0 0 0 0 0 1 ← Data to be written	E117H "0" Device name E118H "4" - E119H "9" -						
Sets data to be written to (1 : ON, 0 : OFF).	E11AH Data to be written						

7

(4) Defining device numbers to be monitored. (Before a given device can be monitored using the SADM1 subroutine, it must be specified and "entered" using the following procedure.)

MELSEC-

[Program example 1]

Program to specify the following bit devices for monitoring (i.e. monitor data entry)

X7D, Y201, M178 B3A0, T46 contact, C85 coil

210 END

[Program example 2]

Program to specify the following word devices for monitoring (or bit devices entered as 16 consecutive device numbers).

	X60 to X6F, T80 to T95 D260 , W175	5 contacts, C183 present value , R700
100	A= \$ F000	·· Sets indirect variable head address.
	A \$ = "X0060TS080CN183D02	
		··· Stores device numbers into work area.
		·· Sets indirect variable head address.
30	B:0)= \$ FF	·· Defines PC station number as host.
40	B:1)="W"	·· Specifies "word entry".
50	C= \$ E802 ·····	·· Sets indirect variable head address.
60	C(0)=6	·· Sets the number of points to be entered
		to 6.
170	C(1)=A	·· Sets "entry" data head address.
180	C(2)=70	·· Sets time check period to 70 (700msec).
90	Z=CALL(0, \$8084, 1, B)	·· Calls system subroutine SADM0.
200	IF Z#0 PRINT "ERROR",	
	Z; GOTO 190	·· Checks for errors in SADM0 execution.
210	END	

7

POINT

The SADM0 system subroutine (Monitor data entry) is used for both bit and word device and, once entered, is valid for all tasks. These system subroutine enter the devices specified into the OS area where they remain valid until new ones are entered.

MELSEC-

(5) Monitoring of devices (SADM1) specified by the monitor data entry (SADM0)

[Program example 1]

Program to specify and monitor the following bit devices:

X7D,Y201 ,M178 B3A0, T46 contact, C85 coil

100 A= \$ F000 Sets indirect variable head address. 110 A \$ = "X007DY0201M0178B03A0TS046CC085"

		· · · · · · · · · · · · ·
		Stores device numbers into work area.
		Sets indirect variable head address.
		Defines PC station number as host.
140	B:1)="B"	Specifies "bit entry".
150	C= \$ E802 ······	Sets indirect variable head address.
160	C(0)=6	Sets the number of points to be entered
		to 6.
170	C(1)=A	Sets "entry data" head address.
180	C(2)=50	Sets time check period to 50 (500msec).
190	Z=CALL(0, \$8084, 1, B)	Calls system subroutine SADM0.
200	IF Z#0 PRINT "ERROR",	
200	L_{π} L_{π}	
200	· · ·	Checks for errors in SADM0 execution.
	Z; GOTO 190	Checks for errors in SADM0 execution. Sets indirect variable head address.
210	Z; GOTO 190 D= \$ E900	
210 220	Z; GOTO 190 D= \$ E900	Sets indirect variable head address. Defines PC station number as host.
210 220 230	Z; GOTO 190 D= \$ E900 D:0)= \$ FF D:1)="B"	Sets indirect variable head address. Defines PC station number as host.
210 220 230 230	Z; GOTO 190 D= \$ E900 D:0)= \$ FF D:1)= "B" D(1)= \$ EA00	Sets indirect variable head address. Defines PC station number as host. Specifies "bit monitor".
210 220 230 230 240	Z; GOTO 190 D= \$ E900 D:0)= \$ FF D:1)="B" D(1)= \$ EA00 D(1)= \$ EA00	Sets indirect variable head address. Defines PC station number as host. Specifies "bit monitor". Data destination head address.
210 220 230 230 240 250	Z; GOTO 190 D= \$ E900 D:0)= \$ FF D:1)= "B" D(1)= \$ EA00 D(1)= \$ EA00 D(2)=50	Sets indirect variable head address. Defines PC station number as host. Specifies "bit monitor". Data destination head address. Data destination head address.
210 220 230 230 240 250 260	Z; GOTO 190 D= \$ E900 D:0)= \$ FF D:1)= "B" D(1)= \$ EA00 D(1)= \$ EA00 D(2)=50	Sets indirect variable head address. Defines PC station number as host. Specifies "bit monitor". Data destination head address. Data destination head address. Sets time check period to 50 (500msec).
210 220 230 230 240 250 260	Z; GOTO 190 D= \$ E900 D:0)= \$ FF D:1)= "B" D(1)= \$ EA00 D(1)= \$ EA00 D(2)=50 Z=CALL(0, \$ 8087, 1, D) IF Z#0 PRINT "ERROR",	Sets indirect variable head address. Defines PC station number as host. Specifies "bit monitor". Data destination head address. Data destination head address. Sets time check period to 50 (500msec).
210 220 230 230 240 250 260 270	Z; GOTO 190 D= \$ E900 D:0)= \$ FF D:1)= "B" D(1)= \$ EA00 D(1)= \$ EA00 D(2)=50 Z=CALL(0, \$ 8087, 1, D) IF Z#0 PRINT "ERROR",	Sets indirect variable head address. Defines PC station number as host. Specifies "bit monitor". Data destination head address. Data destination head address. Sets time check period to 50 (500msec). Calls system subroutine SADM1.

[Program example 2]

Program to specify and monitor the following bit devices (and bit devices entered as 16 consecutive device numbers).

MELSEC-

X60 toX6F, T80 toT95 contacts, C183 present valueD260, W175, R700

100	A= \$ F000	Sets indirect variable head address.
110	A \$ = "X0060TS080CN183D02	60W0175R0700″ ·····
•••••		Stores device numbers into work area.
120	B= \$ E800 ·····	Sets indirect variable head address.
130	B:0)= \$ FF	Defines PC station number as host.
	B:1)="W"	
150	C= \$ E802 ·····	Sets indirect variable head address.
160	C(0)=6	Sets the number of points to be entered
		to 6.
		Sets "entry" data head address.
180	C(2)=50	Sets time check period to 50 (500msec).
190	Z=CALL(0, \$8084, 1, B)	Calls system subroutine SADM0.
200	IF Z#0 PRINT "ERROR",	
	Z; GOTO 190 ·····	Checks for errors in SADM0 execution.
		· Sets indirect variable head address.
220	D:0)= \$ FF	Defines PC station number as host.
230	D:1)= \$ 57 ·····	Specifies "word monitor".
240	D(1)= \$ EA00	Data destination head address.
250	D(2)=50	Sets time check period to 50 (500msec).
260	Z=CALL(0, \$8087, 1, D)	· Calls system subroutine SADM1.
270	IF Z#0 PRINT "ERROR",	
	Z; GOTO 260	Checks for errors in SADM1 execution.
280	END	

REMARKS

The data is stored in the AD51 in the following formats depending on whether "bit" or "word" has been specified.

Bit (Example 1)									Word (Example 2)										
	B 7	B6	B5	В4	в3	B2	81	во			B7	B6	B 5	84	B3	B2	B1	BO	
EA00H								1/0	X7D	EA00H	X67	X66	X65	X64	X63	X62	X61	X60	X60 to X6F
EA01H								1/0	Y201	EA01H	X6F	X6E	X6D	X6C	X6B	X6A	X69	X68	
EA02H								1/0	M178	EA02H	T87	T86	T85	T84	T83	T82	T8 1	Т80	T80 to T95 contacts
ЕАОЗН								1/0	B3A0	EA03H	T95	T94	T93	T92	T91	T90	T89	T 8 8	fibo to 155 contacts
EA04H								1/0	T46 contact	EA04H									C183 present value
EA05H	Г							1/0	C85 coil	EA05H							÷		Clos present value
										EA06H									D260
										EA07H									J .
										EA08H									}w175
										EA09H									J***//5
										EA0AH									R700
										EA0BH									J ^{R700}
																			,

7.4 Extension File Register Read/Write

The following procedures are used to access the extension file registers from the AD51.

7.4.1 System subroutines and functions

The following system subroutines are used by the AD51 to access the PC CPU extension file registers.

ltem	Cuestan		Number of Points	PC CPU State	
	System Subroutine	Processing	Processed per PC CPU, AD51 Transaction	During STOP	During RUN
Batch read	SAER	Reads data from extension file register (for 1 point).		0	0
Batch write	SAEW	Writes data to extension file register (for 1 point).	- 64	0	0
Test (during random write)	SAET	Writes data to any specified extension file register (for 1 point).	10	0	0
Monitor data entry	SAEM0	Defines the extension file register to be moni- tored.	20	0	0
Monitor	SAEM1	Monitors the device specified in monitor data entry.		0	0

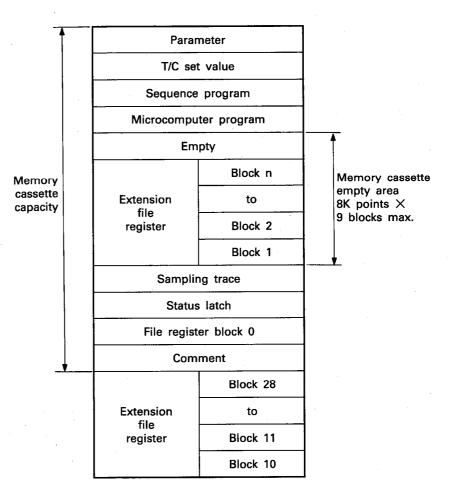
(1) System subroutine types and functions

Key \bigcirc : Indicates available.

Table 7.4 System Subroutines and Functions

(2) Extension file registers

The empty area of the memory cassette has been defined for use as extension file registers in groups of 8K points (16K bytes).


To use this area as extension file registers, the SW___GHP-UTLPC-FN1 utility program must be stored to the microcomputer program area of the memory cassette.

The utility program automatically defines the empty area in blocks of 8K points as extension file registers.

For full information on the utility program, see the SWEGHP-UTLP-FN1 Operating Manual.

(3) Extension file register block numbers

When the empty area is defined as extension file registers, block numbers are automatically allocated in groups of 8K points in accordance with the used CPU, memory cassette, program capacity, etc. as shown below:

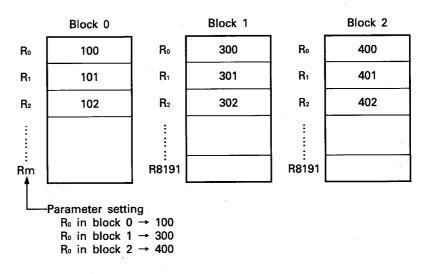
For more information, see Section 4.8.2 in the SW[]]GHP-UTLP-FN1 Operating Manual.

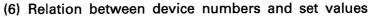
7-23 -

(4) Valid block numbers

The following block numbers may be used in accordance with the memory cassette and CPU used.

MELSEC-


Memory Cassette Type		Memory	Valid Block N	lumbers (RAM/RC	OM operation)		
		Cassette Capacity	A2N, A3NCPU A3HCPU A2(E), A3(E)C		A2(E), A3(E)CPU	lnvalid Block Numbers ال	
A3NMCA-0	A3MCA-0	16K bytes	Invalid	Invalid	Invalid		
A3NMCA-2	A3MCA-2	16K bytes	Invalid	Invalid	Invalid	· · · · · · ·	
A3NMCA-4	A3MCA-4	32K bytes	Block 1 only	Block 1 only	Block 1 only		
A3NMCA-8	A3MCA-8	64K bytes	Up to block 3	Up to block 3	Up to block 3		
	A3MCA-12	96K bytes	Up to block 5	Up to block 5	Up to block 5	Blocks 10, 11	
A3NMCA-16		96K bytes	Up to block 5 Blocks 10, 11	Up to block 5 Blocks 10, 11	Up to block 5 Blocks 10, 11		
	A3MCA-18	144K bytes	Up to block 9	Up to block 9	Up to block 9	Blocks 10 to 28	
A3NMCA-24		144K bytes	Up to block 9 Blocks 10 to 12	Up to block 9 Blocks 10 to 12	Up to block 9	A2(E), A3(E)CPU : Blocks 10 to 28 A2N, A3NCPU : Blocks 13 to 28 A3HCPU : Blocks 13 to 28	
A3NMCA-40		144K bytes	Up to block 9 Blocks 10 to 20	Up to block 9 Blocks 10 to 20	Up to block 9	A2(E), A3(E)CPU : Blocks 10 to 28 A2N, A3NCPU A3HCPU : Blocks 21 to 28	
A3NMCA-56		144K bytes	Up to block 9 Blocks 10 to 20	Up to block 9 Blocks 10 to 20	Up to block 9	A2(E), A3(E)CPU : Blocks 10 to 28 A2N, A3NCPU : Blocks 21 to 28	


Table 7.5 Valid Block Numbers

- (a) As the A3NMCA-12 is processed as the A3NMCA-16, and the A3NMCA-18, A3NMCA-24 and A3NMCA-40 processed as the A3NMCA-56, specifying an invalid block number does not lead to an error but the execution result of the system subroutine is invalid.
- (b) Block 9 may be accessed from the AD51 but cannot be accessed by the sequence program.
- (c) The AD51 is allowed to access all valid register blocks but the sequence program is only allowed to access the number of file register points set in the parameters.

