
MITSUBISHI

Multiplex system type A3VTS

User's Manual

REVISIONS

**The manual number is given on the bottom left of the back cover.

Print Date	*Manual Number	Revision
May, 1989	IB (NA) 66190-A	First edition
	,	

INTRODUCTION

Thank you for choosing the Mitsubishi MELSEC-A Series of General Purpose Programmable Controllers. Please read this manual carefully so that the equipment is used to its optimum. A copy of this manual should be forwarded to the end User.

1. INTRODUCTION
2. SYSTEM CONFIGURATION
3. GENERAL SPECIFICATIONS
4. A3VTU AND A3VCPU MODULES
5. OPERATION MODE
6. POWER SUPPLY MODULE
7. BASE UNIT
8. EXTENSION CABLE
9. MEMORY CASSETTE, MEMORY
10. LOADING AND INSTALLATION
11. TEST OPERATION AND ADJUSTMENTS
12. MAINTENANCE AND INSPECTION
13. TROUBLESHOOTING
APPENDICES

CONTENTS

1.	INTRODUCTION	····· 1-1 ~ 1-3
1.1	Features ·····	1-2
2.	SYSTEM CONFIGURATION	···· 2-1 ~ 2-15
2.1	Overall Configuration ······	
2.2	A3VTS System Usage Precautions·····	
2.3	System Configuration	
3.	GENERAL SPECIFICATIONS	
4.	A3VTU AND A3VCPU MODULES ·····	···· 4-1 ~ 4-55
4.1	Specifications	4-1
4.2	Operation Processings ·····	4-3
	4.2.1 Repeated operation processing ·····	
	4.2.2 Initialization ······	4-4
	4.2.3 END processing ······	
	4.2.4 Timer processing ······	
	4.2.5 Counter processing ·····	4-7
	4.2.6 Operation processing at instantaneous power failure occurrence	
	4.2.7 RUN, STOP, PAUSE operation processings	
4.3	I/O Control	4-13
4.4	Programming Languages ·····	4-15
4.5	Number of Inputs/Outputs and I/O Addresses·····	
	4.5.1 Number of inputs/outputs······	
	4.5.2 I/O addresses ·····	
	4.5.3 I/O assignment·····	
4.6	Watch Dog Timer (WDT) ·····	
4.7	Memory Capacity	4-20
4.8	Devices·····	20 1-21 ·····
4.9	Self-Diagnosis ·····	
	4.9.1 A3VCPU self-diagnosis·····	 1-22 ·····
	4.9.2 A3VTU self-diagnosis	4-22 4-22
4.10		4-25
4.11		4-25 1-27
	4.11.1 Function list ······	4-27
	4.11.2 Module replacement during online operations	
	4.11.3 CONSTANT SCAN······	
	4.11.4 LATCH (power-failure backup) ······	4-34
	4.11.5 REMOTE RUN/STOP······	4-3/
	4.11.6 PAUSE	4-39
	4.11.7 STATUS LATCH	4-42
	4.11.8 SAMPLING TRACE	4-46
	4.11.9 OFFLINE SWITCH	
		4-5

4.12	Handling	······ 4-53
	4.12.1 Handling instructions	4-53
	4 12 2 Nomenclature (A3VTU)	4-54
	4.12.3 Nomenclature (A3VCPU)	4-55
5. C	OPERATION MODE	5-1 ~ 5-17
5.1	Independent Operation Mode ·····	5-2
o. i	5.1.1 System operation status in the independent operation mode······	5-4
5.2	Majority Operation Mode	5-7
5.2		5-9
		5-12
- 0	5.2.2 Operation status when there is a malfunction	5-15
5.3	Operation Precautions	5-15 5-16
5.4	·	
6. I	POWER SUPPLY MODULE	6-1 ~ 6-11
6.1	Power Supply Module Specifications	6-1
	6.1.1 Power supply module specifications	6-1
	6.1.2 Selection of power supply module ·······	6-3
	6.1.3 Fuse specifications ·····	6-4
6.2	Handling	6-5
J	6.2.1 Handling instructions	6-5
	6.2.2 Nomenclature	6-6
7 .	BASE UNIT	··7-1 ~ 7-6
7.1	Base Unit Specifications·····	7-1
7.1	7.1.1 Specifications of base units····································	7-1
7.2	Handling·····	7-2
7.2	7.2.1 Handling instructions······	7-2
	7.2.2 Base unit and power supply module combined use ···································	7-2
	7.2.3 Nomenclature	7-3
	7.2.4 Setting of extension stage numbers ······	7-6
8.	EXTENSION CABLE	8-1
8.1	Specifications	8-1
9.	MEMORY CASSETTE, MEMORY	
	Specifications	
9.1	Specifications	9-1
	9.1.1 Memory cassette specifications······	9-1
	9.1.2 Memory specifications	9-1
	9.1.3 Battery specifications	9-2

9.2	Handli	ng	9_3
		Handling instructions	
	9.2.2	Nomenclature:	9_4
	9.2.3	Memory IC installation ·····	9 <u>.</u> 5
		Memory protect switch setting	
	9.2.5	User memory installation	
	9.2.6	Battery installation	0-0 9-12
10.		IG AND INSTALLATION······	
10.1	Consid	eration for Safety ·····	10 1
10.2	Installa	ation Environment ······	10-1
10.3	PC Gen	nerated Heat Calculation·····	10-3
10.4		ing of Base Unit ······	
10.4		Mounting instructions ······	
	10.4.1	Installation	10-6
10.5	inetalia	ation and Removal of Module·····	10-7
10.6	Wiring		10-8
10.0	10.6.1	Wiring instructions·····	10-10
	10.6.1	Wiring to unit terminals ······	10-10
·	10.0.2	withing to unit terminals	10-13
11.	TEST OF	PERATION AND ADJUSTMENTS	····· 11-1 ~ 11-2
11.1	Check F	Points Before Start of Test Operation ·····	
11.2	Test Op	peration and Adjusting Procedure ······	11-2
12.	MAINTE	NANCE AND INSPECTION	····· 12-1 ~ 12-6
12.1	Daily In	spection ·····	12-1
12.2	Periodi	c Inspection·····	12-2
12.3	Replace	ement of Battery·····	12-3
	12.3.1	Service life of battery ·····	12-3
		Battery changing procedure	12-4
12.4		ement of Fuse ·····	12-5
	12.4.1	Replacement of fuse for power supply ······	
		Replacement of fuse for output module ······	
13.	TROUBL	ESHOOTING	····13-1 ~ 13-26
13.1	Error Co	ode List·····	13-1
		Errors diagnosed by the A3VCPU ·····	
		Errors diagnosed by the A3VTU ······	
13.2		roubleshooting	

13.3	Γroub	les	hooti	ng		····13-14
	1221	T	rouble	eshootii	ng flow charts ······	····13-14
	13.3.2	FI	ow ch	nart use	ed when "POWER" LED has turned off ·····	13-15
•	13.3.3	FI	ow ch	nart use	ed when "RUN" LED has turned off	····13-16
					ed when "RUN" LED flickers ·····	····13-18
	13.3.5	FI	ow c	hart us	sed when output load of	
		0	utput	module	e does not turn on ·····	····13-19
	13.3.6	FI	low c	hart us	sed when input cannot be fetched	
		fr	om th	ne input	module ·····	13-20
	13.3.7	F	low c	hart us	sed when special function module	
		d	oes n	ot opera	ate properly ·····	13-21
	13.3.8	IV	lalfun	ction in	n program down load to PC·····	13-22
13.4	I/O Co	nn	ectio	n Troub	pleshooting	13-23
	13.4.1	lr	iput v	viring tr	roubleshooting	13-23
	13.4.2	C	utput	circuit	problems and corrective action	13-26
APPEI	NDICE	s.			APP-1 ~	APP-85
		,			LACOR!	4 DD 4
APPE	XIDIX	1	Tabl	e of Cha	aracteristics for the A3VTS, A3HCPU, A3NCPU, and A3CPU \cdots	··· APP-1
					cteristics ·····	··· APP-1
APPE	XIDIX	2	Prec	autions	s concerning the use of an A3VTS	4 DD 0
			in sy	stem al	Iready using an A3CPU ·······	APP-3
			2.1		ences in instruction set between A3CPU and A3VTS	APP-3
			2.2	Differe	ences in special relays and special registers	ADD 4
				betwee	en A3CPU and A3VTS······	APP-4
			2.3	Cautio	ons concerning module replacement ······	C-YYA
			2.4		ons concerning the use of sequence programs	APP-0
				2.4.1	Differences in I/O control methods	APP 6
					Pulse processing program using the SET / RST instructions	APP-0
				2.4.3	Instructions, special relays, and special registers	··· APP-/
APPE	NDIX	3	Caut	tions C	concerning the Use of an A3VTS	ADDO
				ystem A	Already Using an A3NCPU	APP 0
			3.1		ences in instruction set between A3NCPU and A3VTS	АРР-8
			3.2		ences between the special relays and special registers	A DD O
				of the	A3NCPU and A3VTS······	APP-9
			3.3	Cautio	ons concerning module replacement ······	ADD 11
			3.4		ons concerning the use of sequence programs	APP-11
				3.4.1		ADD 11
					Pulse processing program with the SET / RST instruction	
				3.4.3	Data mik processing	
				3.4.4	Instructions, special relays, and special registers	···APP-12
APPE	NDIX	4	Cau	tions C	Concerning the Use of an A3VTS in System Already	A DD 14
			Usir	ng an A	3HCPU AND	APP-14
					ences in instruction set between A3HCPU and A3VTS	···APP-14
			4.2	Differ	ences in special relays and special registers	A D.D. 4.4
				betwe	een A3HCPU and A3VTS······	APP-14
			4.3	Cautio	ons concerning module replacement ······	APP-15

		4.4 Cautions concerning the use of sequence programs	··APP-16
		4.4.1 Differences in I/O control methods	··APP-16
		4.4.2 Pulse processing program using the SET / RST instructions	··APP-16
		4.4.3 Instructions, special relays, and special registers	··APP-17
APPENDIX	5	SEG Instructions Used in the A3VTS·····	··APP-18
APPENDIX	6	System Operation Status ·····	··APP-21
		6.1 System operation status in independent operation mode	··APP-21
		6.2 System operation status in majority operation mode	··APP-22
APPENDIX	7	Instruction Table	··APP-24
		7.1 Types of instructions	··APP-24
		7.2 Instruction table ·····	··APP-25
		7.2.1 How to read the tables ······	··APP-25
		7.2.2 Sequence instruction ······	··APP-28
		7.2.3 Basic instructions ······	··APP-31
	1	7.2.4 Application instructions	··APP-36
APPENDIX	8	Special Relay, Special Register List ·····	··APP-42
		8.1 Special relay list ······	··APP-42
		8.2 Special register list ·····	··APP-45
APPENDIX	9	Instructions Permissible to Use with the AD51E when Used	
		in the A3VTS System·····	··APP-51
APPENDIX	10	Dimensions	··APP-53
		10.1 Majority module (A3VTU) ······	··APP-53
		10.2 CPU module (A3VCPU) ······	··APP-54
		10.3 Power supply modules ·····	··APP-55
		10.4 Basic base unit (A30VB) ······	··APP-58
		10.5 Extension base units ·····	··APP-59
		10.6 Memory cassettes (A3NMCA-[])······	··APP-61
APPENDIX	11	Processing Time List	··APP-62
		11.1 Sequence instructions ·····	··APP-65
		11.2 Basic instructions ·····	··APP-67
		11.2.1 Relational instructions ·····	
		11.2.2 BIN arithmetic operation instructions	
		11.2.3 BCD arithmetic operation instructions	
		11.2.4 BCD to BIN conversion instructions ·····	
		11.2.5 Data transmit instructions ······	
		11.2.6 Program branch instructions ······	
		11.3 Application instructions	
•		11.3.1 Display instructions·····	
		11.3.2 Logic operation instructions ······	·APP-76
		11.3.3 Rotation instructions ······	·APP-78
		11.3.4 Shift instructions·····	
		11.3.5 Data processing instructions·····	·APP-81
		11.3.6 FIFO instructions·····	
		11.3.7 ASCII conversion instruction·····	
		11.3.8 Special function module instructions ·····	
		11.3.9 Other instructions ·····	·APP-85

1. INTRODUCTION

This manual describes the functions and operation of the highly reliable A3VTS multiplex system programmable controller (hereafter referred to as A3VTS).

The A3VTS system is equipped with dual power supply modules and three CPU modules. The CPU contains one majority A3VTU and three A3VCPU multiplex CPU modules.

Various modules in the A3VTS system can be replaced without stopping the system even if the power supply or CPU malfunctions. This system features improved functions, performance and reliability compared to systems using previous programmable controller CPU modules.

Any previous sequence program written by the ACPU can be used with the A3VTS.

The improved features, performance and functions of the A3VTS are described on the following page.

The following abbreviations are used to indicate the A6GPP, A6PHP, A6HGP or A7PU peripheral device.

A6GPP → GPP A6PHP → PHP A6HGP → HGP A7PU → PU

The A6GPP, A6PHP, A6HGP and A7PU are also referred to as peripheral device when related expression is common to all of them.

1.1 Features

The A3VTS is an integrated system configured of modules featuring the characteristics described below. This section describes the representative features.

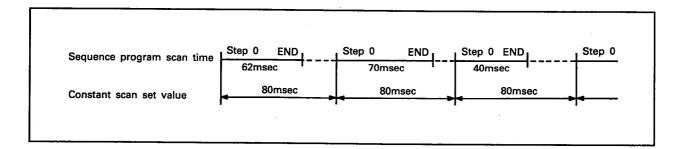
(1) Improved reliability and operating ratio through the adoption of multiple power supply and CPU modules.

The A3VTS system uses a dual power supply and three CPU modules to perform system operations in the multiple-module, majority operation.

If there is a malfunction in either the power supply or the CPU, operation automatically switches to another power supply module or CPU module which is functioning normally. Majority operation results are obtained for the output (Y) from the three A3VCPU modules and then are output.

(2) Module installation in the online mode

A malfunctioning power supply module or CPU can be replaced during operation without having to terminate the current operation.


An I/O module can also be replaced without terminating the current output module system operations by setting the control offline only for the I/O module which is to be replaced. The operation ratio and reliability of the A3VTS system are improved by replacing any power supply module or CPU module which malfunctions during operation within 24 hours.

(3) Constant scan function

The constant scan function sets the activation cycle of the sequence program scan and can execute the program at specified intervals.

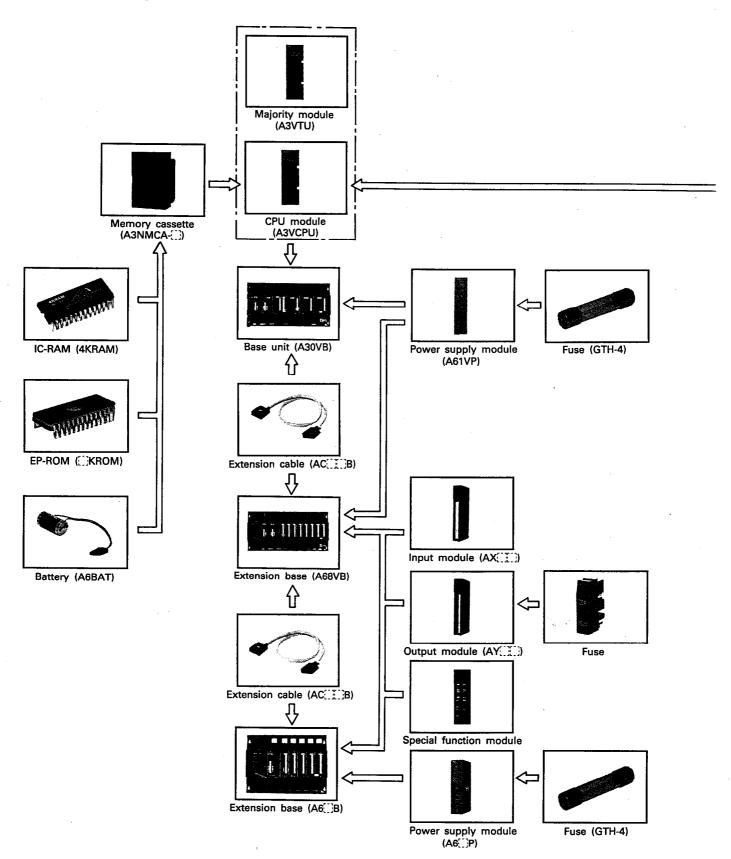
Program scan time normally varies depending on the execution instruction conditions or the presence of subroutine programs.

If the control scan function is used the program scan time is set to a regular interval. This allows the control of external devices without variation in control intervals caused by scan time variation.

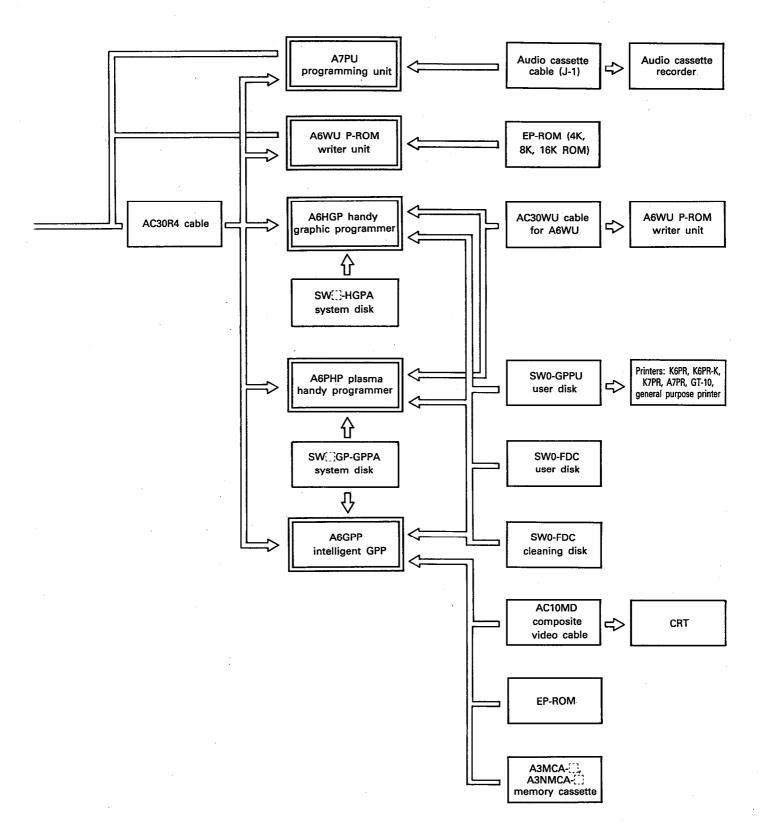
- (4) Compatibility with A3(E)CPU, A3NCPU and A3HCPU systems The compatibility of I/O modules (special function modules) and programs for A3CPU, A3NCPU and A3HCPU based systems is described below.
 - (a) I/O module (special function module) compatibility I/O modules can be basically used in the A3VTS system. However some modules cannot be used. Refer to section 2.2 or Appendices 2 to 4 for details.
 - (b) Sequence program compatibility
 Generally, previously written sequence programs can be used in the A3VTS system.
 However, some instructions cannot be used, and some instructions differ in terms of devices and specifications.
 Refer to Appendices 2 to 4 for further details.
- (5) Peripheral device (software package) compatibility

The following peripheral devices can be used with the A3VTS without modification.

A6GPP A6PHP A6HGP A7PU A6WU


The floppy disks described below can be used to boot the A6GPP, A6PHP or A6HGP systems.

SW0-GPPA to SW3-GPPA (A6GPP system disk) SW3GP-GPPA (A6GPP/A6PHP system disk) SW0-HGPA to SW3-HGPA (A6GPP system disk)



2. SYSTEM CONFIGURATION

2.1 Overall Configuration

2.2 A3VTS System Usage Precautions

This section describes precautions for the A3VTS architecture and usage.

(1) The A3VTS system is a multiplex system that uses two power supply modules and three CPU modules.

The multiplex system architecture enables continuous system approximately and the system of the province of the system architecture and the system architecture are continuous system.

operations even if a power supply module or CPU module malfunctions. As a result, the system operates with high operation ratio and reliability.

Although system operations using a power supply module and one or two CPU modules is possible, multiplex system operation is not possible in such a configuration because system operation stops of an error occurs.

- (2) System operation will stop if a power supply module malfunctions when an extension base using the conventional power supply module (A61P to A65P) is installed in the system using the dual power supply modules. (The same conditions exist for A81CPU PID control CPU modules when installed.) All the extension base units used in the system with dual power supply modules should use an extension base module for dual power supply modules to ensure improved operation ratio and reliability.
- (3) Extension base units (A55B and A58B) cannot be used in the A3VTS system. The A3VTS system cannot supply them with 5 VDC.
- (4) The combinations of base units and power supply modules is shown in the table. ("O" symbol indicates possible combinations and "X" symbol indicates combinations which are not possible). Do not make any of the combinations indicated by an "X" since this may damage the power supply modules.

	Power Supply Module Type											
Base Type	A61VP	A61P	A62P	A63P	A65P							
A30VB	\sim											
A68VB	0	×	×	, ×	×							
A65B	×	0	0	0	0							
A68B	×	0	0	Ō	0							

- (5) Special function modules which cannot be used
 - (a) AD57(S1) CRT controller module
 - (b) AD58 LCD controller module
 - (c) Al61 interrupt module
 - (d) AJ71C24(S3) computer link module
 - (e) AD51 intelligent communication module
 - *AD51 modules can be used under the following conditions. No other functions are usable in the A3VTS system.

AD51 ····· The AD51 buffer memory can be accessed by the FROM / TO instruction.

Refer to Appendix 9 for details regarding possible functions (commands).

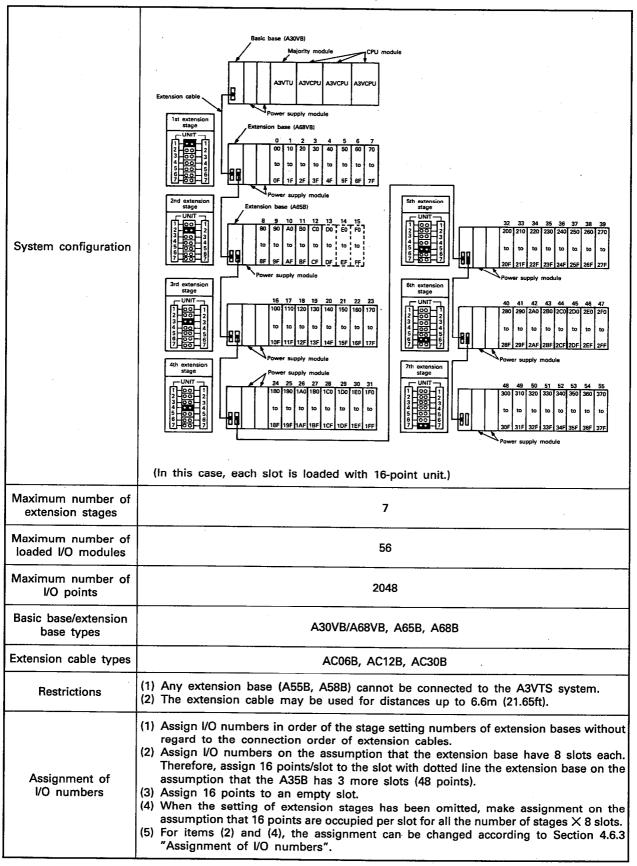
- (6) Software packages which cannot be used SW[]GHP-UTLPC-PID utility package SW[]GP-AD57P system disk SW[]GHP-UTLPC-FN1 utility package
- (7) There are some peripheral device functions which cannot be used during A3VTS system majority operation. These functions are described below.
 - (a) Writing cannot be performed during a RUN operation. If a write operation is performed during a RUN operation, the A3VCPU generates an error and drops from system operation.
 - (b) Forced output cannot be used.

 If forced output is performed, the A3VCPU generates an error and drops from system operation.

When data is written to a data register during test operation, an error occurs when output (Y) is executed if the data influences the output (Y) and the A3VCPU drops from system operation.

- (c) The offline switch cannot be used. If the offline switch is used the A3VCPU generates an error and drops from operation.
- (8) When the A3VCPU has dropped from system operation due to an error during majority operation, normal operation can be restored by correcting the error or replacing the malfunctioning module.

400ms is necessary for restore processing and the scan time for restore processing is extended 400ms. Consequently, when majority operation is performed, set the WDT to a value equal to the normal scan time +400ms.


If the setting value is small, an error will be generated by all A3VCPUs when the A3VCPU restores operation and system operations stop.

When an error has been remedied or an A3VCPU has been replaced and the A3VCPU's operation in the system is to be restored, restore A3VCPU operation at a point which will not have an effect even if control is delayed due to increased scan time as described above.

(9) Refer to the A3VTS Multiplex Data Link System User's Manual for details about precautions for systems used with the multiplex link system.

(10) A3VTS system configuration

2.3 System Configuration

Table 2.1 show the system equipment consisting of various modules and units which can be used.

 ${\bf M}$ station: Master station, L station: Local station, \bigcirc : Indicates that it is usable.

					J.					yste				
			,		<u>.</u>	÷	_		-	<u>,</u> ptic ta li	_	녿	Remarks	
Mod	lule	Туре	Description	Occupied Points	gen			IRK			nk	1 1		
				1 Onits	Independent	station	station		station	station		Computer		
			Consist of the following		-	Σ			Σ	Σ	-		ర	
			models:	•										
			A3VTU1											
Majority	system	A3VTS	A3VCPU······3		0							0		
			A61VP ·····2											
			A30VB ······1						•					
			Program capacity: 30K steps, I/O points: 2048	-										
CPU m	nodule	A3VCPU	M, L, S total: 2048, T: 256, C: 256, D: 1024		0	0	0		0			0	Memory cassette to be arranged separately.	
Majority	module	A3VTU	For independent system		0	0	0		0	0		0		
		A3NMCA-0	Without IC-RAM memory		Ť		Ť		_	Ŭ				
		A3NMCA-2	With IC-RAM memory 16K bytes						0				With two memory sockets	
Mem	norv	A3NMCA-4	With IC-RAM memory 32K bytes										A3NMAC-0 can be loaded with IC- RAM or EP-ROM	
cass		A3NMCA-8	With IC-RAM memory 64K bytes		0	0	0			0		0	memory. • A3NMCA-2 to -24	
		A3NMCA-16	With IC-RAM memory 128K bytes											
	,	A3NMCA-24	With IC-RAM memory 192K bytes											
	IC-RAM	4KRAM	8K bytes (max. 3K steps)											
Memory		4KROM	8K bytes (max. 3K steps)			0	0		0					
Wieiliory	EP-ROM	8KROM	16K bytes (max. 7K steps)											
		16KROM	32K bytes (max. 15K steps)											
		AX10	16 points, 100-120V AC	16										
		AX11	32 points, 100-120V AC	32										
		AX20	16 points, 200-240V AC	16]									
		AX21	32 points, 200-240V AC	32	1								·	
 	andula	AX40	16 points, 12/24V DC	16						0			·	
Input n	noaule	AX41	32 points, 12/24V DC	32	10	0	0					0		
		AX41-S1	32 points, 12/24V DC, fast response type	32										
	•	AX42	64 points, 12/24V DC	64										
		AX42-S1	64 points, 12/24V DC, fast response type	64										

Table. 2.1 List of Equipment (Continue)

					Ar	plic	cab	le S	Syst	em			
			Occupied	ant	C	oax ita		da	ptio ta l	al ink	in		
Module	Туре	Description	Points	Independent	M station			M station			Computer	Remarks	
	AX50	16 points, 48V AC	16										
·	AX50-S1	16 points, 48V DC, sink/source selectable	16										
	AX60	16 points, 100/110/125V DC	16	1									
	AX60-S1 16 points, 100/110/125 DC, sin source selectable	16 points, 100/110/125 DC, sink/ source selectable	16										
	AX70	16 points for sensor	16	1								indicates source loading.	
	AX71	32 points for sensor	32									The other modules are of sink loading with	
Input module	AX80	16 points, 12/24V DC source loading	16	0	0	0		0	0		0	the exception of the AX50-S1 and AX60-S1 which may be used as	
~	AX80E	16 points, 12/24V DC source loading	÷16									both a sink and a source loading module.	
	AX81	32 points, 12/24V DC source loading	32										
	- AX81-S1	32 points, 12/24V DC, source, low on/off response threshold	32										
	AX82	64 points, 12/24V DC source loading	64										

Table. 2.1 List of Equipment (Continue)

POINT

- (1) Although memory cassette capacity is 128KB for A3NMCA-16 and 192KB for A3NMCA-24, maximum memory area usable for parameters is 96KB and 144KB, respectively.
- (2) Any conventional memory cassette A3MCA-: may be used.

