

# FR-E500

**Frequency Inverter** 

**Instruction Manual** 

# OI-FR-E5NCO CANopen Communications Option Unit



MITSUBISHI ELECTRIC INDUSTRIAL AUTOMATION

Specifications subject to change without notice.

Windows, DOS and other product names may be trademarks or registered trademarks of their respective companies.

#### Warning symbols

For your own safety, please pay special attention to instructions containing the following symbol:



This warning symbol indicates the presence of dangerous voltage. It informs you of high voltage conditions, situation and locations that may cause death or serious injury if you do not follow precautions.

**NOTES** inform you of situations or conditions which will damage machinery or cause additional motor-operation downtime if you do not take suggested steps to correct or address such situations or conditions.

Thank you for choosing this option unit for the Mitsubishi FR-E500 Series transistorized frequency inverters. Please read this manual carefully before using this option unit.

This instruction manual gives handling information and precautions for use of this product. Incorrect handling might cause an unexpected fault. Before using the equipment, please read this manual carefully to use it to its optimum.

Please forward this manual to the end user.

CANopen Communications Option Unit

This option allows the inverter to be connected to a network adhering to the CANopen communications protocol. Some important features are highlighted below.

- Data rates of 20K baud, 50K baud, 62.5K baud, 100K baud, 125K baud, 250K baud, 500Kbaud, and1M baud are selectable.
- Up to 99 stations supported on a single network.
- Ability to add or remove stations without disrupting network operation.
- Network access to all inverter parameters, Start/Stop commands, and monitor data.

# **Safety Instructions**

Do not attempt to install, operate, maintain or inspect this product until you have read through this instruction manual and appended documents carefully and can use the equipment correctly. Do not use this product until you have a full knowledge of the equipment, safety information and instructions.

In this manual, the safety instruction levels are classified into "WARNING" and "CAUTION".



Denotes that incorrect handling may cause hazardous conditions, resulting in death or severe injury.



Denotes that incorrect handling may cause hazardous conditions, resulting in medium or slight injury, or may cause physical damage only.

Note that even the **CAUTION** level may lead to a serious consequence under some circumstances. Please follow the instructions of both levels as they are important to personnel safety.

# SAFETY INSTRUCTIONS

# 1. Electric Shock Prevention

# 

- While power is on or when the inverter is running, do not open the front cover. You may get an electric shock.
- Do not run the inverter with the front cover removed. Otherwise, you may access the exposed high-voltage terminals and charging part and get an electric shock.
- If power is off, do not remove the front cover except for wiring or periodic inspection. You may access the charged inverter circuits and get an electric shock.
- Before starting wiring or inspection, switch power off, wait for more than 10 minutes, and check for residual voltage with a tester or the like.
- Any person who is involved in the wiring or inspection of this equipment should be fully competent to do the work.
- Always install the option unit before wiring. Otherwise, you may get an electric shock or be injured.
- Operate the switches with dry hands to prevent an electric shock.
- Do not subject the cables to scratches, excessive stress, heavy loads or pinching. Otherwise, you may get an electric shock.

# 2. Injury Prevention

#### 

- Apply only the voltage specified in the instruction manual to each terminal to prevent damage, etc.
- Ensure that the cables are connected to the correct terminals. Otherwise damage, etc. may occur.
- Always make sure that polarity is correct to prevent damage, etc.
- While power is on or for some time after power-off, do not touch the inverter as it is hot and you may get burnt.

# **3. Additional Instructions**

Also note the following points to prevent an accidental failure, injury, electric shock, etc.

#### (1) Transportation and installation



- Do not install or operate the option unit if it is damaged or has parts missing.
- Do not stand or rest heavy objects on top of the product.
- Check that the mounting orientation is correct.
- Prevent screws, metal fragments, conductive bodies, oil or other flammable substance from entering the inverter.

#### (2) Test operation and adjustment



• Before starting operation, confirm and adjust the parameters. A failure to do so may cause some machines to make unexpected motions.

#### (3) Usage



• Do not modify the equipment.

# 

- When parameter clear or all parameter clear is performed, each parameter returns to the factory setting. Re-set the required parameters before starting operation.
- For prevention of damage due to static electricity, touch nearby metal before touching this product to eliminate static electricity from your body.

#### (4) Maintenance, inspection and parts replacement

#### 

• Do not test the equipment with a megger(measure insulation resistance).

#### (5) Disposal

#### 

• Dispose of this product as general industrial waste.

#### (6) General information

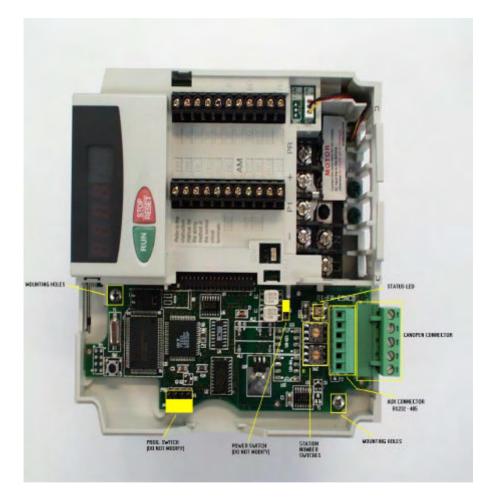
All illustrations given in this manual may have been drawn with covers or safety guards removed to provide in-depth description. Before starting operation of the product, always return the covers and guards into original positions as specified and operate the equipment in accordance with the manual.

# INDEX

| <u>1. Stf</u> | UCTURE                                                     | 13        |
|---------------|------------------------------------------------------------|-----------|
|               |                                                            |           |
| <u>2. INS</u> | TALLATION                                                  | 14        |
|               |                                                            |           |
| 2.1.          | PRE-INSTALLATION CHECKS                                    | 14        |
|               | INSTALLATION PROCEDURE                                     | 14        |
|               | CONNECTION TO NETWORK                                      | 15        |
| 2.4.          | LED STATUS INDICATOR                                       | 16        |
| <u>3. GE</u>  | ITING STARTED                                              | 16        |
|               |                                                            | 40        |
| -             | NODE ADDRESS AND BAUD RATE<br>NET MODE AND PARAMETER SETUP | 16<br>16  |
| J.Z.          | NET MODE AND PARAMETER SETUP                               | 10        |
| <u>4. OP</u>  | ERATION                                                    | 17        |
| 41            | OPERATION MODES                                            | 17        |
|               | 1. PU OPERATION MODE                                       | 17        |
|               | 2. EXTERNAL OPERATION MODE                                 | 17        |
|               | 3. NETWORK (COMPUTER LINK) OPERATION MODE                  | 17        |
|               | OPERATION MODE SELECTION                                   | 17        |
| <u>5. FR-</u> | E5ND SPECIFIC PARAMETERS                                   | 18        |
| 5.1.          | PARAMETERS 345 AND 346                                     | 18        |
| <u>6. CAI</u> | NOPEN COMMUNICATION PROFILE                                | 20        |
| 6.1.          | SERVICE DATA OBJECT (SDO)                                  | 20        |
|               |                                                            | -         |
| nt387_00E     | 28/03/02                                                   | Pag. 9/60 |

| 6.2. OBJECT DICTIONARY ENTRIES SUPPORTED                                                                                                               | 22                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 6.2.1. OBJECTS 2000H-2002H                                                                                                                             | 23                                        |
| 6.2.2. OBJECTS 3000H-33E7H                                                                                                                             | 23                                        |
| 6.2.2.1. Parameters 902-905                                                                                                                            | 23                                        |
| 6.2.2.2. Other parameters                                                                                                                              | 24                                        |
| 6.2.3. OBJECTS 3400H – 3403H SUBINDEX 0H                                                                                                               | 24                                        |
| 6.2.4. OBJECT 4000H SUBINDEX 0H                                                                                                                        | 24                                        |
| 6.2.4.1. Inverter command                                                                                                                              | 24                                        |
| 6.2.4.2. Inverter Status                                                                                                                               | 25                                        |
| 6.2.5. OBJECT 4001H SUBINDEX 0H                                                                                                                        | 26                                        |
| 6.2.6. OBJECT 4001H SUBINDEX 1H                                                                                                                        | 26                                        |
| 6.3. EMERGENCY OBJECT                                                                                                                                  | 27                                        |
| 6.4. NODE GUARDING PROTOCOL                                                                                                                            | 28                                        |
| 6.5. DEFAULT PDO DEFINITION                                                                                                                            | 28                                        |
| 6.5.1. RECEIVE PDO1                                                                                                                                    | 28                                        |
| 6.5.2. TRANSMIT PDO1                                                                                                                                   | 28                                        |
| 6.5.3. OTHER RECEIVE AND TRANSMIT PDO                                                                                                                  | 29                                        |
|                                                                                                                                                        |                                           |
| 7. CANOPEN DEVICE PROFILE                                                                                                                              | 30                                        |
|                                                                                                                                                        |                                           |
| 7.1. EMERGENCY ERROR CODE                                                                                                                              | 31                                        |
| 7.1.1. RESTRICTIONS                                                                                                                                    | <b>3</b> 1                                |
|                                                                                                                                                        | 31<br>31                                  |
| 7.2. OBJECT 1000H (DEVICE TYPE)                                                                                                                        | 32                                        |
| 7.3. OBJECT 1001H (ERROR REGISTER)<br>7.4. OBJECT 6007H (ABORT CONNECTION OPTION CODE)                                                                 | 32<br>32                                  |
| 7.4. OBJECT 6007H (ABORT CONNECTION OPTION CODE)<br>7.5. OBJECT 6040H (CONTROLWORD)–6041H (STATUSWORD)                                                 | 32<br>32                                  |
| 7.5.1. RESTRICTIONS                                                                                                                                    | <b>32</b>                                 |
|                                                                                                                                                        | 33<br>33                                  |
| 7.6. OBJECT 6042H (VL_TARGET_VELOCITY)<br>7.7. OBJECT 6043H (VL_VELOCITY_DEMAND)                                                                       | აა<br>33                                  |
|                                                                                                                                                        |                                           |
| 7.8. OBJECT 6044H (VL_CONTROL_EFFORT)                                                                                                                  |                                           |
|                                                                                                                                                        | 33                                        |
| 7.9. OBJECT 6046H (VL_VELOCITY_MIN_MAX_AMOUNT)                                                                                                         | 33<br>33                                  |
| 7.10. OBJECT 6048H (VL_VELOCITY_ACCELERATION)                                                                                                          | 33<br>33<br>33                            |
| 7.10. OBJECT 6048H (VL_VELOCITY_ACCELERATION)<br>7.10.1. RESTRICTIONS                                                                                  | <b>33</b><br><b>33</b><br><b>33</b><br>33 |
| <ul> <li>7.10. OBJECT 6048H (VL_VELOCITY_ACCELERATION)</li> <li>7.10.1. RESTRICTIONS</li> <li>7.11. OBJECT 6049H (VL_VELOCITY_DECELERATION)</li> </ul> | 33<br>33<br>33<br>33<br>33<br>34          |
| 7.10. OBJECT 6048H (VL_VELOCITY_ACCELERATION)<br>7.10.1. RESTRICTIONS                                                                                  | <b>33</b><br><b>33</b><br><b>33</b><br>33 |