(5) Relation between file registers and block numbers.

To access the file register in any block, specify the required block number and file register device number, then execute the required system subroutine.

Device Number	Set Value		
RO	R0000		
R1	R0001		
to	to		
R8190	R8190		
R8191	R819 1		

7.4.2 BASIC program examples

Some BASIC program examples are given below which use system subroutines SAER (batch read), SAEW (batch write), SAET (test), SAEM0 (monitor data entry) and SAEM1 (monitor). The program examples use channel 1.

MELSEC-

Full information on the system subroutines is given in the GPC-BASIC Handbook.

(1) Batch read from extension file registers (SAER)

Example: Program to read data from 16 points, file registers R100 to R115 in block 2, to addresses E000_H to E01F_H.

100	A= \$ F000	Head address for system subroutine IN- PUT data.
110	A:0)= \$ FF	Defines PC station number as host.
120	A:1)=2	Specifies block 2.
130	B= \$ F002 ·····	Sets indirect variable head address.
140	B \$ = "R0100"	Sets head device to be read using char- acter string variable.
150	C= \$ F007	Sets indirect variable head address.
160	C(0)=16	Sets the number of points to be read as 16.
170	C(1)= \$ E000	Sets destination head address for data.
180	C(2)=60	Sets time check period to 60 (600ms).
190	Z=CALL(0, \$80BD, 1, A)	Calls system subroutine SAER.
200	IF Z#0 PRINT "ERROR",	· · · · ·
	Z; GOTO 190	Checks for errors in SAER execution.

210 END

POINT

- (1) When specifying the head device using a character string variable, define the number of points to be read after setting the head device. (Reason: The character string variable overwrites the bits at the end of the data with "0". This would delete the "number of points" data if this was written first.)
- (2) The time check period in line 180 should be set in accordance with the "number of scans required for processing" given in Section 3.8 after taking into account any delays which may occur due to other devices accessing the PC CPU.

(2) Batch write to extension file registers (SAEW)

Example: Program to write data from addresses E000_H-E01F_H to file registers R200-R215 in block 5 (16 points).

100	A= \$ F000 ·····	Head address for system subroutine IN- PUT data.
110	A:0)= \$ FF	Defines PC station number as host.
120	A:1)=5	Specifies block 5.
130	B= \$ F002	Sets indirect variable head address.
140	B \$ = "R0200"	Sets destination head device using char- acter string variable.
150	C= \$ F007	Sets indirect variable head address.
160	C(0)=16	Sets the number of points to be written as 16.
170	C(1)= \$ E000 ······	Sets source head address for data.
180	C(2)=60	Sets time check period to 60 (600ms).
190	Z=CALL(0, \$80C0, 1, A)	Calls system subroutine SAEW.
200	IF Z#0 PRINT "ERROR",	
	Z; GOTO 190	Checks for errors in SAEW execution.
210	END	

(3) Data write to any specified extension file registers (SAET)

Example: Program to write 246 to file register R100 in block 5 and 1234 to R8191 in block 7.

100	A= \$ FE00	Sets indirect variable head address.
110	A:0)=5	Specifies block 5.
120	A:8)=7	Specifies block 7.
130	B= \$ FE01	Sets indirect variable head address.
140	B \$ = "R0100"	Sets file register R100.
150	C= \$ FE09	Sets indirect variable head address.
160	C \$ = "R8191"	Sets file register R8191.
170	D= \$ FE06	Sets indirect variable head address.
180	D(0)=246	Sets data written to R100.
190	D(4)=1234	Sets data written to R8191.
200	E= \$ F000	Sets indirect variable head address.
210	E:0)= \$ FF	Defines PC station number as host.
220	F= \$ F001	Sets indirect variable head address.
230	F(0)=2	Sets the number of points to be written
		as 2.
240	F(1)= \$ FE00	Sets destination head address for data.
250	F(2)=60	Sets time check period to 60 (600ms).
260	Z=CALL(0, \$80C3, 1, E)	Calls system subroutine SAET.
270	IF Z#0 PRINT "ERROR",	
	Z; GOTO 260	Checks for errors in SAET execution.
280	END	

(4) Defining file registers to be monitored. (SAEM0) (Before a given file register can be monitored using the SAEM1 subroutine, it must be specified and entered using the following procedure.)

MELSEC-

Example: Program to specify file register R50 in block 1 and R100 in block 7.

100 A= \$ FE00 ······ Sets indirect variable head a	address.
110 A:0)=1 ······ Specifies block 1.	
120 B= \$ FE01 Sets indirect variable head a	address.
130 B \$ = "R0050" Sets file register R50.	
140 A:6)=7 ······ Specifies block 7.	
150 C= \$ FE07 Sets indirect variable head a	address.
160 C \$ = "R0100" Sets file register R100.	
170 D= \$ F000 ······ Sets indirect variable head a	address.
180 D:0)= \$ FF Defines PC station number a	as host.
190 E= \$ F001 Sets indirect variable head a	address.
200 E(0)=2 Sets the number of points to	be entered
as 2.	
210 E(1)= \$ FE00 Sets destination head address	s for data.
220 E(2)=60 Sets time check period to 6	0 (600ms).
230 Z=CALL(0, \$80C6, 1, D) Calls system subroutine SA	Ξ Μ Ο.
240 IF Z#0 PRINT "ERROR",	
Z; GOTO 230 Checks for errors in SAEM0	execution.
250 END	

(5) Monitoring of file registers (SAEM1) specified by the monitor data entry (SAEM0)

Example: Program to specify and monitor the file registers entered by using the program in (4).

100 A= \$ FE00	
. to	Monitor data entry in accordance with
230 Z=CALL(0, \$80C6, 1, D)	(4).
240 IF Z#0 PRINT "ERROR",	(
Z; GOTO 230 }	
	····· Sets indirect variable head address
260 F:0)= \$ FF	····· Defines PC station number as host.
270 G= \$ F008	····· Sets indirect variable head address.
280 G(0)= \$ F100 ·····	····· Sets destination head address for data.
290 G(1)=60	www. Sets time check period to 60 (600ms).
300 Z=CALL(0, \$80C9, 1, F) ·····	····· Calls system subroutine SAEM1.
310 IF Z#0 PRINT "ERROR",	
Z; GOTO 300 ·····	····· Checks for errors in SAEM1 execution.
320 END	

7.5 Special Function Module Buffer Memory Read/Write

Any special function module buffer memory is accessed by the AD51 as explained below:

7.5.1 System subroutines and functions

The following system subroutines are used by the AD51 to access the special function module buffer memory.

	System Subroutine		Number of Points	PC CPU State	
ltem		Processing	Processed per PC CPU, AD51 Transaction	During STOP	During RUN
Batch read	SATR	Reads data from buffer memory (for 1 byte).	128 bytes	0	0
Batch write	SATW	Writes data to buffer memory (for 1 byte).	128 bytes	0	0

(1) System subroutine types and functions

Key, \bigcirc : Indicates available.

MELSEC-

Table 7.7 System Subroutines and Functions

(2) Special function modules and buffer memory addresses

Any special function module buffer memory has 16 bit (1 word) locations per address. Data communication between the PC CPU and special function module is made using the FROM / TO | instructions.

The buffer memory is accessed by the AD51 per address, i.e. in blocks of 8 bits (1 byte).

The address (hexadecimal) specified by the AD51 is calculated by the following expression:

Specified address (hexadecimal) = {(FROM/TO instruction address X 2)} in hexadecimal + module head address

Example: AD61 high-speed counter module's FROM / TO instruction address = 0 (present value of CH. 1)

Specified address = FROM/TO instruction address (= 0) \times 2 + head address 82н 0н 82_H

Special Function Module	Buffer Memory Head Address (Hexadecimal)
A68AD analog-to-digital converter module	80 _H
A62DA digital-to-analog converter module	10н
A84AD analog/digital converter module	10н
AD61(S1) high-speed counter module	82н
AD71(S1) positioning module	200н
AD72 positioning module	200н
AD51 intelligent communication module	800 н
AJ71C24-S3 computer link module	1000 _H
A81CPU PID control module	200H

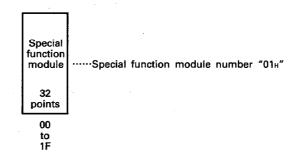
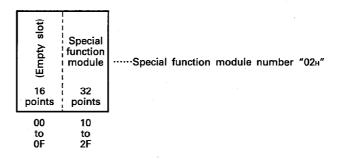
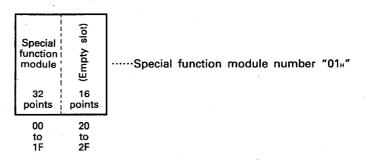

MELSEC-

Table 7.8 Special Function Module Head Addresses

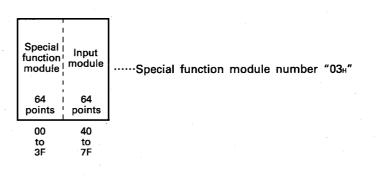

(3) Special function modules and module numbers

The special function module number (hexadecimal) specified by the AD51 is the first two digits of the three-digit final I/O address of the special function module with respect to the PC CPU.

(a) Module occupying one slot (such as AD61, A68AD)



(b) Module occupying two slots and using the first slot as empty (e.g. AD72, A84AD)



(c) Module occupying two slots and using the second slot as empty

MELSEC-

(d) Module occupying two slots as a special function module and an input module (A81CPU)

Special Function Module	Module Number of Module on Slot 0
A68AD analog-to-digital converter module	01н
A62DA digital-to-analog converter module	01н
A84AD analog/digital converter module	02н
AD61(S1) high-speed counter module	01н
AD71(S1) positioning module	01н
AD72 positioning module	02н
AD51 intelligent communication module	02н
AJ71C24-S3 computer link module	01 _H
A81CPU PID control module	03н

 Table 7.9 Special Function Modules and Module Numbers

(4) Module number of special function module on MELSECNET remote station

The module number of the special function module used on a MELSECNET remote station depends on the link parameters set to the MELSECNET master station.

L/R NO.	M •	– L	M → R	M ← R	M →	· L/R	M ←	L/R
L/R NO.	В	W	w	w	Y	Х/Ү	Х	Y/X
R1	· · · ·		29C-309	0F9—15E	400–48F	000—08F	430—44F	03004F
R2			215—24F	080-0A3	510—67F	010—17F	500—65F	000—15F
R3			1B6—214	15F—1B5	270—32F	050—10F	220—28F	000-06F
	. 	-	—	—	_	-	_	—
	-	-		-		_	_	-
	—	— ,	—	-	-	—	· —	—
	—	-	-	· _	-	_	-	-
	-	-	-	_	—	-	-	—

rer	dresses note I/O station	of)	Y 00 to 1F	Y 20 to 2F	X/Y 30 to 4F	Y 50 to 7F	Y 70 to 8F	
Remote I/O station 1	Power supply module	AJ72P25	Output module	Output module	Special function module	Output module	Output module	
			32 points	16 points	32 points	32 points	32 points	
│ I/O addresses set in link parameters)		Y 400 to 41F	Y 420 to 42F	X/Y 430 to 44F	Y 450 to 46F	Y 470 to 48F		

Special function module number "H44"

MELSEC-

7.5.2 BASIC program examples

The following BASIC program examples use system subroutines SATR (batch read) and SATW (batch write) to access the special function module buffer memory.

MELSEC-

The program examples use channel 1.

For full information on the system subroutines, see the GPC-BASIC Handbook.

(1) Batch read from buffer memory (SATR)

Example: Program to read 4-byte data from buffer memory address 10_{H} (94_H) of the A68AD at I/O addresses 80_{H} -9F_H to address E000_H.

Head address for system subroutine IN-
PUT data.110 A:0)= \$ FFDefines PC station number as host.120 A:1)= \$ 09Specifies module number.130 B= \$ F002Sets indirect variable head address.140 B(0)= \$ 94Sets buffer memory head address.150 B:2)=0Sets indirect variable head address.160 C= \$ F005Sets indirect variable head address.170 C(0)=4Sets the number of bytes to be read as 4.180 C(1)= \$ E000Sets destination head address for data.190 C(2)=60Sets time check period to 60 (600ms).200 Z=CALL(0, \$ 80D8, 1, A)Calls system subroutine SATR.210 IF Z#0 PRINT "ERROR",
Z; GOTO 200Checks for errors in SATR execution.220 ENDSets

(2) Batch write to buffer memory (SATW)

Example: Program to write 4090 to buffer memory address 0_H (10_H, 11_H) of the A62DA at I/O addresses 0A_H-0B_H.