					Ap	plic	abl	e S	yst	em	· .	·	
			!	¥	C	oax ta	ial ink	Optical data link			ink	1	
Module	Туре	Description	Occupied Points	Independent	M station	station		M station	L station		Computer 1	Remarks	
	AY10	16 points, relay contact	16									indicates	
	AY10A	16 points, relay contact, for in- dependent contact output	16									source loading.	
	AY11	16 points, relay contact, with surge suppression	16										
	AY11A	16 points, relay contact, for in- dependent contact output, with surge suppression	16										
	AY11E	16 points, relay contact, (with fuse)	16										
	AY13	32 points, relay contact	32										
	AY13E	32 points relay contact (with											
	AY22	16 points, triac for 2A (with fuse)	16								The other modules are of sink loading. The short and over-		
	AY23	32 points, triac for 0.6A (with fuse)	th 32							heat protection func- tions of the AY60EP, AY80EP, AY81EP,			
	AY40	16 points, 12/24V DC transistor for 0.1A	16								AY82EP are as follows:		
Output module	AY40A	16 points 12/24V DC transistor for independent contact output, 0.3A	16	0	0	0		0	0		0	Short protection function Protects the transistor from overcurrent du to external wirin	
	AY41	32 points, 12/24V DC transistor output for 0.1A	32									short, etc.	
	AY42	64 points, 12/24V DC transistor for 0.1A	64									Protects the transistor	
	AY42-S1	64 points, 12/24V DC transistor, 0.1A fast response type	64									temperature due to any external factor.	
	AY50	16 points, 12/24V DC transistor for 0.5A (with fuse)	16										
,	AY51	32 points, 12/24V DC transistor for 0.5A (with fuse)	32										
	AY60	16 points, 12/24/48V DC transistor for 2A (with fuse)	16										
	AY60S	16 points, 12/24/48V DC transistor, 2A (6.4A/common)	16										
	AY60E	16 points, 12/24/48V DC transistor for 2A (with fuse)	16	in the second									
	AY60EP	16 points 12/24V DC transistor											

Table 2.1 List of Equipment (Continue)

					Αŗ	pli	cab	le S	yst	em			
		Description	Occupied Points		C da	ta	cial link	O da	ptical ta link		ink		
Module	Туре				M station	L station		station			Computer	Remarks	
	AY70	16 points (5/12V DC) for TTL, CMOS	16									indicates source loading.	
	AY71	32 points (5/12V DC) for TTL, CMOS	32										
	AY80 =	16 points, 12/24/48V DC transistor for 0.5A (with fuse)	16	16	0				(7	
Output	AY80EP	16 points, 12/24V DC transistor 0.8A with short and overheat protection functions	16										
module	AY81	32 points, 12/24V DC transistor for 0.5A	32			0		0	0		0		
	AY81EP	32 points, 12/24V DC transistor for 0.8A with short and over- heat protection functions	32										
	AY82EP	64 points, 12/24V DC transistor for 0.1A with short and over- heat protection functions	64										
Dynamic combined I/O module	A42XY	64 inputs, 64 outputs Dynamic scanning mode	64	0	0	0		0	0		0	I/O are processed wit scanning made i groups of 8 points ir dependently of th CPU module.	

Table 2.1 List of Equipment (Continue)

Γ	,					Аp	ptic	abio	e S	yste	m		
				Occupied	12	Co	axi ta li	al ink	O _I	ptic ta li	al nk	link	
	Module	Туре	Description	ion Occupied Points		M station	L station		M station	L station		Computer	Remarks
		AD71	For positioning control Pulse chain output, 2 axes (in- dependent, simultaneous 2 axes, linear interpolation) A stepping motor can be used when AD76 module is used in conjunction with this module.	32	0	0	0		0	0		0	
	Positioning	. AD71S1	For positioning control For MELDAS-S1 servo driver (dedicated) Pulse chain output, 2 axes (in- dependent, simultaneous 2 axes, linear interpolation)	32	0	0	0		0	0		0	
el e	·	AD72	For positioning control Analog voltage output (0 to ± 10V DC) 2 axes (independent, simultaneous 2 axes, linear interpolation)	48	0	0	0		0	0		0	
npom u		AD61	Binary 24 bits, 1/2 phase input, reversible counter 50KPPS, 2 channels	32	0	0	0		0	0		0	·
Special function module	High-speed counter	AD61S1	Binary 24 bits, 1/2 phase input, reversible counter 1 phase ······10KPPS, 2 phases ····· ··· 7KPPS 2 channels	32	0	0	0		0	0		0	
0,	A/D converter	A68AD(S3)	4 to 20mA/0 to ±10V Analog input 12 bits, 8 channels	32	0	0	0		0	0		0	
	D/A converter	A62DA(S1)	4 to 20mA/0 to ±10V Analog output 12 bits, 2 channels	32	0	0	0		0	0		0	
	A/D, D/A converter	A84AD	4 to 20mA/0 to ±10V Analog I/O 15 bits, 4 channels	48	0	0	0		0	0		0	
	Memory card/ Centronics interface	AD59	32K bytes memory, battery backed May be connected with any printer conforming to Centronics Standards.	32	0	0	0		0	0		0	
	Voice output	A11VC	Messages can be recorded/re- played on max. 60 channels. 1, 2, 4 or 8 seconds may be selected per channel. Total recording time 64 seconds.	16	0	0	0		0	0		0	

Table 2.1 List of Equipment (Continue)

						Ар	plic	abl	e S	yste	em			′
		•		Oneser-land	nt	Co	oaxi ta l	al ink	O ₁	ptic ta li	al ink	link		
	Module	Туре	Description	Occupied Points					M station	L station			Rem	arks
	Intelligent communi- cation module	AD51E	Allows max. 8 multitaskings of GPC-BASIC programs for data transfer between the PC and computer and control status monitoring. Data communication with the computer in free format. Two RS-232C, two RS-422 channels.	48								0	Refer to	Up to two of any modules
Special function module	Multidrop data	AJ71C22	Multidropped with max. 8 slave stations to make bit data transfer. For multidrop link master station. Transmission speed: 38.4KBPS One RS-422 channel	32										may be used with one CPU.
functio	link module and units	A0J2C25	For multidrop link remote I/O station		0	0	0		0	0		0		
Special		A0J2C214	For multidrop link local station (May be used as the computer link or multidrop link master station in an A0J2CPU system)	64									AJ71C22 device	connection
	PID control CPU module	A81CPU	CPU module for process PID control PID operation for up to 64 loops and 32 programs can be made. (max. 8000 memory steps)	128	0	0	0		0	0		0	Can be co the A3VTS, tion or loca	master sta-
	Dummy module	AG62	16, 32, 48 or 64 points may be selected.	Number of set points	0	0	0		0	0.		0	With 16 switches	simulation
	Blank cover	AG60	Dustproof cover for use in vacant slot	16	0	0	0		0	0		0		

Table 2.1 List of Equipment (Continue)

POINT

Refer to Appendix 9 when the AD51E is used with the A3VTS system since there are restrictions on the functions to be used.

Г						****			Ap	plic	able	e S	yste	m	T		
								Ţ	Co	axi	al	O	otica a li	al	놀	•	
	Module	Туре		Des	crij	otion	Occupied Points	Independent	ua1	a I	INK			nk		Remarks	
								Indep	M stat	L station		M station	L station		Computer		
	· ·		Co		ie f	ollowing mod-											
			Type Num			ber of modules											
		A3VTS -VP21	<u> </u>	3VTU 3VCPU		3						0	0				
		-VF21	_	J71VP21		2											
			ı 🗕	30LVB		1											
			<u> </u>	61VP		2			_	_							
			Co		ne 1	following mod-											
				Туре													
		A3VTS	I I	A3VTU 1			<u> </u>		0	0							
		-VR21	A3VCPU 3 AJ71VR21 2														
			I ├──	30LVB	,												
	/ultiplex data		LA	61VP		2		<u> </u>									
	link system		Co	nsists of t				-									
		A3CPU -VP21		Туре	Nun	nber of modules											
			ı⊢	3VTU		1						0					
	"		1 -	J71VP21		2						ľ					
1			11-	20LVB		1			l	İ	Ì					,	
			A61VP 2														
			Consists of the following modules:														
				Type Number of modules A3VTU 1		nber of modules											
	*	A3CPU	11						0	0					0		
		-VR21	ı ⊩	J71VR21		2				ľ							
			1 -	1 		1											
			L	(61VP		2											
module	Coaxial data link module	AJ71VR21	tic		igh:	on or local sta- reliability, coa- link.			O	0							
Data link module	Optical data link module	AJ71VP21	tic	or master s ons. For hig data link.	tati gh-i	on or local sta- eliability, optic-						0	0				
		A61VP		110/220V AC	-	5V DC 5A 24V DC 0.8A		0	С	C		0	0		0	May be used with main base unit (A30VB, A30LVB, A20LVB) and extension base unit (A68VB).	
			110/220V AC	=	5V DC 8A use i	r	\top								May be used with ex-		
	Power supply module	A62P	Input	AC 110/220V AC	Jutpi	5V DC 5A suppl 24V DC 0.8A slot	oly									tension base unit (A65B, A68B).	
		A63P		24V DC	J	5V DC 8A						С	0		0		
		A65P		110/220V AC		5V DC 2A 24V DC 1.5A											1
		A66P		110/220V AC		24V DC 1.2A For us in 1/C slot	16									(A68VB, A65B, A68B).	
L						1 3.01	· .			_	_			-			

Table 2.1 List of Equipment (Continue)

Г				<u> </u>			1	Т		ii			2000			T
								\vdash	_	oax		_) Optic		_	
		Mod	lule	Туре	D	escription	Occupied	dent	da	ta	link	da	ta	link	- 1	
						Points	Independent	M station			M station	L station		Computer	Remarks	
		A30VB A30VB Main base for A3VTS The following number of modules can be installed. A3VTU: 1 module, AV3CPU: 3 modules, A61VP: 2 modules			0							0				
			Main base unit	A30LVB	Base for A3VTS-VP21/VR21 The following number of modules can be installed. A3VLU-L: 1 module, AV3CPU: 3 modules, A61VP: 2 modules, AJ71VP21/VR21: 2 modules Base for A3VTS-VP21/VR21 The following number of modules can be installed. A3VLU-L: 1 module, AV3CPU: 1 module, A61VP: 2 modules, AJ71VP21/VR21: 2 modules				0	0		0	0			
Ba	ise	unit		A20LVB					0	0		0	0			
		The following A68VB ules can be in		ase for A3VTS g number of mod- installed. 8 modules, A61VP:			0	0			((
				A68B	Can accommules.	Can accommodate 8 I/O modules.		0	0	0		0	0			
L				A65B	Can accomn ules.	nodate 5 I/O mod-										
	_			AC06B	600mm long										Ī	
	E	xten: cab		AC12B	1200mm long	For use between base units		0	0	0		0	0			
L				AC30B	3000mm long									ĺ		
l			ation	A6SW16	16 points si	mulation switch										Used with an input
L		swit	ch	A6SW32	32 points si	32 points simulation switch IC-RAM backup		이	0			0	이			module.
		Bat	tery	A6BAT	IC-RA			0	0	0		0	0		0	
		Fo	r AY22	HP-70K	Plug type 7A Plug type 3.2A Plug type 2A Plug type 3.2A Plug type 5A											
		Fo	r AY23	HP-32					•							
Others	Fuse	For	AY50, AY80	MP-20								0				
	표	Fo	AY60	MP-32												
		For	AY60E	MP-50												
			power upply	GTH-4	Cartrid	Cartridge type 4A									,	

Table. 2.1 List of Equipment

2. SYSTEM CONFIGURATION

Unit	Description	Туре			Remarks		
			С	Consists of the	e following models:		
				Туре	Remarks		
				A6GPPE	O Programming unit with CRT O Equipped with ROM writer, FDD and printer	interface functions.	
	Intelligent GPP	A6GPPE-SET		SW[]GP-GPPAEE	A series system disk		
Programming unit with CRT				SW[]]GP-GPPKEE	K series system disk		
unit with CK1				SW0-GPPU	User disk (3.5 inch, formatted)		
				AC30R4	Cable for connection of CPU and A6GPP 3m/9.84ft length		
	Composite video cable	AC10MD		able for connect	ion of GPP and expanded monitor display	v. 1m/3.28ft length.	
	Video cabic		1	Consists of the	e following models:		
	•			Туре	Remarks		
				A6HGPE	Programming unit with LCD Equipped with FDD, printer interface and me functions.	mory card interface	
Programming	Handy graphic programmer	A6HGPE-SET		SW::]-HGPAEE			
unit with LCD				SW[]-HGPKEE	K series system disk		
				SW0-GPPU	User disk (3.5 inch, formatted)		
				AC30R4	Cable for connection of CPU and A6HGP 3m/9.84ft length		
			1				
				Consists of th	e following models:		
				Туре	Remarks		
				A6PHPE	 Programming unit with plasma display Equipped with FDD, printer interface and me functions. 	emory card interface	
Programming unit with plasma	Plasma handy	A6PHPE-SET		SW[]]GP-GPPAEE	A series system disk		
display	programmer			SW. GP-GPPKEE	K series system disk		
			Ì	SW0-GPPU	User disk (3.5 inch, formatted)		
				AC30R4	Cable for connection of CPU and A6PHP 3m/9.84ft length		
		4.000F f	\downarrow			3m (9.84ft) length	
Common to	RS-422 cable	AC30R4	Cable for connection of CPU and A6GPP/A6HGP/A6PHP				
Common to programming		AC300R4	C300R4 30m (98.4ft) lengt				
units with CRT and LCD	User disk	SW0-GPPU	1	User disk (3.5 in	ch, formatted) for storing programs		
	Cleaning disk	SW0-FDC	Ŀ	Cleaning disk for	r disk drive		

Table. 2.2 Configuration Expansion (Continue)

2. SYSTEM CONFIGURATION

Unit	Description	Туре	Remarks
,	D-1-4	K6PRE	0.5
	Printer	K7PRE	For print out of program ladder diagrams and lists.
Printer	RS-232C cable	AC30R2	Cable for connection of A6GPP/A6PHP/A6HGP and printer. 3m/9.84ft length.
	Printer paper	K6PR-Y	Paper for K6PRE. 9 inch. Available in units of 2000.
	K6PR Ink ribbon	K6PR-R	Replacement ink ribbon for A6PRE
Programming unit	Programming unit	А7РU	 Connected to the CPU directly or via cable to read and write programs. Equipped with MT function. The A7PU is supplied with a cable for connection of the A7PU and audio cassette recorder.
	RS-422 cable	AC30R4 AC300R4	Cable for connection of CPU and A7PU. 3m(9.84ft)/30m(98.4ft) length.
P-ROM writer	P-ROM writer unit	A6WU	Used to store programs onto ROM and read programs from ROM to the CPU. Connected to the CPU directly or via the AC30R4 cable.
unit	RS-422 cable	AC30R4 AC300R4	Cable for connection of CPU and A6WU. 3m(9.84ft)/30m(98.4ft) length.
Software	GPP-BASIC package	SW[]GHP -BAS	Software package for creating and executing BASIC programs by A6GPP, A6PHP or A6HPG.
Package	Functional op- eration package	SW[]GHP- UTLPC-FN0	Software package for calculating trigonometric functions, square roots, etc.

Table 2.2 Configuration Expansion

3. GENERAL SPECIFICATIONS

Table 3.1 shows the common specifications of various modules used.

ltem		Spo	ecifications						
Operating ambient temperature	0 to 55℃								
Storage ambient temperature		−20 to 75℃							
Operating ambient humidity		10 to 90%RH, non-condensing							
Storage ambient humidity	10 to 90%RH, non-condensing								
	·	Frequency	Acceleration	Amplitude	Sweep Count				
Vibration resistance	Conforms to * JIS C 0911	10 to 55Hz		0.075mm (0.003inch)	10 times				
		55 to 150Hz	1G		*(1 octave/minute)				
Shock resistance	Conforms	to JIS C 0912	(10g × 3 time	s in 3 direction	ons)				
Noise durability			of 1000Vpp no 25 to 60Hz no		1				
Dielectric withstand voltage	1500V AC for 1 500V AC for 1								
Insulation resistance	5MΩ or large	5MΩ or larger by 500V DC insulation resistance tester across AC external terminals and ground							
Grounding	Class 3 grounding; grounding is not required when it is impossible.								
Operating ambience	Free of corrosive gases. Dust should be minimal.								
Cooling method		Se	elf-cooling	· · · · · · · · · · · · · · · · · · ·					

Table 3.1 General Specifications

REMARKS

One octave marked * indicates a change from the initial frequency to double or half frequency. For example, any of the changes from 10Hz to 20Hz, from 20Hz to 40Hz, from 40Hz to 20Hz, and 20Hz to 10Hz are referred to as one octave.

Note: * JIS: Japanese Industrial Standard

4. A3VTU AND A3VCPU MODULES

This section describes the specifications, performance, function, memory capacity, and devices of the A3VTU and A3VCPU modules. Since these performance and functions cannot be demonstrated independently, the descriptions are given for the combination of the A3VTU and A3VCPU modules.

4.1 Specifications

The A3VTS and A3VCPU performance specifications are indicated in Table 4.1.

Item		Туре		A3VTU+A3VCPU	Refer to:					
	Cont	trol system	Repeated	operation (using stored program)	4.2					
I/O control method		ntrol method		4.3						
Pro	gram	ming language	(Combined use of re	Language dedicated to sequence control (Combined use of relay symbol type, logic symbolic language, and Sequence Action Program language)						
	Sequence instruction		equence instruction 22							
Number o		Basic instruction		128	tails, see					
	А	pplication instruction		107	ramming Manual.					
Processing	speed (µ:	I (sequence instruction) sec/step)		1.0	Appendix.					
	1/0) points		2048	4.5					
Watch	log ti	imer (WDT) (msec)		10 to 2000	4.6					
	Memory capacity		Up to the cap	4.7 9.2						
٠	Program capacity Main sequence program (step) Subsequence program (step)									
				<u> </u>						
	Mi	crocomputer program (byte)	·	Max. 58K						
Int	ernal	relay (M) (point)	1000 (M0 to 999)							
L	atch r	relay (L) (point)	1048 (L1000 to 2047)							
Numbe	of s	tep relays (S) (point)	0 (Defaults to no value)	(set in parameters)						
L	ink re	elay (B) (point)		1024 (B0 to 3FF)	_					
Number of points Timer Specifications		Number of points		256	7					
		Specifications	100ms timer: setting time 10ms timer: setting time (100ms retentive timer: Se 3276.7 sec	0.01 to 327 67sec	4.8					
Count		Number of points		256						
Counter Specifications		Specifications	Normal counter:	setting range 1 to 32767 (C0 to C255)	-					
Dat	a reg	ister (D) (points)		1024 (D0 to 1023)	┥					
Lin	regi	ster (W) (points)								
An	nunci	ator (F) (points)	1	1024 (W0 to 3FF) 256 (F0 to 255)	7					

Table 4.1 Performance List (Continue)

4. A3VTU AND A3VCPU MODULES

Ite	em	Туре	A3VTU+A3VCPU	Refer to:				
	File register (R)	(points)	Max. 8192 (R0 to 8191)					
	Accumulator (A) (points)		2 (A0, A1)					
<u>.</u>	Index register (V,	Z) (points)	2 (V, Z)]				
Device	Pointer (P) (p	oints)	256 (P0 to 255)	4.8				
	Special relay (M)	(points)	256 (M9000 to 9255)					
	Special register (I	D) (points)	256 (D9000 to 9255)					
	Comment (poin	its)	Max. 4032 (Specify in batches of 64 points)					
Self-diagnostic functions			Watchdog error supervision, Self-diagnostic functions Memory error detection, CPU error detection, I/O error detection, battery error detection, etc.					
	Operation mode at the time of error		STOP/CONTINUE					
	STOP → RUN outpu	ıt mode	Output data at time of STOP restored/data output after operation execution					
At	power on, at power res power failure		Automatic restart when "STOP/RUN" key switch is set to RUN. (Initial start)					
	IC-RAM back-	up	Battery, lithium battery used (5 years of guarantee period. For total power failure guarantee time, refer to Section 12.3.1)	·				
Al	lowable instantaneous period (ms)		within 20					
	Internal current A3VTU		1.0					
	consumption (5V DC) (A) A3VCPU		2.2	<u> </u>				
	A3VTU		0.79(1.74)					
	Weight kg(lb) A3VCPU		0.84(1.85)					
	G:/:	A3VTU	050/0 041/111 \ 750 5/0 401/1411 \ 740 5/0 401/1411					
	Size mm(inch)	A3VCPU	250(9.84) (H) \times 79.5(3.13) (W) \times 121(4.76) (D)					

Table 4.1 Performance List

POINT

The A3VTU and A3VCPU do not provide the interrupt processing function so realtime interrupts or sequence start interrupts from an interrupt module or a special function module are ignored and the interruption program is not executed. Consequently, interrupt pointer (I) and interrupt counter (C) cannot be used.

4.2 Operation Processings

The operation processing for the A3VTU and A3VCPU is shown in Figure 4.1.

The operation processing operations are separated into those for the A3VTU and those for the A3VCPU. The operation processing is described in the summary below.

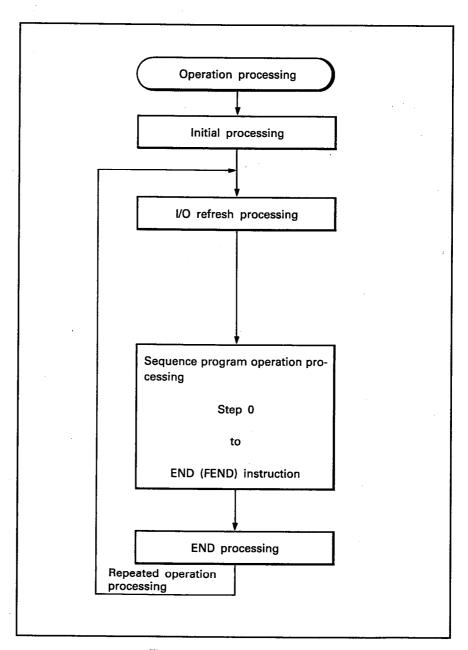


Fig. 4.1 Operation Processings

4.2.1 Repeated operation processing

Sequence programs are written by the peripheral and stored to the A3VCPU user program area. For the three A3VCPU modules, write the same sequence programs and parameters.

The A3VCPU reads the required program sequentially from the user program area and performs the repeated operation processing in order of step 0 to the END (FEND) instruction.

(1) Stored program system

Sequentially reads and operates the program stored in the user program area.

(2) Scanning

Operates the program in order of step numbers from step 0 to the END (FEND).

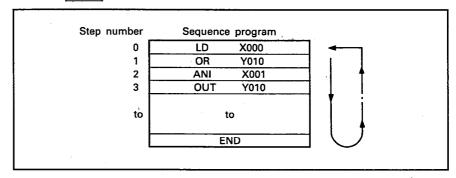


Fig. 4.2 Sequence Program Operation Processing

4.2.2 Initialization

Initialization indicates the processing which is required to begin sequence program operation processing.

Initialization performs the processing for the I/O module initialization, clears data memory, assigns I/O addresses, activates the self-diagnosis function and performs other similar operations when power is applied or a reset operation is performed by the RESET switch.

Note that resetting an A3VCPU during majority operation causes and alarm to be produced with that CPU; it is dropped from the system operation.

4.2.3 END processing

END processing indicates the processing which returns operations to step 0 in the repeat operation processing.

After the A3VCPU has executed the END (FEND) instruction, the END processing performs the processing for the update of the timer/counter current value and turning the contact ON, the self-diagnosis and constant scan processing, the sampling trace, and other processing operations. When these operations are completed, processing returns to step 0.

Refer to section 4.2.4 for more detailed description of the processing for the timer/counter, constant scan and self-diagnosis function.

4.2.4 Timer processing

The PC CPU uses up timers which increment their present values according to the duration of measurement.

- The 100ms timer timing can be set between 0.1 and 3276.7s in 100ms increments.
- The 100ms timer timing can be set between 0.01 and 327.67s in 10ms increments.
- The 100ms retentive timer retains its present value even if its coil is switched off. The timing can be set between 0.1 and 3276.7s in 100ms increments.

The timer processing method is described below.

(1) Timer present value and contact status update

With continuity in front of a timer coil, the timer present value and contact status are updated after the execution of the END (or FEND) instruction and the timer contacts close after the timer has timed out.

- (a) 100ms, 10ms timers

 When the continuity is removed from in front of the timer coil, the present value is reset to 0 and the timer contacts open.
- (b) 100ms retentive timer When the continuity is removed from in front of the timer coil, the present value update is stopped but the present value is retained.
- (2) RST T: instruction executed (Rest instruction)

 When the timer is reset by the RST T: instruction, the present value is reset to 0 and the timer contacts open.

 The retentive timers retain their present value and contact status, and are reset using the RST T: command.
- (3) OUT T[] jumped by CJ instruction, etc.

 If the OUT T[] instruction is jumped after the timer has started timing, it continues to time. The contacts are closed when the timer times out.

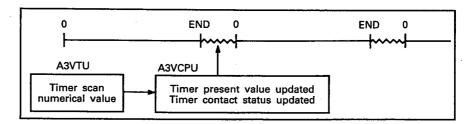


Fig. 4.3 Timer Processing

REMARKS

Timer accuracies are as follows. For further details, refer to the ACPU Programming Manual.

Timer	Scan Time T	Refresh Input
10ms	T < 10ms	
10ms	T ≧ 10ms	
100ms, 100ms retentive	T < 100ms	+2 scan time to 0
100ms, 100ms retentive	T ≧ 100ms	

- (4) Present value update timing and accuracy
 - (a) The timer accuracy is equal to a value of +2 scan time and is unrelated to the timer and scan time.
 - (b) The diagram below shows the present value update timing and accuracy when a 10ms timer is used in a program in which the scan time is set to longer than 10ms.

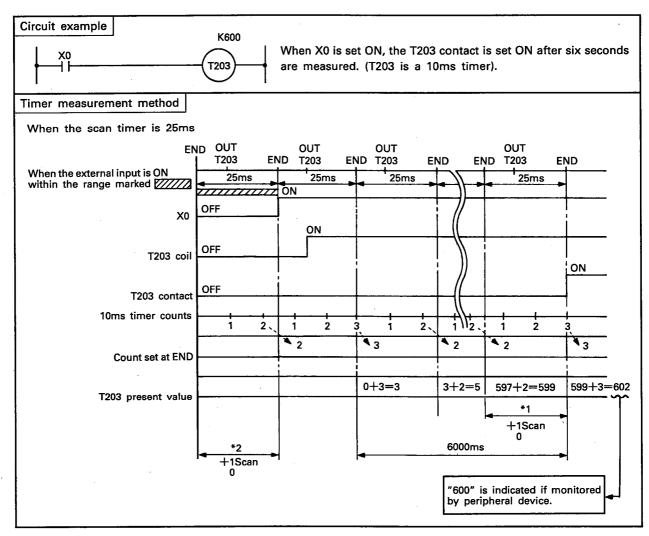


Fig. 4.4 Timer Measurement Method

The errors described below are present in the time-up time for the T203 10 ms timer as shown in Fig. 4.4.

- *1 ··· The 10 ms timer counting error (+1 scan time)
- *2 ··· The error resulting from timing that sets the timer input condition ON and the OUT T[] instruction position in the program (+1 scan time).