| 7.12.2. NOTE347.13. OBJECT 6060H (MODES OF OPERATION)357.14. OBJECT 6061H (MODES OF OPERATION DISPLAY)357.15. OBJECT 6FFFH (SINGLE DEVICE TYPE)358. MODBUS PROTOCOL368.1. INTRODUCTION368.2. CONNECTION DIAGRAM378.3. COMMUNICATION PARAMETERS388.3.1. BAUDRATE SETTING398.3.2. PARITY SETTING398.3.3. WAITING TIME SETTING398.3.4. IMMEDIATE/NOT IMMEDIATE ANSWER398.3.5. EXAMPLE OF PARAMETER 347 SETTING (1)408.3.6. EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7. EXAMPLE OF PARAMETER 347 SETTING (2)408.3.8. NODE IDENTIFICATION418.5. N WORDS READING428.5.1. EXAMPLE OF N WORDS READING428.6.1. EXAMPLE OF N WORDS READING428.7.1. PARAMETERS 0-999448.7.1.1. Example of writing of 1 parameter448.7.2. ALARMS BUFFER458.7.3. MEASURES468.7.3. MEASURES468.7.4.1. Example of reading of 1 parameter448.7.2.1. Example of reading of 1 measure468.7.3. MEASURES468.7.4. COMMAND SETTING478.7.5. INVERTER STATUS478.7.5. INVERTER STATUS478.7.5.1. Example of command setting478.7.5.1. Example of reading of inverter status48                                                                                                                                                                                                                                                                               | 7.12.1. RESTRICTIONS                            | 34 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----|
| 7.14.OBJECT 6061H (MODES OF OPERATION DISPLAY)357.15.OBJECT 6FFFH (SINGLE DEVICE TYPE)358.MODBUS PROTOCOL368.1.INTRODUCTION368.2.CONNECTION DIAGRAM378.3.COMMUNICATION PARAMETERS388.3.1.BAUDRATE SETTING398.3.2.PARITY SETTING398.3.3.WAITING TIME SETTING398.3.4.IMMEDIATE/NOT IMMEDIATE ANSWER398.3.5.EXAMPLE OF PARAMETER 347 SETTING (1)408.3.6.EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7.EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7.EXAMPLE OF PARAMETER 347 SETTING (3)418.4.NODE IDENTIFICATION418.5.N WORDS READING428.5.1.EXAMPLE OF N WORDS READING428.6.1.EXAMPLE OF N WORDS READING428.7.1.PARAMETERS 0-999448.7.1.1.Example of reading of 1 parameter448.7.2.1.Example of reading of 1 parameter448.7.2.1.Example of alarms buffer reading458.7.3.1.Example of reading of 1 measure468.7.4.1.Example of command setting478.7.4.1.Example of command setting478.7.5.INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                              | 7.12.2. NOTE                                    | 34 |
| 7.15.OBJECT 6FFFH (SINGLE DEVICE TYPE)358.MODBUS PROTOCOL368.1.INTRODUCTION368.2.CONNECTION DIAGRAM378.3.Communication Parameters388.3.1.BAUDRATE SETTING398.3.2.PARITY SETTING398.3.3.WAITING TIME SETTING398.3.4.IMMEDIATE/NOT IMMEDIATE ANSWER398.3.5.EXAMPLE OF PARAMETER 347 SETTING (1)408.3.6.EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7.EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7.EXAMPLE OF PARAMETER 347 SETTING (3)418.4.NODE IDENTIFICATION418.5.N WORDS READING428.5.1.EXAMPLE OF N WORDS READING428.6.1.EXAMPLE OF N WORDS READING428.7.1.PARAMETERS 0-999448.7.1.1.Example of writing of 1 parameter438.7.2.ALARMS BUFFER458.7.2.1.Example of reading of 1 parameter448.7.2.1.Example of reading of 1 measure468.7.3.1.Example of reading of 1 measure468.7.4.COMMAND SETTING468.7.4.1.Example of command setting478.7.5.INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.13. OBJECT 6060H (MODES OF OPERATION)         | 35 |
| 8. MODBUS PROTOCOL       36         8.1. INTRODUCTION       36         8.2. CONNECTION DIAGRAM       37         8.3. COMMUNICATION PARAMETERS       38         8.3.1. BAUDRATE SETTING       38         8.3.2. PARITY SETTING       39         8.3.3. WAITING TIME SETTING       39         8.3.4. IMMEDIATE/NOT IMMEDIATE ANSWER       39         8.3.5. EXAMPLE OF PARAMETER 347 SETTING (1)       40         8.3.6. EXAMPLE OF PARAMETER 347 SETTING (2)       40         8.3.7. EXAMPLE OF PARAMETER 347 SETTING (2)       40         8.3.7. EXAMPLE OF PARAMETER 347 SETTING (2)       40         8.3.7. EXAMPLE OF PARAMETER 347 SETTING (3)       41         8.5. NODE IDENTIFICATION       41         8.5. N WORDS READING       42         8.5.1. EXAMPLE OF N WORDS READING       42         8.5.1. EXAMPLE OF N WORD WRITING:       42         8.6.1. EXAMPLE OF 1 WORD WRITING:       42         8.6.1. EXAMPLE OF 1 WORD WRITING:       42         8.7.1. PARAMETERS 0-999       44         8.7.1.1. Example of writing of 1 parameter       44         8.7.2.1. Example of reading of 1 parameter       44         8.7.2.1. Example of alarms buffer reading       45         8.7.3.1. Example of reading of 1 measure       46 <td>7.14. OBJECT 6061H (MODES OF OPERATION DISPLAY)</td> <td>35</td> | 7.14. OBJECT 6061H (MODES OF OPERATION DISPLAY) | 35 |
| 8.1.INTRODUCTION368.2.CONNECTION DIAGRAM378.3.COMMUNICATION PARAMETERS388.3.1.BAUDRATE SETTING398.3.2.PARITY SETTING398.3.3.WAITING TIME SETTING398.3.4.IMMEDIATE/NOT IMMEDIATE ANSWER398.3.5.EXAMPLE OF PARAMETER 347 SETTING (1)408.3.6.EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7.EXAMPLE OF N WORDS READING (3)418.5.1.EXAMPLE OF N WORDS READING428.5.1.EXAMPLE OF N WORDS READING428.6.1.EXAMPLE OF N WORD WRITING:428.6.1.EXAMPLE OF 1 WORD WRITING:428.7.1.PARAMETERS 0-999448.7.1.Example of reading of 1 parameter448.7.2.ALARMS BUFFER458.7.2.ALARMS BUFFER458.7.3.MEASURES468.7.4.COMMAND SETTING468.7.4.1.Example of command setting478.7.5.INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                            | 7.15. OBJECT 6FFFH (SINGLE DEVICE TYPE)         | 35 |
| 8.1.INTRODUCTION368.2.CONNECTION DIAGRAM378.3.COMMUNICATION PARAMETERS388.3.1.BAUDRATE SETTING398.3.2.PARITY SETTING398.3.3.WAITING TIME SETTING398.3.4.IMMEDIATE/NOT IMMEDIATE ANSWER398.3.5.EXAMPLE OF PARAMETER 347 SETTING (1)408.3.6.EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7.EXAMPLE OF N WORDS READING (3)418.5.1.EXAMPLE OF N WORDS READING428.5.1.EXAMPLE OF N WORDS READING428.6.1.EXAMPLE OF N WORD WRITING:428.6.1.EXAMPLE OF 1 WORD WRITING:428.7.1.PARAMETERS 0-999448.7.1.Example of reading of 1 parameter448.7.2.ALARMS BUFFER458.7.2.ALARMS BUFFER458.7.3.MEASURES468.7.4.COMMAND SETTING468.7.4.1.Example of command setting478.7.5.INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |    |
| 8.2.CONNECTION DIAGRAM378.3.COMMUNICATION PARAMETERS388.3.1.BAUDRATE SETTING398.3.2.PARITY SETTING398.3.3.WAITING TIME SETTING398.3.4.IMMEDIATE/NOT IMMEDIATE ANSWER398.3.5.EXAMPLE OF PARAMETER 347 SETTING (1)408.3.6.EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7.EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7.EXAMPLE OF PARAMETER 347 SETTING (3)418.5.N WORDS READING428.5.1.EXAMPLE OF N WORDS READING428.6.1.EXAMPLE OF N WORDS READING428.6.1.EXAMPLE OF 1 WORD WRITING:428.7.1.PARAMETERS 0-999448.7.1.Example of writing of 1 parameter448.7.2.ALARMS BUFFER458.7.3.MEASURES468.7.3.1.Example of reading of 1 measure468.7.4.COMMAND SETTING468.7.4.1.Example of command setting478.7.5.INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8. MODBUS PROTOCOL                              | 36 |
| 8.2.CONNECTION DIAGRAM378.3.COMMUNICATION PARAMETERS388.3.1.BAUDRATE SETTING398.3.2.PARITY SETTING398.3.3.WAITING TIME SETTING398.3.4.IMMEDIATE/NOT IMMEDIATE ANSWER398.3.5.EXAMPLE OF PARAMETER 347 SETTING (1)408.3.6.EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7.EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7.EXAMPLE OF PARAMETER 347 SETTING (3)418.5.N WORDS READING428.5.1.EXAMPLE OF N WORDS READING428.6.1.EXAMPLE OF N WORDS READING428.6.1.EXAMPLE OF 1 WORD WRITING:428.7.1.PARAMETERS 0-999448.7.1.Example of writing of 1 parameter448.7.2.ALARMS BUFFER458.7.3.MEASURES468.7.3.1.Example of reading of 1 measure468.7.4.COMMAND SETTING468.7.4.1.Example of command setting478.7.5.INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 | 36 |
| 8.3. COMMUNICATION PARAMETERS388.3.1. BAUDRATE SETTING388.3.2. PARITY SETTING398.3.3. WAITING TIME SETTING398.3.4. IMMEDIATE/NOT IMMEDIATE ANSWER398.3.5. EXAMPLE OF PARAMETER 347 SETTING (1)408.3.6. EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7. EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7. EXAMPLE OF PARAMETER 347 SETTING (3)418.5. N WORDS READING428.5.1. EXAMPLE OF N WORDS READING428.5.1. EXAMPLE OF N WORDS READING428.6.1. EXAMPLE OF N WORDS READING428.6.1. EXAMPLE OF N WORD WRITING:428.7.1. PARAMETERS 0-999448.7.1.1. Example of writing of 1 parameter448.7.2.2. ALARMS BUFFER458.7.3.1. Example of reading of 1 parameter448.7.3.1. Example of reading of 1 measure468.7.4.1. Example of reading of 1 measure468.7.4.1. Example of reading of 1 measure468.7.4.1. Example of command setting478.7.5. INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |    |
| 8.3.1.BAUDRATE SETTING388.3.2.PARITY SETTING398.3.3.WAITING TIME SETTING398.3.4.IMMEDIATE/NOT IMMEDIATE ANSWER398.3.5.EXAMPLE OF PARAMETER 347 SETTING (1)408.3.6.EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7.EXAMPLE OF PARAMETER 347 SETTING (3)418.4.NODE IDENTIFICATION418.5.N WORDS READING428.5.1.EXAMPLE OF N WORDS READING428.5.1.EXAMPLE OF N WORDS READING428.6.1.EXAMPLE OF 1 WORD WRITING:428.6.1.EXAMPLE OF 1 WORD WRITING:428.7.1.PARAMETERS 0-999448.7.1.1.Example of writing of 1 parameter448.7.2.1.Example of reading of 1 parameter448.7.2.1.Example of reading of 1 parameter448.7.3.1.Example of reading of 1 measure468.7.4.COMMAND SETTING468.7.4.1.Example of command setting478.7.5.INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |    |
| 8.3.2.PARITY SETTING398.3.3.WAITING TIME SETTING398.3.4.IMMEDIATE/NOT IMMEDIATE ANSWER398.3.5.EXAMPLE OF PARAMETER 347 SETTING (1)408.3.6.EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7.EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7.EXAMPLE OF PARAMETER 347 SETTING (3)418.4.NODE IDENTIFICATION418.5.N WORDS READING428.5.1.EXAMPLE OF N WORDS READING428.6.1.EXAMPLE OF N WORDS READING428.6.1.EXAMPLE OF 1 WORD WRITING:428.7.1.PARAMETERS 0-999448.7.1.PARAMETERS 0-999448.7.1.Example of writing of 1 parameter448.7.2.ALARMS BUFFER458.7.2.1.Example of reading of 1 parameter448.7.3.MEASURES468.7.3.1.Example of reading of 1 measure468.7.4.COMMAND SETTING468.7.4.1.Example of command setting478.7.5.INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |    |
| 8.3.3.WAITING TIME SETTING398.3.4.IMMEDIATE/NOT IMMEDIATE ANSWER398.3.5.EXAMPLE OF PARAMETER 347 SETTING (1)408.3.6.EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7.EXAMPLE OF PARAMETER 347 SETTING (3)418.5.N WORD BENTIFICATION418.5.N WORDS READING428.5.1.EXAMPLE OF N WORDS READING428.6.1.EXAMPLE OF N WORDS READING428.6.1.EXAMPLE OF 1 WORD WRITING:428.6.1.EXAMPLE OF 1 WORD WRITING:428.7.1.PARAMETERS 0-999448.7.1.Example of writing of 1 parameter448.7.2.ALARMS BUFFER458.7.2.1.Example of reading of 1 parameter448.7.3.1.Example of alarms buffer reading458.7.3.1.Example of reading of 1 measure468.7.4.COMMAND SETTING468.7.4.1.Example of command setting478.7.5.INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                    | 8.3.2. PARITY SETTING                           |    |
| 8.3.4.IMMEDIATE/NOT IMMEDIATE ANSWER398.3.5.EXAMPLE OF PARAMETER 347 SETTING (1)408.3.6.EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7.EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7.EXAMPLE OF PARAMETER 347 SETTING (2)418.4.NODE IDENTIFICATION418.5.N WORDS READING428.5.1.EXAMPLE OF N WORDS READING428.5.1.EXAMPLE OF N WORDS READING428.6.ONE WORD WRITING428.6.1.EXAMPLE OF 1 WORD WRITING:428.7.1.PARAMETERS 0-999448.7.1.1.Example of writing of 1 parameter448.7.2.ALARMS BUFFER458.7.2.1.Example of reading of 1 parameter448.7.3.1.Example of alarms buffer reading458.7.3.1.Example of reading of 1 measure468.7.4.1.Example of reading of 1 measure468.7.4.1.Example of command setting478.7.5.INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |    |
| 8.3.5. EXAMPLE OF PARAMETER 347 SETTING (1)408.3.6. EXAMPLE OF PARAMETER 347 SETTING (2)408.3.7. EXAMPLE OF PARAMETER 347 SETTING (3)418.4. NODE IDENTIFICATION418.5. N WORDS READING428.5.1. EXAMPLE OF N WORDS READING428.6. ONE WORD WRITING428.6.1. EXAMPLE OF 1 WORD WRITING:428.7. MODBUS COMMANDS RECOGNIZED BY THE INVERTER438.7.1. PARAMETERS 0-999448.7.1. Example of writing of 1 parameter448.7.2. ALARMS BUFFER458.7.3.1. Example of reading of 1 parameter458.7.3.1. Example of reading of 1 measure468.7.4. COMMAND SETTING468.7.4.1. Example of command setting478.7.4.1. Example of command setting47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 | 39 |
| 8.3.7. EXAMPLE OF PARAMETER 347 SETTING (3)418.4. NODE IDENTIFICATION418.5. N WORDS READING428.5.1. EXAMPLE OF N WORDS READING428.6. ONE WORD WRITING428.6.1. EXAMPLE OF 1 WORD WRITING:428.7. MODBUS COMMANDS RECOGNIZED BY THE INVERTER438.7.1. PARAMETERS 0-999448.7.1.1. Example of writing of 1 parameter448.7.2. ALARMS BUFFER458.7.3. MEASURES468.7.4. COMMAND SETTING468.7.4.1. Example of command setting478.7.5. INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 | 40 |
| 8.4. NODE IDENTIFICATION418.5. N WORDS READING428.5.1. EXAMPLE OF N WORDS READING428.6. ONE WORD WRITING428.6.1. EXAMPLE OF 1 WORD WRITING:428.7. MODBUS COMMANDS RECOGNIZED BY THE INVERTER438.7.1. PARAMETERS 0-999448.7.1.1. Example of writing of 1 parameter448.7.2. ALARMS BUFFER458.7.3. MEASURES468.7.4. COMMAND SETTING468.7.4.1. Example of reading of 1 measure468.7.5. INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.3.6. EXAMPLE OF PARAMETER 347 SETTING (2)     | 40 |
| 8.5. N WORDS READING428.5.1. EXAMPLE OF N WORDS READING428.6. ONE WORD WRITING428.6.1. EXAMPLE OF 1 WORD WRITING:428.7. MODBUS COMMANDS RECOGNIZED BY THE INVERTER438.7.1. PARAMETERS 0-999448.7.1.1. Example of writing of 1 parameter448.7.2. ALARMS BUFFER458.7.3. MEASURES468.7.4. COMMAND SETTING468.7.4.1. Example of command setting478.7.5. INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.3.7. EXAMPLE OF PARAMETER 347 SETTING (3)     |    |
| 8.5.1. EXAMPLE OF N WORDS READING428.6. ONE WORD WRITING428.6.1. EXAMPLE OF 1 WORD WRITING:428.7. MODBUS COMMANDS RECOGNIZED BY THE INVERTER438.7.1. PARAMETERS 0-999448.7.1.1. Example of writing of 1 parameter448.7.2. ALARMS BUFFER458.7.3. MEASURES468.7.4. COMMAND SETTING468.7.4.1. Example of command setting478.7.5. INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |    |
| 8.6.ONE WORD WRITING428.6.1.EXAMPLE OF 1 WORD WRITING:428.7.MODBUS COMMANDS RECOGNIZED BY THE INVERTER438.7.1.PARAMETERS 0-999448.7.1.1.Example of writing of 1 parameter448.7.1.2.Example of reading of 1 parameter448.7.2.ALARMS BUFFER458.7.3.MEASURES468.7.3.1.Example of reading of 1 measure468.7.4.1.Example of reading of 1 measure468.7.4.1.Example of command setting478.7.5.INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |    |
| 8.6.1. EXAMPLE OF 1 WORD WRITING:428.7. MODBUS COMMANDS RECOGNIZED BY THE INVERTER438.7.1. PARAMETERS 0-999448.7.1.1. Example of writing of 1 parameter448.7.1.2. Example of reading of 1 parameter448.7.2. ALARMS BUFFER458.7.3. MEASURES468.7.4. COMMAND SETTING468.7.4.1. Example of command setting478.7.5. INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |    |
| 8.7. MODBUS COMMANDS RECOGNIZED BY THE INVERTER438.7.1. PARAMETERS 0-999448.7.1.1. Example of writing of 1 parameter448.7.1.2. Example of reading of 1 parameter448.7.2. ALARMS BUFFER458.7.2.1. Example of alarms buffer reading458.7.3. MEASURES468.7.4. COMMAND SETTING468.7.4.1. Example of command setting478.7.5. INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 |    |
| 8.7.1.PARAMETERS 0-999448.7.1.1.Example of writing of 1 parameter448.7.1.2.Example of reading of 1 parameter448.7.2.ALARMS BUFFER458.7.2.1.Example of alarms buffer reading458.7.3.MEASURES468.7.4.COMMAND SETTING468.7.4.1.Example of command setting478.7.5.INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |    |
| 8.7.1.1.Example of writing of 1 parameter448.7.1.2.Example of reading of 1 parameter448.7.2.ALARMS BUFFER458.7.2.1.Example of alarms buffer reading458.7.3.MEASURES468.7.3.1.Example of reading of 1 measure468.7.4.COMMAND SETTING468.7.4.1.Example of command setting478.7.5.INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | -  |
| 8.7.1.2.Example of reading of 1 parameter448.7.2.ALARMS BUFFER458.7.2.1.Example of alarms buffer reading458.7.3.MEASURES468.7.3.1.Example of reading of 1 measure468.7.4.COMMAND SETTING468.7.4.1.Example of command setting478.7.5.INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |    |
| 8.7.2. ALARMS BUFFER458.7.2.1. Example of alarms buffer reading458.7.3. MEASURES468.7.3.1. Example of reading of 1 measure468.7.4. COMMAND SETTING468.7.4.1. Example of command setting478.7.5. INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |    |
| 8.7.2.1. Example of alarms buffer reading458.7.3. MEASURES468.7.3.1. Example of reading of 1 measure468.7.4. COMMAND SETTING468.7.4.1. Example of command setting478.7.5. INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |    |
| 8.7.3. MEASURES468.7.3.1. Example of reading of 1 measure468.7.4. COMMAND SETTING468.7.4.1. Example of command setting478.7.5. INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | -  |
| 8.7.3.1. Example of reading of 1 measure468.7.4. COMMAND SETTING468.7.4.1. Example of command setting478.7.5. INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 | -  |
| 8.7.4. COMMAND SETTING468.7.4.1. Example of command setting478.7.5. INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | -  |
| 8.7.4.1. Example of command setting478.7.5. INVERTER STATUS47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · •                                             | -  |
| 8.7.5. INVERTER STATUS 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | -  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |    |
| 8.7.6. SETTING/READING OF SPEED IN HUNDREDTHS OF HZ 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |    |