100	A= \$ EE00	Sets indirect variable head address.
110	A(0)=2000	Sets data "2000" to be written.
120	B= \$ E000 ·····	Sets indirect variable head address.
130	B:0)= \$ FF	Defines PC station number as host.
140	B:1)= \$ 0B ·····	Specifies module number.
150	C= \$ E002	Sets indirect variable head address.
160	C(0)= \$ 10 ·····	Sets buffer memory head address.
	C:2)=0	
180	D= \$ E005	Sets indirect variable head address.
190	D(0)=2	Sets the number of bytes to be written as
		2.
200	D(1)= \$ EE00 ······	Sets source head address for data.
210	D(2)=60	Sets time check period to 60 (600ms).
220	Z=CALL(0, \$80DB, 1, B)	Calls system subroutine SATW.
230	IF Z#0 PRINT "ERROR",	
	Z; GOTO 220 ·····	Checks for errors in SATW execution.
240	END	

7.6 Read/Write of Sequence Program and T/C Set Values

This section describes procedures for reading and writing PC CPU sequence programs and T/C set values from the AD51.

7.6.1 System subroutines and functions

The following system subroutines are used to read and write sequence programs and T/C set values.

k		System	•	Amount of information	PC CPU State		
	Item	Oystem Processing processed per Subroutine PC - AD51 transaction. Stop		Run			
	Read	Main	CAAD	Reads main sequence program.	· · ·		
Sequence	neau	Sub SAAR Reads subsequence program.		0	0		
program	Write	Main	SAAW	Writes main sequence program.	64 steps	0	×*
	write	Sub	SAAVV	Writes subsequence program.			
Parameter	Read Write		SAPR	Reads parameters of PC CPU.	100 hite	0	0
			SAPW	Writes parameters of PC CPU.	128 bytes	0	×
		lysis Jest	SAPS	Causes PC CPU to recognize and check rewritten parameters.		0	×

(1) System subroutines and functions

Key : O Available X Unavailable

For T/C only

MELSEC-

Table 7.2 System Subroutines and Functions

* A subprogram may be written while a main program is running and vice versa using appropriate control of M9050 and M9051. The A3N and A3HCPUs are not provided with M9050.

POINT

- (1) Sequence programs should be read and written in the range set in the parameters. PC CPU data may be corrupted if programs are written outside the set range.
- (2) An input data error is returned if the specified parameter read/write capacity is outside the allowed range (16 bytes in the A0J2CPU, 3K bytes in the A1(E), A2(E), A3(E), A1N, A2N, A3N, and A3HCPUs).

(2) T/C set values and program addresses

Specify T/C set values and program step numbers as shown in the following table.

MELSEC-

Sequence Program	Address		
T0 set value	FE00H		
T1 set value	FE01H		
to	to		
T255 set value	FEFFH		
C0 set value	FF00⊬		
C1 set value	FF01⊬		
to	to		
C255 set value	FFFF⊬		
Step 0	0000н		
Step 1	0001н		
to	to		
Step 30719 (30K)	77FF⊬		

Calculation of specified address:

Timer Tm = $FE00_{H}$ + n Counter Cm = $FF00_{H}$ + n

where, m = device number n = hexadecimal value of device number

(3) T/C set value

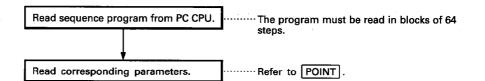
Read/write data of T/C set values is expressed in hexadecimal as shown in the following table.

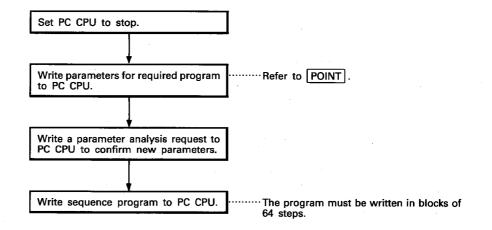
Specification with Constant	Set Value	Specification with D Register	Set Value
К0	0000H	D0	8000н
К1	0001H	D1	8002 н
K2	0002 н	D2	8004 н
to	to	to	to
K32766	7FFEH	D1022	81FCн
K32767	7FFFH	D1023	81FEн

Calculation of set value:

 $Km = 000_{H} + n$ $Dm = 8000_{H} + 2n$

where, m = device number


n = hexadecimal value of device number


7.6.2 Read and write procedures

Parameter data should not be separated from the sequence program when it is read or written by the AD51. Use the following procedures:

(1) Sequence program read

(2) Write of sequence programs

POINT

When reading or writing sequence programs, always, ensure that the parameters match the program. Mismatches of parameters and programs will result in misoperation.

This section gives the procedure for transferring sequence programs and T/C set values between the PC CPU and the AD51.

MELSEC-

(1) Sequence program read (SAAR, SAPR)

[Program example]

Program to read the PC CPU main program to the following AD51 memory areas.

Sequence program (2K steps) \rightarrow Channel 2 E000_H to EFFF_H Parameter (3K bytes) \rightarrow Channel 2 D000_H to DBFF_H

100 Z=ZWR1(2, \$ F800, \$ FF) Defines PC station number as host. 110 Z=ZWR1(2, \$ F801, \$ 4D)Sets main, "M", sequence program. 120 Z=ZWR2(2, \$ F804, 64)Sets the number of steps to be read to 64. 130 Z=ZWR2(2, \$ F808, 60)Sets time check period to 60 (600m sec). 140 A= \$ E000 ······Sets data destination head address to variable A. 150 FOR I=0 TO 2047 STEP 64 160 Z=ZWR2(2, \$ F802, I)Sets head step number of sequence program to be read. 170 Z=ZWR2(2, \$F806, A)Sets data destination head address. 180 Z=CALL(0, \$808A, 2, \$F800) ······ Reads sequence program. 185 IF Z#0 PRINT "ERROR", Z; GOTO 180.....Checks for errors in SAAR execution. 190 A=A+128 Adds 128 (64 steps) to head address of area to be read. 200 NEXT I 210 Z=ZWR1(2, \$F810, \$FF).....Defines PC station number as host. 220 Z=ZWR2(2, \$F814, 128)Sets read byte length to 128. 230 Z=ZWR2(2, \$F818, 60)Sets time check period to 60 (600msec). 240 FOR I=0 TO \$BFF STEP \$80 250 Z=ZWR2(2, \$F811, I) 260 Z=ZWR1(2, \$F813, 0) 270 Z=ZWR2(2, \$F816, \$D000+I)....Sets data destination head address. 280 Z=CALL(0, \$8090, 2, \$F810)Reads parameters. 285 IF Z#0 PRINT "ERROR", Z; GOTO 280 ······Checks for errors in SAPR execution. 290 NEXT | 300 END

(2) Sequence program write

[Program example]

Program to write the main sequence program and parameters from the AD51 to the PC CPU.

MELSEC-

Channel 2 E000_H to EFFF_H \rightarrow Sequence program (2K steps) Channel 2 D000_H to DBFF_H \rightarrow Parameters (3K bytes)

100 Z=CALL(0, \$8030, \$FF, 70)Checks PC CPU RUN/STOP status.
110 IF Z=1 LOCATE 5, 10;PRINT
"CPU RUN"; GOTO 100Indicates whether the CPU is running.
120 IF Z#0 GOTO
To error processing Detects any error in SKC execution
and moves to a suitable part of the
program.
130 Z=ZWR1(2, \$ F000, \$ FF)Defines the PC station number as
host.
140 Z=ZWR2(2, \$ F004, 128) ······Sets byte length to be written to 128.
150 Z=ZWR2(2, \$ F008, 70)Sets time check period to 70
(700msec).
160 FOR I=0 TO \$BFF STEP \$80
170 Z=ZWR2(2, \$F001, I)
180 Z=ZWR1(2, \$ F003, 0))
190 Z=ZWR2(2, \$ F006, \$ D000+1) ···· Sets source data head address.
200 Z=CALL(0, \$ 8093, 2, \$ F000)Writes parameters.
210 IF Z#0 PRINT "ERROR",
Z; GOTO 200 ······ Checks for errors in SAPW execution.
220 NEXT
230 Z=CALL(0, \$ 8096, \$ FF, 70) ······Parameter analysis request.
240 IF Z#0 PRINT "ERROR",
Z; GOTO 230 Checks for errors in SAPS execution.
Z; GOTO 230 Checks for errors in SAPS execution. 250 Z=ZWR1(2, \$ F010, \$ FF) Defines the PC station number as
250 Z=ZWR1(2, \$ F010, \$ FF)Defines the PC station number as host.
 250 Z=ZWR1(2, \$F010, \$FF) Defines the PC station number as host. 260 Z=ZWR1(2, \$F011, \$4D) Sets main, "M", sequence program.
250 Z=ZWR1(2, \$ F010, \$ FF)Defines the PC station number as host.
 250 Z=ZWR1(2, \$ F010, \$ FF)Defines the PC station number as host. 260 Z=ZWR1(2, \$ F011, \$ 4D)Sets main, "M", sequence program. 270 Z=ZWR2(2, \$ F014, 64)Sets the number of steps to be written to 64.
 250 Z=ZWR1(2, \$ F010, \$ FF)Defines the PC station number as host. 260 Z=ZWR1(2, \$ F011, \$ 4D)Sets main, "M", sequence program. 270 Z=ZWR2(2, \$ F014, 64)Sets the number of steps to be written
 250 Z=ZWR1(2, \$F010, \$FF) Defines the PC station number as host. 260 Z=ZWR1(2, \$F011, \$4D) Sets main, "M", sequence program. 270 Z=ZWR2(2, \$F014, 64) Sets the number of steps to be written to 64. 280 Z-ZWR2(2, \$F018, 70) Sets time check period to 70 (700msec).
 250 Z=ZWR1(2, \$F010, \$FF)Defines the PC station number as host. 260 Z=ZWR1(2, \$F011, \$4D)Sets main, "M", sequence program. 270 Z=ZWR2(2, \$F014, 64)Sets the number of steps to be written to 64. 280 Z-ZWR2(2, \$F018, 70)Sets time check period to 70 (700msec). 290 A= \$E000Sets data source head address to
 250 Z=ZWR1(2, \$F010, \$FF)Defines the PC station number as host. 260 Z=ZWR1(2, \$F011, \$4D)Sets main, "M", sequence program. 270 Z=ZWR2(2, \$F014, 64)Sets the number of steps to be written to 64. 280 Z-ZWR2(2, \$F018, 70)Sets time check period to 70 (700msec). 290 A= \$E000Sets data source head address to variable A.
 250 Z=ZWR1(2, \$F010, \$FF)Defines the PC station number as host. 260 Z=ZWR1(2, \$F011, \$4D)Sets main, "M", sequence program. 270 Z=ZWR2(2, \$F014, 64)Sets the number of steps to be written to 64. 280 Z-ZWR2(2, \$F018, 70)Sets time check period to 70 (700msec). 290 A= \$E000Sets data source head address to variable A. 300 FOR I=0 TO 2047 STEP 64
 250 Z=ZWR1(2, \$F010, \$FF)Defines the PC station number as host. 260 Z=ZWR1(2, \$F011, \$4D)Sets main, "M", sequence program. 270 Z=ZWR2(2, \$F014, 64)Sets the number of steps to be written to 64. 280 Z-ZWR2(2, \$F018, 70)Sets time check period to 70 (700msec). 290 A= \$E000Sets data source head address to variable A. 300 FOR I=0 TO 2047 STEP 64 310 Z=ZWR2(2, \$F012, I)Sets head step number of sequence
 250 Z=ZWR1(2, \$F010, \$FF)Defines the PC station number as host. 260 Z=ZWR1(2, \$F011, \$4D)Sets main, "M", sequence program. 270 Z=ZWR2(2, \$F014, 64)Sets the number of steps to be written to 64. 280 Z-ZWR2(2, \$F018, 70)Sets time check period to 70 (700msec). 290 A= \$E000Sets data source head address to variable A. 300 FOR I=0 TO 2047 STEP 64 310 Z=ZWR2(2, \$F012, I)Sets head step number of sequence program to be written.
 250 Z=ZWR1(2, \$F010, \$FF) Defines the PC station number as host. 260 Z=ZWR1(2, \$F011, \$4D) Sets main, "M", sequence program. 270 Z=ZWR2(2, \$F014, 64) Sets the number of steps to be written to 64. 280 Z-ZWR2(2, \$F018, 70) Sets time check period to 70 (700msec). 290 A= \$E000 Sets data source head address to variable A. 300 FOR I=0 TO 2047 STEP 64 310 Z=ZWR2(2, \$F012, I) Sets head step number of sequence program to be written. 320 Z=ZWR2(2, \$F016, A) Sets data source head address.
250 Z=ZWR1(2, \$F010, \$FF) Defines the PC station number as host. 260 Z=ZWR1(2, \$F011, \$4D) Sets main, "M", sequence program. 270 Z=ZWR2(2, \$F014, 64) Sets the number of steps to be written to 64. 280 Z-ZWR2(2, \$F018, 70) Sets time check period to 70 (700msec). 290 A= \$E000 Sets data source head address to variable A. 300 FOR I=0 TO 2047 STEP 64 310 Z=ZWR2(2, \$F012, I) Sets head step number of sequence program to be written. 320 Z=ZWR2(2, \$F016, A) Sets data source head address. 330 Z=CALL(0, \$808D, 2, \$F010) Writes sequence program.
250 Z=ZWR1(2, \$F010, \$FF) Defines the PC station number as host. 260 Z=ZWR1(2, \$F011, \$4D) Sets main, "M", sequence program. 270 Z=ZWR2(2, \$F014, 64) Sets the number of steps to be written to 64. 280 Z-ZWR2(2, \$F018, 70) Sets time check period to 70 (700msec). 290 A= \$E000 Sets data source head address to variable A. 300 FOR I=0 TO 2047 STEP 64 310 Z=ZWR2(2, \$F012, I) Sets head step number of sequence program to be written. 320 Z=ZWR2(2, \$F016, A) Sets data source head address. 330 Z=CALL(0, \$808D, 2, \$F010) Writes sequence program. 340 IF Z#0 PRINT "ERROR",
 250 Z=ZWR1(2, \$F010, \$FF)Defines the PC station number as host. 260 Z=ZWR1(2, \$F011, \$4D)Sets main, "M", sequence program. 270 Z=ZWR2(2, \$F014, 64)Sets the number of steps to be written to 64. 280 Z-ZWR2(2, \$F018, 70)Sets time check period to 70 (700msec). 290 A= \$E000Sets data source head address to variable A. 300 FOR I=0 TO 2047 STEP 64 310 Z=ZWR2(2, \$F012, I)Sets head step number of sequence program to be written. 320 Z=ZWR2(2, \$F016, A)Sets data source head address. 330 Z=CALL(0, \$808D, 2, \$F010)Writes sequence program. 340 IF Z#0 PRINT "ERROR", Z; GOTO 330Checks for errors in SAAW execution.
250 Z=ZWR1(2, \$F010, \$FF) Defines the PC station number as host. 260 Z=ZWR1(2, \$F011, \$4D) Sets main, "M", sequence program. 270 Z=ZWR2(2, \$F014, 64) Sets the number of steps to be written to 64. 280 Z-ZWR2(2, \$F018, 70) Sets time check period to 70 (700msec). 290 A= \$E000 Sets data source head address to variable A. 300 FOR I=0 TO 2047 STEP 64 310 Z=ZWR2(2, \$F012, I) Sets head step number of sequence program to be written. 320 Z=ZWR2(2, \$F016, A) Sets data source head address. 330 Z=CALL(0, \$808D, 2, \$F010) Writes sequence program. 340 IF Z#0 PRINT "ERROR", Z; GOTO 330 Checks for errors in SAAW execution. 350 A=A+128 Adds 128 to sequence program write
250 Z=ZWR1(2, \$F010, \$FF) Defines the PC station number as host. 260 Z=ZWR1(2, \$F011, \$4D) Sets main, "M", sequence program. 270 Z=ZWR2(2, \$F014, 64) Sets the number of steps to be written to 64. 280 Z-ZWR2(2, \$F018, 70) Sets time check period to 70 (700msec). 290 A= \$E000 Sets data source head address to variable A. 300 FOR I=0 TO 2047 STEP 64 310 Z=ZWR2(2, \$F012, I) Sets head step number of sequence program to be written. 320 Z=ZWR2(2, \$F016, A) Sets data source head address. 330 Z=CALL(0, \$808D, 2, \$F010) Writes sequence program. 340 IF Z#0 PRINT "ERROR", Z; GOTO 330 Checks for errors in SAAW execution. 350 A=A+128 Check Adds 128 to sequence program write head address.
250 Z=ZWR1(2, \$F010, \$FF) Defines the PC station number as host. 260 Z=ZWR1(2, \$F011, \$4D) Sets main, "M", sequence program. 270 Z=ZWR2(2, \$F014, 64) Sets the number of steps to be written to 64. 280 Z-ZWR2(2, \$F018, 70) Sets time check period to 70 (700msec). 290 A= \$E000 Sets data source head address to variable A. 300 FOR I=0 TO 2047 STEP 64 310 Z=ZWR2(2, \$F012, I) Sets head step number of sequence program to be written. 320 Z=ZWR2(2, \$F016, A) Sets data source head address. 330 Z=CALL(0, \$808D, 2, \$F010) Writes sequence program. 340 IF Z#0 PRINT "ERROR", Z; GOTO 330 Checks for errors in SAAW execution. 350 A=A+128 Adds 128 to sequence program write