The accuracy is +2 scan time (+0.05 seconds in Fig. 4.4).

(c) The contacts of the "time-up" timer remain ON till the point the END instruction is executed, even if the coil of the timer is set OFF. It is set OFF when the END instruction is executed.

4.2.5 Counter processing

The PC CPU uses up counters which increment their present values on the leading edge of an input signal.

Counting is performed by the three A3VCPU modules. The A3VTU does not contribute to the counting. The counter is used in the main routine program or sub-routine program. The counter processing is described below.

- (1) The counter present value update and contact ON/OFF
 - (a) The counter coil is set ON or OFF by the OUT Cilinstruction. The present value is updated when the coil rising edge is detected; when the count value is incremented to the same value as the set value, the counter contact is set ON.
 - (b) Counting is not executed while the coil stays ON.
 - (c) The count present value is updated and the counter contact is set ON/OFF after the END (FEND) instruction is executed.
 - (d) The counter value is not cleared even if the coil is set to OFF i.e., the input conditions, which turn the counter coil ON/OFF are set to OFF.
- (2) RST C[] instruction executed

When the counter is reset by the RST C: instruction, the present value is reset to 0 and the counter contacts open. The counters retain their present value and contact status even if the counter coil is switched off.

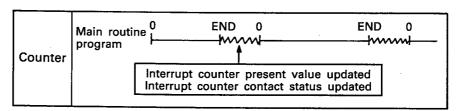


Fig. 4.5 Counter Processing

REMARKS

The maximum counting speed of the counter depends on the scan time. Counting is only possible if the input condition is on for more than one scan time. For further details, see the ACPU Programming Manual.

Maximum counting speed
$$Cmax = \frac{n}{100} \times \frac{1}{ts}$$
 (times/sec)

where, n = duty (%)

Duty is the ratio of the input signal's on time to off time as a percentage.

Count input signal OFF
$$T1$$
 $T2$ If $T1 \le T2$ $n = \frac{T1}{T1 + T2} \times 100$ (%)

If $T1 > T2$ $n = \frac{T2}{T1 + T2} \times 100$ (%)

ts: Program scan time (sec)

POINT

(1) Since the A3VTS does not have the interrupt program execution function, the interrupt counter cannot be used. Although parameter settings can be used to assign the interrupt counter, the interrupt counter, if used in the main routine program, cannot execute counting.

(An error will not be generated even if an interrupt counter is used in a program.)

(3) Count value update timing

An explanation of the count value update timing is given based on the circuit example shown in the following figure.

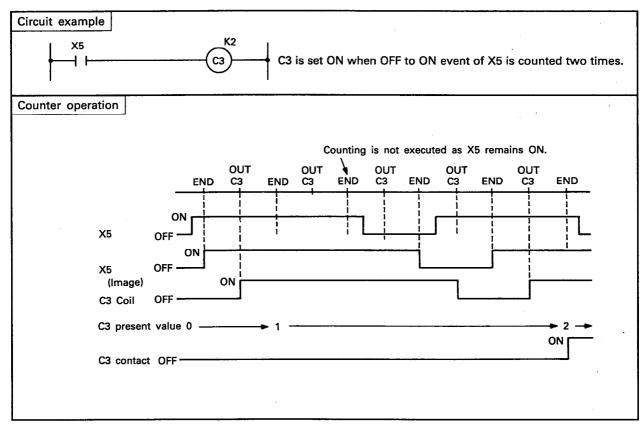
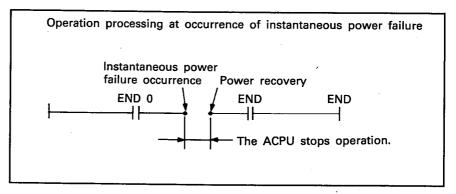


Fig. 4.6 Counter Operation



4.2.6 Operation processing at instantaneous power failure occurrence

The A3VTU or A3VCPU module detects any instantaneous power failure when the input line voltage to the power supply module falls below the defined value.

If the instantaneous power failure time is within the allowable value (20ms), the A3VTU or A3VCPU module performs instantaneous power failure processing as described below:

- (1) Instantaneous power failure within 20ms
 - (a) The operation processing is stopped with the output retained.
 - (b) The operation processing is resumed when normal status is restored.
 - (c) The watch dog timer (WDT) keeps timing while the operation is at a stop. For instance, if the WDT and scan time settings are 200ms and 190ms respectively, an instantaneous power failure of 20ms will result in a WDT error.

(2) Instantaneous power failure over 20ms

The A3VTS system is activated at the initial start. This is the same operation processing as performed when power is applied or when the RESET switch is used.

4.2.7 RUN, STOP, PAUSE operation processings

The A3VTS system is operated in either of the RUN, STOP and PAUSE states as described below.

The selection of each operating status is determined by the status received from the key switch settings of the A3VTU and each A3VCPU in combination with indications received from the peripheral device. Refer to Chapter 5 for further details regarding the operating status that arise from these combinations.

This section describes the contents of operation processing in each operation status.

(1) RUN operation processing

RUN indicates repeated operation of the sequence program in order of step 0 to END (FEND) instruction.

When the CPU is set to RUN, the output status at the time of STOP is provided in accordance with the STOP RUN output mode setting in the parameter.

The processing in Fig. 4.7 is repeated until RUN is switched to another state.

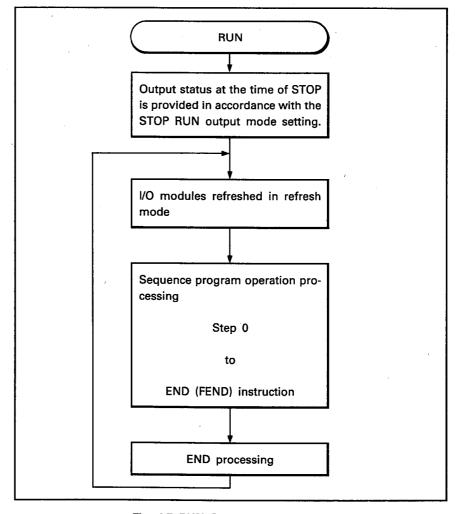


Fig. 4.7 RUN Operation Processing

(2) STOP operation processing

STOP indicates a stop of the sequence program operation by using the RUN/STOP switch or remote STOP (Section 4.11.5). When the CPU is set to STOP, the output status is saved and all outputs are switched off. Data other than the outputs (Y) is retained.

The processing in Fig. 4.8 is repeated until STOP is switched to another state.

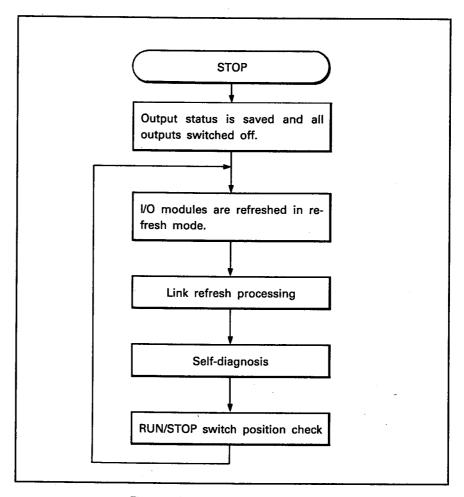


Fig. 4.8 STOP Operation Processing

REMARKS

When the Run/Stop key switch is placed in the STEP RUN position, the A3VCPU operates as though the switch is placed in the STOP position.

(3) PAUSE operation processing

PAUSE indicates a stop of the sequence program operation with the output and data memory statuses retained. The PC CPU can set to PAUSE state in accordance with Section 4.9.

The processing in Fig. 4.11.6 is repeated until PAUSE is switched to another state.

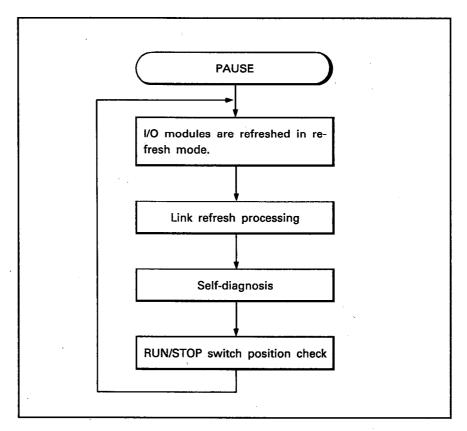
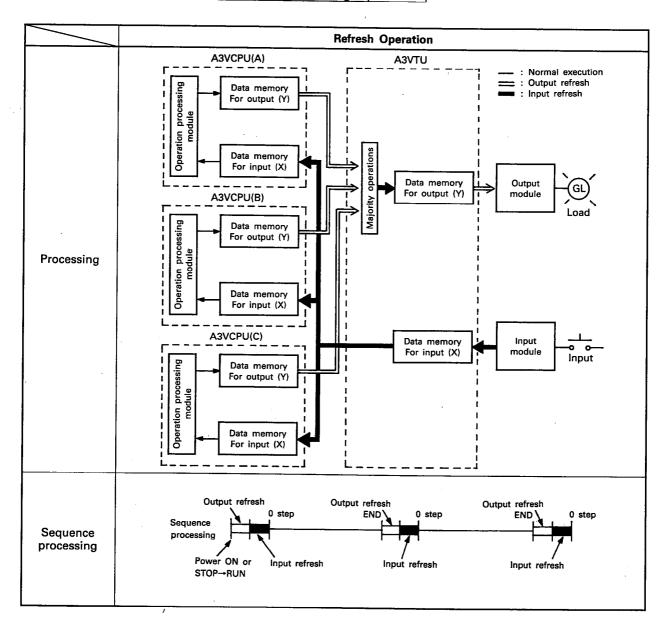


Fig. 4.9 PAUSE Operation Processing

(4) Each operation processing are shown in Table 4.2.

Processing RUN /STOP Switch	I/O Refresh (in refresh mode)	Self- Diagnosis	Timer/ Counter Present Value and Contact Status Update	Constant Scan Processing (with con- stant scan set)	Link Refresh Processing	Sampling Trace Processing	RUN/ STOP Switch Position Check
RUN (END process- ing)	Executed	Executed	Executed	Executed	Allowed	Executed	Executed
STOP	Executed	Executed			Allowed		Executed
PAUSE	Executed	Executed			Allowed		Executed

Table 4.2 Processing During Program Operation Stop


4.3 I/O Control

The A3VTS system uses I/O image refresh for I/O processing. Refresh processing fetches external ON/OFF data (X input data) or outputs ON/OFF data (Y output data) in one batch after the END instruction has been executed.

Since the ON/OFF status of input (X) does not change during one scan of the sequence program, the program is executed throughout the scan under the same conditions.

A detailed explanation of the refresh processing operation is shown below.

Refresh processing operation

REMARKS

When majority operations are not performed, processing is performed between one of the operating A3VCPU modules and the A3VTU.

(1) Input refresh

The A3VTU reads the input data from the input module in one batch before executing the 0 step. The input data is stored in the A3VTU data memory for input (X), while the A3VTU stores the input data in the data memory for input (X) of each of the A3VCPUs at the same time.

(2) Output data refresh

The A3VTU reads the data from the data memory for output (Y) of each A3VCPU before executing the 0 stop. Majority operations are performed with the results stored in the A3VTU data memory for output (Y) while for output in one batch to the output module at the same time.

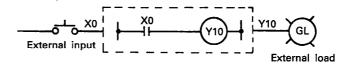
(3) Execution of input contact instruction

The input data is read from the A3VCPU data memory for input (X) and the sequence program is executed.

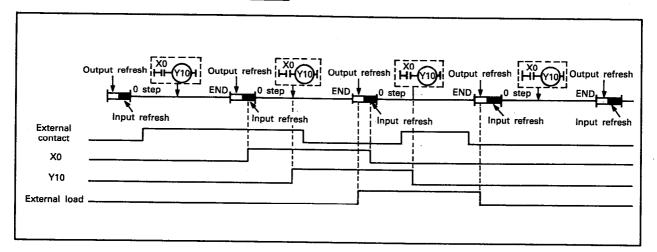
(4) Execution of output contact instruction

The output data is read from the A3VCPU data memory for output (Y) and the sequence program is executed.

(5) Execution of output OUT instruction


The sequence program operation result is stored in the A3VCPU data memory for output (Y). When the Y of the rear of input (X) is used as an internal relay, processing becomes the same as that for internal relay M. Thus, when the coil is set ON by the program, the contact is set ON if used in the rest of the program. This is unrelated to refresh processing.

(6) Operation delay


Changes in the output modules are delayed 1 to 2 scans compared to changes in the input signal. Note that the delay is increased by 1 to 2 scans plus 400ms when operation is restored after repairing or replacing a malfunctioning A3VCPU.

I/O timing is described in the following example.

Circuit example

I/O timing

POINT

Some I/O modules may be directly accessed as in direct mode by using the SEG instruction (partial refresh). For details, refer to the ACPU Programming Manual.

4.4 Programming Languages

Any of the following languages may be used:

(1) Relay symbolic language

Used to represent relay symbols. Allows programming nearly in the form of relay control sequence ladders.

(2) Logic symbolic language

Used to write microcomputer programs based on the assembly language.

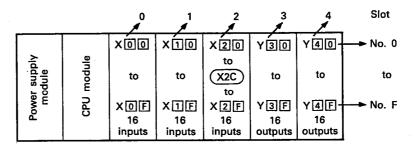
Program processing representations are separated into the instruction, source and destination parts.

4.5 Number of Inputs/Outputs and I/O Addresses

4.5.1 Number of inputs/outputs

The number of inputs/outputs indicates the number of I/O devices which can be connected to and controlled by the PC. The number of I/O depends on the CPU module used.

Inputs and outputs are devices used to transfer data between the PC and external equipment.

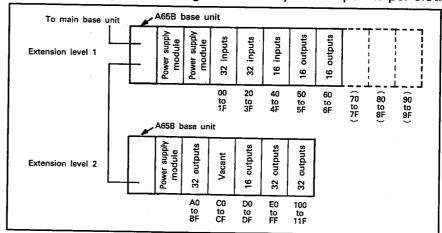

The input (X) is provided by an external device (e.g. limit switch, pushbutton) connected to the input module and is used in the sequence program with an ON/OFF signal.

The output (Y) is used to provide a program operation result to an external device (e.g. solenoid, magnetic switch) connected to the output module.

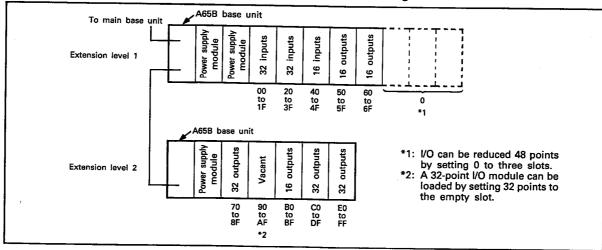
4.5.2 I/O addresses

I/O addresses indicate I/O module addresses for use in the sequence program and are represented in hexadecimal. I/O addresses depend on the positions of I/O modules loaded on the base unit.

In the following example, X2C indicates that the corresponding input module is loaded in No. C, slot 2. (All I/O modules are 16 points.)


Correspondence between hexadecimal and decimal is as follows:

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F


4.5.3 I/O assignment

I/O addresses are automatically allocated by the A3VTU in accordance with the I/O module positions on the base unit. User may define I/O assignment using the peripheral.

- (1) No parameter I/O assignment
 - (a) Assign I/O numbers in order of extension base stage setting numbers (as opposed to order of extension cable connection).
 - (b) Assign I/O numbers to the main base and extension base(s) on the assumption that each base has 8 slots. (The final 3 slots on a 5 slot base must be accounted for and represent empty I/O slots).
 - (c) Assign 16 points to an empty slot.
 - (d) When a designated setting jumps expansion stage number settings, the "jumped number of stages X 8 slots portion" are all assigned as if they had 16 points per slot.

- (2) I/O assignment has been made by the peripheral
 - I/O assignment by using the peripheral is optional. The following features can be achieved by this I/O assignment.
 - (a) Economization on I/O occupied by empty slot Inputs/outputs occupied can be economized by setting 0 to empty slots, e.g. I/O occupied can be reduced 48 points by setting 0 to the three empty slots of the A35B base unit.
 - (b) I/O reservation 32, 48 or 64 points can be reserved for future system expansion. By this reservation, the sequence program can be easily added to or modified as the I/O module addresses remain unchanged.

4.6 Watch Dog Timer (WDT)

Internal timer used to detect any error of the PC's repeated operation function.

Two types of watchdog timers are employed in the system. One type is operated by the A3VTU and the other type by the A3VCPU. The two types of watchdog timers are described below.

- (1) The A3VTS operated watchdog timer
 - (a) Watchdog timer function

The A3VTU monitors its own processing time. When a hardware malfunction occurs or noise causes malfunction or endless loop operation, the watchdog timer generates an error energizing an alarm and terminating computer processing.

- (b) System operation after watchdog timer error When the A3VTU watchdog timer generates an error, the operational status of the A3VTS system becomes the following.
 - The A3VTU and A3VCPU operation execution stops and all outputs are set OFF.
 - The message "WDT ERROR" is displayed on the LED display located on the front panel of the A3VTU. Nothing is displayed on the LED display located on the front panel of the A3VCPU.
- (2) The A3VCPU operated watchdog timer
 - (a) Watchdog timer function

Default value of the A3VCPU watchdog timer setting is 200 ms. The value can be varied 10ms increments between 10 ms to 2,000ms using parameter settings.

The watchdog timer functions in the following manner. The watchdog timer observes the execution time required for one scan of program. The watchdog timer generates an error if the A3VCPU hardware malfunctions, or the scan time of the sequence program exceeds a set value. An alarm is output and computer processing is terminated. However, when majority operations are performed, the A3VTS system continues to operate as long as one or more A3VCPU modules are operating normally.

- (b) Watchdog timer reset timing
 The watchdog timer is reset after the END instruction is
 executed when the A3VCPU operations are normal (the
 scan times are within the designated values).
- (c) Watchdog timer error

 The watchdog timer generates two error codes, "22" and "25". Error code "22" is generated if the END instruction is executed after the set time has elapsed.

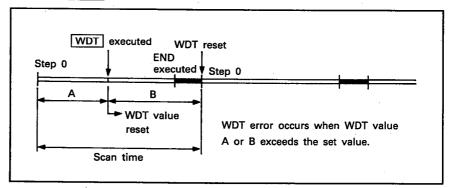
 Error code "25" is generated if an endless loop (when an endless loop has been created in the CJ instruction, etc.) is performed and the set time has elapsed without execution of the END instruction.

(d) Operation at WDT error occurrence

When the A3VCPU watchdog timer generates an error, the operational status of the A3VCPUs becomes the following.

- A3VCPU operation is stopped.
- The RUN LED on the A3VCPU front panel flickers.
- "WDT ERROR" is displayed on the LED in the A3VCPU front panel.

However, when majority operations (with two or three A3VCPU modules) are performed, the A3CPU system continues to operate as long as one or more A3VCPU modules are operating normally.


If a "WDT ERROR" is generated by all the A3VCPU modules, the operational status of the A3VTS system becomes the following.

- The A3VCPU enters the previously described status.
- The RUN LED display located on the front panel of the A3VTU module flickers but nothing is displayed on the LED display.
- System operation is stopped and all outputs are set to OFF.

(e) Resetting method

The WDT present value is reset when the WDT reset (WDT) instruction is executed in the sequence program. The WDT restarts timing at 0.

Any scan time stored in D9017 to 9019 is not reset if the WDT instruction is executed.

POINT

Avoid setting scan time to values exceeding 2000ms, since a "WDT ERROR" is generated even if a WDT instruction is executed in the sequence program if it exceeds 2000ms.

(3) If the WDT error has occurred, check the error definition according to Section 13, reset the CPU, and remove the error cause.

4.7 Memory Capacity

The memory capacity indicates the memory capacity of the user memory which can be created by the user's sequence program, comments, etc.

The contents of data stored in the memory cassette are described below in item (1). The amount of memory to be used for each type of data and whether the data is to be used or not can be set by parameter settings.

(When no parameters are set, only parameters and the main sequence program can be created and stored.)

The capacity of the memory cassettes should be taken into account when setting the capacity of each memory. Refer to Section 4.11 "Parameters" and Section 9.2 for details regarding the maximum memory capacity that can set using each data parameter and the configuration of each data.

Two types of data are handled in the CPU module. One is data that is stored in the memory cassette and the other is data stored in the CPU module. These different types of data are described below.

1) Memory cassette data

- Parameter
- Main sequence program
- · Main microcomputer program
- Sub sequence program
- · Sub microcomputer program
- Sampling trace
- · Status latch
- · File register
- Comment

2) CPU data

- Input (X)
- Output (Y)
- Data register (D)
- Internal relay (M)
- · Latch relay (L)
- Step relay (S)
- Timer (T)
- Counter (C)
- Link relay (B)
- Link register (W)
- Annunciator (F)
- Accumulator (A)
- Index (V, Z)
- Pointer (P)
- Special relay (M)
- Special register (D)

4.8 Devices

Devices indicate contacts, coils, timers, etc. used in the PC program operation.

Table 4.3 indicates the devices used with the PC.

For the devices indicated by an asterisk X, their use is enabled or usable range assignment can be changed by setting parameters with a peripheral device.

Set parameters corresponding to the system in which the device is used or contents of the program. (For parameters, see Section 4.10.)

		Device	Application Range (Numbe	er of points)	Explanation	
	x	Input	X, Y0 to 7FF		Provides PC command and data from external device, e.g. pushbutton, select switch, limit switch, digital switch.	
	Υ	Output	(Number of Xs + Ys	= 2048)	Provides program control result to external device, e.g. sole- noid, magnetic switch, signal light, digital display.	
	м	Special relay	M9000 to 9255 (2	56)	Predefined auxiliary relay for special purpose and for use in the PC.	
*	"	Internal relay	M0 to 999 (1000)		Auxiliary relay in the PC which cannot be output directly.	
*	L	Latch relay	L1000 to 1024 (1024)	Number of Ms + Ls + Ss = 2048	Auxiliary relay in the PC which cannot be output directly. Backed up during power failure.	
*	s	Step relay	Can be used by setting the parameter (0)		Used in the same manner as an internal relay (M), e.g. as a relay indicating the stage number of a step-by-step process operation program.	
	В	Link relay	B0 to 3FF (1024)		Internal relay for data link which cannot be output. May be used as an internal relay if not set for link initial data.	
	F	Annunciator	F0 to 255 (256)		Used to detect a fault. When switched on during RUN by a fault detection program, stores a corresponding number in special register D.	
		100ms timer	T0 to 199 (200)			
*	т	10ms timer	T200 to 255 (56)		Up timers available in 100ms, 10ms and 100ms retentive types.	
		100ms retentive timer	Can be used by setting the (0)	parameter.	op and ordination in footing, fortically footing footing forting and	
*	С	Counter	C0 to 255 (256)		Up counters.	
	D	Data register	D0 to 1023 (1024	D0 to 1023 (1024) Memory for storing PC data.		
		Special register	D9000 to 9255 (25	55 (256) Predefined data memory for special purpose.		
	w	Link register	W0 to 3FF (1024	1)	Data register for use with data link.	
*	R	File register	Can be used by setting the (0)	Can be used by setting the parameter. (0) Extends data register using user memory are		
	Α	Accumulator	A0, A1 (2)		Data register for storing the operation results of basic and application instructions.	
	z	1-day 40-1-4	Z (1)			
	٧	Index register	V (1)		Used to modify devices (X, Y, M, L, B, F, T, C, D, W, R, K, H, P).	
	N	Nesting	N0 to 7 (8 levels)		Indicates the nesting of master controls.	
	P	Pointer	P0 to 255 (256)		Indicates the destination of the branch instruction (CJ, SCJ, CALL, JMP).	
		·	K-32768 to 32767 (16-bit i	nstruction)	Used to specify the timer/counter set value, pointer number,	
	K	Decimal constant	K-2147483648 to 2147483647 (32-bit instruction)		interrupt pointer number, the number of bit device digits, and basic and application instruction values.	
	н	Hexadecimal	H0 to FFFF (16-bit instruction)			
	"	constant	H0 to FFFFFFFF (32-bit instruction)		Used to specify the basic and application instruction value	

Table 4.3 Device List

REMARKS

The step relay (S) may be used in the same manner as the internal relay (M). For instance, the step relay comes in useful when writing a program which has two functions or applications, i.e. the step relay can be used specifically in accordance with the function or application, independently of the internal relay.

4.9 Self-Diagnosis

The CPU self-checks for error at power on and during run. When any error is detected, the CPU indicates the error and stops operation to prevent PC fault and ensure reliable operation. This section describes the two self-check functions of the A3VTS system. One is used for diagnosis of the A3VCPUs and the other of the A3VTUs.

Refer to the Error Code Table in Section 13.1 for details regarding the error processing in the CPU and error cancellation methods.

4.9.1 A3VCPU self-diagnosis

Each A3VCPU module independently performs self- diagnosis in relation to each A3VCPU and the A3VTU. The in the table indicates the contents of what is being checked by the A3VCPU in relation to the A3VTU. The number shown in the No. column indicates the error priority level for the related check. Lower numbers indicate higher priority. Priority for errors having the same numerical value is determined by the timing of error generation with errors generated earlier having a higher priority than those generated later.

No.	Diagnosis	Diagnosis Timing	A3VCPU Operation Status	RUN LED Status	A3VCPU Error Display	Error Code (Contents of D9008)
1	A3VCPU executes endless loop	At any time		Exting- uishes	WDT ERROR	25
	A3VTU check	At any time			A3VTU ERROR	5
2	DP RAM check	When power is turned on (A3VTU, A3VCPU) At reset (A3VTU, A3VCPU)			DPRAM ERROR	6
	Instruction code check	When each instruction is executed			INSTRCT. CODE ERR.	10
	Parameter setting check	When power is turned on or at reset (A3VTU, A3VCPU) When STOP or PAUSE is switched to RUN			PARAMETER ERROR	11
	Missing END instruction check	When STOP or PAUSE is switched to RUN			MISSING END INS.	12
	Instruction execution not possible	When the CJ, SCJ, JMP, CALL (P) and CHG instructions are executed. When STOP or PAUSE is switched to RUN	Stop	Stop Flickers	CAN'T EXCUTE (P)	13
3	Instruction execution not possible	When the IRET instruction is executed			CAN'T EXCUTE (I)	15
	CHK instruction format check	When STOP or PAUSE is switched to RUN			CHK FORMAT ERR.	14
	Memory cassette presence check	When the power is turned on or at reset (A3VTU, A3VCPU)			CASSETTE ERROR	16
	RAM check	When the power is turned on or at reset (A3VTU, A3VCPU)			RAM ERROR	20
	Operation circuit check	When the power is turned on or at reset			OPE. CIRCUIT ERR.	21
	Watchdog timer	When the END instruction is executed			WDT ERROR	22
	END instruction not executed	When the program END step is executed			END NOT EXCUTE	24
4	Special function module error	When the FROM and TO instructions are executed	Run/Stop	Lights/Flickers	SP. UNIT ERROR	46
Ľ	Operation check error	When each instruction is executed	Run/Stop	Lights/Flickers	OPERATION ERROR	50
5	Low battery voltage check	At any time	Run	Lights	BATTERY ERROR	70

Table 4.4 A3VCPU Self-Diagnosis

REMARKS

When operating in the multiplex system, the system can continue operations as long as there is one or more A3VCPU module operating normally. The malfunctioning A3VCPU is dropped from system operation.

4.9.2 A3VTU self-diagnosis

There is self-diagnosis that is conducted by the A3VTU on itself and that which is based on error messages from the dual power supply modules. Self-diagnosis is conducted on the three A3VCPUs and A3VTUs. The contents of the diagnosis is shown in Table 4.5.

The in the table indicates the contents of what is being checked by the A3VTU in relation to the A3VCPU. The number shown in the No. column indicates the error priority level for the related check. Lower numbers indicate higher priority. Priority for errors having the same numerical value is determined by the timing of error generation with errors generated earlier having a higher priority than those generated later.