| 8.7.6.1. Example of speed setting in hundredths of Hz:    | 48        |
|-----------------------------------------------------------|-----------|
| 8.7.6.2. Example of reading of speed in hundredths of Hz: | 48        |
| 8.7.7. SPEED SETTING/READING IN RPM                       | 48        |
| 8.7.7.1. Example of speed setting in rpm:                 | 49        |
| 8.7.7.2. Example of speed reading in rpm:                 | 49        |
| 8.7.8. SETTING/READING THE SPEED THROUGH ANALOG INPUT     | 49        |
| 8.7.9. EXAMPLE OF DA SPEED SETTING:                       | 50        |
| 8.7.10. ALARMS BUFFER RESET                               | 50        |
| 8.7.10.1. Example of alarms reset (correct)               | 50        |
| 8.7.10.2. Example of alarms reset (not correct)           | 50        |
| 8.7.11. INVERTER RESET                                    | 51        |
| 8.7.11.1. Example of inverter reset (correct)             | 51        |
| 8.7.11.2. Example of inverter reset (not correct)         | 51        |
| 8.7.12. SETTING/REMOVAL OF NET MODALITY                   | 51        |
| 8.7.12.1. Example of setting of NET modality              | 51        |
| 8.7.12.2. Example of removal of NET modality              | 52        |
| 8.7.13. SW VERSION                                        | 52        |
| 1 6                                                       | 53        |
| 8.8. ERROR CODES                                          | 54        |
| 8.8.1. EXAMPLE OF ERROR (ADDRESS NOT CORRECT)             | 54        |
| 8.8.2. EXAMPLE OF ERROR (DATA INCORRECT)                  | 54        |
|                                                           | FC        |
| 9. SPECIFICATIONS                                         | <u>56</u> |
|                                                           |           |
|                                                           | 57        |
| 10. REFERENCES                                            | <u>57</u> |
|                                                           |           |

| 11. | APPENDIX A | 58 |
|-----|------------|----|
|     |            |    |

| 11.1. | SUMMARY OF CANOPEN COMMUNICATION OBJECTS  | 58 |
|-------|-------------------------------------------|----|
| 11.2. | SUMMARY OF CANOPEN DEVICE PROFILE OBJECTS | 59 |
| 11.3. | SUMMARY OF MODBUS COMMANDS                | 60 |

11.3. SUMMARY OF MODBUS COMMANDS

# 1. STRUCTURE



# 2. INSTALLATION

Remove the inverter cover following the inverter instruction manual and install the option unit using the following procedure:

## 2.1. Pre-Installation Checks

(1) Check the inverter type.

This option unit may only be used with the FR-E500 series inverters and must not be used with any other series (e. g. A100, A200, Z, and Fseries). These models have a different option connector to prevent connecting by mistake; however, if the user forces the connector, the inverter may be damaged.

(2) Make sure that the inverter input power is off.

The inverter may be damaged if the option unit is installed with the input power on. The inverter executes an initialization procedure at power on that includes checking the option port. Adding the option later causes a hardware conflict which may damage the inverter or option unit and result in the alarm "E. OP3".

- (3) Ensure that the following items are supplied with the option package:
  - FR-E5ND option unit
  - 2 Mounting Machine nylon Screws M3 x 8
  - Instruction Manual

#### 2.2. Installation Procedure

- (1) Carefully insert the connector of the option unit into the connector of the inverter. Use the two mounting holes and the guide hole to align the bottom board with the matching machine screw inserts and the plastic guide pin on the inverter. Make sure that the inverter option is firmly seated in the inverter and the connector is fully plugged in.
- (2) Secure the option unit to the inverter with the two mounting screws. If the screw holes in the option unit do not line up with the inverter mounting holes, check that the connectors have been fitted correctly.

**Note:** Make sure that the FR-E5ND option unit is snugly inserted into the inverter and the option to inverter connector is fully and firmly inserted.

## 2.3. Connection To Network

- (1) Upon completion of the installation procedure, the inverter should be at rest with the power off. The option unit is mounted in the inverter with the drop cable connected to the terminal block, but unconnected to the network trunk cable. Set the node address on the two switches to a number between 1 and 99. SW1(h) is the tens digit and SW2(l) is the ones digit. Ensure that the number chosen is not already being used by another station on the network including a master station.
- (2) Make sure that a terminating resistor is installed at each end of the trunk cable. These resistors must meet the following requirements: R=120 Ohms, 1% Metal Film, and 0.25 Watts.

|       | The state of the Node Address switches are sampled once at       |
|-------|------------------------------------------------------------------|
| Note: | power on. Changing the Node Address later on will have no        |
|       | effect and the software will keep the number read at power on.   |
|       | Turn power off, readjust the switches, and turn power back on to |
|       | change the node address.                                         |

# 2.4. LED Status Indicator

| LED Condition         | Notes                                                                                             |
|-----------------------|---------------------------------------------------------------------------------------------------|
| Flashing Green<br>1Hz | The initialization of the Node is finished and the CAL 'Pre_operational' state has been achieved. |
| Green                 | The CAL 'OPERATIONAL' state has been achieved.                                                    |
| Red                   | Irrecoverable Error (failure)                                                                     |
| Flashing Red<br>1Hz   | The CAL 'STOPPED' state has been achieved.                                                        |

# 3. GETTING STARTED

## 3.1. Node Address And Baud Rate

The baud rate is also available in Pr.346 (see section 5.1 Parameters 345 and 346).

To change the baudrate manually via the parameter unit, refer to the description of Prs.345 and 346.

## 3.2. Net Mode and Parameter Setup

(1) The inverter must be in Net Mode for motor control operations through the network. Drive mode is controlled automatically by the FR-E5NCO option card (cal-OPERATIONAL).

# 4. **OPERATION**

Operation of the E500 changes slightly when the FR-E5NCO is installed, and those changes are described here. Parameter definitions including newly created parameters, as well as operation with the FR-E5NCO installed are described.

# 4.1. Operation Modes

#### 4.1.1. PU operation mode

Control of the inverter is from the parameter unit (PU).

#### 4.1.2. External operation mode

Control of the inverter is by external signals connected to the inverter's terminal block.

#### 4.1.3. Network (computer link) operation mode

Control of the inverter is via commands from a CANopen master.

#### 4.2. Operation Mode Selection

The following table describes the required actions to change the operation mode.

| mode change                                        | Required action                                              |
|----------------------------------------------------|--------------------------------------------------------------|
| External operation $\rightarrow$ PU operation      | Press PU key on parameter unit                               |
| PU operation $\rightarrow$ external operation      | Press EXT key on parameter unit                              |
| External operation $\rightarrow$ network operation | Send a CANopen OPERATIONAL command                           |
| Network operation $\rightarrow$ external operation | Send a CANopen NMT command<br>different from the OPERATIONAL |

The following conditions must also be met before a mode change can be effected:

- inverter is stopped
- forward and reverse commands are off

Parameter 340 allows selection of network operation mode on power up and after a drive reset.