(3) T/C set values read.

[Program example]

Program for reading set values of T0 to T31 and C64 to C79 to memory addresses $B000_{H}$ to $B03F_{H}$ and $B040_{H}$ to $B05F_{H}$ in channel 2.

MELSEC-A

100 Z=ZWR1(2, \$ E700, \$ FF).....Defines PC station number as host. 110 Z=ZWR1(2, \$ E701, \$ 4D) ·······Sets main, "M", sequence program. 120 Z=ZWR2(2, \$ E702, \$ FE00)Sets read head step to T0. 130 Z=ZWR2(2, \$E704, 32)....Sets the number of points to be read to 32. 140 Z=ZWR2(2, \$ E706, \$ B000) ·······Sets data destination head address. 150 Z=ZWR2(2, \$ E708, 50) Sets time check period to 50 (500msec). 160 Z=CALL(0, \$808A, 2, \$E700).....Reads T0 to T31 set values. 170 Z=ZWR2(2, \$ E702, \$ FF40)Sets read head step to C64. 180 Z=ZWR2(2, \$ E704, 16) Sets the number of points to be read to 16. 190 Z=ZWR2(2, \$ E706, \$ B040) ······Sets data destination head address. 200 Z=CALL(0, \$808A, 2, \$E700) Reads C64 to C79 set values. 210 IF Z#0 PRINT "ERROR", Z: GOTO 200 ······Checks for errors in SAAR execution.

220 END

MABLE CONTROLLER CPU / MELSEC-

7.7 Microcomputer Program Read/Write

PC CPU microcomputer programs are read and written from the AD51 in the following procedures.

7.7.1 System subroutines and functions

The following system subroutines are used to read and write microcomputer programs.

(1) System subroutine types and functions

	Sustam			Number of Points	PC CPU State	
ltem		System Subroutine	Processing	Processed per PC CPU, AD51 Transaction	During STOP	During RUN
Pood	Main	CANAD	Reads main microcomputer program.		0	
Read	Sub	SAMR	Reads sub microcomputer program.			0
Write	Main	SAMW	Writes main microcomputer program.	- 128 bytes	_	
	Sub		Writes sub microcomputer program.	-	0	X *

Key, \bigcirc : Available

Table 7.11 System Subroutines and Functions

* When the A3CPU or A3ECPU is used, a subprogram may be written while a main program is running and vice versa using appropriate control of M9050 and M9051. The A3N and A3HCPUs are not provided with M9050.

POINT

The M9050 circuit must be deleted if any A3CPU or A3ECPU program is utilized for the A3N or A3HCPU. Reason: If M9050 is on, any program cannot be written during run of the A3N or A3HCPU.

(2) Microcomputer program read/write head address

Specify the microcomputer program read/write head address using the corresponding offset address as indicated below:

Offset Address	
0000 _H	
0001H	
to	
E7FFн *	

*: This address assumes that the microcomputer program capacity has been set to 58K bytes in the parameter.

The (head address) + (number of bytes processed) should be ((microcomputer program capacity set in parameter) - 1 byte) max.

(Head address) + (number of bytes processed) \leq ((microcomputer program capacity set in parameter) - 1 byte)

POINT

When reading or writing microcomputer programs, always ensure that the parameters match the programs. Mismatches of parameters and programs may corrupt the PC CPU data.

7.7.2 BASIC program examples

The following program examples transfer microcomputer programs between the PC CPU and AD51.

(1) Microcomputer program read (SAMR)

Example: Program to read PC CPU main microcomputer program to the following AD51 memory area:

Microcomputer program (4K bytes) \rightarrow Channel 2 E000_H to EFFF_H

100 Z=ZWR1(2, \$ F800, \$ FF)Defines PC station number as host.
110 Z=ZWR1(2, \$ F801, \$ 4D)Sets main, "M", microcomputer
program.
120 Z=ZWR2(2, \$F804, 64)Sets the number of bytes to be read
as 64.
130 Z=ZWR2(2, \$ F808, 60)Sets time check period to 60 (600ms).
140 A= \$ E000 ······Sets indirect variable head address.
150 FOR I=0 TO 4095 STEP 64
160 Z=ZWR2(2, \$F802, I) ······Sets head address of microcomputer
program to be read.
170 Z=ZWR2(2, \$ F806, A)Sets data destination head address.
180 Z=CALL(0, \$80CC, 2, \$F800)Calls system subroutine SAMR.
190 IF Z#0 PRINT "ERROR",
Z; GOTO 180Checks for errors in SAMR execution.
200 A=A+64 ······Adds 64 to data destination head
address.
210 NEXT
220 END

(2) Microcomputer program write (SAMW)

Example: Program to write the main microcomputer program from the AD51 to the PC CPU.

MELSEC-

Channel 2 E000_H to EFFF_H \rightarrow Microcomputer program (4K bytes)

100 Z=CALL(0, \$8030, \$FF, 70)Checks PC CPU RUN/STOP status.
110 IF Z=1 LOCATE 5, 10;PRINT
"CPU RUN"; GOTO 100Indicates whether the CPU is running.
120 IF Z#0 GOTO
To error processing
and moves to a suitable part of the
program.
130 Z=ZWR1(2, \$ F000, \$ FF)Defines PC station number as host.
140 Z=ZWR1(2, \$F001, \$4D)Sets main, "M", microcomputer
program.
150 Z=ZWR2(2, \$ F004, 64)Sets the number of bytes to be writ-
ten as 64.
160 Z=ZWR2(2, \$ F008, 60)Sets time check period to 60 (600ms).
170 A= \$ E000 ······Sets indirect variable head address.
180 FOR I=0 TO 4095 STEP 64
190 Z=ZWR2(2, \$ F002, I)Sets head address of microcomputer
program to be written.
200 Z=ZWR2(2, \$ F006, A) ······Sets data source head address.
210 Z=CALL(0, \$80CF, 2, \$F000) ······Calls system subroutine SAMW.
220 IF Z#0 PRINT "ERROR",
Z; GOTO 210 Checks for errors in SAMW execution.
230 A=A+64 ······Adds 64 to data source head address.
240 NEXT I
250 END

7.8 Comment Read/Write

Comments are read and written in the following procedures:

7.8.1 System subroutines and functions

The following system subroutines are used to read and write PC CPU comments from the AD51.

(1) System subroutine types and functions

	System		Number of Points Processed per	PC CPU State	
ltem	Subroutine	Processing	PC CPU, AD51 Transaction		During RUN
Batch read	SACR	Reads comments.			0
Batch write	SACW	Writes comments.	128 bytes	0	0

Key, \bigcirc : Available

MELSEC-

Table 7.12 System Subroutines and Functions

(2) Comment read/write head address

Specify the comment read/write head address using the offset address.

The (head address) + (number of bytes processed) should be equal to or less than the comment capacity set in the parameter.

(Head address) + (number of bytes processed) \leq (comment capacity)

POINT

When reading or writing comments, always ensure that the parameters match the comments. Mismatches of parameters and comments may corrupt the PC CPU data.

7.8.2 BASIC program examples

The following program examples transfer comments between the PC CPU and AD51.

MELSEC-

(1) Comment read (SACR)

Example: Program to read PC CPU comments to the following AD51 memory area:

192 comment points (4K bytes) \rightarrow Channel 2 8000_H to 8FFF_H

100 Z=ZWR1(2, \$ F800, \$ FF)	··Defines PC station number as host.
110 Z=ZWR2(2, \$ F803, 64)	••Sets the number of bytes to be read as 64.
	··Sets time check period to 60 (600ms).
130 A= \$ 8000 ·····	Sets indirect variable head address.
140 FOR I=0 TO 4095 STEP 64	
150 Z=ZWR2(2, \$ F801, I)	••Sets head address of comments to be read.
160 Z=ZWR2(2, \$ F805, A)	··Sets data destination head address.
170 Z=CALL(0, \$80D2, 2, \$F800)	··Calls system subroutine SACR.
180 IF Z#0 PRINT "ERROR",	
•	··Checks for errors in SACR execution.
190 A=A+64	··Adds 64 to data destination head
	address.
200 NEXT I	

210 END

7-44

(2) Comment write (SACW)

Example: Program to write comments from the AD51 to the PC CPU.