No.	Diagnosis	Diagnosis Timing	A3VCPU Operation Status		A3VCPU Error Display	Error Code (Contents of D9009)
	RAM check	When the power supply is turned on or the A3VTU is reset			RAM ERROR(:) Any number from 1 to 5	100
	Control bus check	When the FROM and TO instructions are executed			CONTROL-BAS ERR.	40
	Special function module check	When the FROM and TO instructions are executed			SP. UNIT DOWN	41
	Link module check	When the power supply is turned on or the A3VTU is reset When STOP or PAUSE is switched to RUN			LINK UNIT ERROR	42
	I/O interrupt check	interrupt check When the OS link interrupt program operates due to an A3VTU malfunction	1		I/O INT.ERROR	43
1	Special function module assignment check	When the power supply is turned on or the A3VTU is reset When STOP or PAUSE is switched to RUN	Stop	Flickers	SP. UNIT LAY. ERROR	44
	Majority circuit check	When the power supply is turned on or the A3VTU is reset			CIRCUIT ERROR	101
	Data transmission halt check	When the power supply is turned on or the A3VTU is reset When STOP or PAUSE is switched to RUN When the A3VCPU restore processing is per- formed			Source CPU DOWN	102
	ROM check	When the power supply is turned on or the A3VTU is reset			ROM ERROR	
	WDT check	At any time		Extinguishes	WDT ERROR	25
	Link station number setting check	When the power supply is turned on or the A3VTU is reset		Flickers	STATION No.	190
	Module check	At any time (other than during repair)	D 10:	Lights/	UNIT VERIFY ERR.	31
2	Output module fuse blown check	At any time (other than during repair)	Run/Stop	Flickers	FUSE BREAK OFF	32
	Link station number setting check	When the link module is booted after replacement	Run	Lights	STATION No. ERR	191
	CPU A time check		Operates if CPU		TIME OVER CPU A	110
	CPU B time check	When the instructions in Table 13.3 are executed	switching is Possible/Stops if CPU	Lights/ Flickers	TIME OVER CPU B	111
	CPU C time check		switching is not possible		TIME OVER CPU C	112
	CPU A majority decision check		Operates if CPU		VOTE ERROR CPU A	120
	CPU B majority decision check	At any time when majority operations are performed	switching is Possible/Stops if CPU	Lights/ Flickers	VOTE ERROR CPU B	121
3	CPU C majority decision check		switching is not possible		VOTE ERROR CPU C	122
١	Dual module operation verify check	At any time when independent operations are performed	Operation	Lights	VERIFY ERROR	140
	CPU A handshake check		Operates if CPU		ERROR CPU A. Status number of CPU A	130
	CPU B handshake check	At any time	switching is Possible/Stops if CPU switching is	Lights/ Flickers	ERROR CPU B Status number of CPU B	131
	CPU C handshake check		not possible		ERROR CPU C Status number of CPU C	132

Table 4.5 A3VTU Self-Diagnosis (Continue)

4. A3VTU AND A3VCPU MODULES

No.	Diagnosis	Diagnosis Timing	A3VCPU Operation Status	RUN LED Status	A3VCPU Error Display	Error Code (Contents of D9009)
4	F-loop link check	At any time	Run	Lights	LINK F ERROR	180
Ľ	R-loop link check	At any time	Run	Lights	LINK R ERROR	181
5	Dual-power supply error	At any time	Operates if there is a switchable power supply/ Stops if there is no switchable power supply	Lights/ Flickers	POWER ERROR	150
6	Link parameter check	When the power supply is turned on or the A3VTU is reset When STOP or PAUSE is switched to RUN	Run	Lights	LINK PARA. ERROR	47
7	Dual module power supply overheat check	At any time	Run	Lights	HEAT ERROR	170

Table 4.5 A3VTU Self-Diagnosis

REMARKS

Refer to Section 13.1 Error Message Table for further details regarding the checks described above. "Stop" in the A3VTU operation status column, indicates that the system operations stop.

4.10 Parameter

- (1) Parameter setting involves specifying various PC functions and device ranges as well as assigning the user memory. The set data is stored in the parameter memory area (the first 3K bytes of the user memory area).
- (2) Some parameter data is set by default values as shown in Table 4.6. Parameter data can use the default values without further modification.
- (3) The parameter data can be modified within the setting range shown in Table 4.6 according to the usage objective.

 The parameters are set using the peripheral device.

 Refer to the appropriate Peripheral Device Operations Manual for a description of parameter setting operations.
- (4) Ensure that the same parameter data is set in all three A3VCPU modules when operating in the majority operation mode. Failure to do so can result in the handshake error "ERROR CPU[] [[]]".

REMARKS

1) When estimating the memory cassette size required, calculate the number of bytes used from the settings made as follows:

ltem	Setting Unit	Number of Bytes	
Main sequence program capacity	11/	av.	
Subsequence program capacity	1K step	2K	
File register capacity	1K point	2K	
Comment capacity	64 points	1K	
Sampling trace enabled	128 times	1K	

2) When comment capacity is set by a peripheral device, a value greater than 1K byte is displayed since settings are made in excess of 1K byte automatically.B

Setting		Default Value	Setting Range		Usable Peripheral Equipment			
				PU	GPP	HGP	PHP	
	sequence am area	6K steps	1 to 30K steps (in units of 1K step)	0	0	0	0	
	equence n capacity	Absent	1 to 30K steps (in units of 1K step)	0	0	0	0	
File register capacity		Absent	1 to 8K points (in units of 1K points)	0	0	0	0	
Comment capacity		Absent	0 to 4032 points (in units of 64 points)	_	0	0	0	
	Memory capacity		0/8 to 24K bytes					
Status latch	Data memory	Absent	Absent/present		0	0	0	
	File register		Absent/present (2 to 16K bytes)					
	Memory capacity		0/8K bytes					
	Device setting		Device number	_		0	0	
Sampling trace	Execution	Absent	Per scan		0			
	condition		Per time					
	Sampling count		0 to 1024 times (in units of 128 times)					

Table 4.6 Parameter Setting Range (Continue)

4. A3VTU AND A3VCPU MODULES

	Setting	Default Value	Setting Range	•	Usable P Equip	eriphera	ıl
ltem `			ootanig nango	PU	GPP	HGP	PHP
Microcomputer	program capacity	Absent	0 to 58K bytes (in units of 2K bytes)	-	0	0	0
	Link relay (B)		B0 to 3FF (in units of 1 point)	,			
Camina at	Timer (T)		T0 to 255 (in units of 1 point)				
Setting of latch (power failure	Counter (C)	Only for L1000 to 2047. Absent for others.	C0 to 255 (in units of 1 point)	0	0	0	0
compensation) range	Data register (D)		D0 to 1023 (in units of 1 point)				
	Link register (W)		W0 to 3FF (in units of 1 point)				
	Number of link stations		1 to 64				
,	Input (X)		X0 to 7FF (in units of 16 points)]		
Setting of link range	Output (Y)	Absent	Y0 to 7FF (in units of 16 points)	_	0	0	0
_	Link relay (B)		B0 to 3FF (in units of 16 points)				
	Link register (W)		W0 to 3FF (in units of 1 point)				
Setting of relay (M), last step relay	Setting of internal relay (M), latch relay (L), step relay (S) setting		M/L/S0 to 2047 M, L, S are serial numbers	0	0	0	0
Setting dog	of watch timer	200ms	10ms to 2000ms (in units of 10ms)	0	0	0	0
Setting	of timer	100ms: T0 to 199 10ms: T200 to 255	256 points of 100ms, 10ms, and integrating timers (in units of 8 points) Timers have serial numbers.	0	0	0	0
	Input (X) module						
I/O number	Output (Y) module	A1	0 to 64 points		0	0	
assignment	Special function module	Absent	(in units of 16 points)	_			
	Empty slot						
	of remote se contact	Absent	X0 to 7FF (1 point for each of run and pause contacts. Setting of only pause contact cannot be performed.)	-	0	. 0	0
	Fuse blow	Continuation					
Operation mode	I/O verify error	Stop	_				
at the time of error	Operation error	Continuation	Stop/continuation	_	0	0	0
	Special function unit check error	Stop			:		
Annunciator display mode		F number display	Display of only F number or alternate display of F number and comment (Only alphanumeric characters may be displayed for comment.)	_	0	0	0
STOP → RUN	N display mode	Operation status prior to stop is re-output.	Output before stop or after operation execution	_	0	0	0
Print ti	itle entry	Absent	128 characters	_	0	0	0
Keywo	ord entry	Absent	Max. 6 digits in hexadecimal (0 to 9, A to F)	0.	0	0	0

Table 4.6 Parameter Setting Range

POINT

Set the watchdog setting to a value of the largest normal scan time plus 400ms.

4.11 Functions

4.11.1 Function list

Function	Description	Refer to:
Majority operations	 Two operation modes are provided. One is the single- module mode in which one A3VTU module and one A3VCPU module operate together. The other is the majority operation mode in which one A3VTU and three A3VCPUs operate together. Majority operation enables operation to continue without stopping if a malfunction occurs in an A3VCPU or a dual-power supply module. 	Section 5
Module replacement during operation	 This function enables A3VCPU modules, dual power supply modules, and I/O modules to be replaced during system opera- tions without terminating system operations. 	Section 4.11.2
Constant scan	 Executes the sequence program at the predetermined intervals independently of the scan time. Setting allowed between 10 and 2000ms. 	Section 4.11.3
Latch (Power-failure backup)	 Retains device data if the PC is switched off or reset or instantaneous power failure occurs 20ms or longer. L, B, T, C, D and W can be latched. 	Section 4.11.4
Remote RUN/STOP	 Allows remote run/stop from external device (e.g. peripheral, external input, computer) with RUN/STOP switch in RUN position. 	Section 4.11.5
Pause	 Stops operation with the output (Y) status retained. Pause function may be switched on by any of the following ways: RUN/STOP switch on the front of the CPU Remote pause contact Peripheral 	Section 4.11.6
Status latch	 Stores all device data to the status latch area of the memory cassette when the status latch condition is switched on. The stored data can be monitored by the peripheral. 	Section 4.11.7
Sampling trace	 Samples the specified device operating status at predetermined intervals and stores the sampling result in the sampling trace area of the memory cassette. The stored data can be monitored by the peripheral. 	Section 4.11.8
Offline switch	 Allows the device (Y, M, L, S, F, B) used with the OUT instruction to be disconnected from the sequence program operation proces- sing. 	Section 4.11.9

Table 4.7 Function List

APPLICATION

(1) Allows A3VCPU modules, dual-power supply modules, and I/O modules to be replaced during A3VTS system operation without stopping terminating system operations.

FUNCTION

- (1) Allows A3VCPU modules to be replaced one at a time during system operation while in the majority operation mode. The system continues operating with other A3VCPUs. However, it is necessary that one module other than the one being replaced be functioning normally.
- (2) Allows power supply modules to be replaced one at a time when operating using dual-power supply modules. It is necessary that one module other than the one being replaced be functioning normally.
- (3) Allows input and output modules to be replaced one at a time during system operation.
- (4) The above three functions permits module replacement to be done without terminating the system operation.

OPERATION I

(1) Procedure for replacing A3VCPU modules (while in majority operation only)

Procedure

Identify the A3VCPU that has dropped from operation as indicated by an error message on the display located on the front panel of the A3VTU. Example: The A3VCPU closest to the A3VTU has dropped from operation due to error. Error message on the A3VTU: TRI*ERR*RUN*STB Indication of the operation status of the A3VCPU closest to the A3VTU (error status).

Set the Run/Stop key switch of the A3VCPU that is to be replaced to [STOP].

Remove the malfunctioning A3VCPU from the base unit. The handshake error message "ERROR CPU[] [][]" is shown on the LED display located on the front panel of the A3VTU.

Set the Run/Stop key switch of the A3VCPU that is to be installed to [STOP].

Install the desired A3VCPU in the base unit.

* Refer to (2) precautions.

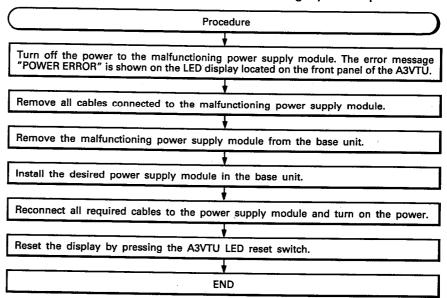
Set the parameters of the newly installed A3VCPU to the same parameters as those of the other A3VCPUs. Ensure that the program used in the newly mounted A3VCPU is also the same as the other A3VCPUs. (This step is not required if parameters and programs have been set.)

Set the Run/Stop key of the newly installed A3VCPU to [RUN]. (Operation of the A3VCPU will restore.)

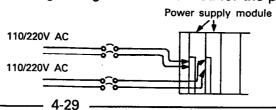
Reset the A3VTU LED display by pressing the related reset switch.

END

4-28


- (2) Precautions
 - (a) When system operation is to continue during CPU module replacement, at least one other A3VCPU must be operating correctly.
 - (b) As long as power is applied to the system, the replacement procedure described above must be followed xduring A3VCPU replacement even if the system is in the STOP status.
 - (c) Ensure that the program and parameters used by the newly installed A3VCPU are the same as those being used by the other two A3VCPUs. If the contents of either the program or parameters vary, the module will be dropped from operation or become a source of error generation.
 - (d) The messages listed below sometimes appear on the LED display located on the front panel of the A3VCPU module when a new A3VCPU is installed in the base unit. When they are displayed, reset with the A3VCPU RESET key switch. The display is cleared and the A3VCPU will restore operation.

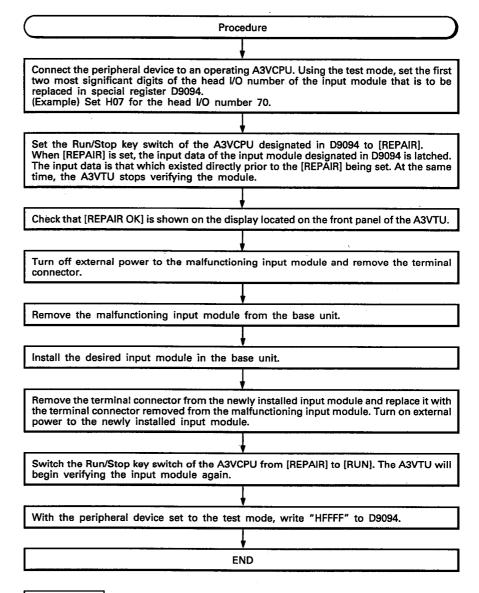
Displayed error messages


A3VTU ERROR One of the two will be displayed.

OPERATION II

(1) Procedure for dual-power supply module replacement Follow the procedure given below to replace dual-power supply modules that have malfunctioned during system operation.

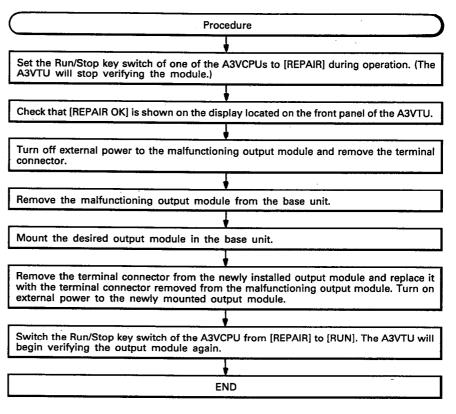
- (2) Precautions
 - (a) When replacing power supply modules, it is important that the power supply for the power supply module being replaced is turned off. To ensure that this is done, the following wiring is recommended for the power supplies.


4

4. A3VTU AND A3VCPU MODULES

OPERATION II

- (1) Procedure for I/O module replacement Follow the procedure given below to replace I/O modules that have malfunctioned during system operation.
 - (a) Input module replacement



REMARKS

Two methods for replacing an input module are available. One uses the peripheral device as described above. The other uses the sequence program. In the latter, the first two most significant digits of the head I/O number are set in hexadecimal in D9094 using the sequence program. After this is done and the A3VCPU is set to [REPAIR], the replacement procedure is the same for both methods.

(b) Output module replacement

- (2) Description of processing occurring during I/O module replacement
 - (a) The following processing occurs when the Run/Stop key switch of the A3VCPU is set to [REPAIR].
 - 1) Module verification of all I/O modules is stopped beginning with the scan following the scan in which [REPAIR] was set.
 - 2) For an input module, the input data of the input module corresponding to the address set in D9094 is latched until the END of the scan in which [REPAIR] was set. This data is contained in the image memory and no subsequent access is made to this input module.
 - 3) When [REPAIR] is set for output modules, access of the output module in question continues.
 - After [REPAIR], CPU processing is executed using data contained in the image memory in relation to the module in question.
 - (b) The following processing occurs when the Run/Stop key switch of the A3VCPU is switched from [REPAIR] to [RUN].
 - 1) Module verification of I/O modules is restarted with the scan following the scan in which [RUN] was set.
 - 2) For input modules, access is restarted with the module in question with the scan following the scan in which [RUN] was set.
 - (c) Even during I/O module replacement, all modules other than the malfunctioning module operate normally.

(3) Precautions

- (a) The special function module cannot be replaced during operation. Set the RUN/STOP switch to the STOP position and turn the power off before replacing the module.
- (b) Only input modules registered in special register D9094 can be replaced.

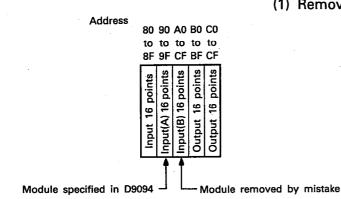
Replacing an input module that has not been registered will result in incorrect inputs.

Example:

removed.

(1) Removal of a module unregistered in D9094

The diagram on the left shows an example where input module (B) was mistakenly removed in place of input module (A). Doing so results in the execution of the program using the following input data.


- Data input is latched by X90 to 9F at the point [REPAIR] is set, and used. Input data received from external sources after the latching action is ignored.
- 2) XA0 to AF are all set to OFF since the module has been removed.
- (2) An address between the first and last addresses of an input module is registered in D9094 and that module is

The diagram on the left shows an example where the address [HA] was mistakenly registered in D9094 in place of [H9] and input module (A) was removed. Doing so results in the execution of the program using the following data.

- 1) X90 to 9F are all set to OFF since the module has been removed.
- 2) Data input is latched by X90 to 9F at the point [REPAIR] is set, and used. Input data received from external sources after the latching action is ignored.

Changes to XB0 to XBF due to input data from external sources is ignored.

- (c) HFFFF is written in the special register D9094 automatically when power is applied. Verify the range of the data to be written to special register D9094 before it is written because the data outside the range can also be set as it is since the I/O number assignment range is not checked.
- (d) The A3VTU does not perform module verification when the Run/Stop key switch is set to REPAIR in at least one of the A3VTU modules. Unit verification is restarted if the Run/Stop key switch is set to another position. The REPAIR mode is the same as the RUN mode except for the module verification.

Address

Input 16 points
Input(A) 32 points
Input(B) 32 points
Input(B) 32 points
Output 16 points
H of 0 0

Module to be replaced

- (e) The A3VTU continues to perform output refresh for the output module even as it is being replaced. It is therefore very important to ensure that the external power supply of the output module is turned OFF when a replacement module is installed.
- (f) When the key switch of more than one A3VCPU module is set to REPAIR, ensure that address D9094 in each A3VCPU module is set to the same value. If different values are set, the A3VCPU module closest to the A3VTU has priority when the key switches in multiple A3VCPU modules are set to REPAIR. The D9094 value in the A3VCPU module that has priority becomes valid. In single-module operations, the A3VCPU module set to RUN has priority.
- (g) The latching of the input module data can be conducted only one time for each module. Repeat the single module tab replacement procedures when more than one input modules are to be replaced.
- (h) Do not change system operation mode when [REPAIR OK] is displayed. A [UNIT VERIFY ERROR] message will be displayed if the system operation status is set from STOP PAUSE to RUN, a module is installed, and REPAIR is set to RUN.
- (i) Always follow the specified I/O module replacement procedure so far as the power supply is turned ON even if the system Run/Stop key switch is set to STOP. Failure to do so will result in the message [UNIT VERIFY ERROR].
- (j) The following message appears on the A3VTU display when the A3VCPU module Run/Stop key switch is set to [REPAIR].

REPAIR OK

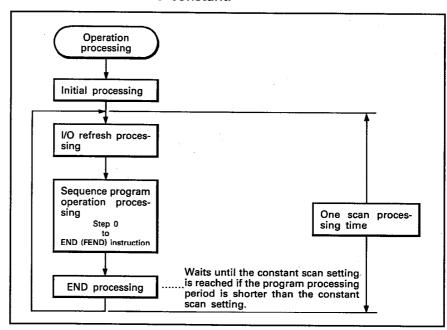
The head I/O number of the I/O module specified in D9094 is displayed. A blank appears when not specified in D9094.

This display has a priority higher than any other including error messages. If left as [REPAIR] and an error is generated, the corresponding error message cannot be displayed. It is therefore important to reset the key switch from [REPAIR] to [RUN] as soon as the module is replaced. If an error has been generated, the corresponding error message is displayed when the key switch is set to [RUN].

(k) When the system stops because of an error, the module verification is performed even when the A3VCPU module Run/Stop key switch is set to [REPAIR].

4.11.3 CONSTANT SCAN

APPLICATION


The sequence program cannot output signals in fixed intervals since the scan time varies depending on whether an instruction is executed or not.

Constant scan can output signals at fixed intervals. This can improve positioning accuracy in such as simplified positioning operation.

FUNCTION

(1) Definition

Makes each scan time constant.

When operating in the majority operation mode, use the same constant scan value for each of the A3VCPU modules.

(2) Operation

(a) Constant scan is initiated at the scan when the set value is written to D9020.

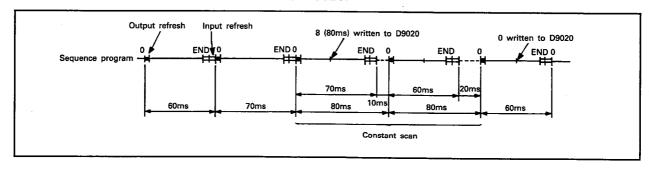


Fig. 4.10 Constant Scan Execution

(b) The constant scan setting must be greater than the maximum scan time in the sequence program.

The constant scan is not executed normally if its setting is shorter than the program scan time.

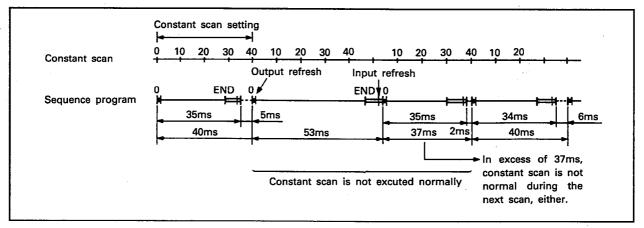


Fig. 4.11 Scan Time Longer Than Constant Scan Setting

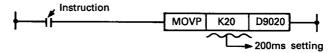
OPERATION

(1) Execution of the constant scan

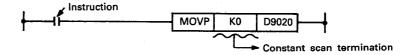
The following two types of operation procedures are performed for the execution and termination of the constant scan.

- 1) To write a value of "0" to D9020 by the sequence program.
- 2) To write a value of "0" to D9020 in the test mode of the peripheral device.
- (a) To execute constant scan
 - 1) Write the set value to D9020 in the sequence program; or
 - 2) Write the set value to D9020 in test mode of the peripheral.
- (b) To terminate constant scan
 - 1) Write 0 to D9020 in the sequence program; or
 - 2) Write 0 to D9020 in test mode of the peripheral.
- (c) To change the set value during CPU RUN
 - Modify the set value write program using the peripheral, rewrite it during RUN, and switch on the constant scan setting command; or
 - 2) Write a new value to D9020 in test mode of the peripheral.

- (2) Constant scan setting range
 - (a) The constant scan setting is written in D9020 in 10ms increments between 1 and 199. If values other than 1 to 199 are set the follow occurs.
 - -32768 to 0: No constant scan is set
 - -1 to 199: Constant scan (10 to 1990ms)
 200 and above: A [WDT ERROR] message is displayed.
 - (b) The relationship between the D9020 settings and the WDT (watchdog timer) is defined as follows.

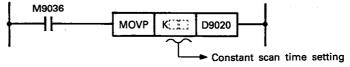

```
D9020 setting value ≤ (WDT setting)—1
```

A WDT (watchdog timer) error is generated when the value in D9020 is set to a value greater than this expression.


(3) Program example

The following example is a program that performs constant scan settings and termination.

(a) To set the constant scan of 200ms


(b) To terminate the constant scan

CAUTION

(a) D9020 is cleared when the PC is switched on or reset.

The following program is required to initiate constant scan after power on or reset.

- (b) The constant scan function cannot be used with the CHG instruction.
 - The CHG instruction execution time will be included in the constant scan time if CHG is used with the function.
- (c) The constant scan is prolonged and is not executed normally if an instantaneous power failure occurs less than 20ms.
- (d) During majority operation, when the constant scan time for three A3VCPU modules differs, the system scans using the largest value.
 - A [WDT ERROR] is returned if the value set is greater than that of the watchdog timer.
- (e) The monitor value for scan time during constant scan is the actual scan time and not the constant scan time. The scan time stored in the special register D (D9017 to D9019) is the actual scan time and the constant scan time.

4.11.4 LATCH (power-failure backup)

APPLICATION

Retains data if an instantaneous power failure occurs more than 20ms during continuous control.

FUNCTION

(1) Definition

Retains device data in the CPU module when the PC is switched off or reset or if an instantaneous power failure has occurred for more than 20ms.

- (2) Devices latched
- 1) Latch relay (L)
- 2) Link relay (B)
- 3) Timer (T)
- 4) Counter (C)
- 5) Data register (D)
- 6) Link register (W)
- (3) Clearing the latched data
 - (a) Latched data can be cleared by setting all A3VCPU modules to [STOP] and performing either of the procedures described below ((1) or (2)).

The clearing of latch data occurs with each A3VCPU.

- 1) Set the RUN/STOP switch to STOP and move the RESET switch to LATCH CLEAR.
- 2) Clear all devices from the GPP/HGP/PHP.
- (b) When latch clear is executed, the A3VCPU module LED panel displays the [LATCH CLEAR OK] message.
- (c) When latch clear is executed, everything is cleared except device data of special relays (M), special registers (D), and off line switch settings (only during single-module operation). (Output (Y) is also cleared).

OPERATION

The latch range is set in the peripheral parameters per device.

CAUTION

- (a) Device data within the latch range is backed by the battery (A6BAT) in the memory cassette. The battery is therefore required even when operation is performed using a ROM which stores the sequence program.
- (b) Latched/unlatched device data is stored in the CPU module. The data in the latch range is therefore corrupted if any of the following operations is performed with the power off.
 - Disconnect the battery connector from the memory cassette connector.
 - 2) Remove the memory cassette from the CPU module.
- (c) As stated above, the latch clear function is meant to be executed for each of the A3VCPUs. It is therefore necessary, that the latch clear function be executed for all A3VCPUs. If one of the A3VCPU modules is not cleared during majority operation, the uncleared module may be dropped when the A3VCPU is used in a systems operation.

4.11.5 REMOTE RUN/STOP

APPLICATION

- (a) In any of the following cases, RUN/STOP may be executed at remote locations without controlling the RUN/STOP switch on the CPU front panel.
 - 1) The CPU module is out of reach.
 - 2) When the CPU module is contained in the control board.

FUNCTION

(1) Definition

Controls run/stop of the CPU module from an external device (e.g. peripheral, external input, computer) when the RUN/STOP switch is in RUN position.

(2) Operation

- 1) Remote stop
 The CPU is set to STOP after the sequence program is executed up to the END (FEND) instruction.
- Remote run
 After remote stop, remote run sets the CPU back to RUN to execute the sequence program from step 0.

OPERATION

- (a) Remote run/stop may be executed using:
 - 1) Remote run contacts (external input to be set by the peripheral)
 - 2) Peripheral;

During majority operating, cannot operate by peripheral

Remote RUN contact method

The A3VTS system Run/Stop is performed by setting the Remote RUN contact specified by the parameter setting to ON or OFF.