# 5. FR-E5ND SPECIFIC PARAMETERS

There are several parameters which are used only when the E5ND is installed in the E500. The following sections describe these parameters.

## 5.1. Parameters 345 and 346

To support the FR-E5ND, two new parameters were created, Prs.345 & 346. They are described below. Use them to override DIP Switch settings, i.e., to do software reset of MAC ID.

| Pr. No. | Function                         | Setting Range | Minimum<br>Increment | Default Setting |
|---------|----------------------------------|---------------|----------------------|-----------------|
| 345     | Canopen Address<br>Startup Data  | 0 to 255      | 1                    | 63<br>(3FH)     |
| 346     | Canopen baudrate<br>Startup Data | 0 to 255      | 1                    | 123<br>(84H)    |

Pr345 and 346 is a bitmapped parameter. The definition is as follows:

#### Parameter 345 function:

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3                           | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|---------------------------------|-------|-------|-------|
|       |       |       |       | CANopen node address<br>(1-100) |       |       |       |

If P345=100 the node no. is taken from dip switches, otherwise the node no. is the one set in P345 (1-99).

#### Parameter 346 function:

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3     | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-----------|-------|-------|-------|
|       |       |       |       | Baud rate |       |       |       |

N.B. After modification of Pr.345 and 346 it is necessary to switch off the inverter in order to make the modifications active.

#### Allowed Baud rates:

| Baud rates | Bits 3,2,1,0 values |
|------------|---------------------|
| 1M         | 0001 (1)            |
| 500K       | 0010 (2)            |
| 250K       | 0011 (3)            |
| 125K       | 0100 (4)            |
| 100K       | 0101 (5)            |
| 62.5K      | 0110 (6)            |
| 50K        | 0111 (7)            |
| 20K        | 1000 (8)            |

**Note:** Do not modify the value of Pr.17 during operation, the inverter modifies the state of MRS signal only when inverter is idle and without active commands.

# 6. CANopen communication profile

CANopen Communication Profile has been developed according to DS 301, Version 1.1 by CiA (CAN in Automation).

These manufacturer functionalities are available:

- parameters reading
- parameters writing
- alarms buffer reading
- inverter monitoring (measures)
- sending of commands to the inverter (Step Fwd, Step Rev, Stop ...)
- inverter status reading
- speed setting in hundredths of Hz
- speed setting in rpm
- speed setting through analog input
- alarms buffer reset
- inverter reset (in case of alarm)

## 6.1. Service Data Object (SDO)

SDO are supported only in expedited modality; both upload and download operation are implemented.

In case of operation fault, an Abort SDO is returned; the following table reports possible abort codes:

| Abort Code | Description                                             |
|------------|---------------------------------------------------------|
| 0602 0000  | Object does not exist in the object dictionary          |
| 0609 0011  | Sub-index does not exist                                |
| 0607 0010  | Data type does not match, length of service parameter   |
|            | does not match                                          |
| 0601 0002  | Attempt to write a read-only object                     |
| 0601 0001  | Attempt to read a write-only object                     |
| 0800 0000  | General error                                           |
| 0800 0022  | Data cannot be transferred or stored to the application |
|            | because of the present device state                     |

| 0606 0000 | Access failed due to an hardware error                                           |
|-----------|----------------------------------------------------------------------------------|
| 0604 0041 | Object cannot be mapped to the PDO                                               |
| 0604 0042 | The number and length of the objects to be mapped<br>would exceed PDO length     |
| 0609 0030 | Value range of parameter exceeded (only for write access)                        |
| 0800 0021 | Data cannot be transferred or stored to the application because of local control |

# 6.2. Object Dictionary Entries supported

The following table reports an overview of the Object Dictionary entries implemented in the communication profile area:

| Index       | Subindex | R/W Flag | Description                    |  |
|-------------|----------|----------|--------------------------------|--|
| 0006H       | OH       | RO       | Deftype UNSIGNED16             |  |
| 1000H       | OH       | RO       | Device type                    |  |
| 1001H       | OH       | RO       | Error register (Flags)         |  |
| 1002H       | OH       | RO       | Manufacturer status register   |  |
| 1005H       | 0H       | RW       | COB-ID SYNCH                   |  |
| 1008H       | OH       | RO       | Manufacturer device name       |  |
| 1009H       | OH       | RO       | Manufacturer hardware version  |  |
| 100AH       | OH       | RO       | Manufacturer software version  |  |
| 100BH       | OH       | RO       | Node-ID                        |  |
| 100CH       | OH       | RW       | Guard time                     |  |
| 100DH       | OH       | RW       | Life Time Factor               |  |
| 1011H       | OH       | RW       | Restore default parameter      |  |
| 1014H       | OH       | RW       | COB-ID EMCY                    |  |
| 1400H-1403H | 0H-2H    | RW       | RxPDO Communication parameter  |  |
| 1600H-1603H | 0H-4H    | RW       | RxPDO Mapping                  |  |
| 1800H-1803H | 0H-5H    | RW       | TxPDO Communication parameter  |  |
| 1A00H-1A03H | 0H-4H    | RW       | TxPDO Mapping                  |  |
| 2000H-2002H | OH       | RO       | Monitor data                   |  |
| 2106H       | OH       | WO       | Alarms buffer clear            |  |
| 2107H       | 0H       | WO       | Inverter reset                 |  |
| 3000H-33E7H | OH       | RW       | Inverter parameters (3000H +   |  |
|             |          |          | nr.parameter)                  |  |
| 3400H-3403H | OH       | RO       | Alarms buffer (last 8 alarms)  |  |
| 4000H       | OH       | RW       | Inverter command               |  |
| 4001H       | OH       | RW       | Inverter speed Hz xxx.xx       |  |
| 4001H       | 1H       | RW       | Inverter speed Rpm             |  |
| 4001H       | 2H       | WO       | Inverter speed to analog input |  |

# 6.2.1. Objects 2000H-2002H

Starting from address 2000H to address 2002H, the following monitors are available:

| Index   | Monitor no.  | Description      |  |
|---------|--------------|------------------|--|
| 2000+0H | Monitor No 1 | Output frequency |  |
| 1H      | Monitor No 2 | Output current   |  |
| 2H      | Monitor No 3 | Output voltage   |  |

## 6.2.2. Objects 3000H-33E7H

Object dictionary indexes ranging from 3000H to 33E7H are associated to inverter parameters. Most of inverter parameters are internally defined as 1 WORD, but there are some parameters that require more than one WORD. These parameters can't be mapped with only one object dictionary, so sub-indexes are used to access each WORD.

#### 6.2.2.1. Parameters 902-905

These parameters are defined from index 3386H (parameter 902) to index 3089H (parameter 905); they store respectively "frequency setting voltage bias", "frequency setting voltage gain", "frequency setting current bias" and "frequency setting current gain". Bias and gain are used to adjust the relationship between the input signal entered from outside the inverter to set up the output frequency and the output frequency.

Each parameter is made of two sub-parameters, the first contain a frequency output value, the second the corresponding analog input value, expressed in per cents of its full scale value.

Object dictionary index is used to identify the parameter, while sub-indexes are used to identify its sub-parameters.

Sub-index 0H contains the number of valid entries within the record (2 valid entries), other sub-indexes are associated to sub-parameters as shown in the following table:

| Sub-<br>Index | Туре       | R/W<br>Flag | Description                                     |  |
|---------------|------------|-------------|-------------------------------------------------|--|
| 00H           | UNSIGEND8  | RO          | number of valid entries within the record       |  |
| 01H           | UNSIGNED16 | RW          | I output frequency value                        |  |
| 02H           | UNSIGNED16 | RW          | analog input value (per cent of its full scale) |  |

For example the "frequency" value associated to parameter 904 is identified with index 3388H (3000H+904=3000H+388H) and sub-index 01H.

#### 6.2.2.2. Other parameters

Other parameters are identified only with an object dictionary index, using the relation:

index= 3000H + parameter no.

For example the corresponding index of parameter 244 is 30F4H = 3000H + 244 = 3000H + F4H

## 6.2.3. Objects 3400H – 3403H subindex 0H

These four object reports the eight latest alarms; object 3400H reports the newest alarm, as well as object 3403H reports the oldest alarms.

| 3400H | newest alarms |
|-------|---------------|
| 3401H |               |
| 3402H |               |
| 3403H | oldest alarms |
|       |               |

## 6.2.4. Object 4000H subindex 0H

Object at index 4000H, sub-index 0H allows users to set inverter command (SDO download) and returns inverter status (SDO upload).

#### 6.2.4.1. Inverter command

Inverter command consists of one word, whose bits have the following meaning:

| Bit | Meaning | Bit | Meaning |
|-----|---------|-----|---------|
| 15  | -       | 07  | -       |
| 14  | -       | 06  | -       |
| 13  | -       | 05  | RL      |
| 12  | -       | 04  | RM      |
| 11  | -       | 03  | RH      |
| 10  | MRS     | 02  | STR     |
| 09  | -       | 01  | STF     |
| 08  | -       | 00  | STOP    |

STF: Run forward

- STR: Run reverse
- RH: Speed selection high
- RM: Speed selection middle
- RL: Speed selection low
- MRS: output stop

#### 6.2.4.2. Inverter Status

Reading inverter status a word is reported; its bits have the following meaning:

| Bit | Meaning | Bit | Meaning     |  |
|-----|---------|-----|-------------|--|
| 15  | -       | 07  | ALARM/ERROR |  |
| 14  | -       | 06  | FU          |  |
| 13  | -       | 05  | IPF (?)     |  |
| 12  | -       | 04  | OL          |  |
| 11  | -       | 03  | SU          |  |
| 10  | -       | 02  | RUN RW      |  |
| 09  | -       | 01  | RUN FW      |  |
| 08  | -       | 00  | RUN         |  |

| RUN: | inverter running            |
|------|-----------------------------|
| FWD: | forward running             |
| REV: | reverse running             |
| SU:  | up to frequency             |
| OL:  | over load                   |
| IPF: | instantaneous power failure |

frequency detection alarm condition

# 6.2.5. Object 4001H subindex 0H

This object implements the setting (download) and the reading (upload) of inverter speed in hundredths of hertz. When reading, inverter output frequency is returned (Monitor 1).

## 6.2.6. Object 4001H subindex 1H

This object implements the setting (download) and the reading (upload) of inverter speed in rpm. When reading inverter output frequency converted in rpm is returned (Monitor 1 converted in rpm).

# 6.3. Emergency object

Emergency objects are triggered by the occurrence of a device internal error situation. This object eight's byte have the following meaning:

| Byte | Meaning                                                           |  |  |  |
|------|-------------------------------------------------------------------|--|--|--|
| 0-1  | Emergency error code                                              |  |  |  |
| 2    | Object 1001H                                                      |  |  |  |
| 3    | System error (manufacturer error code)                            |  |  |  |
|      | <ul> <li>21 = Command error (command not accepted)</li> </ul>     |  |  |  |
|      | <ul> <li>31 = Lifetime expired</li> </ul>                         |  |  |  |
|      | <ul> <li>42 = Synchronous error (pdo)</li> </ul>                  |  |  |  |
|      | <ul> <li>44 = Synchronous error (pdo)</li> </ul>                  |  |  |  |
|      | <ul> <li>62 = Error storing parameter</li> </ul>                  |  |  |  |
| 4    | Canopen alarm or command error:                                   |  |  |  |
|      | <ul> <li>11H =Outside range</li> </ul>                            |  |  |  |
|      | <ul> <li>12H =External operation</li> </ul>                       |  |  |  |
|      | <ul> <li>13H =Operational</li> </ul>                              |  |  |  |
|      | <ul> <li>14H =Parameter read only</li> </ul>                      |  |  |  |
|      | <ul> <li>16H =No parameter</li> </ul>                             |  |  |  |
|      | <ul> <li>19H =Data usage error</li> </ul>                         |  |  |  |
|      | <ul> <li>21H =Now in operating mode (actual operating)</li> </ul> |  |  |  |
|      | • 22H =STF                                                        |  |  |  |
|      | • 23H =STR                                                        |  |  |  |
|      | <ul> <li>24H =Operating mode set</li> </ul>                       |  |  |  |
| 5    | Actual canopen status                                             |  |  |  |
|      | • 5 = OPERATIONAL                                                 |  |  |  |
|      | 127= PRE_OPERATIONAL                                              |  |  |  |
|      | • 4 = STOPPED                                                     |  |  |  |
| 6    | 0                                                                 |  |  |  |
| 7    | 0                                                                 |  |  |  |

In case of an emergency due to an inverter alarm the master can reset the inverter via SDO (Index 2107H, sub-index 0H).

#### Note:

The latest alarm can be read with an SDO upload at index 3400H, sub-index 0H.

# 6.4. Node guarding protocol

Node Guarding Protocol is supported, according to CiA specifications. Object at index 100CH, sub-index 0 defines the guard time and object at index 100DH, sub-index 0H defines the life time factor.

When the node doesn't receive the polling from the master it sends an emergency message; the motor can be stopped, left free to rotate, ..., according to object 6007H/0H value.