Channel 2 8000_{μ} to 8FFF_{μ} \rightarrow 192 comment points (4K bytes)

100 Z=ZWR1(2, \$F900, \$FF)......Defines PC station number as host.
110 Z=ZWR2(2, \$F903, 64).....Sets the number of bytes to be written as 64.
120 Z=ZWR2(2, \$F907, 60)....Sets time check period to 60 (600ms).
130 A= \$8000....Sets indirect variable head address.
140 FOR I=0 TO 4095 STEP 64
150 Z=ZWR2(2, \$F901, I)...Sets head address of comments to be written.
160 Z=ZWR2(2, \$F905, A)...Sets data source head address.
170 Z=CALL(0, \$80D5, 2, \$F900)....Calls system subroutine SACW.
180 IF Z#0 PRINT "ERROR", Z; GOTO 170....Checks for errors in SACW execution.
190 A=A+64....Adds 64 to data source head address.
200 NEXT I
210 END

7.9 Interrupt from PC CPU to AD51

The interrupt signal from the PC CPU to the AD51 is valid on its rise (i.e. the AD51 waits for the leading edge of the signal).

MELSEC-

[How to use]

To enable the interrupt facility, the relevant task should be set to "start at interrupt from PC CPU" on the multi task setting screen. The AD51 will then run that task when it receives the interrupt signal.

Once it has been started the interrupt task will operate until the **END** instruction is executed. The interrupt is re-enabled after the **END** instruction is executed.

[Program example]

The following P.C. program will call the designated interrupt task when X01 turns on.

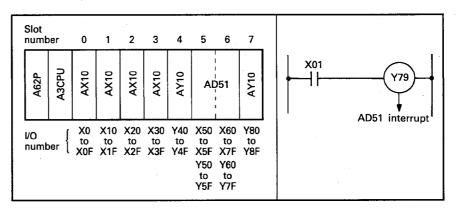


Fig. 7.5 System Configuration and Sequence Program

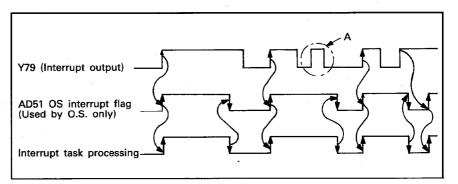


Fig. 7.6 Timing Chart

POINT

- (1) Any interrupt signal given to the AD51 while an interrupt program is running (i.e. interrupt flag is ON) will be ignored (See area A in Fig. 7.6.)
- (2) Only one task may be specified as "interrupt start". Setting any more generally leads to ORST error.

7.10 Interrupt from AD51 to PC CPU

System subroutine "SIT" causes the AD51 to interrupt the PC CPU and allows AD51 interrupt sequence programs to be executed. The A0J2CPU cannot be interrupted by the AD51.

MELSEC-

The PC CPU has interrupt pointers, I16 to I23, which are assigned to interrupt signals generated by special function modules in order of I/O allocation.

For details, refer to the CPU Unit User's Manual and Programming Manual.

In the system configuration shown in Fig. 7.7, when AD51 No. 1 interrupts the PC CPU, the interrupt program designated by pointer I16 is executed. When AD51 No. 2 interrupts the PC CPU, interrupt program I17 is executed. (I16 has higher priority.)

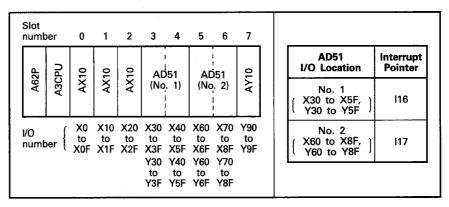


Fig. 7.7 System Configuration and Interrupt Pointers

7.11 Remote RUN/STOP of PC CPU

The PC CPU can be switched between RUN and STOP by the AD51 using the following system subroutines.

MELSEC-

	ltem		System Subroutine	Processing
	PC CPU	Remote RUN	SKR	Requests remote RUN of PC CPU.
Ľ		Remote STOP	SKP	Requests remote STOP of PC CPU.

- (1) Precautions for remote RUN/STOP
 - Note that a "remote error" is flagged if a remote RUN (or STOP) signal is given to a PC CPU which has already received a remote STOP (or RUN) signal from a separate unit, e.g. AJ71C24-S3.
 - 2) Remote RUN/STOP commands from the AD51 are valid as follows for different CPU key switch positions:

		PC CPU Key Switch Position			
		RUN	STOP	PAUSE	STEP-RUN
Command	Remote RUN	RUN	STOP	PAUSE	STEP-RUN
from AD51	Remote STOP	STOP	STOP	STOP	STOP

 The clearing of data memories on receiving a remote run instruction depends on the states of special relays M9016 and M9017.

Special Relay		Data Mamani Stata		
M9016	M9017	Data Memory State		
OFF	OFF	CPU is run without clearing data memory.		
OFF	ON	Data memory is cleared outside the latch range set in parameters. (Link image is not cleared.)		
ON ON/OFF		CPU is run after data memory is cleared.		

REMARKS

Always reset special relays M9016 and M9017 where data memory clearing is not required.

4) Resetting the PC CPU during remote RUN/STOP control (either with the keyswitch or by powering down and up) causes the remote signal to be removed and the PC CPU to revert to the mode detected by its key switch.

(2) BASIC program example

[Program example]

Program for remote RUN/STOP of PC CPU through key inputs

100 LOCATE 20, 10 ······Specifies cursor position.	
110 PRINT "STOP PC CPU? Y/N" ·······Displays message.	
120 A=INKEYWaits for key input.	
130 IF A # "Y" GOTO 120 ······Checks key input characters.	
140 Z=CALL(0, \$8036, \$FF, 60) ······Executes remote STOP.	
145 IF Z#0 PRINT "ERROR",	
Z; GOTO 140 Checks for errors in SKP execution.	
150 LOCATE 20, 10 ······Specifies cursor position.	
160 PRINT "REMOTE-RUN PC CPU?	
Y/N" ·····Dislays message.	
170 A=INKEYWaits for key input.	
180 IF A # "Y" GOTO 170 ······Checks key input characters.	
190 Z=CALL(0, \$8033, \$FF, 60)Executes remote RUN.	
200 IF Z#0 PRINT "ERROR",	
Z; GOTO 190 Checks for errors in SKR execution.	
210 GOTO 100	

7-49

8. TROUBLESHOOTING

/MELSEC-

This section lists error messages and troubleshooting procedures.

8.1 Screen Error Messages

The following messages may be generated during operation of the AD51 with its programming console.

Error Message	Display Screen	Description	Corrective Action
	Mode select menu	 Invalid number has been set. "1" (MULTI TASK GO) or "6" (SYSTEM DATA TRANSFER) has been pressed before multi- task setting, or there is an error in the multitask data. 	 Correct the number. Set or correct multitask data.
CANNOT SET	BASIC program address setting	Invalid number has been set.	Correct the number.
	Date and time setting	Invalid value has been set.	Correct.
	GPP mode	 GPP mode selected without connecting the GPP/HGP/PHP to CH1. Invalid number has been set. 	Correct.
MEMORY PROTECT ERROR	Mode select menu	System data area is memory pro- tected.	Set the memory protect switch to OFF.
DATA 🗑 SET ERROR	BASIC program address setting	The data indicated on the menu by	Correct.
	Printer setting	the number n is wrong.	Correct.
ERROR	Multitask setting	Value above "ERROR" is wrong.	For ERROR displayed in the TYPE, START CONDITION, or INTERVAL, columns, correct the data on the screen. For other columns correct the data on the BASIC program address setting screen.
AD51 BUS ERROR		GPP/HGP/PHP inaccessible to AD51 buffer.	Usually causes by the PC CPU accessing the AD51 buffer memory too frequently or with too much data. STOP the PC CPU.
AD51 COMMUNICATION ERROR		Communication error between AD51 and GPP/HGP/PHP.	Check cable connection and start up again.
AD51 WRITE ERROR		Memory area is ROM or memory protected.	Select RAM area channel or reset memory protect.
ADDRESS ERROR		Address is not in the allowed range.	Correct.
CANNOT USE KANA!!		"Kana" (i.e. Japanese characters) in the system name.	Select appropriate character set and use alphanumerics for system name specification.
DISK FULL	GPP mode	FD capacity exceeded.	Insert new FD.
FILE NAME ERROR		Invalid file name for file directory or delete function.	Correct.
FLOPPY ERROR		 No FD in accessed drive. FD is write protected. FD is defective. 	 Insert FD. Set FD write protect tab to OK. Change FD.
FLOPPY WRITE PROTECT		FD is write protected.	Set FD write protect tab to OK.
IDENTICAL NAME		The same file name exists.	Change the file name.
MEMORY NOTHING		Invalid area number has been spe- cified.	Correct the area number.
NO FILE		Specified file is not on FD.	Correct.
ROM ERASING ERROR		ROM has not been erased.	Erase ROM data or use a new ROM.

8-1

Error Message	Display Screen	Description	Corrective Action
ROM WRITE ERROR		 ROM is wrongly or not loaded. ROM is defective. 	 Check ROM. Write several times. Try again, if data cannot be written, change ROM.
SIZE UNMATCH (ROM < FILE)	GPP mode	ROM capacity is smaller than file capacity.	Select appropriate ROM.
SYSTEM NAME ERROR		Invalid name has been specified. (The name includes non- alphanumeric character or blank or the first character is not a letter.)	Correct.
VERIFY ERROR		Data unmatched.	Correct.
STACK ERROR! AD51 STOP!		Stack has been used outside the set area.	In BASIC, a maximum of ten levels of GOSUB or FOR/NEXT instruc- tions are allowed.
BTWF ERROR! AD51 STOP!		Task scheduling RAM data has	Check whether the system memory has been accessed by the user
WAIT ERROR! AD51 STOP!		been changed.	program.
AD51 STOP! TASK NO.		There is a BASIC statement which cannot be translated by the interpreter.	Correct BASIC program.
STOP COMMAND AD51 STOP TASK NO.	Multitask execution	STOP command executed.	Remove STOP command or change to END, GOTO, GOSUB, RETURN, ONGOTO or ONGOSUB command.
BREAK COMMAND AD51 STOP! TASK NO.		BREAK command executed.	Remove BREAK command.
TEXT END AD51 STOP! TASK NO.		BASIC program does not finish with END, GOTO, GOSUB, ONGO- TO, ONGOSUB or RETURN com- mand.	Correct.
WHAT?		BASIC programming mode error	
HOW?		detected in BASIC program. *1	Correct.
SORRY	BASIC programming	Program area insufficient.	Expand.
ROM OR MEMORY PROTECT AREA! PLEASE DO NOT CORRECT PROGRAM	mode	Program area is ROM or memory protected.	Alarm message *2

POINT

- *1: "WHAT" and "HOW" are indicated when:
 - 1) An undefined command is used;
 - 2) A command description format is wrong;
 - 3) A line number is not specified on the left of the GOTO, GOSUB, ONGOTO, or ONGOSUB command; and

4) The RETURN command is used without the GOSUB or ONGOSUB command.

*2: When this message is indicated, never correct the program.

Correction will corrupt the BASIC program memory area data. With this message displayed, only LIST, LLIST and BYE commands should be used.

To allow correction of a protected program, switch the memory protect off.

8.2 Error Code List

The occurance of any error during AD51 operation will cause the appropriate error code to be displayed on the two digit annunciator.