Setting CPU Run/Stop status by the Remote RUN contacts is performed as follows.

Remote RUN contacts:

OFF.....RUN status
ONSTOP status

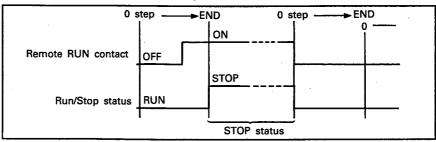


Fig. 4.12 Time Chart for Remote Run/Stop Operations Using Remote RUN Contacts

Peripheral device method

The A3VCPU module is set to RUN/STOP by the remote run/stop command from the peripheral.

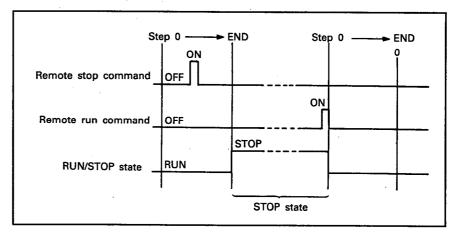


Fig. 4.13 RUN/STOP Timing Using Peripheral

CAUTION

- (a) Operations cannot be performed by the peripheral device during majority operations.
 - Remote Run/Stop procedures are difficult to perform simultaneously from peripheral device in three A3VCPU modules. An operation timing discrepancy will result in an A3VCPU module malfunction and its being dropped from operation.
- (b) After the system has been set to STOP status by remote STOP, the external device (remote RUN contacts, peripheral device) that initiated remote STOP must be set to remote RUN to set the RUN status again.
- (c) System operation status changes according to the A3VTU and A3VCPU key switch setting as well as the instructions from external sources. This means that the status of keys can prevent the Remote Run/Stop from functioning. Refer to Chapter 5 for further details.

CAUTION

The Remote Run/Stop function provided by peripheral device clears the data in each device during Remote RUN in addition to Run/Stop the CPU modules.

The content of device range that can be cleared differs depending on the ON/OFF status of special relays M9016 and M9017. This function is described below.

- (a) System operation status is in either PAUSE or STOP (not limited to Remote STOP or PAUSE).
- (b) The processing described in the table below is performed when the remote RUN is executed by peripheral device. Note that the following processing is not performed if the A3VCPU is in WAIT, error, or RUN.

M9017	M9016	ON	OFF
ON		Clears all areas other than special relays M, special registers D, and offline switch memory	Clears non-latched areas other than special relays M, or special registers D, and offline switch memory.
OFF	:	Same as above	Nothing is cleared

4

4.11.6 PAUSE

APPLICATION

Used when control is to be continued under the identical one set of conditions for output status during process control.

FUNCTION

(1) Definition

The pause function stops the operation processing of programmable controller CPU while simultaneously holding output (Y) in its last state prior to entering the pause mode.

Therefore, since the output (Y), whitch was on immediately before the pause mode, remains on, the external load is also in the on status.

(2) Operation

- (a) M9041 is switched on after END of the scan during which the PAUSE condition has been switched on.

 Operation is stopped when the next scan (scan after M9041 is switched on) is executed up to the END (FEND) instruction.
- (b) The CPU retains all output states after operation of one scan after M9041 is on.

Any output that should be switched off in PAUSE state must be interlocked using M9041.

Example:

OPERATION

- (a) The A3VTS system may be set to PAUSE by:
 - 1) RUN/STOP switch
 - 2) Remote pause contacts (set by the peripheral); or
 - 3) Peripheral (These operations cannot be performed during majority operation.)

RUN key switch

- (a) The following procedures are used when executing PAUSE with the RUN key switch.
 - 1) The program or peripheral device sets M9040 address of each A3VCPU module ON.
 - 2) Set the A3VTU Run/Stop key switch to PAUSE.
- (b) Operations stop when operations reach the END (FEND) of the scan after the scan in which operation (2) was performed.
- (c) Set the A3VCPU module Run/Stop key switch to RUN to restart operations.

- (d) If the M9040 is set OFF by the peripheral device and operations are restarted, then the method described in (c) must be performed since the A3VCPU module sometimes is dropped from operations due to a timing discrepancy that sets the M9040 OFF for each A3VCPU module.
- (e) Be sure to perform the operations in (a) in the order of (1) and then (2). This is because the A3VCPU module may drop from operation due to a timing discrepancy that sets M9040 to ON in each of the three A3VCPU modules if they are performed in the reverse order.

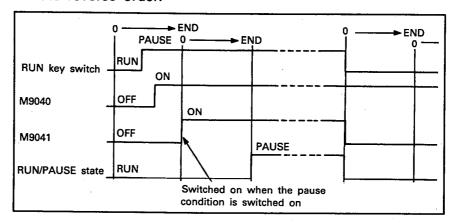


Fig. 4.14 PAUSE Timing by RUN key Switch

Remote PAUSE contact method

- (a) Perform the following procedures when using the remote PAUSE contacts
 - 1) Set M9040 in each A3VCPU module ON by a program or a peripheral device.
 - 2) Set the remote PAUSE contact ON.
- (b) Operations stop when operations reach the END (FEND) of the scan after the scan in which operation (2) was performed.
- (c) Set the remote PAUSE contact OFF to restart operations.
- (d) If M9040 is set OFF by the peripheral device and operations are restarted, then the method described in (c) must be performed since the A3VCPU module sometimes is dropped from operations due to a timing discrepancy that sets the M9040 OFF for each A3VCPU module.

(e) Be sure to perform the operations in (a) in the order of (1) and then (2). This is because the A3VCPU module may drop from operation due to a timing discrepancy that sets M9040 to ON in each of the three A3VCPU modules if they are performed in the reverse order.

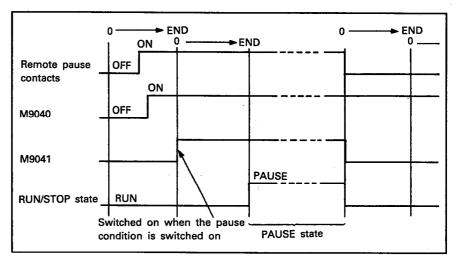


Fig. 4.15 PAUSE Timing by Remote Pause Contacts

Peripheral

- 1) Operation is stopped when the sequence program is executed up to the END (FEND) instruction during the scan after the remote pause command is given by the peripheral.
- 2) The operation is resumed when the remote run command is provided by the peripheral.

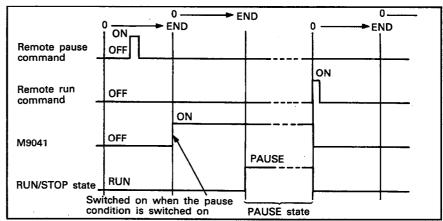
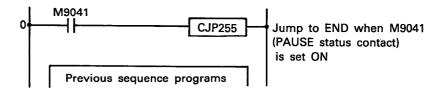



Fig. 4.16 PAUSE Timing by Peripheral

CAUTION

- (a) The remote PAUSE instruction cannot be used by the peripheral device test operation when majority operations are performed. Remote PAUSE procedures are difficult to perform simultaneously from the peripheral device in three A3VCPU modules.
 - An operation timing discrepancy will result in an A3VCPU module malfunction and its being dropped from operation.
- (b) Address M9040 must be set ON in each of the three A3VCPU modules when the PAUSE status is set by an A3VTU Run/Stop key switch or a remote PAUSE contact. If even one of the A3VCPU modules is not set ON, the system operation will continue and the A3VCPU module that has M9040 set ON will generate an error and drops from operations.
- (c) The PAUSE status is set after one scan operation when shifting the system operation status from a STOP to a PAUSE. If it is desired to shift to PAUSE status without executing one scan operation, append the program described below to the user program in each A3VCPU module.

(d) Before setting the PAUSE status with either the Run/Stop key switch of the A3VTU or the remote PAUSE contact, be sure to first set address M9040 to ON in the three A3VCPU modules. If the operation is performed in reverse, the A3VCPU modules will generate an error and can be dropped from operation due to a timing discrepancy that sets M9040 to ON in the three A3VCPU modules.

4.11.7 STATUS LATCH

APPLICATION

Can be used to check device data when a given condition is switched on during debugging.

FUNCTION

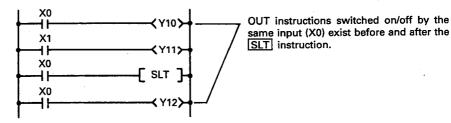
(1) Definition

Status latch stores the contents of all devices in the status latch area of the memory cassette at the time the SLT instruction is executed.

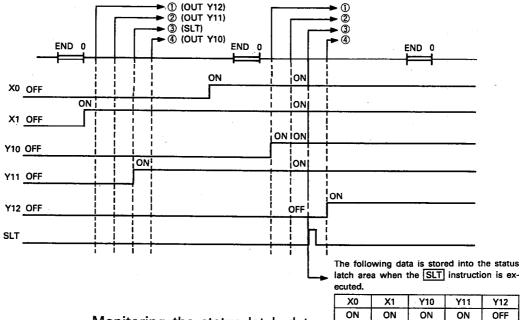
The data stored in the status latch area can be read and monitored by GPP/HGP/PHP.

(2) Stored data

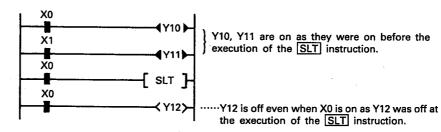
The following data may be written to the status latch memory area:


1) X, Y, M, L, S, F, B ··········· ON/OFF data

2) T, C Contact, coil ON/OFF data and present value


3) D, W, A, Z, V, R Stored data

(3) Data storing timing


- (a) Data is stored into the status latch area when the <u>SLT</u> instruction is executed. Hence, any device data that has changed after the execution of the <u>SLT</u> instruction is not stored into the status latch area.
- (b) An explanation concerning the storage of data when the SLT instruction is executed will be given using the circuit shown in the figure below.

Timing chart

Monitoring the status latch data

OPERATION

(a) Setting the status latch area

Specify the status latch area by setting the parameter using the GPP/HGP/PHP and write it to the CPU module.

(b) Executing the status latch

Data is written to the status latch area when the SLT instruction is executed.

(c) Resuming the status latch

To execute the SLT instruction again, reset the SLT instruction by executing the SLTR instruction.

CAUTION

(1) Execution of the SLT instruction increases scan time as indicated below. The watch dog timer should be set in consideration of the increase in scan time.

	Device Memory Only	Device Memory and File Register	
Processing time (ms)	8.5	24.6	

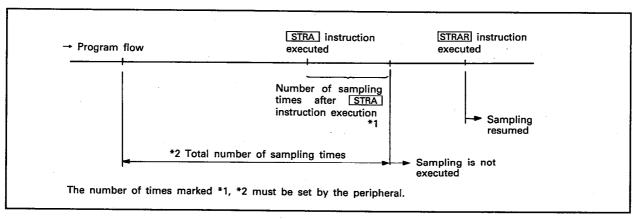
(2) The execution of the SLT instruction during majority operations must be done simultaneously in the three A3VCPU modules.

A timing discrepancy in the operation of one of the three A3VCPU modules will result in an error being generated in the A3VCPU module executing the SLT instruction and its being dropped from operation.

4.11.8 SAMPLING TRACE

APPLICATION

Shortens the time required for debugging devices by verifying their contents in fixed intervals during debugging in accordance with a program. Allows debugging time to be reduced.


FUNCTION

(1) Definition

The sampling trace samples the contents of the specified device in a fixed interval (the sampling cycle) and stores them in the sampling trace area in the memory cassette.

The data stored in the sampling trace area is latched after a specified number of samplings occur when the STRA instruction is executed.

The data in the sampling trace area can be read and monitored by GPP/HPH/PHP.

(2) Devices used

The number of devices which may be used up for the sampling trace is limited as follows:

- 1) Bit devices (X, Y, M, L, S, F, B, T/C coil, T/C contact) Max. 8 points
- 2) Word devices (T/C present value, D, W, R, A, Z, V) Max. 3 points

OPERATION

(a) Setting the sampling trace area

Specify the sampling trace area using the GPP/HGP/PHP and write to the CPU module.

(b) Setting the sampling trace data

Set the following data by the GPP/HGP/PHP and write to the CPU module.

- 1) Number of sampling trace times
- 2) Devices to be traced
- 3) Sampling period
- (c) Starting the sampling trace

Sampling trace may be initiated by:

- 1) Peripheral;
- 2) Switching on M9047.
- (d) Terminating and stopping the sampling trace

To terminate:

By executing the STRA instruction, sampling is executed the specified number of times, data is latched, and the sampling trace is terminated.

To stop:

Sampling trace may be stopped by using the peripheral or by switching off M9047.

(e) Checking the sampling trace data

Read and monitor the sampling trace area data using the periphral.

(f) Resuming the sampling trace

Execute the STRAR instruction.

CAUTION

(a) If the sampling of each period is set during majority operations, the sampling results may differ between A3VCPU modules since each A3VCPU module counts the sampling time and manages time individually.

4.11.9 OFFLINE SWITCH

The offline switch can only be used in the independent operation mode. It cannot be used in the majority operation mode.

APPLICATION

Can be used to make the following checks in test mode of the peripheral with respect to the OUT instructions which are not being switched on/off during execution of the sequence program.

- 1) Output module operation check
- 2) Output module and external device wiring check

FUNCTION

(1) Definition

- (a) The offline feature disconnects devices (Y, M, L, S, F, B) used with the OUT instructions from the sequence program.
- (b) Online/offline statuses are set when the imaginary offline switches as shown in Fig. 4.17 are closed/opened.
 - Opening the offline switch
 Offline status is set. The OUT instruction device is disconnected from the sequence program.
 - 2) Closing the offline switch

Online status is set. The OUT instruction device is controlled by the sequence program.

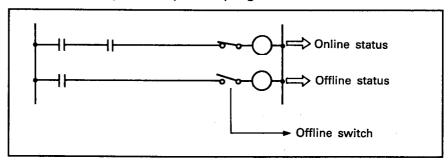


Fig. 4.17 Online/Offline Statuses

(2) Device statuses in offline mode

- (a) OUT instruction devices remain in the state that they were immediately prior to entering offline mode.
- (b) If set/reset is forced by the peripheral in offline mode, devices remain in the state that they were forced.

·

(a) Setting the offline switch

Set the offline switch using the peripheral.

- (b) Canceling the offline switch
 - 1) Use the peripheral.
 - 2) Reset the CPU module.

CAUTION

OPERATION

- (a) After the test operation is completed, it is necessary to cancel the offline switch setting and set the online mode.
- (b) The offline switch cannot be used in majority operations. Using the offline switch results in instruction timing discrepancy causing the A3VCPU module to malfunction and be dropped from operations.

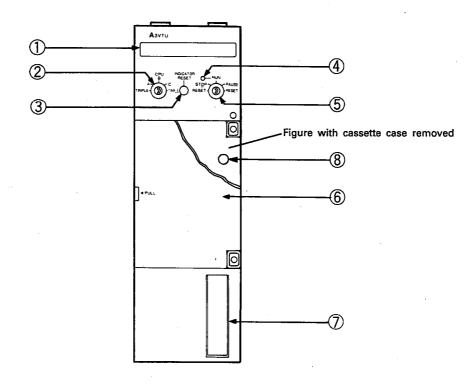
4.12 Handling

This section gives handling instructions, PC nomenclature and hardware setting instructions.

Refer to the appropriate chapter for information concerning procedures covering from when modules are installed to their operation.

4.12.1 Handling instructions

A3VTU and A3VCPU module handling cautions are described below.


- (1) Do not subject the CPU module and memory cassette to impact or shock.
- (2) Do not remove printed circuit boards from the housing. There are no user-serviceable parts on the boards. This can be a source of damage.
- (3) Ensure that no conductive debris can enter the module. If it does, make sure that it is removed. Guard particularly against wire offcuts.
- (4) Tighten the module mounting and terminal screws as specified below.

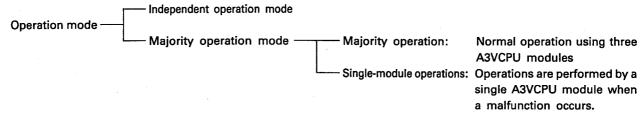
Screw	Tightening Torque kg·cm (lb·inches)	
Module mounting screws (optional) (M4)	8 (6.93) to 12 (10.39)	

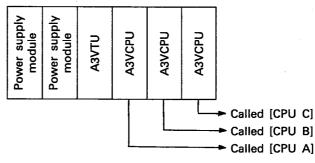
(5) After mounting the module in the base unit, ensure that the hook is locked in the base unit securely. When removing the module, press the hook until it is completely free from the base and then pull the module forward. (Refer to Section 10.5 for further details.)

4.12.2 Nomenclature (A3VTU)

No.	Description	Application			
1	LED display	An error message (maximum 16 characters) generated during self-diagnosis is displayed.			
2	Operation mode setting key switch	 A, B, C: Indicates the independent operation mode. Only the A3VCPU module corresponding to the indicated letter operates. The A3VCPU module nearest to the A3VTU is referred to as A and the others as B and C respectively. TRIPLE: This indicates the majority operation mode. Operations are performed by three A3VCPU in parallel. 			
3	LED display reset switch	Clears the present LED annunciator message. The next message in the annunciator queue is then displayed where appropriate.			
4	RUN LED	This indicates system operation. Light: The system is operating when the key switch is in the RUN or PAUSE position. Extinguish: When the system is stopped due to the key switch being in the STOP or PAUSE position or due to a WDT ERROR error being generated during self-diagnosis. Flicker: Self-diagnosed error has occurred. (Operation will continue if the error detected has been specified in the parameter setting.)			
⑤	RUN/STOP switch	RUN/STOP: To start/terminate running the PC program. PAUSE: To terminate running the PC program and maintain output status. RESET: To run hardware resets of the A3VTU and A3VCPU modules, when abnormal operation occurs, and when operations are initialized.			
6	Cassette case	Only the memory cassette case is installed since user memory in the A3VCPU module is not used.			
7	RS-422 connector	Not used. (Normally covered)			
8	Master station link module operation/ standby switch	This manual switch is used to switch between operation and standby status of two link modules when used in the master station of a data link system. Pressing the button will set one of the two link modules to the operate mode and the other the standby. Push button operation is disabled when not used in the data link system.			

4.12.3 Nomenclature (A3VCPU)


No.	Description	Application			
1	LED display	Displays an error message produced during self- diagnosis and annunciator F number or comments arising from the SET F and OUT F instructions. 16-character display possible. (The possible display characters are alphanumeric and twenty-eight special characters.)			
2	Reset key switch	RESET: Hardware reset. Used to reset the CPU after an operation error and to initialize operation. The latch memory is not cleared when the CPU is reset. LATCH CLEAR: Sets all latch area data (as defined in parameters) to OFF or 0. (Valid when the CPU is in STOP status)			
3	LED display reset switch	Clears the present LED annunciator message. The next message in the annunciator queue is then displayed where appropriate.			
4	RUN LED	Indicates the run status of the CPU. On: The CPU is in RUN or STEP-RUN status, no operation errors have occurred, the program is being run and the PC is active. Off: The CPU is in STOP, PAUSE or STEP-RUN status and the program is not being run. Light when a CPU other than the operating CPU during independent operations. Light when the WAIT status is set while operations are performed in the majority operations mode. Flicker: Self-diagnosed error has occurred. (Operation will continue if the error detected has been specified in the parameter setting.)			
(Bun/Stop switch) RUN/Stop switch RUN/Stop start/terminate running the PC program. REPAIR: The sequence program calculations are performed. There is verification. (Used during replace of I/O modules) Step Run: Do not use this function.		REPAIR: The sequence program calculations are performed. There is no module verification. (Used during replace of I/O modules)			
6	Memory cassette release button	To remove the memory cassette, press the buttons in two locations, disengage the memory cassette from the connectors by raising it approximately 5mm (0.20in.) and then remove the cassette module.			
0	Memory cassette loading connector	Used to connect the memory cassette to the CPU.			
8	RS-422 connector	Peripheral programmer port. Fit cover (supplied) when not in use.			


5. OPERATION MODE

The A3VTS system operation provides two types of operation status described below. Both are referred to as operation mode in this manual.

The operation mode setting is selected with the operation mode setting key switch located on the front panel of the A3VTU.

- (1) An A3VTU and a single A3VCPU module is used in the independent operation mode. This mode is selected by setting the operation mode setting key switch located on the front panel of the A3VTU to either [CPU A], [CPU B] or [CPU C]. In this mode, an A3VCPU module is operated independently. The independent operation mode is convenient for debugging operations.
- (2) An A3VTU and three A3VCPU modules are used in the majority operation mode. This mode is selected by setting the operation mode setting key switch located on the front panel of the A3VTU to [TRIPLE]. Majority operations are performed if all three A3VCPU modules function normally. Single-module operation is performed by a normal single A3VCPU module and the A3VTU in this mode if any single A3VCPU module cannot operate.
- (3) The operation mode setting is determined by the position of the operation mode setting key switch when the power is applied to the A3VTU or when the RUN/STOP key switch is set to RESET. The operation mode does not change even if the setting of the operation mode setting key switch is changed while the power is ON.
 - The power must be turned off one time and then turned on again or the RUN/STOP key switch must be set to RESET when the operation mode is changed.
- (4) The descriptions CPU A, CPU B and CPU C in this manual are the same as the [A], [B] and [C] displayed on the operation mode setting key switch. The three A3VCPU modules are assigned the names of CPU A, CPU B, and CPU C, CPU A being the one closest to the A3VTU and CPU C the farthest.

5.1 Independent Operation Mode

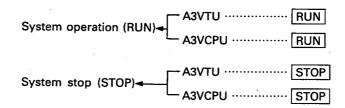
The independent operation mode is performed by the A3VTU and a single A3VCPU unit. This mode is selected by setting the operation mode setting key switch located on the front panel of the A3VTU which to [CPU A], [CPU B] or [CPU C]. Independent operations are performed in this mode by the A3VTU and the A3VCPU module that corresponds with the key switch setting. This mode will be referred to as the independent operation mode from now on.

The independent operation mode is a convenient mode to use when debugging system operations; the offline switch function, forced output or the remote RUN/PAUSE operations by the peripheral device.

- (1) System operations stop if operations cannot be performed due to a malfunctioning A3VCPU module during independent operations. Automatic switching to other A3VCPU modules cannot be performed even if they are installed.
- (2) When the system stops due to a malfunction during independent operations, system operations can be started again if other A3VCPU modules are installed. Set the operation mode setting key switch to the selection position of another A3VCPU module that is operating and then set the A3VTU RUN/STOP key switch to the RESET position.
- (3) A3VTU control is disabled when independent operations are performed except for the A3VCPU module that is set by the A3VTU operation mode setting key switch. As a result, the A3VCPU module that is separated from the control cannot perform I/O control and monitor the input status even if the RUN/STOP key switch is set to RUN. System operations are not influenced even if the separated A3VCPU module malfunctions because it is ignored by the A3VTU.

(4) The relation between the operation mode setting key switch and the operating CPU module when independent operations are performed is described as follows.

Operation Mode Setting Switch	Switch Settings and Operat	ing CPU Relationship
CPU B A C TRIPLE - TRIPLE	Power supply module Power supply module A3VTU A3VCPU A3VCPU	The ☐ part of the A3VCPU module is the operating CPU and this CPU performs operations.
CPU B C TRIPLE - TRIPLE	Power supply module Power supply module A3VTU A3VCPU A3VCPU	The ☐ part of the A3VCPU module is the operating CPU and this CPU performs operations.
CPU B C TRIPLE - TRIPLE	Power supply module Power supply module A3VTU A3VCPU	The ☐ part of the A3VCPU module is the operating CPU and this CPU performs operations.

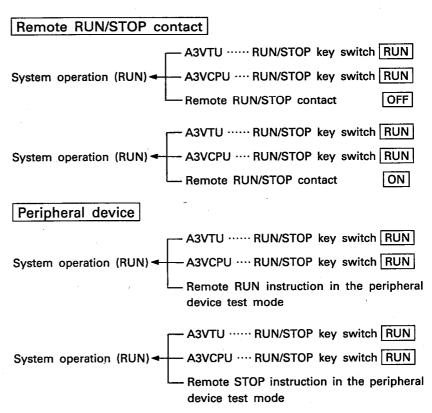

5.1.1 System operation status in the independent operation mode

The system operation status in the independent operation mode is determined by the A3VTU and A3VCPU module status and external instructions.

The priority level for each of A3VTU and A3VCPU module status is described below. System operation status is determined in the order of the highest priority level.

The general system status as well as the separate factors that determine each system operation status are explained below. The items described below are organized separately by each factor. Please refer to Appendix 6 for the system status when separate factors are combined.

(1) System RUN/STOP operation Position the RUN/STOP key switch of the A3VTU or A3VCPU module in the locations shown below to start or stop the system operations.

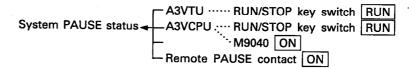


Set the A3VTU RUN/STOP key switch to the appropriate position to operate or stop the system.

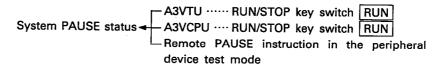
(2) Remote RUN/STOP instruction:

When the Remote RUN/STOP operation is performed to change the system status by an external instruction, first set the A3VTU and A3VCPU module key switch as shown below. Then perform the Remote RUN/STOP operation by the ON/OFF setting of the Remote RUN/STOP contacts or the Remote RUN/STOP instruction from the peripheral device.

System operation status varies for combinations other than those described above. Refer to Appendix 6 for further details.


(3) PAUSE instruction

There are three ways to set the system to the PAUSE status. These settings can be performed by the A3VTU RUN/STOP key switch, the remote PAUSE contact or by a peripheral device. The setting and operation procedures are explained below:


A3VTU key switch

Remote PAUSE contact

Peripheral device

The system operation status varies for combinations other than those described above. Refer to Appendix 6 for further details.

(4) STOP command

Perform the following operations to stop the system with the STOP command in the sequence program.

(5) The system operation status is determined by combinations of each of the factors described above.

The status for the RUN LED of the A3VTU and the A3VCPU module at each system operation status is shown below.

System Operation Status	Contents		
RUN	The A3VTU and A3VCPU module RUN LED light. The sequence program operation is executed.		
PAUSE	The A3VTU and A3VCPU module RUN LED extinguish. Operations stop with output maintained.		
STOP	The A3VTU and A3VCPU module RUN LED extinguish. The output is set OFF and operations stop.		
Error	The A3VTU and A3VCPU module RUN LED flash. The output is set OFF and operations terminated.		

from operation.	• The sequence program operation is terminated.
	Communication with the peripheral device is possible.

5.2 Majority Operation Mode

The majority operation mode uses the A3VTU and three A3VCPU modules.

This mode is selected when the operation mode setting key switch located on the front panel of the A3VTU is set to [TRIPLE] and the three A3VCPU modules operate in parallel using majority logical operators.

In this section, the term majority operation is used to refer to the operations performed by three A3VCPU modules. Single-module operation refers to operations performed by a single A3VCPU module if a malfunction occurs.

Refer to Section 5.2.2 for an description of the system operation status when a malfunction occurs.

- (1) Continuous system operations can still be performed in the majority mode without having to stop operations, even when there is only one other A3VCPU module that is operating normally and one or two A3VCPU modules are determined to be malfunctioning and removed from operation by the A3VCPU module or A3VTU self-diagnosis function.
- (2) A majority logical operation is performed on the output data (Y) sent from each A3VCPU module when majority operations are performed. When a difference exists between one of the A3VCPUs and the others, the differing A3VCPU generates an error.

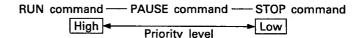
The system continues operation using the other two normal A3VCPUs.

(3) The A3VTU always supervises the three A3VCPU modules when majority operations are performed. Besides output (Y), majority operation provides execute timing for the A3VCPU module instructions indicated below.

When one of the three A3VCPU modules reaches one of the instructions described below, the A3VTU waits for the other A3VCPU modules to execute the instruction simultaneously. When the other A3VCPU modules do not reach the instruction after a fixed period of time elapses, a handshake error [ERROR CPU []]] or a time check error [TIME OVER CPU []]] message is returned, an error is generated in the A3VCPU module and is dropped from operation.