## 6.5. Default PDO definition

#### 6.5.1. Receive PDO1

Receive PDO1 is default defined as an asynchronous PDO. Its eight data bytes are mapped with these objects:

| Bytes | Object Mapped          | Index | Sub-Index |
|-------|------------------------|-------|-----------|
| 0,1   | Inverter Command       | 4000H | OH        |
| 2,3   | Inverter Frequency set | 4001H | 0H        |
| 4,5   | Not used               | -     | -         |
| 6,7   | Not used               | -     | -         |

#### Examples:

Inverter run + setting speed 50Hz Word 0 - 4 = 0002H, 1388H, 0H, 0H

Inverter stop

Word 0 - 4 = 0001 H, 0H, 0H, 0H

## 6.5.2. Transmit PDO1

Receive PDO1 is default defined as an RTR PDO. Its eight data bytes are mapped with these objects:

| Bytes | Object Mapped             | Index | Sub-Index |
|-------|---------------------------|-------|-----------|
| 0,1   | Inverter Status           | 4000H | 0H        |
| 2,3   | Inverter Output Frequency | 4001H | 0H        |
| 4,5   | Output current            | 2001H | 0H        |
| 6,7   | The latest two alarms     | 3400H | 0H        |

# 6.5.3. Other Receive and Transmit PDO

Receive PDO 2,3,4 and Transmit PDO 2,3,4 are not mapped.

# 7. CANopen DEVICE PROFILE

CANopen Device Profile has been developed according to DPS 402 Version 1.1 by CiA (CAN in Automation), designed for Drives and Motion Control.

#### Modes of Operation supported:

- Velocity Mode (only mandatory objects supported)

#### Objects supported:

- Emergency messages with Error Code referred to Device Profile
- Global Mandatory object related to Device Profile for Drives and Motion Control
- Mandatory objects related to "Velocity mode"

| Index | Sub<br>Index | R/W<br>FLAG | Description                                    |
|-------|--------------|-------------|------------------------------------------------|
| 1000H | 00H          | RO          | device type                                    |
| 1001H | 00H          | RO          | error register                                 |
| 6007H | 00H          | RW          | abort_connection_option_code                   |
| 6040H | 00H          | RW          | controlword                                    |
| 6041H | 00H          | RO          | statusword                                     |
| 6042H | 00H          | RW          | vl_target_velocity                             |
| 6043H | 00H          | RO          | vl_velocity_demand                             |
| 6044H | 00H          | RO          | vl_control_effort                              |
| 6046H | 00H          | RO          | n. sub-index of vl_velocity_min_max_amount     |
| 6046H | 01H          | RW          | vl_velocity_min_amount                         |
| 6046H | 02H          | RW          | vl_velocity_max_amount                         |
| 6048H | 00H          | RO          | n. sub-index of vl_velocity_acceleration       |
| 6048H | 01H          | RW          | delta_speed (vl_velocity_acceleration)         |
| 6048H | 02H          | RW          | delta_time (vl_velocity_acceleration)          |
| 6049H | 00H          | RO          | n. sub-index of vl_velocity_deceleration       |
| 6049H | 01H          | RW          | delta_speed (vl_velocity_deceleration)         |
| 6049H | 02H          | RW          | delta_time (vl_velocity_deceleration)          |
| 604AH | 00H          | RO          | n. sub-index of vl_velocity_quick_stop         |
| 604AH | 01H          | RW          | delta_speed (vl_velocity_quick_stop)           |
| 604AH | 02H          | RW          | <pre>delta_time (vl_velocity_quick_stop)</pre> |
| 6060H | 00H          | WO          | modes of operation                             |
| 6061H | 00H          | RO          | modes of operation display                     |
| 67FFH | 00H          | RO          | single device type                             |

# 7.1. Emergency Error Code

Emergency message contains a field named "Error Code" that describe the type of error reported. Error Code is of Unsigned16 type; the high byte defines an error classification while the low byte contains the error number for this class.

Relationship between "Emergency Error Code" and "Inverter alarm code":

| Error Code | Meaning                              | Inverter alarm code |
|------------|--------------------------------------|---------------------|
| 2213H      | over-current in ramp function        | E.OC1, E.OC3        |
| 2214H      | over-current in the sequence         | E.OC2               |
| 2300H      | current on device output side        | E.THT, E.OLT        |
| 2330H      | earth leakage                        | E.GF                |
| 3210H      | DC link over voltage                 | EOV1,EOV2,EOV3      |
| 4310H      | excess temperature drive             | E.FIN               |
| 5000H      | device hardware                      | E.OPT, E.CPU        |
| 5112H      | supply U2=supply +24V                | EP.24               |
| 5410H      | output stages                        | E.LF                |
| 5530H      | data storage EEPROM                  | E.PE                |
| 6000H      | device software                      | E0E15               |
| 7110H      | brake chopper                        | E.BE                |
| 7510H      | communication serial interface No. 1 | E.PUE, E.CTE        |

#### Note:

Other inverter alarms, not reported in this table, are classified as generic error (Error Code = 1000H).

#### 7.1.1. Restrictions

- Alarm codes are available only after 40 msec the alarm is detected; emergency objects are sent after this time has elapsed.

# 7.2. Object 1000H (Device Type)

Object 1000H describes the type of a device and its functionality; it is of Unsigned32 type and it reports three data:

| - | device profile number | (bit 015)  |
|---|-----------------------|------------|
| - | type                  | (bit 1623) |
| - | mode bit              | (bit 2431) |

Device profile number is set to 402, type is equal to 1 (frequency converter) and mode bits are set to 0; in response to a SDO request the value 00010192H is reported.

# 7.3. Object 1001H (Error register)

Error register bits are valorized in function of the alarm that has been detected.

# 7.4. Object 6007H (abort connection option code)

The content of this objects selects the function to be performed when the connection to the network is lost.

Possible values are the following:

- 0: No action
- 2: Device control command "disable\_voltage"
- 3: Device control command "quick\_stop"

# 7.5. Object 6040H (controlword)–6041H (statusword)

The *controlword* object control the state of the drive, as well as the *statusword* reports the state of the drive.

The statemachine describes the device status and the possible control sequence of the drive.

States "Start", "Not Ready to Switch On" and "Fault Reaction Active" are not implemented, other states are available.

# 7.5.1. Restrictions

After inverter is turned on power is directly applied to the DC link; it is not possible to separate states in which power is disabled and states in which power is enabled.

Statemachine is software implemented; states are only logical states, and they do not reflect an inverter state.

Bit N. 11 of the status word has not been implemented.

# 7.6. Object 6042H (vl\_target\_velocity)

The *vl\_target\_velocity* is the required velocity of the system and it is defined in rpm (object *vl\_dimension\_factor* has not been implemented).

# 7.7. Object 6043H (vl\_velocity\_demand)

The *vl\_velocity\_demand* is the instantaneous velocity provided by the ramp generator, its units are rpm.

# 7.8. Object 6044H (vl\_control\_effort)

In closed loop systems this object reports motor speed, in open loop systems it reports the instantaneous velocity provided by the ramp generator. Units are the same of other objects that return a speed (rpm). FRE inverter can be used only in open loop modality.

# 7.9. Object 6046H (vl\_velocity\_min\_max\_amount)

This parameter is composed of the *vl\_velocity\_min\_amount* and *vl\_velocity\_max\_amount* subparameter, that represent the minimum and maximum speed provided by the driver. These velocities are defined in rpm.

# 7.10. Object 6048H (vl\_velocity\_acceleration)

This parameter specifies the slope of the acceleration ramp; it is calculated as the quotient of *delta\_speed* and *delta\_time*, that are respectively defined in rpm and seconds.

## 7.10.1. Restrictions

Device Profile defines a *delta\_speed* parameter for *vl\_velocity\_acceleration*, *vl\_velocity\_deceleration* and *vl\_velocity\_quick\_stop*. These parameters are internally mapped in a

unique inverter parameter, thus, changing *delta speed* of  $vl\_velocity\_acceleration$ , results in an undesired change of the *delta\\_speed* parameter of  $vl\_velocity\_deceleration$  and  $vl\_velocity\_quick\_stop$ .

# 7.11. Object 6049H (vl\_velocity\_deceleration)

This parameter specifies the slope of the deceleration ramp; it is calculated as the quotient of *delta\_speed* and *delta\_time*, that are respectively defined in rpm and seconds.

#### 7.11.1. Restrictions

Device Profile defines delta speed for а parameter vl velocity deceleration vl velocitv acceleration. and vl velocity quick stop. These parameters are internally mapped in a inverter parameter. thus. delta unique changing speed of vl velocity deceleration, results in an undesired change of the delta speed parameter of vl velocity acceleration and vl velocity quick stop.

# 7.12. Object 604AH (vl\_velocity\_quick\_stop)

This parameter specifies the slope of the deceleration ramp used in quick stop function; it is calculated as the quotient of *delta\_speed* and *delta\_time*, that are respectively defined in rpm and seconds.

#### 7.12.1. Restrictions

Device Profile defines а delta speed parameter for vl velocity acceleration, vl velocity deceleration and vl velocity quick stop. These parameters are internally mapped in a delta inverter parameter. thus. unique changing speed of vl velocity quick stop, results in an undesired change of the delta speed parameter of vl velocity acceleration and vl velocity deceleration.

#### 7.12.2.Note

Quick stop is obtained using an internal inverter command, the "second function". In order to enable this functionality it is necessary to program terminal RL as input for second function; this is obtained setting parameter 180 equal to 3.

# 7.13. Object 6060H (modes of operation)

Parameter "modes of operation" defines the actual operation-mode. Since only "Velocity mode" is supported, it is not possible to change the value of this parameter.

# 7.14. Object 6061H (modes of operation display)

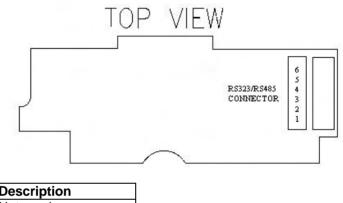
This parameter shows the current mode of operation. Since only "Velocity mode" is supporter, the value returned by this objects is fixed to 2 (Velocity Mode).

# 7.15. Object 6FFFH (Single Device Type)

Inverter is a single device module; this object is equivalent to Object 1000H.

# 8. MODBUS Protocol

## 8.1. Introduction


This option allows to communicate with the inverter via MODBUS protocol through a RS232 port or a RS485 port. Data writing towards the inverter is implemented through the MODBUS functionality of "writing 1 WORD", whereas data reading from the inverter is realized through the "reading of N WORDS".

These functionalities are available:

- parameter reading
- parameter writing
- alarms buffer reading
- inverter monitoring (measures)
- sending of commands to the inverter (Step Fwd, Step Rev, Stop ...)
- inverter status reading
- speed setting in hundredths of Hz
- speed setting in rpm
- speed setting through analog input
- alarms buffer reset
- inverter reset (in case of alarm)
- inverter NET modality setting (to enable inverter to receive commands through the option)
- SW version reading

# 8.2. Connection diagram

Connections regarding ports 232 and 485 are available on the 6 pin type connector (X6) placed in the upper part of the option; its pin configuration is the following:



| Pin | Description |
|-----|-------------|
| 1   | Not used    |
| 2   | Rx (RS232)  |
| 3   | Tx (RS232)  |
| 4   | A (RS485)   |
| 5   | B (RS485)   |
| 6   | GND         |

In addition it is necessary to set the 2 jumper X2 and X3 as regards the port (RS232 or RS485) used.

# Example of connection between Personal Computer and option through the port RS232

| PC<br>Connector | Option<br>Connector |
|-----------------|---------------------|
| Pin 2 (Rx)      | <br>Pin 3 (Tx)      |
| Pin 3 (Tx)      | <br>Pin 2 (Rx)      |
| Pin 5 (GŃD)     | <br>Pin 6 (GŃD)     |

# 8.3. Communication parameters

It is possible to configure the serial communication by setting the following parameters:

- baudrate (1200 bps, 2400 bps, 4800 bps, 9600 bps, 19200 bps, 38400 bps)
- parity type (even, odd or none)
- waiting time for answer sending
- sending the answer frame immediately after receipt of the writing frame or after the command has been accepted by the inverter

The number of data bit is fixed at 8 and the number of stop bit at 1.