Code definitions are as follows:

Error Number	Error		Description	Location	Corrective Action				
00	Battery error		Battery is not loaded. Battery voltage low.	_	Load battery. Change battery.				
10	Multi task setting error		Although multi task setting is wrong, multi task has been executed.		Re-set multi task.				
11				Task 1	· · · · · · · · · · · · · · · · · · ·				
12				Task 2					
13				Task 3					
14	DACIO		Grammatical error in BASIC	Task 4					
15	BASIC program	n error	program.	Task 5	Correct program.				
16				Task 6					
17				Task 7					
18				Task 8					
21				Task 1					
22				Task 2					
23			Task 3						
24			STOP command has been executed	Task 4	Remote STOP command or change				
25	25 26 STOP error BASIC	BASIC	BASIC during multi task execution	Task 5	to END, GOTO, GOSUB, ONGOTO ONGOSUB, or RETURN command				
26		Task 6							
27						Task 7	-		
28				Task 8					
31								Task 1	
32	· · · ·			Task 2					
33				Task 3	- -				
34			BREAK command has been executed	Task 4	1				
35	BREAK error	BASIC	during multi task execution.	Task 5	Remove BREAK command.				
36				Task 6					
37				Task 7					
38				Task 8					
41		<u> </u>		Task 1					
42			Task 2						
43	Text end error			Task 3	1				
44			BASIC program does not end with	Task 4	1.				
45			ONGOSUB, or RETURN command. Task 5 Task 6		Correct program.				
46					Task 6				
47				Task 7	1				
48				Task 8					

8-3

Error Number	Error	Description	Location	Corrective Action
51			Task 1	· · · · · · · · · · · · · · · · · · ·
52			Task 2	
53			Task 3	
54	OPOT	A task has been re-started before it	Task 4	Correct task start condition.
55	ORST error	has completed.	Task 5	Correct task start condition.
56			Task 6	
57			Task 7	
58			Task 8	
60	Stack error	Stack used is outside the system stack area.	_	In BASIC a maximum of ten levels of GOSUB or FOR/NEXT instructions are allowed.
70	Duplex WAIT error BTWF error	RAM contents for system's task schedule have been rewritten.		Check whether the system memory has been accessed by the user program.
81	· · · · · · · · · · · · · · · · · · ·		RS-422 CH1	
82	511 bytes of received data in rec	511 bytes of received data in receive	RS-422 CH2	Do not could make then 512 butes (
83	Receive butter full error	Do Do	Do not send more than 512 bytes a one time.	
84			RS-232C CH4	
91		· ·	RS-422 CH1	
92		127 bytes of send data in send buffer.	RS-422 CH2	Check cables.
93	Send buffer full error	,	RS-232C CH3	Empty the external equipment re- veive buffer.
94			RS-232C CH4	
99	PC CPU error	 PC CPU has been reset during communication. Time out error has occurred dur- ing PC accessing by system sub- routine. PC CPU error detected by WDT and communication has stopped. Note: Error code 99 is sometimes displayed after an instan- taneous power failure. 	_	AD51 program execution not directly affected.

8

MELSEC-

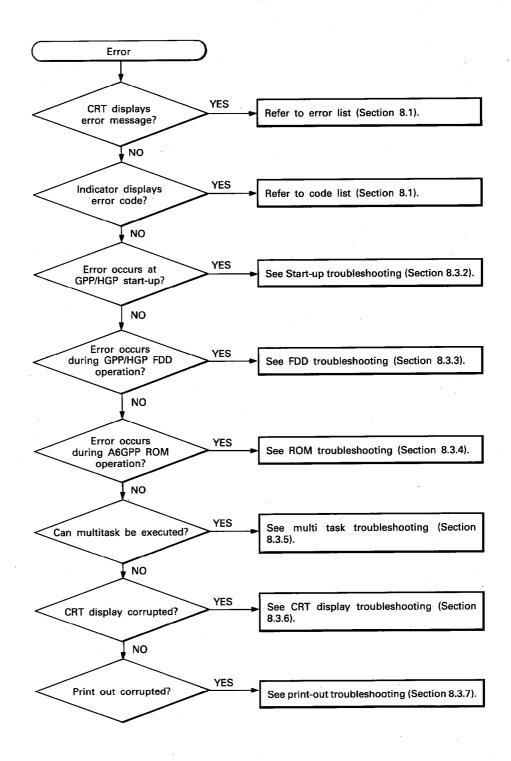
8-4

POINT

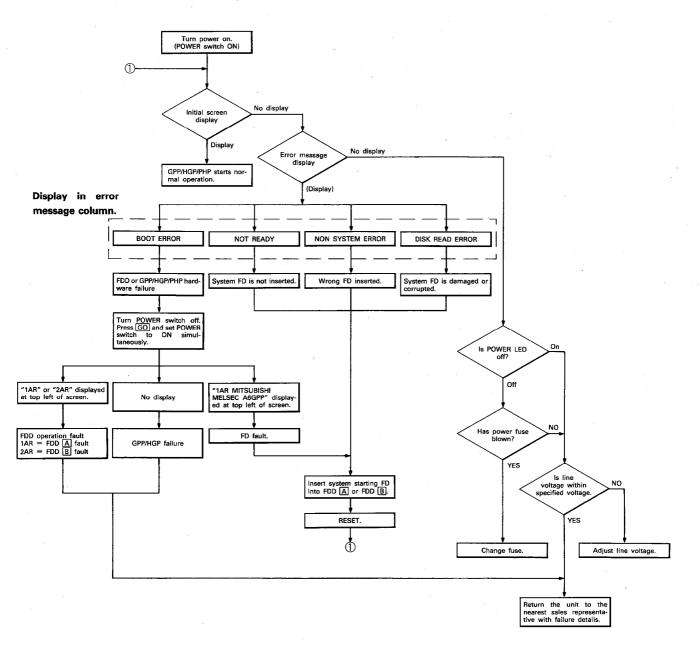
- (1) The AD51 continues operating in the event of "battery error", "ORST error", "receive buffer full error", "send buffer full error", or "PC CPU error".
- (2) The receive buffer capacity is 511 bytes per channel. Overflow data is ignored.
- (3) When data is sent from one task to the buffer memory and the buffer memory becomes full, the AD51 switches tasks. After that task has run the AD51 checks the buffer, if it is now vacant the original task is allowed to continue and if it is still full the AD51 will switch to a third task (where used). This checking and switching procedure will continue for 1 minute if the buffer remains full after which 1 byte of the excess data will be deleted.

The one minute cycle is repeated until there is no excess data left (The 1 minute cycle time may be charged using the SWB system subroutine.)

(4) Possible causes of send buffer full error are as follows:


- The DTR signal from the external equipment (Pin 6 of the RS-232C connector) is low.
- X ON code is not received from the external equipment after X OFF has been received.

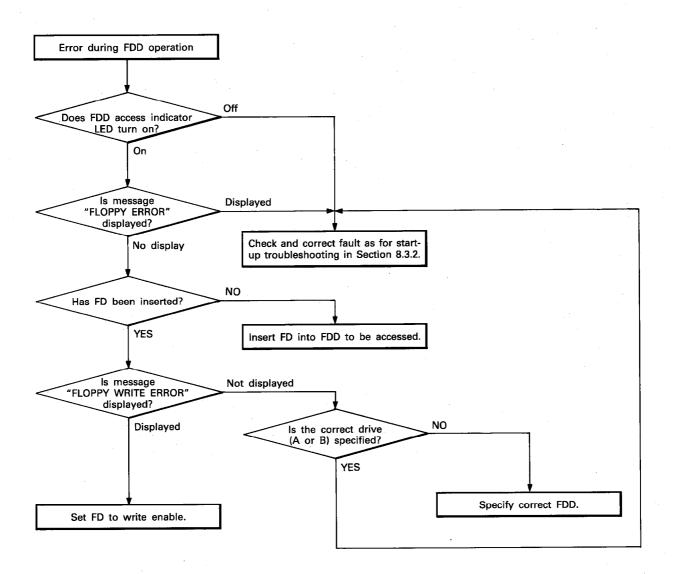
8.3 Troubleshooting


This section gives simple AD51 troubleshooting procedures. For PC CPU troubleshooting refer to the PC CPU User's Manual.

8.3.1 Troubleshooting flow chart

MELSEC-

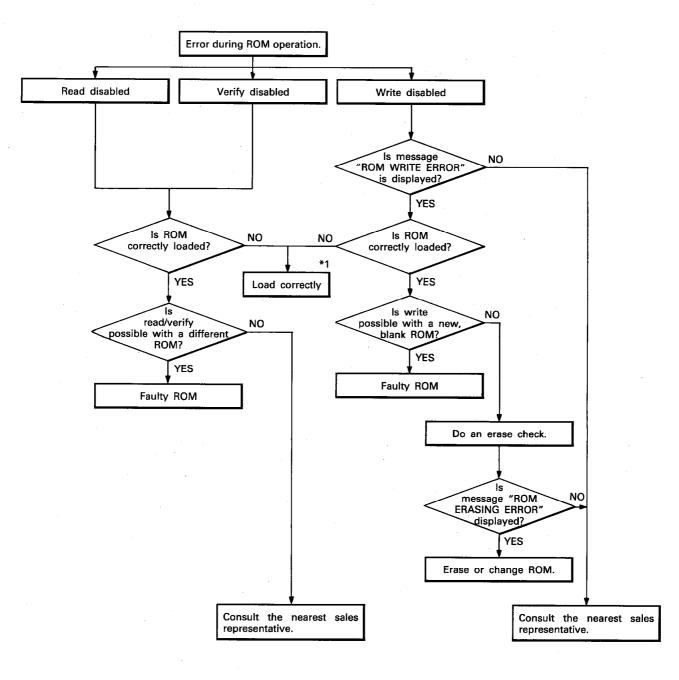
8.3.2 Start-up troubleshooting



8

IB (NA) 66189-A

8.3.3 FDD troubleshooting

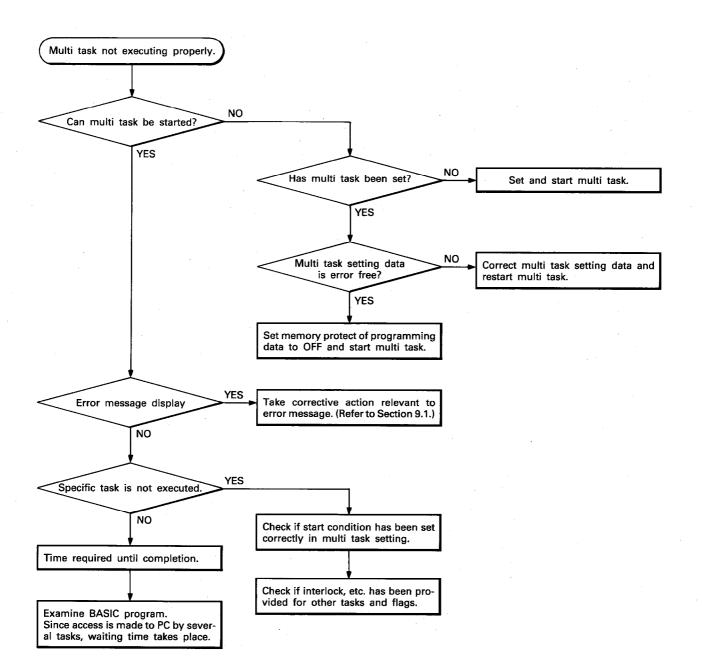


POINT

- (1) Note the correct direction for inserting the disk and never force it.
- (2) Formatting a disk clears all the data on it.

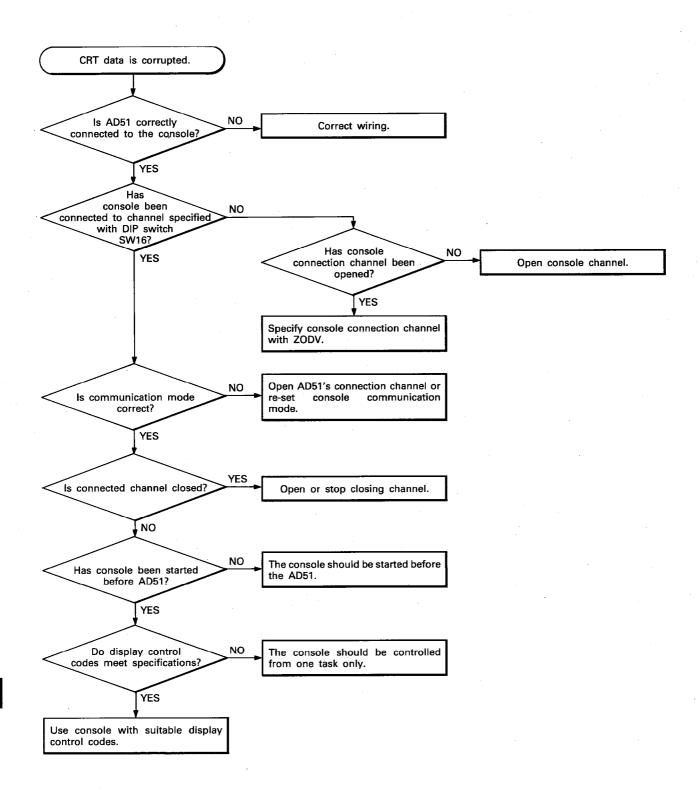
MELSEC-

8.3.4 ROM troubleshooting

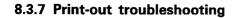


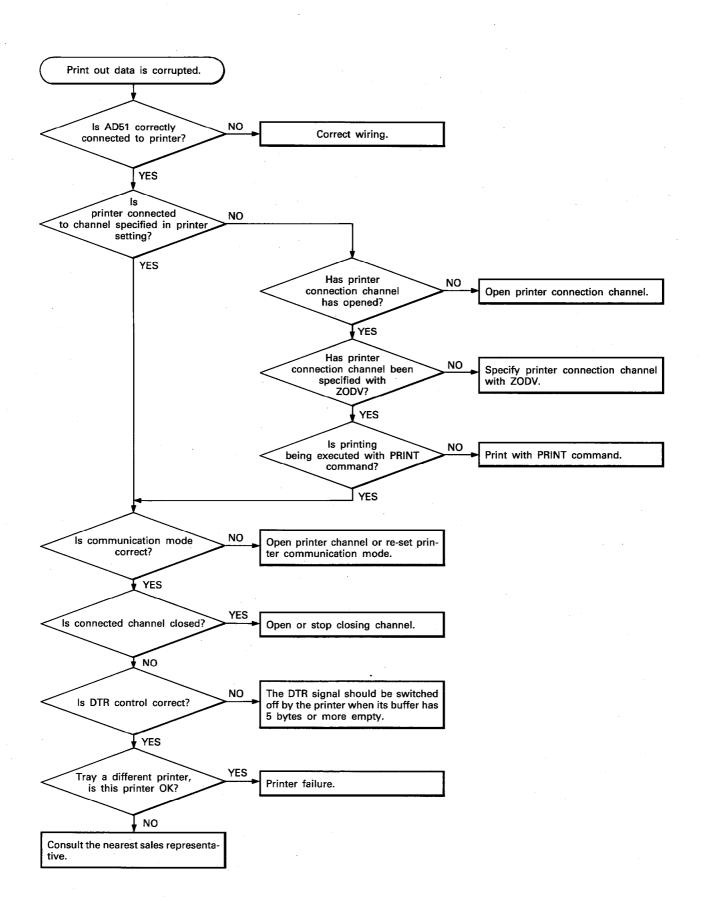
*1: Load correctly.