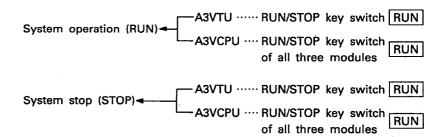
FROM	ТОР	SEG	STOP
FROMP	DTO	PR	SUB
DFRO	DTOP	PRC	LRDR
DFROP	END	CHG	LWTP
то	FEND		

- (4) An A3VCPU that is malfunctioning or has been set in the WAIT status due to one of the reasons given in items (2) or (3) should be replaced. A module can be restored to operation by remedying the cause of the error, standardizing the program with that of other modules, or taking whatever action appropriate.
 - Replacing a malfunctioning A3VCPU or one that is in the WAIT status should promptly be replaced with another module or repaired. Advantage should be taken of the system since it is configured so as to improve operating ratio and reliability.
- (5) System operation stops when all three A3VCPU modules malfunction in the majority operation mode.



5.2.1 System operation status in the majority operation mode

The system operation status in the majority operation mode is determined by the status of the A3VTU and three A3VCPU modules (except for the A3VCPU module in the error or wait status) and external instructions.


The [STOP] instruction from the A3VTU RUN/STOP key switch has the highest priority to determine the A3VTS system operation status.

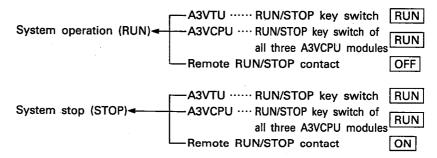
When the A3VTU is not set to [STOP], system operation status is determined by the operation status of the three A3VCPU modules, and if one of the three A3VCPUs has a higher level of priority than the others, the operation status of the system is the same as that of the A3VCPU with the highest priority. Priority level of individual instructions is shown below.

The general system status as well as the separate factors that determine each system operation status are explained below. The items described below are organized separately by each factor. Please refer to Appendix 6 for the system status when separate factors are combined.

(1) System RUN/STOP operation Position the RUN/STOP key switch of the A3VTU or A3VCPU module in the locations shown below to start or stop the system operations.

POINT

The system operates if the RUN/STOP key switch of even one A3VCPU module is set to [RUN] during system operation. However, operation is conducted with one module only and the other A3VCPU modules are dropped from operation.


Set the A3VTU RUN/STOP key switch to the appropriate position to operate or stop the system.

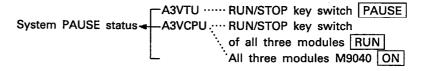
(2) Remote RUN/STOP instruction:

When the Remote RUN/STOP operation is performed change the system status by an external command, first set the A3VTU and A3VCPU module key switch as shown below. Then perform the Remote RUN/STOP operation by the ON/OFF setting of the Remote RUN/STOP contacts or the Remote RUN/STOP command.

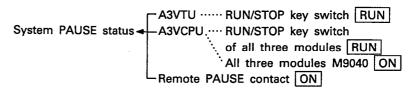
Remote RUN/STOP contact

POINT

For Remote RUN/STOP operation, it is also possible to use the instructions from a peripheral device but this should not be used in the majority operation mode. Use of the method requires that instructions be sent simultaneously to all three A3VCPU modules. However, discrepancies in the timing at a particular A3VCPU will result in its generating an error and being dropped from operation.


System operation status varies for combinations other than those described above. Refer to Appendix 6 for further details.

(3) PAUSE command

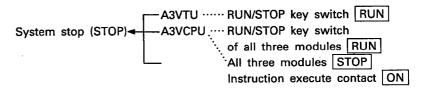

There are two ways to set the system to the PAUSE status. One uses the A3VTU RUN/STOP key switch and the other the remote PAUSE contact.

The setting and operation procedures are explained below.

A3VTU key switch

Remote PAUSE contact

POINT


For Remote PAUSE operation, it is also possible to use the instructions from a peripheral device but this should not be used in the majority operation mode. Use of the method requires that instructions be sent simultaneously to all three A3VCPU modules. However, discrepancies in the timing at a particular A3VCPU will result in its generating an error and being dropped from operation.

System operation status varies for combinations other than those described above. Refer to Appendix 6 for further details.

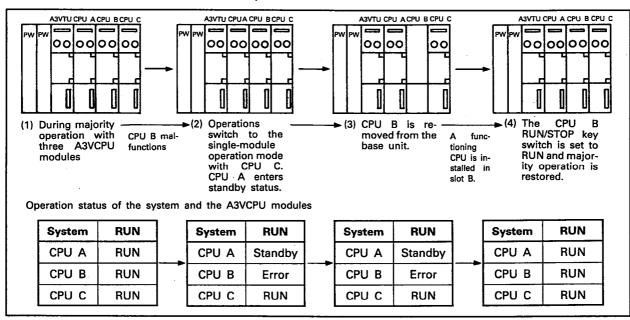
(4) STOP instruction

Perform the following operations to stop the system with the

STOP instruction ion the sequence program.

(5) The system operation status is determined by combinations of each of the factors described above. The status for the RUN LED of A3VTU and the A3VCPU module at each system operation status is shown below.

System Operation Status	A3VCPU Module Operation Status	Remarks			
	RUN	The A3VTU and A3VCPU module [RUN] LEDs light. The sequence program operation is executed.			
RUN	Standby	The A3VCPU module on the right becomes the operating CPU and the other module becomes the standby module when majority operations are performed. A3VTU and A3VCPU [RUN] LEDs light. Sequence program operation is executed but output data stops at the A3VTU.			
PAUSE PAUSE		The A3VTU and A3VCPU module [RUN] LEDs extinguish. Operations stop with output maintained.			
STOP	STOP	The A3VTU and A3VCPU module [RUN] LEDs extinguish. The output is set OFF and operations stop.			
RUN, PAUSE or STOP	WAIT	The A3VCPU module enters the WAIT state when it is in either the STOP or PAUSE status during system operations. The A3VCPU module [RUN] LED extinguishes. The A3VCPU module is waiting for restore.			
RUN, PAUSE, STOP or Error		The A3VCPU module [RUN] LED extinguishes. Return to operation by replacing malfunctioning CPU of eliminating the cause of error.			



5.2.2 Operation status when there is a malfunction

This section describes what occurs in each A3VCPU module operation status and system operation status when a self-diagnosis error or majority decision error is generated during majority operations.

- (1) Processing when there is a malfunction
 - (a) The A3VTU manages each A3VCPU module operation status and determines the switching of CPUs when a malfunction occurs.
 - (b) If even one of the A3VCPU modules malfunctions during majority operation or the WAIT status is set, operations switch the single-module operation mode to continue system operations.
 - (c) When single-module operation is set, the CPU to the right of the CPU that was stopped due to malfunction has priority and performs operations. The output data (Y, B, and W) from this CPU is output through the A3VTU to the I/O modules.

Examples of the CPU switching and the various CPU operation status are described below.

- (d) When operation shifts to the single-module operation because a malfunction occurs and there are two functioning A3VCPU modules, the operation status of each CPU becomes as follows.
 - The A3VCPU module to the right of the malfunctioning CPU outputs data (Y, B, W) to external I/O modules under A3VTU management and is referred to as the operation CPU.
 - For the other functioning module, data is input in the same manner as the operating CPU, but output data is not output to external I/O modules. This CPU is referred to as the standby CPU.

When there is only one functioning A3VCPU module, there is no standby CPU. The flow of I/O data during single-module operation when a malfunction has occurred is shown in Fig. 5.1 on the next page.

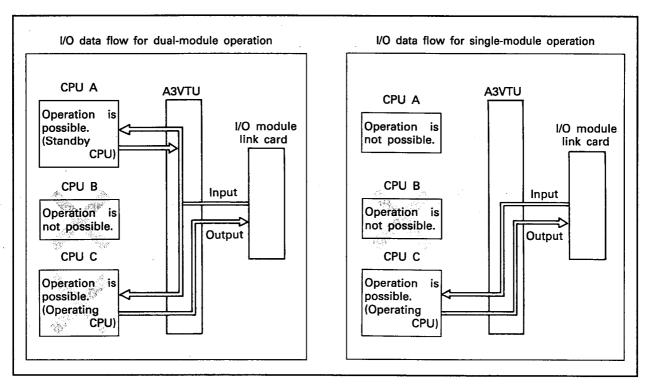
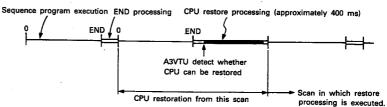


Fig. 5.1 I/O Data Flow when a Malfunction Occurs


- (2) A3VCPU module operation restore processing
 - (a) Even when single-module operation has been set due to error generation, the A3VTU can check the items listed below in relation to each of the A3VCPUs and determine whether or not majority operation can be set again or not.
 - Perform communication and check for replies.
 - Check if an error is being generated that may prevent operations.
 - Check if the operation status is the same as the system status.

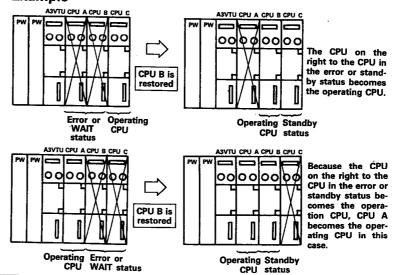
If the three items described above are satisfactory, the corresponding A3VCPU operation is restored.

(b) If an A3VCPU module is in the error or wait status, eliminate the source of the error and restore the module to operation by either resetting the CPU or replacing the malfunctioning A3VCPU module with a functioning A3VCPU module.

- (c) During the END processing, the A3VTU checks whether an A3VCPU which has been malfunctioning can restore the operation. When it is determined that operation is possible the processing shown below is executed immediately and operations are restored from the next scan.
 - The entire contents of the data memory are transferred from the operating CPU to the restored CPU.
 - The A3VTU outputs the RUN instruction to the restored CPU.

CPU restore processing is executed once every scan. It is executed during END processing while the system is operating.

Approximately 400ms is required for CPU restore processing.

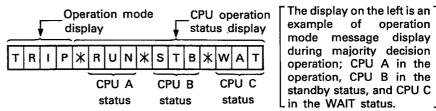

Set the time setting of the watchdog timer (WDT) to a value equal to the maximum time for the regular scan plus the time required for the CPU restore processing (400ms) when majority operation is performed.

A "WDT ERROR" error is generated during the CPU restoration when the set value is insufficient.

POINT

When one of two A3VCPUs that have generated an error or are set to in the WAIT status can be restored to operation, that A3VCPU is set to the standby status. In such a case, the process detailed in (c) is executed. However, there are times when the CPU in the operation status will be set to standby and the restored CPU will be set to the operation status when the physical location of the A3VCPU requires such be done.

Example



5.3 Operation Mode Display

The LED display located on the front panel of the A3VTU module can indicate the operation mode and the operation status of the three A3VCPU modules in addition to the error messages. The meaning of the display messages is described below.

- (1) Error messages are given priority over all other displays during operation mode. Therefore, an error message is displayed if an error is generated even when an operation mode message has been displayed. The normal operation mode message can be redisplayed by pressing the indicator reset switch located on the front panel of the A3VTU module after an error has been corrected. However, if another malfunction occurs, the corresponding error message is displayed automatically after the operation mode has been displayed for approximately 5 seconds.
- (2) The display format of the operation mode on the LED display located on the front panel of the A3VTU module is shown below.

(3) The messages displayed in the LED display panel and their meanings are described below.

Display	Message	Meaning	
	TRIP	Majority operation mode	
Operation	CPU A	Independent operation by CPU A in the independent operation mode	
mode display	CPU B	Independent operation by CPU B in the independent operation mode	
	CPU C	Independent operation by CPU C in the independent operation mode	
	RUN	Corresponding CPU is in the RUN status. This is the operating CPU.	
	STB	Corresponding CPU is in the RUN status. This is the standby CPU).	
CPU	PSE	Corresponding CPU is in the PAUSE status.	
operation status	STP	Corresponding CPU is in the STOP status	
display	WAT	Corresponding CPU is in the WAIT status	
,	ERR	Corresponding CPU has generated an error. (Operation is not possible.)	
	*	Corresponding CPU has been dropped from operation. (Independent operation mode only)	

* When a CPU is dropped from operation, such a status is indicated by —.

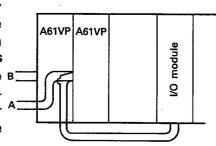
5.4 Operation Precautions

This section describes the cautions concerning operations in the individual operation mode and the majority operation mode.

(1) The system operation can be reset by either turning off the power once and then back it on again or using a reset switch. When resetting with a reset switch use the A3VTU RUN/STOP key switch.

Reset Method	Reset Range
Power supply ON → OFF	All modules are reset
Reset using the A3VTU RUN/STOP key switch	All modules are reset except for AD51E and A81 CPU.
Reset using the A3VCPU module reset switch	Only this A3VCPU module is reset.

(2) The three A3VCPU modules can use peripheral devices. Peripheral devices cannot be connected to the A3VTU. STOP the system when connecting a peripheral device to the A3VCPU module to modify the program, or write the data. RUN the system only after writing the same data to the three A3VCPU modules.


If system operation is started after writing the data to only one or two of the three A3VCPU modules, the remaining A3VCPU module is dropped from operation. Therefore, do not use this procedure for a A3VCPU module that is running while the system is in the RUN status. The system will stop sometimes if attempted.

(3) Always use the A3VCPU module RUN/STOP key switch to RUN or STOP the system in the majority operation mode. In the majority operation mode, the system is in the RUN status even if only one of the three A3VCPU modules is in the RUN mode. Even if the A3VCPU module RUN/STOP key switch is set to STOP with the A3VTU RUN/STOP key switch set in the RUN, the system will RUN as long as the other A3VCPU module operation status is RUN.

Except when replacing the A3VCPU module, the A3VCPU RUN/STOP key switch should be kept in RUN during majority operations. Use the RUN/STOP key switch of the A3VTU to control system RUN and STOP.

(4) When using the power supply module and the I/O module connected in parallel with a 110/220V power supply as shown in the figure on the Biright, the system will continue to run even if the power supply of the A system in the figure goes OFF.

However, since the power supply to the I/O module is set OFF, all data operations are all set OFF and normal operation cannot be performed.

(5) When restoring the A3VCPU module that is in the WAIT status, and if a message is displayed on the A3VCPU module LED panel, press the INDICATOR RESET button repeatedly until a message no longer displayed. Sometimes, if restore processing is performed while a message is being displayed, a handshake error "ERROR CPU [[]] cocurs and restoration is precluded.

6. POWER SUPPLY MODULE

6.1 Power Supply Module Specifications

This section describes the specifications and selections for the power supply module.

6.1.1 Power supply module specifications

The power supply module specifications are indicated in the following table.

Item		Specifications					
		A61VP	A61P	A62P	A63P	A65P	A66P
Base loading position		Power supply slot	Power supply slot	Power supply slot	Power supply slot	Power supply slot	I/O module loading slot
Input voltage		100—120V AC +10%, —15% (85 to 132V AC)			24V DC	100-120V AC +10%, -15% (85 to 132V AC)	
		200-240V AC +10%, -15% (170 to 264V AC)			+30%, -35% (15.6 to 31.2V DC)	200—240V AC +10%, —15% (170 to 264V AC)	
Input free	quency		50/60Hz ± 5%			50/601	Hz ± 5%
Max. input app	arent power		110VA		65W	110VA	95VA
Inrush c	urrent		20A, within 8ms		100A, within 1ms	20A, w	ithin 8ms
Rated output	5V DC	8A	8A	5A	8A	2A	
current	24V DC ±10%			0.8A		1.5A	1.2A
*1 Overcurrent	5V DC	8.8A or higher	8.8A or higher	5.5A or higher	8.5A or higher	2.2A or higher	
protection	24V DC			1.2A or higher		2.3A or higher	1.7A or higher
*2 Overvoltage	5V DC	5.5 to 6.5V	5.5 to 6.5V	5.5 to 6.5V	5.5 to 6.5V	5.5 to 6.5V	
protection	24V DC						
Power supply ON terminal, rated switching voltage and current					250V AC 2A 30V DC 2A		
Efficie	псу	65% or higher					
Power inc	dicator		Power	LED display			
Terminal so	rew size		M4 X	0.7 × 6			M3 × 0.5 × 6
Applicable	wire size		0.75 to	2mm² (18 to 14	4 AWG)		<u> </u>
Applicable s termi		V1.25-4, V1.25-YS4A, V2					V1.25-3, V1.25-YS3A, V2-S3, V2-YS3A
Applicable ti torqu		12kg·cm (10.39 lb·inch)		nch)		7kg-cm (6.06 lb-inch)	
External dimensions mm(inch) 250(9.84) × 55(2.17) ×		121(4.76)		250(9.84) × 37.5(1.48) × 121(4.76)			
Weight k	(g(lb)	0.95(2.09)	0.98(2.16)	0.94(2.07)	0.8(1.76)	0.94(2.07)	0.75(1.65)

Table 6.1 Power Supply Module Specifications

POINT

*1: Overcurrent protection

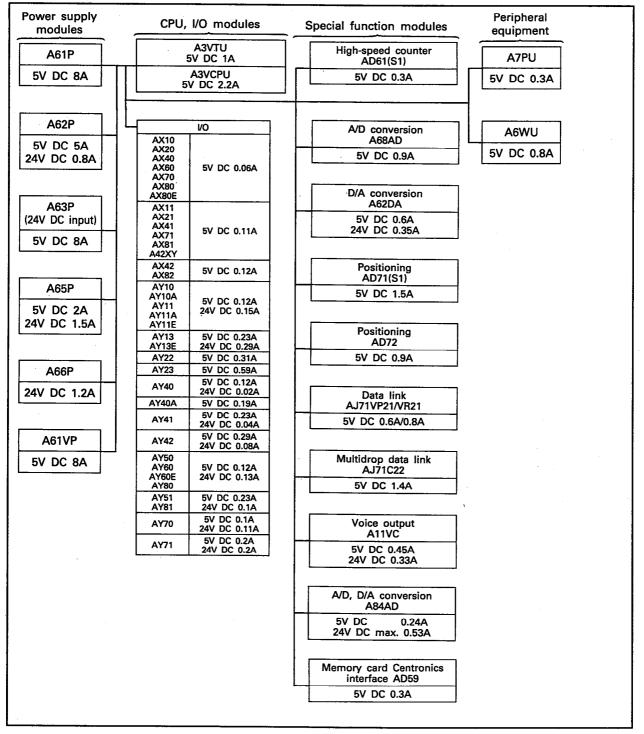
The overcurrent protection device shuts off the 5V, 24V DC circuit and stops the system if the current flowing in the circuit exceeds the specified value. When this device is activated, the power supply module LED is switched off or dimly lit. In this case, remove any cause of overcurrent and start up the system.

The system is initialized if the current value is the rated value.

*2: Overvoltage protection

The overvoltage protection device shuts off the 5V DC circuit and stops the system if 5.5 to 6.5V voltage is applied to the circuit.

When this device is activated, the power supply module LED is switched off. In this case, switch off, then on the input power to restart the system. The power supply module must be changed if the system is not booted and the LED remains off.



6.1.2 Selection of power supply module

Select the power supply module according to the total current consumption of I/O modules, special function modules, and peripheral equipment supplied by that power supply module.

(1) Current consumption of each module

The current capacity of each power supply module and the current consumption of each module are indicated below. Select an appropriate power supply module, referring to the values indicated below.

(2) A61VP usage precautions

Always install the two A61VP power supply modules to the dual power supply base unit (A30VB main unit and A68VB extension base unit) as a 2-unit installation.

Normal operations are not possible if the A61VP is installed in the A65B or A68B extension base module. Do not use this installation configuration because it might damage the power supply module.

If the previous power supply modules (A6. P) are installed and used in the A30VB or A68VB, normal operations cannot be performed as described above. Do not use this installation configuration because it might damage the power supply module.

- (3) Notes on use of the A66P
 - (a) Install the A66P module in the rightmost slot of the base unit, or its right slot must be occupied with a dummy module or blank cover, or left empty.
 - (b) The A66P output current (24V DC) depends on the left-hand adjacent module.

Left Hand Adjacent Module	Power Supply Module	Input Module Dummy Module	Output Module Special Function Module	Vacant	
Configuration	Power supply module A66P	Input module Dummy module A66P Vacant	Output module Special function module A66P Vacant	Vacant A66P Vacant	
Max. output current for 24V DC	0.5A	1.2A	1.0A	1.5A	

6.1.3 Fuse specifications

This section describes the specifications of fuses used for the power supply modules and output modules.

Type	GTH4	SM6.3A	MF51NM8	HP-32	НР-70К	MP-20	MP-32	MP-50
Application	For power supply A61P, A62P, A61VP, A65P, A66P	For power supply A63P	For output AY11E, AY13E	For output AY23	For output AY22	For output AY50, AY80	For output AY60	For output AY60E
Shape	Cartridge type	Cartridge type	Cartridge type	Plug type	Plug type	Plug type	Plug type	Plug type
Rated current	4A	6.3A	8A	3.2A	7A	2A	3.2A	5A
External dimensions mm(inch)	∳ 6(0.24) × 32(1.26)	∮ 6(0.24) × 32(1.26)	∮ 5.2(0.20)× 20(0.79)	30.3(1.19) × 8(0.31) × 20(0.79)	30.3(1.19) × 8(0.31) × 20(0.79)	17.2(0.68) X 5.5(0.22) X 19(0.75)	17.2(0.68) X 5.5(0.22) X 19(0.75)	17.2(0.68) × 5.5(0.22) × 19(0.75)

Table 6.2 Fuse Specifications

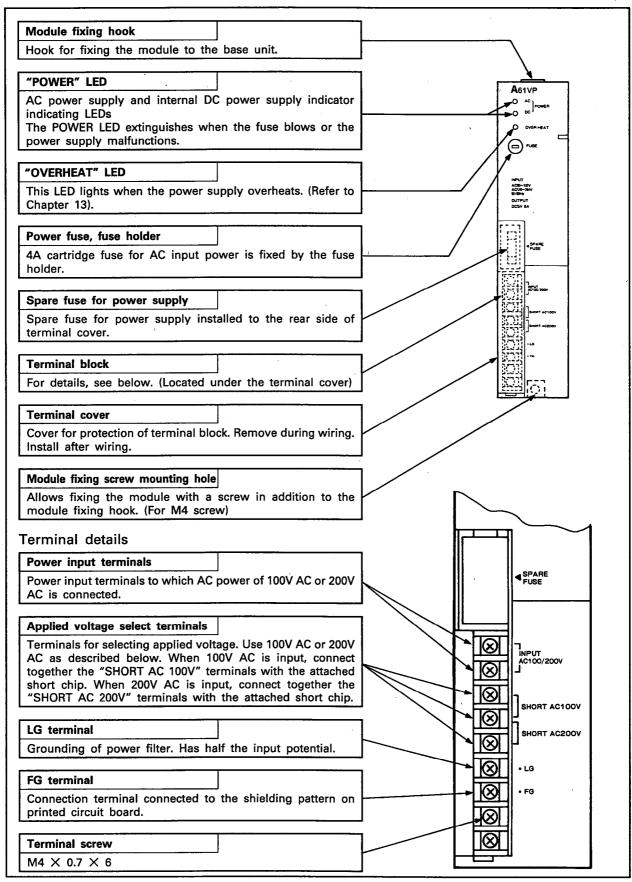
6.2 Handling

This section gives handling instructions, PC nomenclature and hardware setting instructions.

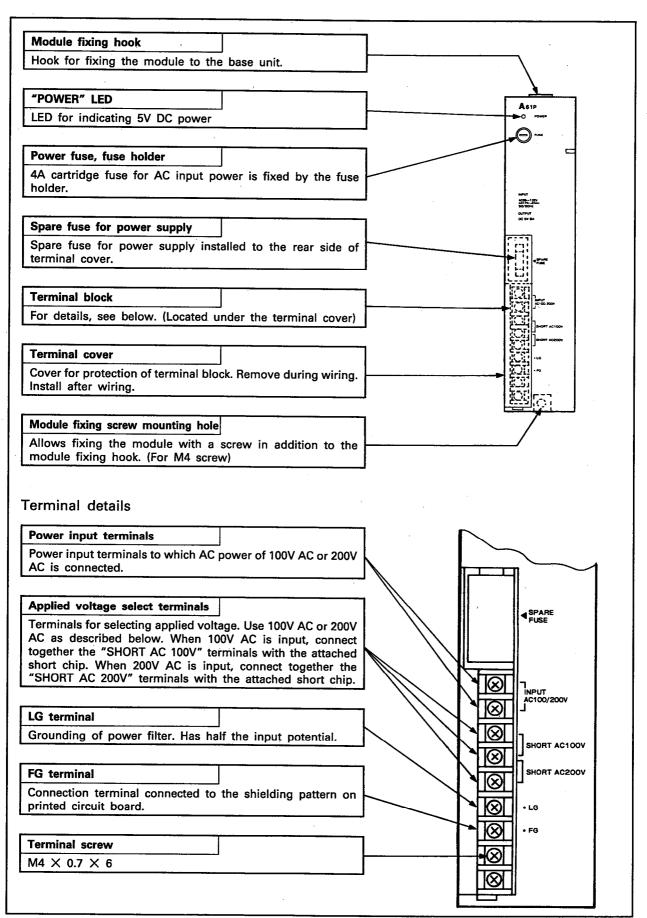
6.2.1 Handling instructions

The handling precautions for the power supply module from removing it from the shipping container to installation are described in this section.

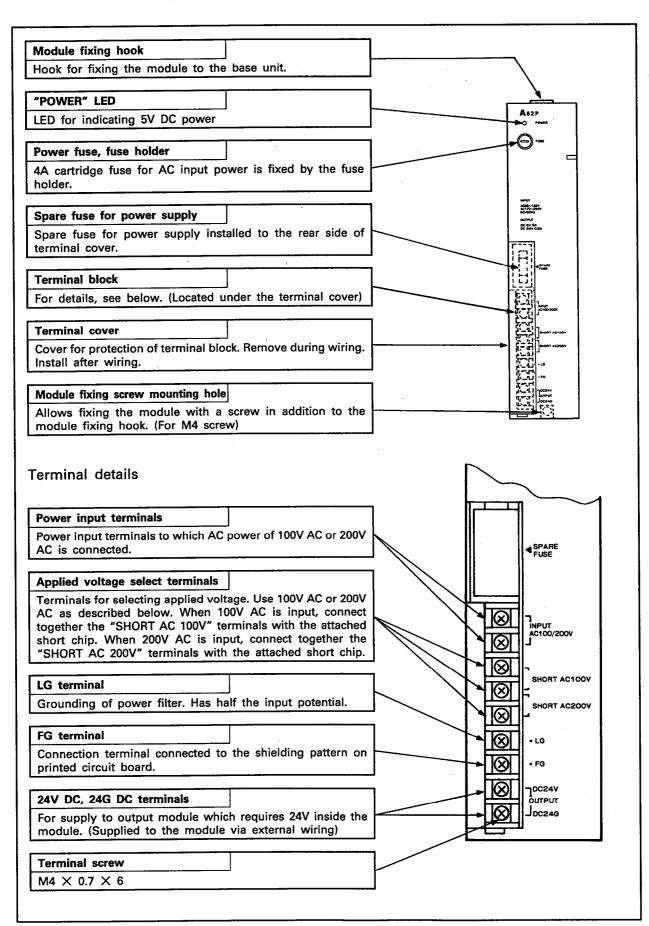
- (1) Do not subject the power supply module and memory cassette to impact or shock.
- (2) Do not remove printed circuit boards from the housing. There are no user-serviceable parts on the boards. This may cause damage.
- (3) Ensure that no conductive debris can enter the module. If it does, make sure that it is removed. Guard particularly against wire offcuts.
- (4) Tighten the module mounting and terminal screws as specified below.