The configuration of the port is determined through the parameter 347 (available only if the option is connected to the inverter), whose 8 bits take the following meaning:

| answer not immediate (0) /immediate answer (1)     |
|----------------------------------------------------|
| setting the waiting time before sending the answer |
| disabled parity(0) / enabled parity(1)             |
| odd parity (0) / even parity (1)                   |
| baudrate                                           |
|                                                    |

# 8.3.1. Baudrate setting

The allowed baudrates and the corresponding values to be set in the bit 2, 1 and 0 are the following:

| b2 | b1 | b0 | Baudrate  |
|----|----|----|-----------|
| 0  | 0  | 1  | 1200 bps  |
| 0  | 1  | 0  | 2400 bps  |
| 0  | 1  | 1  | 4800 bps  |
| 1  | 0  | 0  | 9600 bps  |
| 1  | 0  | 1  | 19200 bps |
| 1  | 1  | 0  | 38400 bps |

# 8.3.2. Parity setting

Parity type is defined through bit 3 and 4, that take the following meaning:

| b4 | b3 | Parity      |
|----|----|-------------|
| 0  | 0  | No parity   |
| 0  | 1  | No parity   |
| 1  | 0  | Odd parity  |
| 1  | 1  | Even parity |

# 8.3.3. Waiting time setting

The setting of the waiting time allows to postpone the inverter answer after a time of 0, 1,2 or 3 ms. This chance is useful, for instance, in the case a device connected to the line keeps the line busy for a certain time after having sent a frame (for example some RS232/RS485 converters). If the inverter answer was immediate, part of the answer would be lost because of the device behaviour. Setting a waiting time, therefore, the option does not send the answer immediately, and thus the conflict with the device that keeps the line busy, can be avoided. The bit interested are the 6 and the 5, to which the following delays correspond:

| b6 | b5 | Delay    |
|----|----|----------|
| 0  | 0  | No delay |
| 0  | 1  | 1 ms     |
| 1  | 0  | 2 ms     |
| 1  | 1  | 3 ms     |

# 8.3.4. Immediate/Not immediate answer

The sending of a MODBUS command to the option ends up in the writing of the command itself in the DUAL-RAM, so that it is interpreted by the inverter, and - once interpreted - the result of this operation is sent back in DUAL-RAM. For some commands, a time interval of some tenths msec can elapse between the sending of the command in DUAL-RAM and the answer of the inverter. Through this setting it is possible to choose whether the MODBUS answer frame must be sent immediately when the command is sent to the inverter, or after that the command has been accepted and processed by the inverter; in the first case an answer of accepted command will always be sent, whereas in the second case a frame could be sent, indicating that the command has not been accepted, in the case that the command would actually be rejected by the inverter. The bit involved is the 7 and its valorization has the following meanings:

| b7 | Answer                         |
|----|--------------------------------|
| 0  | After acceptance from inverter |
| 1  | Immediate                      |

# 8.3.5. Example of parameter 347 setting (1)

| Baudrate:                       | 9600 bps      |
|---------------------------------|---------------|
| Parity:                         | none          |
| Waiting time:                   | none          |
| Immediate/Not immediate answer: | not immediate |

| Bit | Value |
|-----|-------|
| 07  | 0     |
| 06  | 0     |
| 05  | 0     |
| 04  | 0     |
| 03  | 0     |
| 02  | 1     |
| 01  | 0     |
| 00  | 0     |

Value of parameter: 04H = 4. Therefore 4 must be set as value.

# 8.3.6. Example of parameter 347 setting (2)

Baudrate: Parity: Waiting time: Immediate/Not immediate answer: 19200 bps even 2 msec immediate

| Bit | Value |
|-----|-------|
| 07  | 1     |
| 06  | 1     |
| 05  | 0     |
| 04  | 1     |
| 03  | 1     |
| 02  | 1     |
| 01  | 0     |
| 00  | 1     |

Value of parameter: DDH = 221

# 8.3.7. Example of parameter 347 setting (3)

Baudrate: Parity: Waiting time: Immediate/Not immediate answer: 9600 bps odd 3 msec not immediate

| Bit | Value |
|-----|-------|
| 07  | 0     |
| 06  | 1     |
| 05  | 1     |
| 04  | 1     |
| 03  | 0     |
| 02  | 1     |
| 01  | 0     |
| 00  | 0     |

Value of parameter: 74H = 116

# 8.4. Node identification

The number of the node can be set in the following two ways:

- valorizing the parameter 345 with the node identification reference
- through the dip-switch available on the option setting the parameter 345 at 100

# 8.5. N words Reading

"N" consecutive words can be read, for example to read more consecutive parameters or to read all the alarms buffer or to read more consecutive measures.

The result of the reading is sent by giving the word to the address indicated, that to the subsequent address and so on; of each word the most significantive byte is first sent, and then the least significative one.

# 8.5.1. Example of N WORDS reading

Request of 2 words starting from the address 20000 (4E20H) (Parameter 0 and parameter 1 are returned):

| Node:<br>Parameter:               | 25<br>0 |                                                       |
|-----------------------------------|---------|-------------------------------------------------------|
| Value:                            | 50<br>1 | (003CH)                                               |
| Parameter:<br>Value:              | •       | (2ED0H)                                               |
| Frame to be sent:<br>Answer frame |         | 19 03 4E 20 00 02 D1 31<br>19 03 04 00 3C 2E D0 BE 02 |

The answer frame reports the byte in the sequence: 00, 3C, 2E, D0.

#### 8.6. One word writing

The setting of parameters, the reset of the inverter ... are implemented by writing one word.

#### 8.6.1. Example of 1 WORD writing:

 Node:
 25 (19H)

 Address:
 26000 (6590H)

 Value written:
 1

| Frame to be sent: | 19 06 65 90 00 01 D5 CE |
|-------------------|-------------------------|
| Answer frame:     | 19 06 65 90 00 01 D5 CE |

# 8.7. MODBUS Commands recognized by the inverter

| Description         | Address     | Writing/reading | Range   |
|---------------------|-------------|-----------------|---------|
| Parameters 0-999    | 20000-21998 | RW              | 0-65535 |
| Alarms buffer 0-3   | 23000-23006 | RO              | 0-65535 |
| Measures 0-24       | 23100-23104 | RO              | 0-65535 |
| Command setting     | 24000       | WO              | 0-65535 |
| Inverter status     | 24000       | RO              | 0-65535 |
| Speed [Hz]          | 24002       | RW              | 0-65535 |
| Speed[rpm]          | 24004       | RW              | 0-65535 |
| Analog input speed  | 24006       | WO              | 0-255   |
| Alarms buffer reset | 25000       | WO              | 0-0     |
| Inverter reset      | 25002       | WO              | 0-0     |
| Inverter NET ON/OFF | 26000       | WO              | 0-1     |
| SW version          | 27000-27016 | RO              | 0-65535 |

#### Note:

Before sending any other command to the inverter it is necessary to launch the command for setting of the NET modality.

# 8.7.1. Parameters 0-999

Inverter parameters are codified starting from address 20000 up to address 21998: 1000 addresses are available because only the even addresses are used, since the dimension of each parameter is 1 WORD.

| Parameter 0:   | 20000 |
|----------------|-------|
| Parameter 1:   | 20002 |
|                |       |
| Parameter 999: | 21998 |

Reading/Writing of parameters containing sub-parameters, like parameters ranging 902 to 905 is not allowed.

#### 8.7.1.1. Example of writing of 1 parameter

| Node:          | 25 (19H)                    |
|----------------|-----------------------------|
| Parameter:     | 7                           |
| Address:       | 20014 (4E2EH)               |
| Value:         | 100                         |
|                |                             |
| Frame to be se | nt: 19 06 4E 2E 00 64 FC D8 |
| Answer frame:  | 19 06 4E 2E 00 64 FCD8      |
|                |                             |

#### 8.7.1.2. Example of reading of 1 parameter

| Node:      | 25 (19H)      |
|------------|---------------|
| Parameter: | 7             |
| Address:   | 20014 (4E2EH) |
| Value:     | 100 (64H)     |

| Frame to be sent: | 19 03 4E 2E 00 01 F0 F3 |
|-------------------|-------------------------|
| Answer frame:     | 19 03 02 00 64 99 AD    |

# 8.7.2. Alarms buffer

Alarms buffer contains the last 8 alarms, each codified with 1 byte, that are available starting from the address 23000 to the address 23006. 4 addresses are available; each reading reports one pair of alarm codes. Only the even addresses are used, since the dimension of each parameter is of 2 byte.

| 23000 |
|-------|
| 23002 |
| 23004 |
| 23006 |
|       |

Alarm 0 is the most recent and is reported in the less significant part of the WORD.

#### 8.7.2.1. Example of alarms buffer reading

| Node:<br>Alarms:<br>Address:<br>Alarms: | 25 (19⊦<br>0,1<br>23000 | l)<br>(59D8H)<br>1 only alarm with code A3      |
|-----------------------------------------|-------------------------|-------------------------------------------------|
| Frame to be set<br>Answer frame:        | nt:                     | 19 03 59 D8 00 01 15 75<br>19 03 02 00 A3 D8 3F |

The alarm code is reported in the least significative byte of the WORD in answer.

| Node:               | 25 (19H)                                                                                                                  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------|
| Alarms:             | 0,1                                                                                                                       |
| Address:<br>Alarms: | <ul><li>23000 (59D8H)</li><li>2 alarms present, the most recent with the B1 code and the previous with A3 code.</li></ul> |

| Frame to be sent: | 19 03 59 D8 00 01 15 75 |
|-------------------|-------------------------|
| Answer:           | 19 03 02 A3 B1 20 C2    |

# 8.7.3. Measures

Measures are codified starting from address 23100 to address 23104, therefore 3 addresses are at disposal. Only the even addresses are used because the size of each measure is of 2 byte.

| Address | Progressive  | Description      |
|---------|--------------|------------------|
| 23100   | Monitor No 1 | Output frequency |
| 23102   | Monitor No 2 | Output current   |
| 23104   | Monitor No 3 | Output voltage   |

#### 8.7.3.1. Example of reading of 1 measure

| Node:          | 25 (19H)                              |
|----------------|---------------------------------------|
| Measure:       | 0 (current speed in hundredths of Hz) |
| Address:       | 23100 (5A3CH)                         |
| Value :        | 5000 (50.00 Hz) (1388H)               |
| Frame to be se | nt: 19 03 5A 3C 00 01 55 06           |
| Answer frame:  | 19 03 02 13 88 95 10                  |

# 8.7.4. Command setting

The address to which is assigned the setting of command to the inverter is 24000. The command consists of one word, whose bits have the following meaning:

| Bit | Meaning | Bit | Meaning |
|-----|---------|-----|---------|
| 15  | -       | 07  | -       |
| 14  | -       | 06  | -       |
| 13  | -       | 05  | RL      |
| 12  | -       | 04  | RM      |
| 11  | -       | 03  | RH      |
| 10  | MRS     | 02  | STR     |
| 09  | -       | 01  | STF     |
| 08  | -       | 00  | STOP    |

STF: Run forward

STR:Run reverseRH:Speed selection – highRM:Speed selection – middleRL:Speed selection - lowMRS:output stop

#### 8.7.4.1. Example of command setting

Node: 25 (19H) Address: 24000 (5DC0H) STF command (step forward)

| Frame to be sent: | 19 06 5D C0 00 02 18 43 |
|-------------------|-------------------------|
| Answer frame:     | 19 06 5D C0 00 02 18 43 |

# 8.7.5. Inverter status

Inverter status can be read at the address 24000. A WORD is reported whose bits have the following meaning:

| Bit | Meaning | Bit | Meaning     |
|-----|---------|-----|-------------|
| 15  | -       | 07  | ALARM/ERROR |
| 14  | -       | 06  | FU          |
| 13  | -       | 05  | IPF(?)      |
| 12  | -       | 04  | OL          |
| 11  | -       | 03  | SU          |
| 10  | -       | 02  | RUN RW      |
| 09  | -       | 01  | RUN FW      |
| 08  | -       | 00  | RUN         |

| RUN:         | inverter running            |
|--------------|-----------------------------|
| FWD:         | forward running             |
| REV:         | reverse running             |
| SU:          | up to frequency             |
| OL:          | over load                   |
| IPF:         | instantaneous power failure |
| FU:          | frequency detection         |
| ALARM/ERROR: | alarm condition             |

#### 8.7.5.1. Example of reading of inverter status

| Node: 25 (19H     |       | H)                      |
|-------------------|-------|-------------------------|
| Address:          | 24000 | (5DC0H)                 |
|                   |       | ()                      |
| Frame to be sent: |       | 19 03 5D C0 00 01 94 42 |
| Answer frame:     |       | 19 03 02 80 4B B9 B1    |

# 8.7.6. Setting/reading of speed in hundredths of Hz

Speed can be set and read at the address 24002, the value read or set is in hundredths of Hz.

#### 8.7.6.1. Example of speed setting in hundredths of Hz:

| Node:<br>Address:<br>Speed:     | 25 (19H)<br>24002 (5DC2H)<br>100.00 Hz (10000=2710H)   |   |
|---------------------------------|--------------------------------------------------------|---|
| Frame to be se<br>Answer frame: | nt: 19 06 5D C2 27 10 22 7E<br>19 06 5D C2 27 10 22 7E | _ |

#### 8.7.6.2. Example of reading of speed in hundredths of Hz:

| Node:          | 25 (19H)                    |
|----------------|-----------------------------|
| Address:       | 24002 (5DC2H)               |
| Speed:         | 60.00 Hz (6000=1770H)       |
| Frame to be se | nt: 19 03 5D C2 00 01 35 82 |
| Answer frame:  | 19 03 02 17 70 96 52        |

# 8.7.7. Speed setting/reading in rpm

Speed can be set and read in rpm at the address 24004. Inside the inverter speed is anyhow defined in hundredths of Hz; the option executes the conversion from rpm supplied to Hz in the following modality:

number of poles = parameter 144

speed [Hz] = speed [rpm] \* ((10\*number\_poles)/4)) / 3;

#### 8.7.7.1. Example of speed setting in rpm:

| Node:           | 25 (19H)                    |
|-----------------|-----------------------------|
| Address:        | 24004 (5DC4H)               |
| Speed:          | 100 rpm (100=64H)           |
| Frame to be set | nt: 19 06 5D C4 00 64 D9 A8 |
| Answer frame:   | 19 06 5D C4 00 64 D9 A8     |

#### 8.7.7.2. Example of speed reading in rpm:

| Node:<br>Address:<br>Speed: |  | H)<br>(5DC4H)<br>(50=32H) |
|-----------------------------|--|---------------------------|
| Frame to be sent:           |  | 19 03 5D C4 00 01 D5 83   |
| Answer frame:               |  | 19 03 02 00 32 19 93      |

# 8.7.8. Setting/reading the speed through analog input

The speed in analogue can be set at the address 24006, the read or set value is a byte, since the D/A converter used is a 8 bit D/A. The value sent is the value that is converted directly to the DA converter present on the option.