- 1) Is ROM in the right direction?
- 2) Is ROM securely loaded in socket?
- 3) Is ROM socket lever set correctly?


8.3.5 Multi task troubleshooting

8


MELSEC-


8.3.6 CRT troubleshooting

8-11

IB (NA) 66189-A

9. MAINTENANCE

9.1 Battery Life

When the battery voltage drops, the error indicator on the front of the AD51 displays "00". The error can also be read using the SIR system subroutine.

MELSEC-

After this error message is displayed the battery has a further life of 65 days (1560 hours).

	Guaranteed Value	Actual Operation Period (Av.)
Back-up by battery	130 days (3120 hours)	300 days (7200 hours)
Back-up after battery error	65 days (1560 hours)	-
Back-up by capacitor	11 minutes	25 minutes

Preventitive maintenance guide.

- (1) Change the battery after four years if the total battery back-up time during that period has been a maximum of 130 days.
- (2) For back-up periods exceeding a total of 130 days in four years, calculate the battery life as follows:

- {Example }------

Assume that the power is off for 14 hours 5 days a week, and all day for the remaining 2 days per week. Under these conditions, the power is off for:

14(hours) \times 5(days) = 70 hours 24(hours) \times 2(days) = <u>48</u> hours <u>118</u> hours per week

The total battery life is 3120 hours which at 118 hours per week gives

 $\frac{3120}{118} = 26.4$ weeks

= Approx. 6 months.

Therefore,

it is necessary to change the battery every 6 months.

Q

9. MAINTENANCE

9.2 Battery Changing Procedure

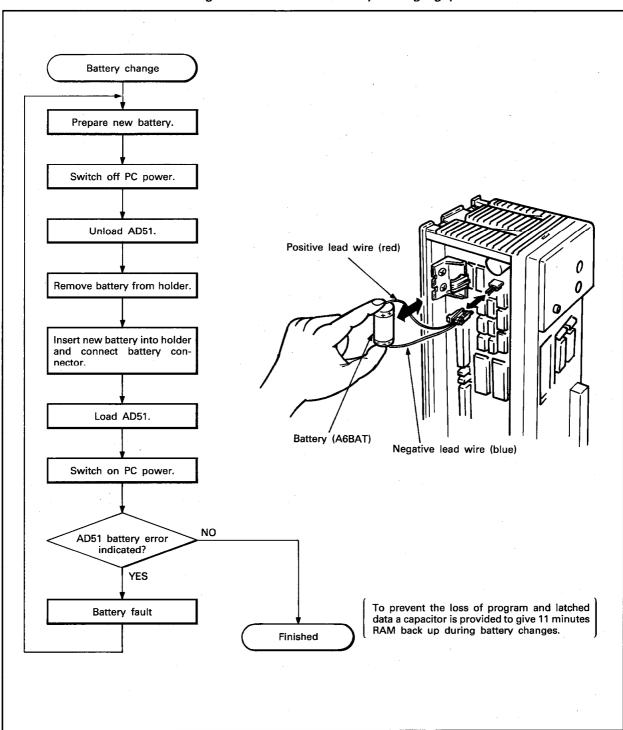


Fig. 9.1 Battery Changing Procedure

9. MAINTENANCE

MELSEC-

REMARKS

The battery is common to all the MELSEC-A series. Battery storage life is 5 years. Total memory back-up guarantee period is 130 days. Battery used is as follows.

Description : Type and rating : Lithium battery Type A6BAT (3.6V with plug and leads)

Handling instructions

- (1) Do not short.
- (2) Do not disassemble.
- (3) Do not burn.
- (4) Do not heat.
- (5) Do not solder electrodes.
- (6) Do not measure voltage with an analog voltmeter.

9-3

MELSEC-

APPENDICES

APPENDIX 1 Differences between AD51-S3 and AD51

The AD51-S3 differs from the AD51 in the following points:

(1) The AD51-S3 allows communication with the other stations in MELSECNET.

The other stations can be accessed by specifying the MELSEC-NET PC No. atthe set data head address of the system subroutine which used to access the PC CPU.

(2) In addition to the AD51 system subroutines, the AD51-S3 has the following system subroutines:

\searrow	System Subroutine	Function
1	SFLTD	32-bit integer \rightarrow 32-bit floating point number
2	SFIXD	32-bit floating point number \rightarrow 32-bit integer
3	SAER	Reads data from extension file registers of PC CPU.
4	SAEW	Writes data to extension file registers of PC CPU.
5	SAET	Randomly writes data to extension file registers of PC CPU.
6	SAEM0	Defines PC CPU extension file registers to be monitored.
7	SAEM1	Monitors PC CPU extension file registers specified in monitor data entry.
8	SAMR	Reads microcomputer program from PC CPU.
9	SAMW	Writes microcomputer program to PC CPU.
10	SACR	Reads comments from PC CPU.
11	SACW	Writes comments to PC CPU.
12	SATR	Reads data from special function module buffer memory.
13	SATW	Writes data to special function module buffer memory.

(3) The AD51-S3 has system data transfer mode which allows system data to be transferred from 4F00_H-4FFF_H to 8000_H-80FF_H of channel 1.

This mode allows system data to be stored onto ROM.

APPENDIX 2 Special Function Module Buffer Memory Address Tables

The following tables list special function module buffer memory addresses specified by the AD51 using system subroutines SATR and SATW.

For full information on the buffer memory, see the corresponding module manual.

(1) A68AD analog-to-digital converter module

Putter Memory Assignment	Address Speci	fied from AD51	
Buffer Memory Assignment	8 lower bits	8 higher bits	Address for FROM/TO Instruction
Number of channels	80н	81 н	0
Averaging processing specification	82 _H	83 н	1
CH1 averaging time, count	84 _H	85н	2
CH2 averaging time, count	86 _H	87 _H	3
CH3 averaging time, count	88 _H	89 _H	4
CH4 averaging time, count	8Ан	8Вн	5
CH5 averaging time, count	8C ⁺	8D _H	6
CH6 averaging time, count	8EH	8F _H	7
CH7 averaging time, count	90н.	91н	8
CH8 averaging time, count	92 _H	93н	9
CH1 digital output value	94н	95 _H	10
CH2 digital output value	96 н	97 _H	11
CH3 digital output value	98 _H	99н	12
CH4 digital output value	9Ан	9Вн	13
CH5 digital output value	9CH	9Dн	14
CH6 digital output value	9Eн	9F _H	15
CH7 digital output value	АОн	А1н	16
CH8 digital output value	А2н	АЗн	17
Write data error code	С4н	С5н	34

(2) A62DA digital-to-analog converter module

Duffer Merror Andirenset	Address Specified from AD51		
Buffer Memory Assignment	8 lower bits	8 higher bits	Address for FROM/TO Instruction
CH1 digital value	10 н	11н	0
CH2 digital value	12н	13 _H	1
CH1 voltage set value check code	14 _H	15н	2
CH2 voltage set value check code	16 _H	17 н	3
CH1 current set value check code	18 _H	19 н	4
CH2 current set value check code	1Ан	1Bн	5

AP

(3) A84AD analog/digital converter module

Duffer Manager Assistant	Address Speci	fied from AD51	Address for EDOM/TO Instruction
Buffer Memory Assignment	8 lower bits 8 higher bits		Address for FROM/TO Instruction
Unused area	10н	11 _H	0
Averaging processing specification	12 н	13 H	1
CH1 averaging time, count specification	14 _H	15 _∺	2
CH2 averaging time, count specification	16н	17 _∺	3
CH3 averaging time, count specification	18н	19 ⊦	4
CH4 averaging time, count specification	1A _H	1Bн	5
Reserved area (must not be used)	·		
CH1 digital I/O value	24 н	25н	10
CH2 digital I/O value	26 н	27н	11
CH3 digital I/O value	28н	29н	12
CH4 digital I/O value	2А н	2Вн	13
CH1 internal setting mode flag	2Сн	2Dн	14
CH2 internal setting mode flag	2Ен.	2FH	15
CH3 internal setting mode flag	30н	31н	16
CH4 internal setting mode flag	32н	33н	17
CH1 temperature detection value	34 .	35н	18
CH2 temperature detection value	36н	37 н	19
CH3 temperature detection value	38н	39 ⊦	20
CH4 temperature detection value	ЗАн	ЗВн	21
CH1 set value check code	ЗСн	3D _H	22
CH2 set value check code	ЗЕн	3Fн	23
CH3 set value check code	4 0н	41н	24
CH4 set value check code	42 ⊦	43н	25
Write data error code	44 _H	4 5н	26
Analog output enable signal enable/dis- able flag	46 н	47 _H	27
CH1 module code	48 _H	49 _H	28
CH2 module code	4А н	4Вн	29
CH3 module code	4Сн	4Dн	30
CH4 module code	4E _H	4F _H	31
CH1 temperature setting range (offset value)	50 _H	51 _H	32
CH1 temperature setting range (gain value)	5 2 н	53н	33
CH2 temperature setting range (offset value)	54 H	55 +	34
CH2 temperature setting range (gain value)	5 6 н	57 _H	35
CH3 temperature setting range (offset value)	58 _H	59 _H	36
CH3 temperature setting range (gain value)	5Ан	5Bн	37
CH4 temperature setting range (offset value)	5Сн	5D+	38
CH4 temperature setting range (gain value)	5EH	5F _H	39

(4) AD61 high-speed counter module

Duffen Mensen Assistant	Address Specif	Address Specified from AD51		Address for FROM/TO Instruction	
Buffer Memory Assignment	Channel 1	Channel 2	CH1	CH2	
Preset value write (lower)	82 н	С2н	· ·		
Preset value write (middle)	83н	СЗн		33	
Preset value write (upper)	84 ⊬	С4н			
	85н	С5н	2	34	
Mode register	86 ^н	С6н	- 3	35	
	87 н	С7н			
Present value read (lower)	88 _H	С8н			
Present value read (middle)	89 н	С9н	- 4	36	
Present value read (upper)	8Ан	САн			
	8Bн	СВн	- 5	37	
Set value read/write (lower)	8CH	ССн	6		
Set value read/write (middle)	8Dн	СDн	- 6	38	
Set value read/write (upper)	8E _H	СЕн	_		
	8F _∺	СFн	- 7	39	