Screw	Tightening Torque kg⋅cm (lb⋅inches)			
Module terminal block installation screws (M3)	5 (4.33) to 8 (6.93)			
Module terminal block installation screws (M4)	10 (8.66) to 14 (12.13)			
Module mounting screws (optional) (M4)	8 (6.93) to 12 (10.39)			

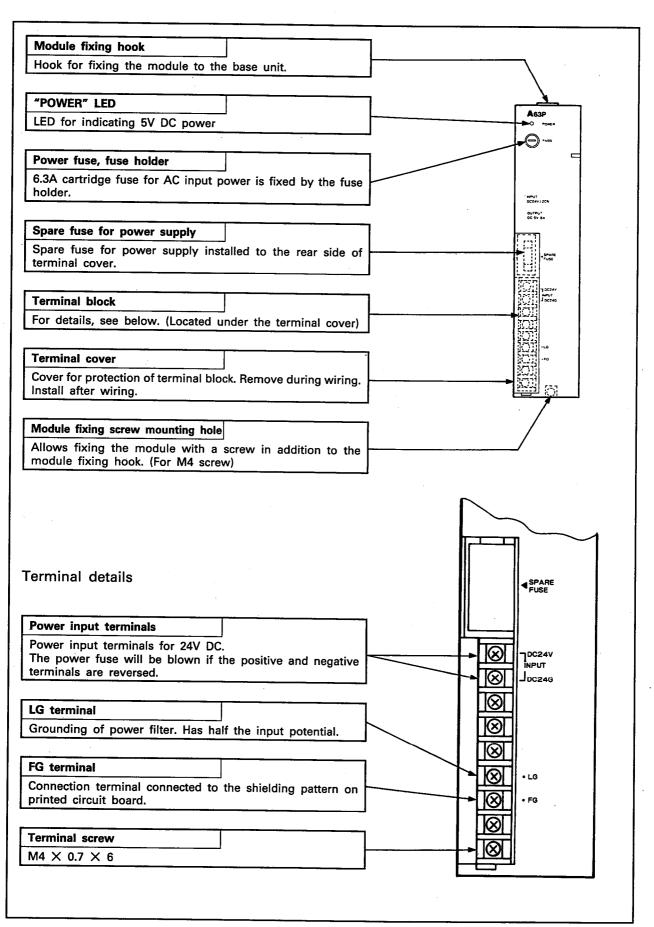
(5) After mounting the module in the base unit, ensure that the hook is locked in the base unit securely. When removing the module, press the hook until it is completely free from the base and then pull the module forward. (Refer to Section 10.5 for further details.)


6.2.2 Nomenclature

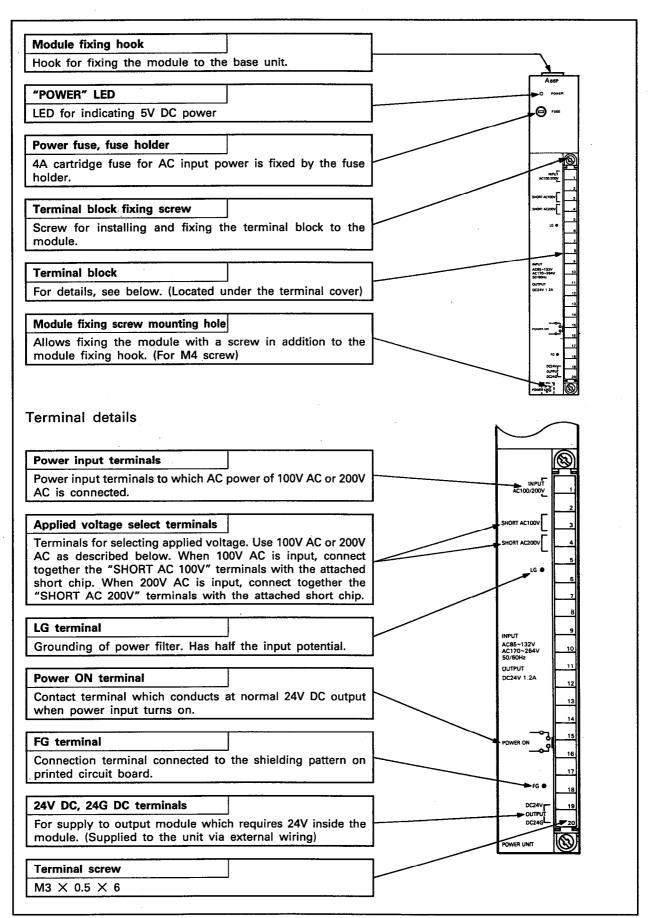
(1) Nomenclature of A61VP module



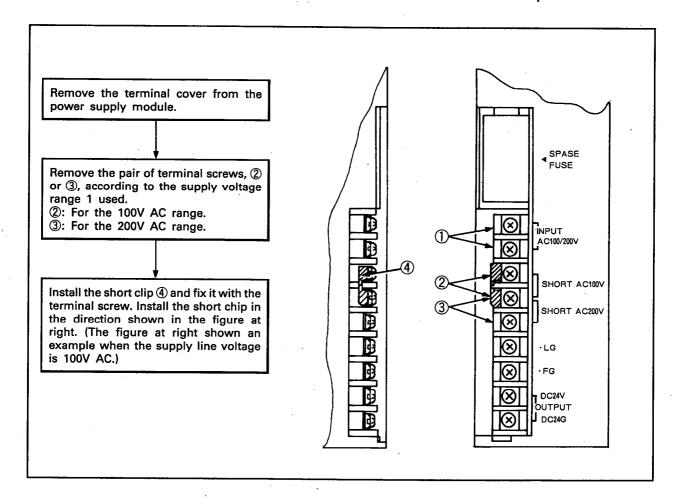
(2) Nomenclature of A61P module



(3) Nomenclature of A62P, A65P module



(4) Nomenclature of A63P module


(5) Nomenclature of A66P module

(6) Setting

In the A61VP, A61P, A62P, A65P and A66P power supply modules the terminals should be short-circuited by the short clip (accessory) according to the supplied voltage value. This section describes how to set the short clip.

POINT

If the setting differs from the supply line voltage, the following occurs. Therefore, do not mis-set.

	Supply Li	ne Voltage		
	100V AC	200V AC		
Setting to 100V AC (Install the short chip to ②)		The power supply mod- ule is damaged. (The CPU is not damaged.)		
Setting to 200V AC (Install the short chip to ③)	No error occurs in the module. However, the CPU does not operate.	 .		
No setting (The short chip is not installed)		No error occurs in the module. However, the CPU does not operate.		

7. BASE UNIT

7.1 Base Unit Specifications

This section describes the specifications of the base units (main base unit, extension base unit) that can be used in the A3VTS system.

7.1.1 Specifications of base units

(1) Specifications of main base units

Type	A30VB
Installable modules	Dual power supply module A61VP 2 modules Majority module A3VTU 1 module Multiplex CPU module A3VCPU 3 modules
Extension connection	Can be connected up to seven levels
Installation hole size	6mm(0.24inch) dia. per-shaped hole (for M5 screw)
External dimensions mm(inch)	480(18.9) × 250(9.84) × 29(1.14)
Weight kg(lb)	2.3(5.06)

Table 7.1 Basic Base Unit Specifications

(2) Specifications of extension base units

Type	A68VB	A65B	A68B	
Loaded I/O modules	8 can be loaded	5 can be loaded	8 can be loaded	
Power supply module installation criteria	Dual power supply module A61P 2 mod- ules required (A61VP power supply mod- ule can be installed only)	ule required (A61VP power supply mod-	Power supply mod- ule required (A61VP power supply mod- ule cannot be in- stalled)	
Installation hole size	6mm(0.24inch) dia. per-shaped hole (for M5 screw)			
External dimensions mm(inch) 522(20.6) × 250(9.84 × 29(1.14)		352(13.9) × 250(9.84) × 29(1.14)	466(18.3) × 250(9.84) × 29(1.14)	
Weight kg(lb)	Weight kg(lb) 2.4(5.28)		1.9(4.18)	

Table 7.2 Extension Base Unit Specifications

7.2 Handling

This section gives base unit handling instructions, notes on using the extension bases, nomenclature and hardware setting instructions.

7.2.1 Handling instructions

- Since the base cover, connector and printer PCB are manufactured of plastic, do not subject the base units to impact or shock.
- (2) Do not remove printed circuit boards from the housing. There are no user-serviceable parts on the boards. This may cause damage.
- (3) Ensure that no conductive debris can enter the module. If it does, make sure that it is removed. Guard particularly against wire offcuts.
- (4) Refer to the specifications first and then use the base unit and the power supply module because there are conditions for combining them. Failure to do so may result in damage to units.

7.2.2 Base unit and power supply module combined use

(1) A30VB and A68VB

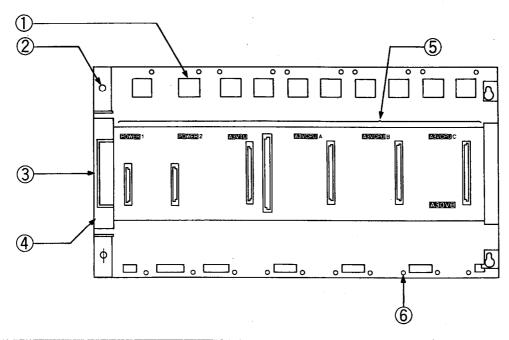
Use the two A61VP dual power supply modules for each A30VB or A68VB base unit.

If one A61VP module is installed and used, the system may stop when the power supply module malfunctions since dual power supply modules are not duplex.

Power supply modules other than the A61VP cannot be used. The system will not operate normally if these modules are used. This will also damage the power supply module.

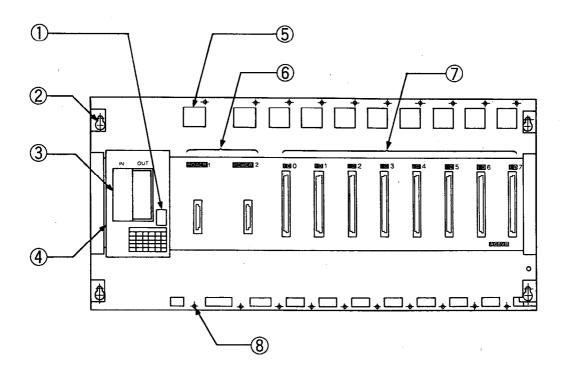
(2) A65B and A68B

Use A61P, A62P, A63P or A65P power supply modules for the A65B or A68B base unit.

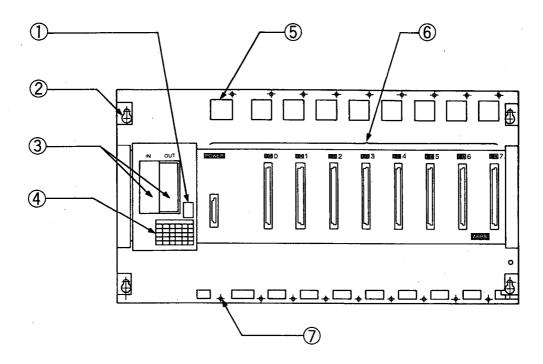

The A61VP cannot be used in the A65B and A68B. The system will not operate normally if these units are used. This will also damage the power supply module.

7.2.3 Nomenclature

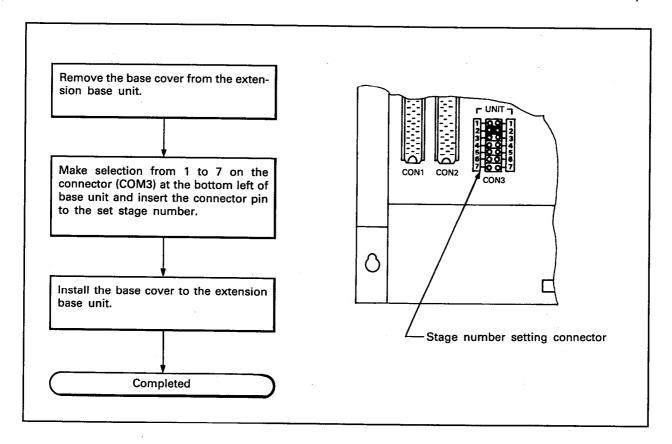
This section describes the names and functions of the main base unit and the extension base unit.


(1) Main base unit (A30VB)

No.	Name and Appearance	Application
1	Module fixing hole	Cut out to accept projection and hook at rear of modules.
2	Guide hole for base installation	Pear-shaped hole for mounting this base unit to the panel of control box, etc. (For M5 screw)
3	Connector for extension cable	Connector for sending and receiving signals to and from the extension base unit. Connect the extension cable (AC[]]B).
4	Base cover	Cover for protection of connector for extension cable. When extension is made, it is necessary to remove the top of connector with a tool such as nippers.
5	Module connectors	These are the power supply module, majority module and multiplex CPU module connectors. (Install the corresponding module to all connectors. If there is a space where a module is not connected, dust will enter and may cause operation malfunctions.
6	Module fixing screw	The module can be fixed with a screw in addition to the module fixing hook. Screw size: M4 $ imes$ 0.7 screw.


(2) Extension base unit (A68VB)

No.	Name and Appearance	Application
1	Stage number setting switch	Switch for setting the stage number of extension base. (Located under the base cover) For the stage number setting procedure, refer to Section 7.2.4.
2	Guide hole for base installation	Pear-shaped hole for mounting this base unit to the panel of control box, etc. (For M5 screw)
3	Connector for extension cable	Connector for sending and receiving signals to and from the extension base unit. Connect the extension cable (ACLEB).
4	Base cover	Cover for protection of connector for extension cable. When connection is made with another extension base, it is necessary to remove the area enclosed by a groove at the OUT character portion above the base cover with a tool such as nippers.
⑤	Module fixing hole	Cut out to accept projection and hook at rear of modules.
6	Power supply module connector	These connector are used to install power supply modules. Two power supply modules are connected.
7	Module connectors	These are the I/O module, power supply (A66) and special function module connectors. Insert a blind cap, AG60 blank cover or AG62 dummy module to vacant connectors to prevent the entry of dust.
8	Module fixing screw	The module can be fixed with a screw in addition to the module fixing hook. Screw size: M4 $ imes$ 0.7 screw.


(3) Extension base units (A65B,A68B)

No.	Name and Appearance	Application
1	Stage number setting switch	Switch for setting the stage number of extension base. (Located under the base cover) For the stage number setting procedure, refer to Section 7.2.4.
2	Guide hole for base installation	Pear-shaped hole for mounting this base unit to the panel of control box, etc. (For M5 screw)
3	Connector for extension cable	Connector for sending and receiving signals to and from the extension base unit. Connect the extension cable (AC[[1]]B).
4	Base cover	Cover for protection of connector for extension cable. When connection is made with another extension base, it is necessary to remove the area enclosed by a groove at the OUT character portion above the base cover with a tool such as nippers.
(5)	Module fixing hole	Cut out to accept projection and hook at rear of modules.
6	Module connectors	These are the I/O module, power supply (A66) and special function module connectors. Insert a blind cap, AG60 blank cover or AG62 dummy module to vacant connectors to prevent the entry of dust.
7	Module fixing screw	The module can be fixed with a screw in addition to the module fixing hook. Screw size: M4 \times 0.7 screw.

7.2.4 Setting of extension stage numbers

This section explains the stage number setting procedure of each extension base unit. (when the extension base unit is used.)

		Extension Stage Number Setting						
	1st stage	2nd stage	3rd stage	4th stage	5th stage	6th stage	7th stage	
Extension stage number setting	UNIT 7 1 2 3 0.0 4 5 0.0 5 6 7 0.0 7 CON3	UNIT 7 2 3 000 3 4 000 5 6 000 7 CON3	UNIT - 1 0 0 1 1 0 0 1 2 3 0 0 1 4 0 0 1 4 6 0 0 1 7 0 0 7 7 0 0 1 7 0	UNIT 1 1 000 1 2 000 3 4 0 0 4 5 00 0 7 000 7	UNIT 7 1 00 1 2 000 3 3 4 00 4 5 6 00 7 CON3	UNIT 7 12 20 00 13 4 50 00 15 6 7 0 0 0 7 CON3	UNIT - 1 1 2 1 0 0 0 1 2 1 0 0 0 1 3 4 0 0 0 6 6 6 0 0 6 7 7 CON3	

Extension Base Unit Stage Number Setting

POINT

Set the stage number setting connector (CON3) to a number, from 1 to 7, which matches the number of extension stages. If the same number has been set to two or more extension base units, or no stage number has been set, mis-input or mis-output will result.

8. EXTENSION CABLE

8.1 Specifications

This section describes the specifications of extension cables which can be used for the system.

Type Item	AC06B	AC12B	AC30B
Cable length m(ft)	0.6(1.97)	1.2(3.94)	3(9.84)
Resistance value of 5V DC supply line (Ω at 55°C)	0.019	0.028	0.052
Application	For connection between	main base and extension base and	between extension bases
Weight kg(lb)	0.34(0.75)	0.52(1.14)	1.06(2.33)

Table 8.1 Extension Cable Specifications

9. MEMORY CASSETTE, MEMORY

9.1 Specifications

This chapter describes the specifications of memories and memory cassettes which can be used.

9.1.1 Memory cassette specifications

This section describes the specifications of memory cassettes used.

Type	A3NMCA-0	A3NMCA-2	A3NMCA-4	АЗММСА-8	A3NMCA-16	A3NMCA-24
*Memory capacity (bytes) (RAM memory capacity)	None installed	16K	32K	64K	128K (96K)	192K (144K)
Number of ROM loading sockets	2 pcs. (for 28 pins)					
Loadable ROM type		4KROM, 8KROM, 16KROM				
Loadable RAM type	4KRAM					
External dimensions mm(inch)	110(4.33) × 79.5(3.13) × 33(1.30)					
Weight kg(lb)	0.13(0.29)	0.13(0.29)	0.13(0.29)	0.13(0.29)	0.13(0.29)	0.13(0.29)

^{*:} The RAM memory is soldered to the PCB.

Table 9.1 Memory Cassette Specifications

9.1.2 Memory specifications

Type	4KRAM	4KROM	8KROM	16KROM	
Memory specifications	IC-RAM (Read and write possible)	EP-ROM (only read is possible)			
Memory capacity (bytes)	8K	8K	16K	32K	
Structure	28-pin IC package	28-pin IC package	28-pin IC package	28-pin IC package	
Remarks	When loading memory into the memory cassette two memory ICs of the same specification are always required.				

When the parameter setting is performed by a peripheral device, refer to the Section 9.2.5 for further details regarding the data and capacity which can be stored in memory cassette.

Table 9.2 Memory Specifications

9.1.3 Battery specifications

This section describes the specifications of battery used for RAM memory backup and power failure compensation.

Type	A6BAT
Nominal voltage	3.6V DC
Guaranteed life	5 years
Total power failure backup time	Depends on memory cassette types as indicated below: A3NMCA-0: Min. 10800 hours, A3NMCA-24: MIN. 1950 hours
Application	For IC-RAM memory backup and power failure compensation function
External dimensions mm(inch)	ф 16(0.63) × 30(1.18)

Table 9.3 Battery Specifications

9.2 Handling

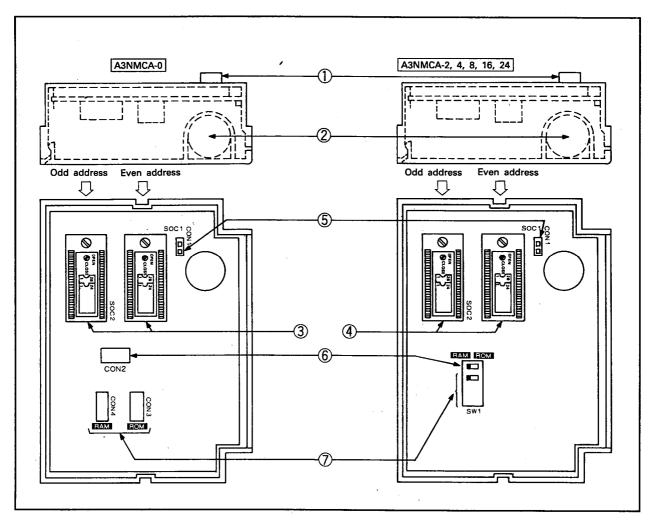
This chapter explains the handling instructions from unpacking to installation and also the nomenclature and setting of various conditions.

9.2.1 Handling instructions

The handling precautions for the memory cassette and battery from removing them from the shipping container to installation are described in this section.

- (1) Memory cassette, memories
 - (a) Since the memory cassette and pin connector are manufactured from plastic, do not subject the memory cassette and memories to impact or shock.
 - (b) Do not remove printed circuit boards from the housing. There are no user-serviceable parts on the boards. This may cause damage.
 - (c) Ensure that no conductive debris can enter the module. If it does, make sure that it is removed. Guard particularly against wire offcuts.
 - (d) When loading the memory cassette into the main unit, press the memory cassette securely into the housing.
 - (e) When loading the memory into the socket, press the memory securely against the socket and the lock it with the lever.
 After loading, check that the memory is flush with the
 - After loading, check that the memory is flush with the socket.
 - (f) Never place the memory on metal, which may allow current flow, or on an object which is charged with static electricity, such as wood, plastic, vinyl, fiber, cable, and paper.
 - (g) Do not touch the legs of the memory. Also, do not bend the legs. The memory may be damaged.
 - (h) When mounting the memory, be sure to fit the memory the right way round as indicated on the socket. If reversely installed, the memory will be damaged.
 - (i) Do not touch the CPU memory cassette connector. Touching the connector may result in improper contact.

IMPORTANT


Before installing or removing the memory cassette to or from the CPU, GPP, be sure to turn off the power. If installation or removal is performed with the power on, the contents of the memory cassette will be damaged.

(2) Battery

- (a) Do not short-circuit the battery.
- (b) Do not disassemble the battery.
- (c) Do not throw the battery into flames.
- (d) Do not heat the battery.
- (e) Do not solder the poles of the battery.

9.2.2 Nomenclature

No.	Description	Explanation	Remarks
1	CPU connector	Connects the memory cassette to the CPU.	
2	Battery (A6BAT)	RAM backup and power failure compensation.	
3	Program memory	I.C. sockets with locking facility for IC-RAM/EP-ROM. Identical memory I.C. types must be loaded into the two sockets. When ROMs are used, the odd-address ROM must be loaded into SOC1. and the even-address ROM into SOC2.	*
4	sockets	I.C. sockets with locking facility for EP-ROM only Identical memory I.C. types must be loaded into the two sockets. The odd-address ROM must be loaded into SOC1. and the even-address ROM into SOC2.	*
5	Pins for connection of battery plug	Connect the battery leads to the connector (CON1). Before shipment, the wires are disconnected to prevent battery consumption.	*
6	Memory setting switch	Memory select switch.	*
7	Memory protect switches	Set the protect range of the IC-RAM contents. (With protect ON, writing to the RAM is disabled.)	*

^{*:} Requires setting before using the memory cassette.

9.2.3 Memory IC installation

(1) Holding the memory chips

If the memory chip pins or leads are touched by hand, they can be damaged by static electricity or the pins may be bent and cause improper connection. Hold the module as shown in the figure and install it correctly.

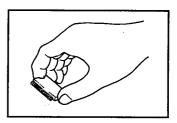


Fig. 9.1 Holding the IC

(2) Chip installation direction

If the memory chip direction is incorrect, the memory chip will be damaged when the power is turned on. Make sure that the memory chip direction is correct before installing it. The installation direction is indicated on the memory socket. Install the memory chip using the following as the reference.

EP-ROM ···· Notch

IC-RAM ···· Notch or broken line

Socket	EP-ROM	IC-RAM	
		Notch	Broken line
OPEN 28 24 CHECK THE 1 DIRECTION	OPEN CLOSE CLOSE	OPEN manumananinin	OPEN CLOSE CONTRACTOR

Fig. 9.2 IC Loading Direction

(3) Setting the IC type

Set the jumper or switch to RAM or ROM in accordance with the IC used.

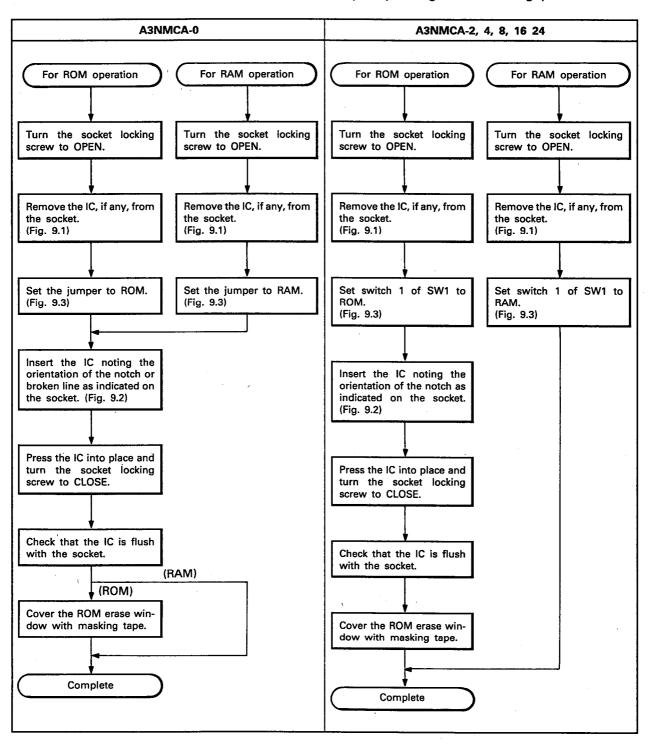
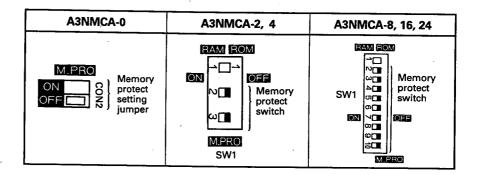

IC type	RAM	A3NMCA-0 CON3 CON3 RAM ROM	A3NMCA-2, 4 RAM ROM ON ON SW1	A3NMCA-8, 16, 24 RAM ROM SW1 ON CON CON CON CON CON CON CON	1) Load the IC after setting its type. 2) When the A3NMCA-0 is used, set the jumper to CON3 (ROM) or CON4 (RAM). CON3ROM setting CON4RAM setting
setting	ROM	CON3 - RAM CON4	RAM ROM ON ON SW1	SW1 SW1	3) When the A3NMCA-2 to 24 is used, set switch 1 of SW1 to the appropriate position.

Fig. 9.3 Setting the IC Type

(4) IC loading procedure

Install the memory chip using the following procedure.



9.2.4 Memory protect switch setting

The RAM memory may be protected by switching the memory protect switch ON . (See below) This protects the memory from accidental program changes.

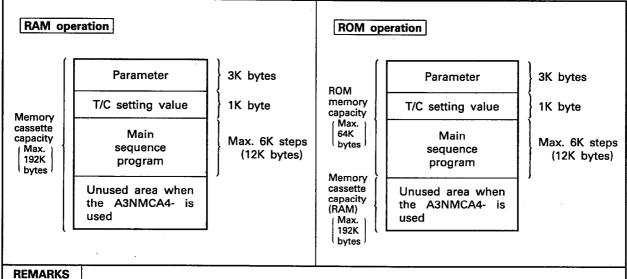
When changes to the PC program are to be made, switch the memory protect switch OFF.

The switch layout varies depending on the memory cassette type as shown below.

The memory ranges protected by each switch are shown below:

Memory Protect Range	Setting	Applicable Memory Cassette
(Byte) number) 0	Jumper set to ON of CON2 2 of SW1 ON 3 of SW1 ON	A3NMCA-0 and -2 A3NMCA-4
32K 32K { 48K	4 of SW1 ON	
48K { 64K	5 of SW1 ON	
64K { 80K	6 of SW1 ON	A3NMCA-16
80K { 96K	7 of SW1 ON	A3NMCA-24
96K { 112K	8 of SW1 ON	
112K \$ 128K	9 of SW1 ON	
128K		
144K { 192K	10 of SW1 ON	

POINT


- (1) Activating memory protection
 Refer to the addresses (step numbers) of each memory
 area (sequence program, computer program, subsequence program, comments, sampling trace, status
 latch and file registers) to perform the protection
 settings.
- (2) Do not memory protect areas required for sampling trace or status latch data when using these functions. If the protection is activated the executed contents cannot be stored in the memory.