Value=0 speed set=0 Value=255 speed set= max.speed

In order that speed could be set through this command, it is necessary to carry out the following settings:

- Set parameter 339=1 so that speed is set by the analogue input
- Set the parameters 38 and 903, which establish the full scale value

- Set the parameter 73 which indicates the input full scale voltage 5V, 10V .. (set to 5V)

# 8.7.9. Example of DA speed setting:

| Node:<br>Address:<br>Set speed: | 25 (19H<br>24006<br>120 | l)<br>(5DC6H)           |
|---------------------------------|-------------------------|-------------------------|
| Frame to be sent:               |                         | 19 06 5D C6 00 78 79 A1 |
| Answer:                         |                         | 19 06 5D C6 00 78 79 A1 |

#### 8.7.10.Alarms buffer reset

The command of alarms buffer reset is mapped at the address 25000; the buffer of the alarms is reset by writing at the address 25000 the value 0, the writing of other values involves rejection of the command.

#### 8.7.10.1.Example of alarms reset (correct)

| Node:<br>Address:<br>Value:        | 25 (19⊦<br>25000<br>0 | H)<br>(61A8H)        |      |
|------------------------------------|-----------------------|----------------------|------|
| Frame to be sent:<br>Answer frame: |                       | 19 06 61<br>19 06 61 | <br> |

#### 8.7.10.2. Example of alarms reset (not correct)

| Node:<br>Address:<br>Value: | 25 (19⊦<br>25000<br>50 | H)<br>(61A8H)         |
|-----------------------------|------------------------|-----------------------|
| Frame to be sent:           |                        | 19 06 61 A8 0032 95DB |
| Answer frame:               |                        | 19 86 03 82 66        |

nt387\_00E

#### 8.7.11. Inverter reset

The command of inverter reset is mapped at the address 25002; the inverter is reset by writing at the address 25002 the value 0, the writing of other values involves rejection of the command.

#### 8.7.11.1.Example of inverter reset (correct)

| Node:<br>Address:<br>Value: | 25 (19⊦<br>25002<br>0 | l)<br>(61AAH         | )     |    |    |    |  |
|-----------------------------|-----------------------|----------------------|-------|----|----|----|--|
| Frame to be se              | ot:                   | 19 06 6 <sup>°</sup> | 1 ^ ^ | 00 | 00 | B5 |  |
| Answer frame:               |                       | 19 06 6 <sup>-</sup> |       |    |    |    |  |

#### 8.7.11.2.Example of inverter reset (not correct)

| Node:<br>Address:<br>Value:     | 25 (19⊦<br>25002<br>54 | H)<br>(61AAH)        |             |   |
|---------------------------------|------------------------|----------------------|-------------|---|
| Frame to be se<br>Answer frame: | nt:                    | 19 06 61<br>19 86 03 | <br>36 35 D | 8 |

# 8.7.12.Setting/removal of NET modality

In order that the inverter accepts commands it is necessary to set it in the NET modality. Writing at the address 26000 the value 1 the inverter enters the NET modality, writing 0 the NET modality is removed.

Before sending any other command to the inverter it is necessary to launch the command for setting of the NET modality.

#### 8.7.12.1.Example of setting of NET modality

| Node:    | 25 (19H)      |  |  |  |
|----------|---------------|--|--|--|
| Address: | 26000 (6590H) |  |  |  |
| Value:   | 1             |  |  |  |

| Frame to be sent: | 19 06 65 90 00 01 55 33 |
|-------------------|-------------------------|
| Answer frame:     | 19 06 65 90 00 01 55 33 |

#### 8.7.12.2.Example of removal of NET modality

| Node:<br>Address:<br>Value:     | 25 (19⊦<br>26000<br>0 | l)<br>(6590H)        |      |
|---------------------------------|-----------------------|----------------------|------|
| Frame to be se<br>Answer frame: | nt:                   | 19 06 65<br>19 06 65 | <br> |

# 8.7.13. SW Version

Starting from the address 27000 up to the address 27016 some informations are present regarding the software version installed on the option:

the SW version is expressed in the format:

xxxx.yy.zz and followed by the date and the hour of creation of the software

| 27000: | XXXX    |
|--------|---------|
| 27002: | уу      |
| 27004: | ZZ      |
| 27006: | Day     |
| 27008: | Month   |
| 27010: | Year    |
| 27012: | Hours   |
| 27014: | Minutes |
| 27016: | Seconds |
|        |         |

All these informations are reported in hexadecimal format; for example for the day 13 the value 0013H will be reported.

#### 8.7.13.1.Example of info reading of the version

| Node:<br>Address:<br>Values:       | ss: 27000-27016                                                         |    |    |    |      |    |                                              |            |    |
|------------------------------------|-------------------------------------------------------------------------|----|----|----|------|----|----------------------------------------------|------------|----|
| values.                            | xxxx<br>yy<br>zz<br>day<br>month<br>year<br>hours<br>minutes<br>seconds |    |    |    |      |    | 00<br>01<br>13<br>02<br>01<br>16<br>21<br>58 |            |    |
| Frame to be se<br>Answer frame:    | nt:                                                                     |    |    |    |      |    |                                              | 1A 5<br>B7 | 57 |
| Frame to be se<br>Answer frame:    | nt:                                                                     |    |    |    |      |    | 01<br>98                                     | BB<br>46   | 97 |
| Frame to be se<br>Answer frame:    |                                                                         |    |    |    |      |    | 01<br>59                                     | 5B<br>86   | 96 |
| Frame to be se<br>Answer frame:    |                                                                         |    |    |    |      |    |                                              | FA<br>8B   | 56 |
| Frame to be se<br>Answer frame:    | nt:                                                                     |    |    |    |      |    | 01<br>19                                     | 9B A<br>87 | 46 |
| Frame to be se<br>Answer frame:    | nt:                                                                     |    |    |    |      |    | 01<br>59                                     | 3A 6<br>86 | 66 |
| Frame to be sent:<br>Answer frame: |                                                                         |    |    |    |      |    | 01<br>19                                     | DA<br>88   | 67 |
| Frame to be se<br>Answer frame:    |                                                                         |    |    |    |      |    | 01<br>58                                     | 7B /<br>5E | 47 |
| Frame to be se                     | nt:                                                                     | 19 | 03 | 69 | 88   | 00 | 01                                           | 1A 6       | 64 |
|                                    |                                                                         |    |    | ~  | 0/00 |    |                                              |            |    |

nt387\_00E

Answer frame: 19 03 02 00 58 99 BC

#### 8.8. Error codes

If one frame is received and the CRC is incorrect no answer is sent, if - on the other hand - the frame received is correct and the data supplied are not coherent, one frame is sent containing one of the possible error codes:

| • | Function code unknown     | 01H |
|---|---------------------------|-----|
| • | Address not correct       | 02H |
| • | Data not correct          | 03H |
| • | PLC not ready             | 04H |
| • | Error in the writing      | 05H |
| • | Overlap with memory zones | 06H |

#### 8.8.1. Example of error (address not correct)

Reading of 1 WORD at the address 30000.

| Node:<br>Address:<br>Value:      | 25 (19)<br>30000<br>1 | (7530)                                    |
|----------------------------------|-----------------------|-------------------------------------------|
| Frame to be set<br>Answer frame: | nt:                   | 19 03 75 30 00 01 9D D1<br>19 83 02 40 F6 |

### 8.8.2. Example of error (data incorrect)

Writing the value 3 to the address 26000, when only the values 0 and 1 are allowed.

| Node:<br>Address:<br>Value:     | 25 (19⊦<br>30000<br>3 | l)<br>(6590H)        |              |
|---------------------------------|-----------------------|----------------------|--------------|
| Frame to be se<br>Answer frame: | nt:                   | 19 06 65<br>19 86 03 | <br>03 D4 F2 |

# 9. SPECIFICATIONS

| 1)  | Power supply                    | <ul> <li>Control power: supplied by the inverter.</li> <li>Communication power: supplied by CAN open</li> </ul>                                                                          |  |
|-----|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2)  | Standard                        | <ul> <li>supply, 11 to 28 V with a 10 A capacity.</li> <li>According to Bottero CANopen specifications</li> <li>CAN transceiver and CAN controller as specified in ISO 11898.</li> </ul> |  |
| 3)  | Maximum cable<br>distance       | <ul> <li>500m at 125k baud with thick cable (see<br/>CANopen phl specification for details on<br/>maximum cable distance for different baud<br/>rates)</li> </ul>                        |  |
| 4)  | Transmission<br>speed           | • 125kbps, 250kbps, 500kbps                                                                                                                                                              |  |
| 5)  | Number of inverters connectable | <ul> <li>63 inverters with minimum of one node as a<br/>master</li> </ul>                                                                                                                |  |
| 6)  | Supported inverters             | • FR-A500                                                                                                                                                                                |  |
| 7)  | Dimension                       | • 96 x 49 x 33 mm                                                                                                                                                                        |  |
| 10) | Environmental                   |                                                                                                                                                                                          |  |
| Am  | bient temperature               | -10 to 50°C (non-condensing)                                                                                                                                                             |  |
| Am  | bient humidity                  | nt humidity 90% or less (non-condensing)                                                                                                                                                 |  |
| Vib | ration                          | 0.6G or less, conforming to JIS-C0912                                                                                                                                                    |  |
| Pro | otective structure              | Open type (IP00), JEM1030                                                                                                                                                                |  |

# 10. References

- Mitsubishi FR-E500 Inverter Instruction Manual Document# IB (NA) 66790 (?)
- Mitsubishi Electronic Data Sheet Instruction Manual Document# VC7BNA00011 (?)
- CIA CANopen application layer and communication profile Draft standard 301 V 4.0
- CiA CANopen Device Profile Drives and Motion Control Draft Standard Proposal 402 V 1.1

# 11. Appendix A

# 11.1. Summary of CANopen communication objects

| Index       | Subindex | R/W Flag | Description                     |
|-------------|----------|----------|---------------------------------|
| 0006H       | OH       | RO       | Deftype UNSIGNED16              |
| 1000H       | OH       | RO       | Device type                     |
| 1001H       | OH       | RO       | Error register (Flags)          |
| 1002H       | OH       | RO       | Manufacturer status register    |
| 1005H       | OH       | RW       | COB-ID SYNCH                    |
| 1008H       | OH       | RO       | Manufacturer device name        |
| 1009H       | OH       | RO       | Manufacturer hardware version   |
| 100AH       | OH       | RO       | Manufacturer software version   |
| 100BH       | OH       | RO       | Node-ID                         |
| 100CH       | OH       | RW       | Guard time                      |
| 100DH       | OH       | RW       | Life Time Factor                |
| 1011H       | 0H       | RW       | Restore default parameter       |
| 1014H       | OH       | RW       | COB-ID EMCY                     |
| 1400H-1403H | 0H-2H    | RW       | RxPDO Communication parameter   |
| 1600H-1603H | 0H-4H    | RW       | RxPDO Mapping                   |
| 1800H-1803H | 0H-5H    | RW       | TxPDO Communication parameter   |
| 1A00H-1A03H | 0H-4H    | RW       | TxPDO Mapping                   |
| 2000H-2002H | OH       | RO       | Monitor data                    |
| 2106H       | OH       | WO       | Alarm clear                     |
| 2107H       | OH       | WO       | Inverter reset                  |
| 3000H-33E7H | OH       | RW       | Param. 0 (3000H + nr.parameter) |
| 3400H-3403H | OH       | RO       | Alarm buffer (last 8 alarms)    |
| 4000H       | OH       | RW       | Inverter command                |
| 4001H       | 0H       | RW       | Inverter speed Hz xxx.xx        |
| 4001H       | 1H       | RW       | Inverter speed Rpm              |
| 4001H       | 2H       | WO       | Inverter speed to analog input  |