APPENDICES

(5) AD71(S1) positioning module

Buffer Memory Assignment		Address Specified from AD51	Address for FROM/TO Instruction	
		200н	0	
X axis positioning start data		to	to	
		391н	200	
		392 н	001	
Error reset		393н	201	
		458 ⊬	300	
Y axis positioning start data		to	to	
		5E9H	500	
· · · ·		2040н	3872	
Positioning data		to	to	
	B	235F _H	4271	
10	data	2360н	4272	
Proitioning aroud		to	4272 to	
Positioning speed	nin	267F _H	4671	
	positioning		· · · · · · · · · · · · · · · · · · ·	
	osi	2680 _H	4672	
Dwell time		to	to	
	axis	229F _H	5071	
	×	29 A0 _H	5072	
Positioning address		to	to	
· · · · · · · · · · · · · · · · · · ·		2FDF _H	5871	
		2FE0н	5872	
Positioning data		to	to	
	data	32FF _H	6271	
		3300н	6272	
Positioning speed	ing	to	to	
	positioning	361F⊦	6671	
	sit	3620н	6672	
Dwell time	g	to	to	
	axis	393F _H	7071	
		3940н	7072	
Positioning address		to	to	
-		3F7F⊬	7871	
· · · · · · · · · · · · · · · · · · ·		3F80 _H	7872	
X axis parameter		to	to	
		3F9F _H	7887	
		3FA8+	7892	
Y axis parameter		to	to	
		ЗFC7н	7907	
		3FD0H	7912	
X axis zeroing data		to	to	
A AND ZEIDINY Udla		3FDD⊦	7917	
Marcia annota a data		3FE4⊬	7922	
Y axis zeroing data		to	to 7928	
		3FF1⊬	7928	

(6) AD72 positioning module

Buffer Memory Assignment	Address Specified from AD51	Address for FROM/TO Instruction
	200н	0
X axis positioning start data	to	to
	391 ⊬	200
Error reset	392н	201
	393н	201
	458 н	300
Y axis positioning start data	to	to
	5E9 _H	500
	6В0н	600
Monitoring area	to	to
	6BFн	607
	204 0н	3872
X axis positioning data	to	to
	2FDF _H	5871
	2FEOH	5872
Y axis positioning data	to	to
	3F7F _H	7871
	3F80н	7872
X axis parameter	to	to
	3F9F _H	7891
	ЗFA8н	7892
Y axis parameter	to	to
	3FC7н	7911
	3FD0н	7912
X axis zeroing data	to	to
	3FDD⊦	7917
	3FE4 _H	7922
Y axis zeroing data	to	to
	3FF1н	7928

(7) AJ71C24-S3

Address Specified from AD51	Address for FROM/TO Instruction
1000⊬	0
to	to
11FF⊬	FFн
1200⊬	100н
to	to (special application area)
123F⊬	11Fн
1240н	120н
to	to
1FFFн	7FFн

APP

MELSEC-

APPENDICES

APPENDIX 3 GPP/HGP Display Control Codes

Function	Description	Code (ASCII)	BASIC Command
Line feed	Carriage return and line feed	CR, LF codes (0DH, 0AH)	
Screen clear	All screen clear	FF code (0CH)	CLS
XON	Enable transfer from external device.	DC1 code (11 _H)	
XOFF	Disable transfer from external device.	DC3 code (13 _H)	
Escape	Initiate escape sequence	ESC code (1BH)	
Back space	Cursor back one space	BS code (08н)	
Cursor addressing	Set cursor position absolutely.	ESC + Y (59H) + line specification code (20H to 9FH) + column specification code (20H to 9FH)	LOCATE
	Character highlight stop	$ESC + O (4F_H)$	ZNOR
Character	Character highlight	ESC + R (52H)	ZCRV
qualification	Cursor ON	ESC + S (53H)	ZCON
	Cursor OFF	ESC + T (54H)	ZCOFF
Audible alarm	Bell	BEL code (07н)	

Display Control Code List

APP

APPENDIX 4 GPP/HGP/PHP Key Codes and Character Codes

																					_
				b₃	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	÷
				b7	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
				b₀	0	0	1	1	0	0	1	1	0	0.	1	1	0	0	1	1	
				b₅	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
b₄	b₃	b2	b٦	Column Line	0	1	2	3	4	5	6	7	8	9	А	в	с	D	E	F	- HEX
0	0	0	0	0		CTRL /P	SP	0	@	Ρ		р	INS								
0	0	0	1	1	CTRL /A	CTRL /Q	1	1	Α	Q	a	q	t	F1	0						
0	0	1	0	2	CTRL /B	CTRL /R	"	2	В	R	b	r	ţ	F2	Г						
Ó	0	1	1	3	BREAK	CTRL /S	#	3	С	S	с	s	-	F3	1			-			
0	1	0	0	4	CTRL /D	CTRL /T	\$	4	D	Т	d	t	-	F4							
0	1	0	1	5	CTRL /E	CTRL /U	%	5	E	U	е	u		F5	•						
0	1	1	0	6	CTRL /F	CTRL /V	&	6	F	v	f	v		F 6							
0	1	1	1	7	CTRL /G	CTRL /W	'	7	G	W	g	w		F7							
1	. 0	0	0	8	BS	CAN	(8	Н	Х	h	x	HOME	F8							
1	0	0	1	9	HTAB	CTRL /Y)	9	ł	Y	i	' y		F9							
1	0	1	0	Α	LF	CTRL /Z	*	:	J	Z	j	z		F10							
1	0	1	1	В	CTRL /K	ESC	+	;	к	(k	{									
1	1	0	0	С	CTRL /L	CTRL /¥	,	>	L	¥	1	1									
1	1	0	1	D	CR			=	M)	m	}	[· · ·								
1	1	1	0	E	CTRL /N			<	Ν	>	n	~						"			
1	1	1	1	F	CTRL /O	CTRL /	1	?	0	-	0	DEL						•			

(1) GPP/HGP/PHP key codes

† HEX

*For CTRL/ [], press [] and CTRL simultaneously.

Кеу	Key Code					
MELSAP	ESC + "(" (28 _H) + "M" (4D _H)					
GPP	ESC + "(" (28н) + "G" (37н)					

MELSEC-

				b۶	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
				b7	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
				b6	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
				b₅	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
b₄	b₃	b2	b₁	Column Line	0	1	2	3	4	5	6	7	8	9	Α	в	с	D	Е	F	← HEX
0	0	0	0	0			SP	0	@	Р	•	р	Н	=		_			α	×	
0	0	0	1	1			!	1	Α	٥	а	q	\vdash	F	0				β		-
0	0	1	0	2			ĸ	2	В	R	b	r	┢		Г				ε		
0	0	1	1	3			#	3	С	S	с	s	K]				μ		
0	1	0	0	4			\$	4	D	Т	d	t	\prec	1	•				ø		
0	1	0	1	5			%	5	Е	υ	е	u	Х	1					θ		
0	1	1	0	6			&	6	F.	V	f	v	Ļ	\mathbf{A}					ω		
0	1	1	1	7			,	7	G	Ŵ	g	w]–	$\left \right\rangle$					Ω		
1	0	0	0	8			(8	н	Х	h	х	—						Σ		
1	0	0	1	9)	9	1	Y	i	У							π		
1	0	1	0	A			*	:	J	Z	i	z	-	I					1		
1	0	1	1	В			+	;	κ	(k	{	F	<u> </u>					Ļ		
1	1	0	0	C.			,	<	L	¥	1	1		—							
1	1	0	1	D			—	=	м)	m	}	▶-	L					+		
1	1	1	0	E			0	>	Ν	<	n	~		\rightarrow				"	/		Ì
1	1	1	1	F.			1	?	0		0	2	ΙK	\leftarrow				۰	$\left \right\rangle$		

(2) GPP/HGP/PHP character codes

† HEX

(3) Selected character list

Ke	ey Code	English	German	Swedish	Japanese	
1	5e	^	^	Ü	^	
	7e	~	β	ü	~	
2	5c	\sim \sim	Ö	Ö	¥	
, Z	7c	l I	ö	ö		
3	40	@	§	É	@	
3	60	•	•	é		
4	5b	[Ä	Ä	[
4	7b	{	ä	ä	{ .	
5	5d]	Ü	Å]	
5	7d	. }	ü	å	. }	
6	24	\$	\$	0	\$	
7	23	£	#	#	#	

APP

APF

MELSEC-

Escape Sequence

	Function	Description	Code				
1	Screen clear	All screen erase	ESC + [+ 2 + J				
2	Cursor addressing	Set cursor position.	ESC + [+ (line specification) +; + (column specification) + H (*				
3	Character	Character qualification OFF	ESC + [+ 0 + m				
³	qualification	Character highlight	ESC + [+ 7 + m				
4	Cursor home Move the cursor to home position.		ESC + [+ H				

*: Line specification 1 to 24 Column specification 1 to 80

Example: To specify line 5 and column 10

 $ESC + [+ \underbrace{5 (35_{H})}_{\text{Line specification}} + ; + \underbrace{1 (31_{H}) + 0 (30_{H})}_{\text{Column specification}} + H$

Note: The LOCATE command counts the line and column, starting at 0. If "LOCATE 0, 0" is executed, code "ESC + [+ 1 + ; + 1 + H" is transmitted to the VT220.

MELSEC-

APPENDIX 5 Storing the AD51E Memory Data into ROM Using the A6WU

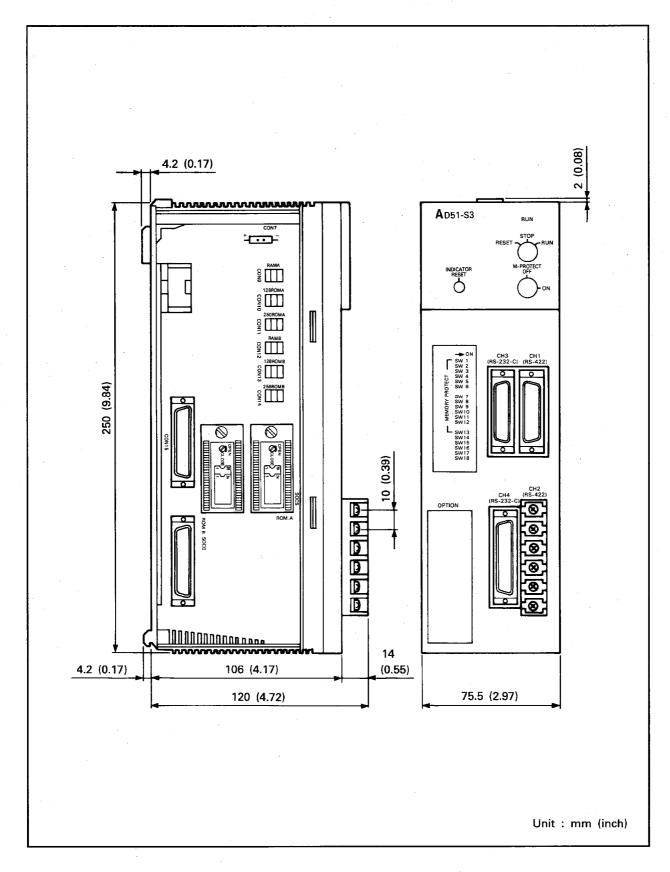
The AD51E internal memory and buffer memory data can be stored into the ROM with the A6WU P-ROM writer unit connected with the PC CPU.

For the operating procedure, see the A6WU Operating Manual.

The addresses must be set as follows when the AD51E data is written to the ROM using the A6WU.

		AD51E Addresses	Addresses Set by A6WU				
Programming	data	4F81н to 4FD0н	4F81н to 4FD0н				
Common a	rea	6000н to 67FFн	6000н to 67FFн				
	CH1	8000H to FFFFH	8000H to FFFFH				
	CH2	8000н to FFFFн	10000н to 17FFFн				
Channel area	СНЗ	8000н to DFFFн	18000н to 1DFFFн				
	CH4	8000н to DFFFн	20000н to 25FFFн				
Buffer mem	iory	000н to BFFн (0 to 3071)	0 to 3071				

REMARKS


Data may only be stored to the ROM if the AD51 is connected with the A1(E), A2(E), A3(E), A1N, A2N, A3N or A3HCPU.

APPENDICES

APP

APPENDIX 6 External View

IMPORTANT

The components on the printed circuit boards will be damaged by static electricity, so avoid handling them directly. If it is necessary to handle them take the following precautions.

- (1) Ground human body and work bench.
- (2) Do not touch the conductive areas of the printed circuit board and its electrical parts with any non-grounded tools etc.

Under no circumstances will Mitsubishi Electric be liable or responsible for any consequential damage that may arise as a result of the installation or use of this equipment.

All examples and diagrams shown in this manual are intended only as an aid to understanding the text, not to guarantee operation. Mitsubishi Electric will accept no responsibility for actual use of the product based on these illustrative examples.

Owing to the very great variety in possible applications of this equipment, you must satisfy yourself as to its suitability for your specific application.

Intelligent Communication Module type AD51-S3

User's Manual

MODEL AD51E-S3-USERS-E MODEL 13J655 IB(NA)66189-A(8901)MEE

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : MITSUBISHI DENKI BLDG MARUNOUCHI TOKYO 100-8310 TELEX : J24532 CABLE MELCO TOKYO NAGOYA WORKS : 1-14 , YADA-MINAMI 5 , HIGASHI-KU, NAGOYA , JAPAN

> When exported from Japan, this manual does not require application to the Ministry of International Trade and Industry for service transaction permission.