# **11.2.** Summary of CANopen Device Profile objects

| Index | Sub   | R/W  | Description                                    |
|-------|-------|------|------------------------------------------------|
|       | Index | FLAG |                                                |
| 1000H | 00H   | RO   | device type                                    |
| 1001H | 00H   | RO   | error register                                 |
| 6007H | 00H   | RW   | abort_connection_option_code                   |
| 6040H | 00H   | RW   | controlword                                    |
| 6041H | 00H   | RO   | statusword                                     |
| 6042H | 00H   | RW   | vl_target_velocity                             |
| 6043H | 00H   | RO   | vl_velocity_demand                             |
| 6044H | 00H   | RO   | vl_control_effort                              |
| 6046H | 00H   | RO   | n. sub-index of vl_velocity_min_max_amount     |
| 6046H | 01H   | RW   | vl_velocity_min_amount                         |
| 6046H | 02H   | RW   | vl_velocity_max_amount                         |
| 6048H | 00H   | RO   | n. sub-index of vl_velocity_acceleration       |
| 6048H | 01H   | RW   | delta_speed (vl_velocity_acceleration)         |
| 6048H | 02H   | RW   | delta_time (vl_velocity_acceleration)          |
| 6049H | 00H   | RO   | n. sub-index of vl_velocity_deceleration       |
| 6049H | 01H   | RW   | delta_speed (vl_velocity_deceleration)         |
| 6049H | 02H   | RW   | delta_time (vl_velocity_deceleration)          |
| 604AH | 00H   | RO   | n. sub-index of vl_velocity_quick_stop         |
| 604AH | 01H   | RW   | delta_speed (vl_velocity_quick_stop)           |
| 604AH | 02H   | RW   | <pre>delta_time (vl_velocity_quick_stop)</pre> |
| 6060H | 00H   | WO   | modes of operation                             |
| 6061H | 00H   | RO   | modes of operation display                     |
| 67FFH | 00H   | RO   | single device type                             |

| Address     | R/W Flag | Description         | Range   |
|-------------|----------|---------------------|---------|
| 20000-21998 | RW       | Parameters 0-999    | 0-65535 |
| 23000-23006 | RO       | Alarms buffer 0-3   | 0-65535 |
| 23100-23104 | RO       | Measures 0-24       | 0-65535 |
| 24000       | WO       | Command setting     | 0-65535 |
| 24000       | RO       | Inverter status     | 0-65535 |
| 24002       | RW       | Speed [Hz]          | 0-65535 |
| 24004       | RW       | Speed[rpm]          | 0-65535 |
| 24006       | WO       | Analog input speed  | 0-255   |
| 25000       | WO       | Alarms buffer reset | 0-0     |
| 25002       | WO       | Inverter reset      | 0-0     |
| 26000       | WO       | Inverter NET ON/OFF | 0-1     |
| 27000-27016 | RO       | SW version          | 0-65535 |

# 11.3. Summary of MODBUS commands



| HEADQUARTERS                                                   |
|----------------------------------------------------------------|
| MITSUBISHI ELECTRIC EUROPE                                     |
| EUROPE B.V.                                                    |
| German Branch                                                  |
| Gothaer Straße 8                                               |
| D-40880 Ratingen                                               |
| Phone: +49 (0)2102 486-0<br>Fax: +49 (0)2102 486-1120          |
| e mail: megfamail@meg.mee.com                                  |
| MITSUBISHI ELECTRIC FRANCE                                     |
| EUROPE B.V.                                                    |
| French Branch                                                  |
| 25, Boulevard des Bouvets                                      |
| F-92741 Nanterre Cedex                                         |
| Phone: +33 1 55 68 55 68                                       |
| Fax: +33 1 55 68 56 85                                         |
| e mail: factory.automation@fra.mee.com                         |
| MITSUBISHI ELECTRIC IRELAND                                    |
| EUROPE B.V.                                                    |
| Irish Branch<br>Westgate Business Park, Ballymount             |
| IRL-Dublin 24                                                  |
| Phone: +353 (0) 1 / 419 88 00                                  |
| Fax: +353 (0) 1 / 419 88 90                                    |
| e mail: sales.info@meir.mee.com                                |
| MITSUBISHI ELECTRIC . ITALY                                    |
| EUROPE B.V                                                     |
| Italian Branch                                                 |
| Via Paracelso 12<br>I-20041 Agrate Brianza (MI)                |
| Phone: +39 039 60 53 1                                         |
| Fax: +39 039 60 53 312                                         |
| e mail: factory.automation@it.mee.com                          |
| MITSUBISHI ELECTRIC SPAIN                                      |
| EUROPE B.V.                                                    |
| Spanish Branch                                                 |
| Carretera de Rubí 76-80                                        |
| E-08190 Sant Cugat del Vallés                                  |
| Phone: +34 9 3 565 3131<br>Fax: +34 9 3 589 2948               |
| e mail: industrial@sp.mee.com                                  |
| MITSUBISHI ELECTRIC UK                                         |
| EUROPE B.V.                                                    |
| UK Branch                                                      |
| Travellers Lane                                                |
| GB-Hatfield Herts. AL10 8 XB                                   |
| Phone: +44 (0) 1707 / 27 61 00<br>Fax: +44 (0) 1707 / 27 86 95 |
| e mail: automation@meuk.mee.com                                |
|                                                                |
| MITSUBISHI ELECTRIC JAPAN<br>CORPORATION                       |
| Office Tower "Z" 14 F                                          |
| 8-12,1 chome, Harumi Chuo-Ku                                   |
| Tokyo 104-6212                                                 |
| Phone: +81 3 622 160 60                                        |
| Fax: +81 3 622 160 75                                          |
| MITSUBISHI ELECTRIC USA                                        |
| AUTOMATION                                                     |
| 500 Corporate Woods Parkway                                    |
| Vernon Hills, IL 60061                                         |
| Phone: +1 847 478 21 00<br>Fax: +1 847 478 22 83               |
| 1 u. 1 1 07/ 7/0 22 03                                         |
|                                                                |

**HEADQUARTERS** 

**EUROPEAN REPRESENTATIVES** AUSTRIA GEVA Wiener Straße 89 AT-2500 Baden Phone: +43 (0)2252 / 85 55 20 Fax: +43 (0)2252 / 488 60 e mail: office@geva.at **TEHNIKON** BELARUS Oktiabrskava 16/5, Ap 704 BY-220030 Minsk Phone: +375 (0)17 / 2104626 Fax: +375 (0)17 / 2275830 e mail: tehnikon@belsonet.net Getronics b.v. BELGIUM Control Systems Pontbeeklaan 43 **BE-1731 Asse-Zellik** Phone: +32 (0)2 / 467 17 51 Fax: +32 (0)2 / 467 17 45 e mail: infoautomation@getronics.com TELECON CO. BULGARIA 4, A. Ljapchev Blvd. **BG-1756 Sofia** Phone: +359 (0)2 / 97 44 058 Fax: +359 (0)2 / 97 44 061 e mail: INEA CR d.o.o. CROATIA Losinjska 4 a HR-10000 Zagreb Phone: +385 (0) 1 / 36 940-01 Fax: +385 (0) 1 / 36 940-03 e mail: inea@inea.hr CZECH REPUBLIC AutoCont Control Systems s.r.o. Nemocnicni 12 CZ-70200 Ostrava 2 Phone: +420 59 / 6152 111 Fax: +420 59 / 6152 562 e mail: consys@autocont.cz DENMARK louis poulsen industri & automation Geminivej 32 DK-2670 Greve Phone: +45 (0)43 / 95 95 95 Fax: +45 (0)43 / 95 95 91 e mail: lpia@lpmail.com UTU Elektrotehnika AS **FSTONIA** Pärnu mnt.160i EE-10621 Tallinn Phone: +372 (0)6 / 51 72 80 Fax: +372 (0)6 / 51 72 88 e mail: utu@utu.ee UTU POWEL OY FINLAND Box 236 FIN-28101 Pori Phone: +358 (0)2 / 550 800 Fax: +358 (0)2 / 550 8841 e mail: tehoelektroniikka@urhotuominen.fi UTECO A.B.E.E. GREECE 5, Mavrogenous Str. **GR-18542 Piraeus** Phone: +302 (0)10 / 42 10 050 Fax: +302 (0)10 / 42 12 033 e mail: uteco@uteco.gr Meltrade Automatika Kft. HUNGARY 55, Harmat St. HU-1105 Budapest Phone: +36 (0)1 / 2605 602 Fax: +36 (0)1 / 2605 602 e mail: office@meltrade.hu I ATVIA SIA POWEL Lienes iela 28 LV-1009 Riga Phone: +371 784 2280 Fax: +371 784 2281 e mail: utu@utu.lv UAB UTU POWEL **LITHUANIA** Savanoriu Pr. 187 LT-2053 Vilnius Phone: +370 (0)52323-101 Fax: +370 (0)52322-980 e mail: powel@utu.lt

**EUROPEAN REPRESENTATIVES** MOI DOVA Intehsis Srl Cuza-Voda 36/1-81 MD-2061 Chisinau Phone: +373 (0)2 / 562 263 Fax: +373 (0)2 / 562 263 e mail: intehsis@mdl.net Getronics b.v. NETHERLANDS Control Systems Donauweg 2 B **NL-1043 AJ Amsterdam** Phone: +31 (0)20 / 587 6700 Fax: +31 (0)20 / 587 6839 e mail: info.gia@getronics.com Motion Control NFTHERI ANDS Automation b.v. Markenweg 5 **NL-7051 HS Varsseveld** Phone: +31 (0)315 / 257 260 Fax: +31 (0)315 / 257 269 e mail: -Beijer Electronics AS Teglverksveien 1 NORWAY NO-3002 Drammen Phone: +47 (0)32 / 24 30 00 Fax: +47 (0)32 / 84 85 77 ICOS e mail: info@beijer.no MPL Technology Sp. z o.o. POI AND ul. Sliczna 36 PL-31-444 Kraków Phone: +48 (0)12 / 632 28 85 Fax: +48 (0)12 / 632 47 82 e mail: krakow@mpl.pl Sirius Trading & Services srl Str. Biharia Nr. 67-77 ROMANIA RO-013981 Bucuresti 1 Phone: +40 (0) 21 / 201 1146 Fax: +40 (0) 21 / 201 1148 e mail: sirius@siriustrading.ro INEA SR d.o.o. SERBIA AND MONTENEGRO Karadjordjeva 12/260 SCG-113000 Smederevo Phone: +381 (0)26/617 - 163 e mail: info@privod.ru Fax: +381 (0)26/617 - 163 e mail: inea\_sr@verat.net ACP Autocomp a.s. **SLOVAKIA** Chalupkova 7 SK-81109 Bratislava Phone: +421 (02)5292-2254 Fax: +421 (02)5292-2248 e mail: info@acp-autocomp.sk INEA d.o.o. SLOVENIA Stegne 11 SI-1000 Ljubljana Phone: +386 (0)1 513 8100 Fax: +386 (0)1 513 8170 e mail: inea@inea.si Beijer Electronics AB SWEDEN Box 426 -20124 Malmö Phone: +46 (0)40 / 35 86 00 Fax: +46 (0)40 / 35 86 02 e mail: info@beijer.de ECONOTEC AG SWITZERLAND Postfach 282 CH-8309 Nürensdorf Phone: +41 (0)1 / 838 48 11 Fax: +41 (0)1 / 838 48 12 e mail: info@econotec.ch GTS TURKEY Darülaceze Cad. No. 43A KAT: 2 **TR-80270 Okmeydani-Istanbul** Phone: +90 (0)212 / 320 1640 Fax: +90 (0)212 / 320 1649 e mail: gts@turk.net CSC Automation UKRAINE 15, M. Raskova St., Fl. 10, Off. 1010 UA-02002 Kiev Phone: +380 (0)44 / 238 83 16 Fax: +380 (0)44 / 238 83 17 e mail: csc-a@csc-a.kiev.ua

#### Avtomatika Sever Ltd. RUSSIA Lva Tolstogo St. 7, Off. 311 RU-197376 St Petersburg Phone: +7 812 / 11 83 238 Fax: +7 812 / 11 83 239 e mail: as@avtsev.spb.ru CONSYS RUSSIA Promyshlennava St. 42 RU-198099 St Petersburg Phone: +7 812 / 325 36 53 Fax: +7 812 / 325 36 53 e mail: consys@consys.spb.ru ELEKTROSTYLE RUSSIA Poslannikov Per., 9, Str.1 RU-107005 Moscow Phone: +7 095 / 542-4323 Fax: +7 095 / 956-7526 e mail: info@estl.ru ELEKTROSTYLE RUSSIA Krasnij Prospekt 220-1, Office 312 RU-630049 Novosibirsk Phone: +7 3832 / 10 66 18 Fax: +7 3832 / 10 66 26 e mail: elo@elektrostyle.ru RUSSIA Ryazanskij Prospekt, 8A, Office 100 **RÚ-109428 Moscow** Phone: +7 095 / 232 0207 Fax: +7 095 / 232 0327 e mail: mail@icos.ru SMENA RUSSIA Polzunova 7 **RU-630051 Novosibirsk** Phone: +7 095 / 416 4321 Fax: +7 095 / 416 4321 e mail: smena-nsk@yandex.ru STC Drive Technique RUSSIA Poslannikov per., 9, str.1 RU-107005 Moscow Phone: +7 095 / 786 21 00 Fax: +7 095 / 786 21 01

**EURASIAN REPRESENTATIVES** 

#### MIDDLE EAST REPRESENTATIVE

SHERF Motion Techn. Ltd Rehov Hamerkava 19 ISRAFI IL-58851 Holon Phone: +972 (0)3 / 559 54 62 Fax: +972 (0)3 / 556 01 82 e mail: -

#### **AFRICAN REPRESENTATIVE**

CBI Ltd SOUTH AFRICA Private Bag 2016 ZA-1600 Isando Phone: +27 (0)11 / 928 2000 Fax: +27 (0)11 / 392 2354 e mail: cbi@cbi.co.za

INV 12.04 - Printed in Germany