9.2.5 User memory installation

The usage capacity and availability of user memory in the memory cassette can be set by the peripheral device parameter settings. This section describes the user memory assignments and memory capacity in the two cases - parameters are set or not set with a peripheral device.

(1) When peripheral device parameters are not set User memory assignments and memory capacity when the memory is used without parameter settings is described below.

- (1) The 4K bytes parameter and T/C setting value area is automatically set in the user memory area.
- (2) The main sequence program refers to the main routine program and the subroutine program.
- (3) There is an unused portion of memory when the sequence program capacity is smaller than the user memory (memory cassette) capacity as shown in the figure above.

(2) When peripheral device parameters are set This section describes the user memory assignment and memory capacity when parameters (capacity settings for the sequence program, comments, etc.) are set with a peripheral device. Select the memory cassette whose storage capacity is sufficient for memory area required according to the setting of parameters.

RAM operation

Memory cassette

RAM area

Parameters T/C setting value Main sequence program Microcomputer program T/C setting value Sub-sequence program Sub-microcomputer program Device P.I. address, other contents Sampling trace Data area Status latch File register File register Comment

Parameters

T/C setting value

4K bytes used regardless of the parameter setting

Settings made in 1K steps (2K bytes) within a range of 1 to 30K steps (2 to 60K bytes).

When the sub-sequence program is used, 1K byte is used regardless of parameter settings.

Settings made in 1K steps (2K bytes) within a range of 1 to 30K steps (2 to 60K bytes).

When the sub-sequence program is used, 5K bytes is used regardless of parameter settings.

Selectable: Not used (0K bytes), Used (8K bytes)

Selectable: Not used (0K bytes), Used (8K bytes)

Selectable: Not used (0K bytes). Used (amount set by the file register) Setting made in 2K bytes units (1024 points) within a range of 0 to 16K bytes (0 to 8192 points).

Setting made in 1K byte units (64 points) within a range of 0 to 16K bytes (0 to 8192 points).

ROM operation

Memory cassette ROM area

ROM area	Main sequence program		
1	Microcomputer program		
	T/C setting value		
	Sub-sequence program		
	Sub-microcomputer program		
	Device P.I. address, other contents		
Memory cassette RAM area	Sampling trace		
	Status latch	Data area	
		File register	
	File register		
	Comment		

4K bytes used regardless of the parameter setting

Settings made in 1K steps (2K bytes) within a range of 1 to 30K steps (2 to 60K bytes).

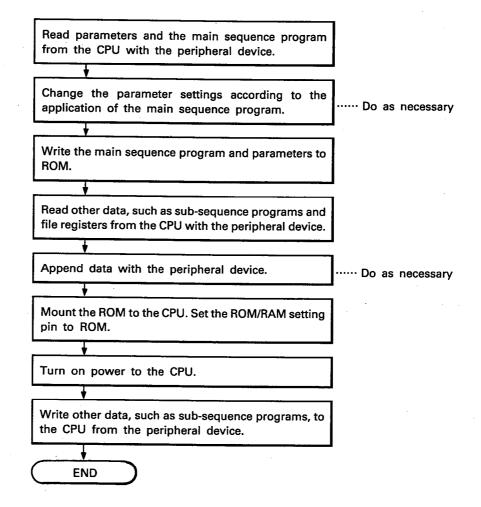
When the sub-sequence program is used, 1K byte is used regardless of parameter settings.

Settings made in 1K steps (2K bytes) within a range of 1 to 30K steps (2 to 60K bytes).

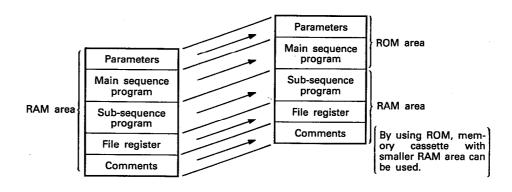
When the sub-sequence program is used, 5K bytes is used regardless of parameter settings. Selectable: Not used (0K bytes), Used (8K bytes)

Selectable: Not used (0K bytes), Used (8K bytes)

Selectable: Not used (0K bytes), Used (amount set by the file register) Setting made in 2K bytes units (1024 points) within a range of 0 to 16K bytes (0 to 8192 points). Setting made in 1K byte units (64 points) within a range of 0 to 16K bytes (0 to 8192 points).

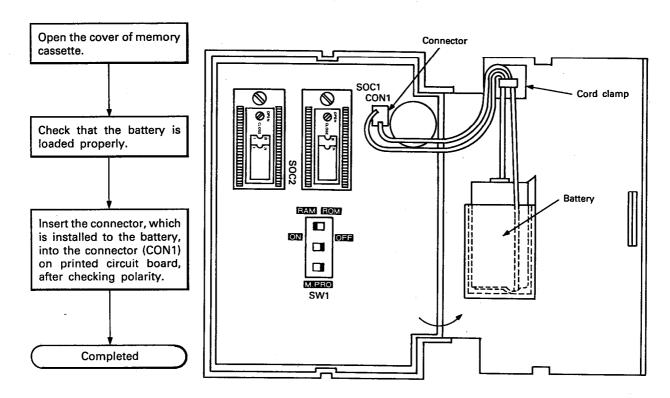


(3) Precautions concerning ROM operations


When operating using a main sequence program that has been written to ROM, sub-sequence programs cannot be used without special procedures being taken.

Follow the procedures given below to write updated information to the memory cassettes.

Memory area can be used more effectively by also writing other data such as file registers and comments to the cassettes using the procedure given below.


[Example of data transfer using a ROM]

9.2.6 Battery installation

The connector of battery is disconnected before shipment. When RAM memory backup or power failure compensation is required, connect by the following procedure.

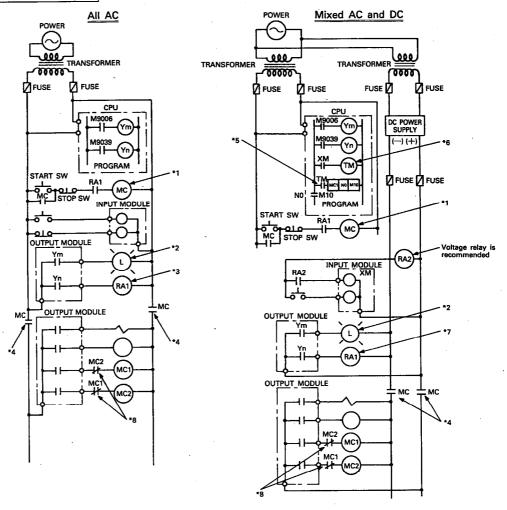
REMARKS

The connector of the battery has been disconnected in order to prevent the consumption of battery during distribution and storage, connect the connector before use.

10. LOADING AND INSTALLATION

This chapter describes the loading and installation procedures and instructions for mascumuim reliability of the system.

10.1 Consideration for Safety


When the power of system is turned on or off, process output may not temporarily perform normal operation due to the difference between the delay time and rise time of the power supply of programmable controller main unit and the external power supply (especially DC) for the process. Also, at the time of an error of the external power supply, output process may possibly make an erroneous operation.

In order to prevent the aforementioned erroneous operations from resulting in an erroneous operation of the entire system and also for safety reasons, constitute circuits (such as emergency stop circuit, protection circuit, and interlock circuit), that prevent machine damage or and accident due to erroneous operation outside the programmable controller.

A system design circuit example based on the above concept is shown on the following page.

System design circuit example

- *1: Run/stop circuit interlocked with RA1 (run monitor relay)
- *2: Battery low alarm
- *3: RA1 switched on by M9039 (run monitor relay)
- *4: Power to output equipment switched off when stop signal given. For emergencies Stopped when limits exceeded.
- *5: Input switched when power supply established.
- *6: Set time for DC power supply to be established.
- *7: On when run by M9039
- *8: Interlock circuits

For opposing operations such as forward and reverse rotation, and for operations which will cause damages to the machine or accidents, provide the interlock circuit externally.

The power-on procedure is as follows:

For AC

- Switch on power.
 Set CPU to RUN.
- Switch on the start switch.
- 4) When the magnetic contactor (MC) comes in, output equipment is powered and may be driven from the program.

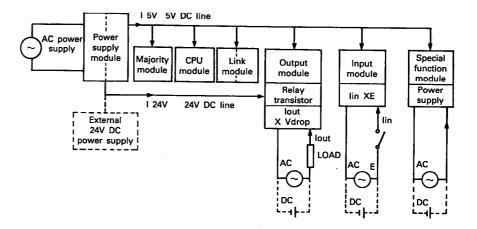
For AC/DC

- 1) Switch on power.
- 2) Set CPU to RUN.
- When DC power is established, RA2 turns on. Timer (TM) times out after the DC power reaches 100%.
- (The set value of TM should be the period of time from when RA2 switches on to the establishment of 100% DC voltage. Set the set value to approximately 0.5 seconds.)
- Switch on the start switch.
- 6) When the magnetic contactor (MC) comes in, the output equipment is powered and may be driven by the program. When using a voltage relay in RA2, timer (TM) is not needed in a program.

10.2 Installation Environment

Never install the ANCPU system in the following environments:

- (1) Locations where ambient temperature is outside the range 0 to 55°C.
- (2) Locations where ambient humidity is outside the range of 10 and 90%RH.
- (3) Locations where dew condensation takes place due to sudden temperature changes.
- (4) Locations where there are corrosive gasses and combustible gasses.
- (5) Locations where there is a high level of conductive powder such as dust and iron filings, oil mist, salt, and organic solvent.
- (6) Locations exposed to the direct rays of the sun.
- (7) Locations where strong power and magnetic fields are generated.
- (8) Locations where vibration and shock are directly transmitted to the main unit.



10.3 PC Generated Heat Calculation

The operating ambient temperature of the PC must be kept below 55°C. It is necessary that the average power consumption of modules and other equipment inside panel be known for heat radiation design of the panel. The following describes how to determine the average power consumed by the A3VTS system. Use the power consumption value is used to calculate the temperature rise inside the panel.

Average power consumption

Power is consumed by the following PC areas:

(1) Power supply module power consumption

Approximately 70% of the power supply module current is converted into power with the remaining 30% dissipated as heart, i.e., 3/7 of the output power is used.

Case of using A6 P power supply module, 1.1(W) modify 1.0(W).

Wpw =
$$\frac{3}{7}$$
 ((I 5V × 5) + (I 24V × 24)) × 1.1 (W)

where, I 5V = 5V DC logic circuit current consumption of each module.

I 24V = current consumption of the output modules (with an average number of points switched on) ··· (Not for 24V input power supply modules)

(2) Total 5V DC power consumption

5V is supplied to each module via the base plate, this powers the logic circuitry.

W
$$5V = 15V \times 5$$
 (W)

- (3) Total 24V DC output module power consumption (with an average number of points switched on) 24V is supplied to drive output devices. W24V = 1 24V × 24 (W)
- (4) Power consumption of output circuits (with an average number of points switched on)

Wout = lout × Vdrop × average number of outputs on at one time (W) where, lout = output current (actual operating current) (A)

Vdrop = voltage dropped across each output load (V)

(5) Power consumption of input circuits (with an average number of points switched on)

Win = lin X E X average number of inputs on at one time (W)
Where, lin = input current (effective value for AC) (A)
E = input voltage (actual operating voltage) (V)

(6) Power consumption of the special function module power supply is expressed as:

 $Ws = 1.5V \times 5 + 1.24V \times 24 + 1.100V \times 100 (W)$

The sum of the above values is the power consumption of the entire PC system.

W = Wpw + W5V + W24V + Wout + Win + Ws (W)

Further calculations are necessary to work out the power dissipated by the other equipment in the panel.

Generally temperature rise in the panel is expressed as:

$$T = \frac{W}{UA} (^{\circ}C)$$

where, W = power consumption of the entire PC system (obtained as above)

A = panel inside surface area (m²)

U = 6 if the panel temperature is controlled by a fan, etc.

4 if panel air is not circulated.

T = Temperature rise inside the panel (C)

POINT

If temperature rise inside the panel exceeds the set limit, heat exchangers should be attached to the panel to lower the temperature inside the panel.

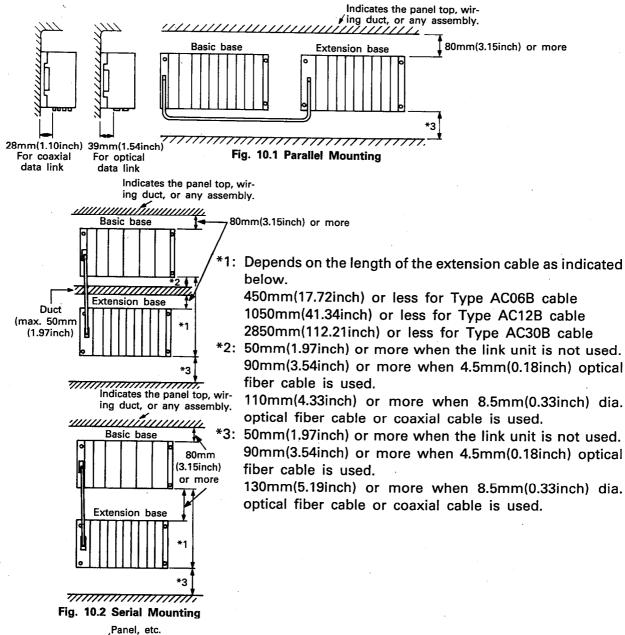
Precaution should be used when using a fan to cool the panel as dust and dirt from outside the panel will be sent passed into the interior. This could have negative effects on the programmable controllers.

10

10.4 Mounting of Base Unit

This section describes precautions concerning the handling of the main base unit and the extension base units.

10.4.1 Mounting instructions


Explanation is given to the instructions for mounting the PC to a panel, etc.

- (1) To improve ventilation or facilitate the replacement of unit, provide 80mm(3.15inch) or more the clearance around the PC.
- (2) Do not mount the base unit vertically or horizontally to allow ventilation.
- (3) Ensure that the base unit mounting surface is uniform to prevent strain. It excessive force is applied to the printed circuit boards, this will result in incorrect operation. Therefore, mount the base unit on a flat surface.
- (4) Avoid mounting the base unit close to vibration source, such as large-sized magnetic contactors and no-fuse breakers, install the base unit in another panel or separate the base unit from the vibration source.
- (5) Provide a wiring duct as necessary. However, if the dimensions from the top and bottom of the PC are less than those shown in Fig. 10.1, note the following points:
 - (a) When the duct is located above the PC, the height of the duct should be 50mm(1.97inch) or less to allow for sufficient ventilation.
 Set the distance form the top of the PC so that the hook latch at the top of the module can be pushed. If the hook latch at the top of the module cannot be pushed, the module cannot be replaced.
 - (b) When the duct is located under the PC, install the duct so that optical fiber cables or coaxial cables may be connected and also consider the minimum bending radius of the cable.
- (6) In order to avoid the negative effects of noise and heat, do not place equipment in front of the programmable controller at distances less than 100mm (3.94inch) if the equipment should be mounted on the back side of the door. Allow at least 50mm (1.97inch) clearance on both sides of the base unit.

10.4.2 Installation

This section explains the mounting for basic and extension base units.

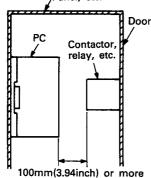


Fig. 10.4 Vertical Mounting (Not allowed)

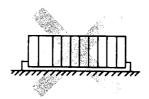
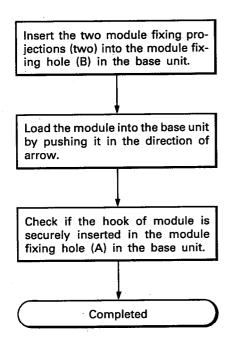
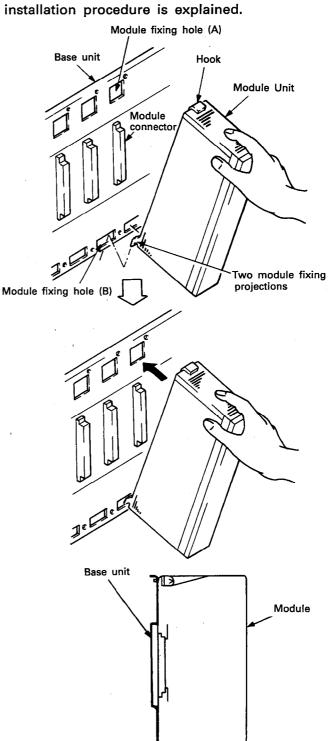


Fig. 10.5 Horizontal Mounting (Not allowed)




10.5 Installation and Removal of Module

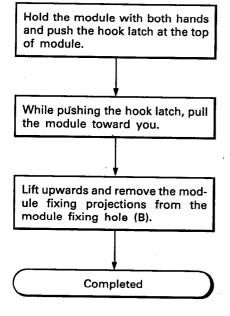
This section explains the installation and removal procedures of the power supply module, CPU module, I/O module, special function module, etc to and from the base module.

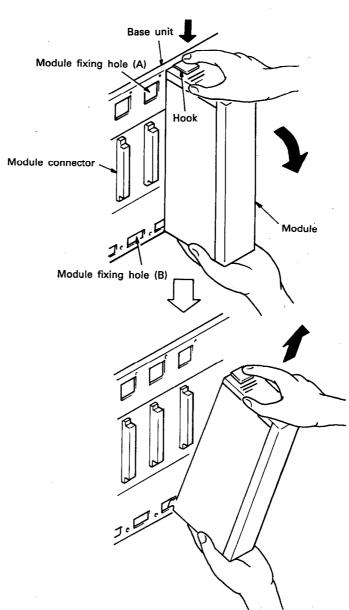
(1) Installation of module

The unit installation procedure is explained.

POINT

- (1) To fix the module, be sure to insert the module fixing projection into the module fixing hole (B). If the module is forcibly fixed without insertion, the pins in the module connector may be bent or damaged.
- (2) When the base unit is used at locations where there are especially large vibration and/or shock, screw the module to the base. Applicable screw size is $M4(0.16) \times 0.7(0.03) \times 12mm$ (0.47inch). See the figure at right.


Module mounting screw

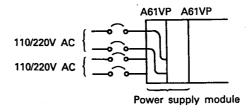

 $(M4(0.16) \times 0.7(0.03) \times 12(0.47))$

(2) Removal of module

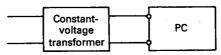
The unit removal procedure is explained.

POINT

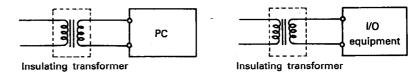
To remove the module, be sure to disengage the hook from the module fixing hole (A) and then remove the module fixing projections from the module fixing hole (B). If the module is forcibly removed, the hook or module fixing projections will be damaged.


10.6 Wiring

Wiring instructions for the A3VTS system.

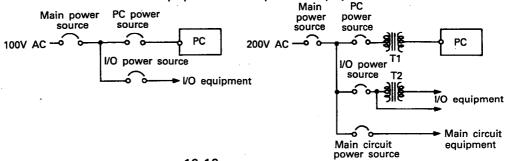

10.6.1 Wiring instructions

Instructions for wiring the power cable or I/O cables.


- (1) Wiring of power source
 - (a) To enhance reliability, two power supply modules are used in the A3VTS system providing backup functions in case a malfunction should occur in one of the power supply modules or a failure should occur in one of the power feed lines. It is therefore important that the power source for the two power supply modules be separate.

(b) When voltage fluctuations are larger than the specified value, connect a constant-voltage transformer.

(c) Use a power supply which generates minimal noise across wire and across PC and ground. When excessive noise is generated, connect an insulating transformer.

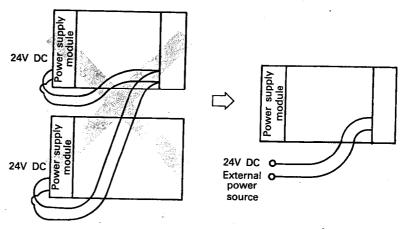


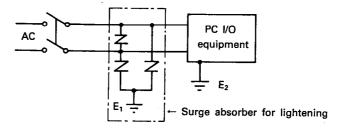
(d) When a power transformer or insulating transformer is employed to reduce the voltage from 200V AC to 100V AC, use one with a capacity greater than that indicated in the following table.

Power Supply Module	Transformer Capacity
A61P	110VA × n
A62P	110VA X n
A65P	110VA × n
A66P	95VA × n
A61VP	110VA × n

"n" stands for the number of power supply modules.

(e) When wiring, separate the PC power source from those for I/O equipment and power equipment as shown below.

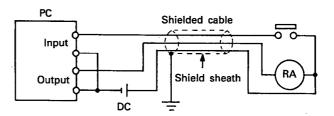



(f) Precautions concerning the use of the 24V DC output of the A62P, A65P, and A66P power supply modules.

Avoid connecting the 24V DC output of multiple modules in parallel to one I/O module as this could lead to power supply module failure.

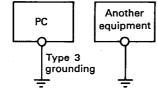
When the 24V DC output capacity of one power supply module is insufficient, use an external 24V DC power supply source.

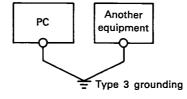
- (g) Twist the 110V AC, 220V AC, and 24V DC cables as closely as possible. Connect modules with the shortest possible wire lengths.
- (h) To minimize voltage drop, use the thickest (max. 2mm²(14 AWG)) wires possible for the 110V AC, 220V AC, and 24V DC cables.
- (i) Do not bundle the 110V AC and 24V DC cables with main-circuit wires or the I/O signal wires (high-voltage, large-current). Also, do not wire the above indicated cables close to the aforementioned wires. If possible, provide more than 100mm(3.94inch) distance between the cables and wires.
- (j) As a measure against verylarge surges (e.g. due to lightening), connect a varistor as shown below.


IMPORTANT

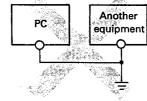
- (1) Ground the surge absorber (E₁) an the PC (E₂) separately from each other.
- (2) Select a surge absorber making allowances for power voltage rises.

(2) Wiring of I/O equipment

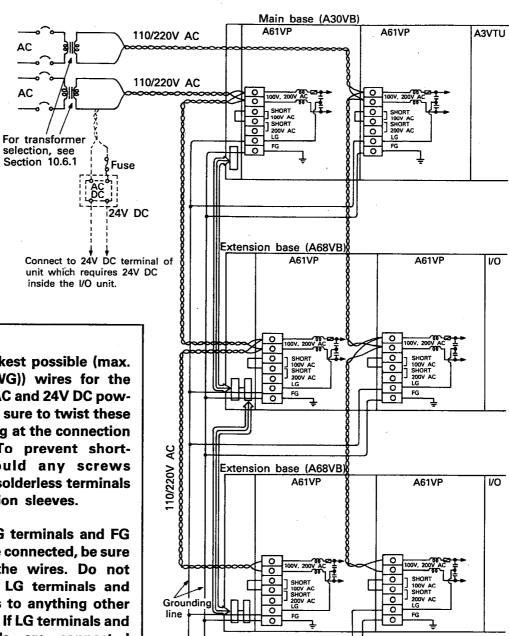

- (a) Applicable size of wire to the terminal block connector is 0.75(18) to 2mm²(14 AWG). However, it is recommended to use wires of 0.75mm²(18 AWG) for convenience.
- (b) Separate the input and output lines.
- (c) I/O signal wires must be at least 100mm(3.94inch) away from high-voltage and large-current main circuit wires.
- (d) When the I/O signal wires cannot be separated from the main circuit wires and power wires, ground on the PC side with batch-shielded cables. Under some conditions it may be preferable to ground on the other side.


- (e) If wiring has been done with of piping, ground the piping.
- (f) Separate the 24V DC I/O cables from the 100V AC and 200V AC cables.
- (g) If wiring over 200mm(7.87inch) or longer distance, trouble can be caused by leakage currents due to line capacity. Take corrective action as described in Section 13.4.

(3) Grounding


- (a) The A series PC has good noise resistance. Therefore, the PC may be used without grounding except when there is excessive noise.
 - However, follow (b) to (e) described below.
- (b) Ground the PC as independently as possible. Class 3 grounding should be used (grounding resistance $100\,\Omega$ or less).
- (c) When independent grounding is impossible, use the joint grounding method as shown in the figure below (2).

(2) Joint grounding Good


(3) Joint grounding Not allowed

- (d) Use 2mm²(14 AWG) or thicker grounding wire. Grounding point should be as near as possible to the PC to minimize the distance of grounding cable.
- (e) Should incorrect operation occur due to grounding, disconnect one or both of the LG and FG terminals of base units from the grounding.

10.6.2 Wiring to unit terminals

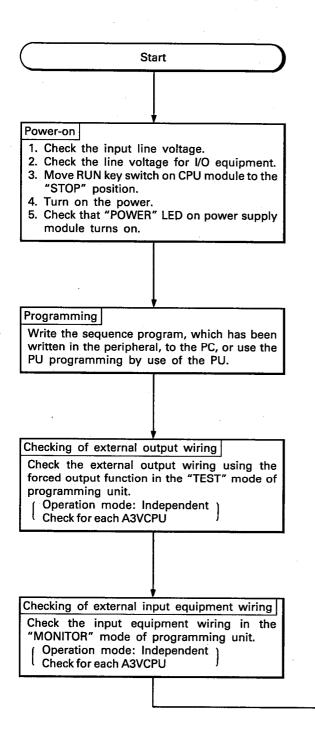
This section explains the wiring of power lines and grounding lines to the main and extension bases.

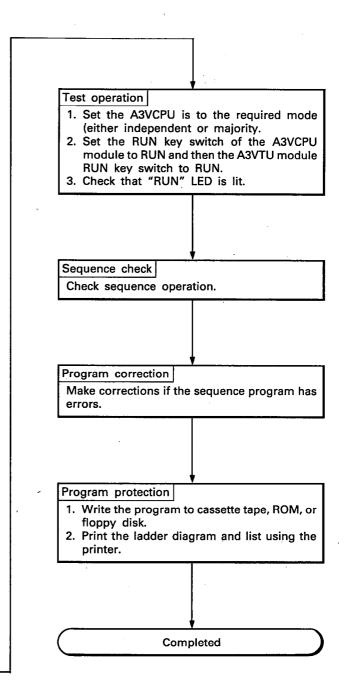
IMPORTANT

- (1) Use the thickest possible (max. 2mm²(14 AWG)) wires for the 110V/220V AC and 24V DC power cables. Be sure to twist these wires starting at the connection terminals. To prevent shortcircuit should any screws loosen, use solderless terminals with insulation sleeves.
- (2) When the LG terminals and FG terminals are connected, be sure to ground the wires. Do not connect the LG terminals and FG terminals to anything other than ground. If LG terminals and FG terminals are connected without grounding the wires, the PC may be susceptible to noise, also since the LG terminals have potential, the operator may get an electric shock when touching metal parts.

는 Grounding

11. TEST OPERATION AND ADJUSTMENTS


11.1 Check Points Before Start of Test Operation


This section explains the points to be checked prior to the test operation of programmable controller.

ltem	Check Point	Description
1	Loading and setting of memory cassette	 Check that the memory cassette is securely inserted into the CPU module. Check that the memory cassette clicks when loaded. Check that the used memory capacity matches the capacity of the memory cassette. Check that the RAM/ROM setting is correct. Check that the RAM or ROM is loaded securely. (When installed in the ROM socket) Check that the memory protect is OFF.
2	Loading of battery (inside the memory cassette)	 (1) Check whether the connector for battery lead wires, which has been disconnected before shipment, is securely inserted in the pin connector on the printed circuit board. (The red lead is positive and the blue lead negative.) (2) Check that the voltage of battery has not reduced. (Nominal value: 3.6V)
3	Connection of extension cable	(1) Check that the connectors of main base and extension base are properly connected with the connectors of extension cable.(2) Check that the connector position of extension base is correct.
4	Extension stage number setting of extension base	 Check that setting has been performed. Check that the same number has been set. Check whether one base has been set at more than one place.
5	Loading of modules	 Check that the types of unit loaded in each slot of main base and extension base is correct. Check that the setting of the point setting switch of dummy unit (AG62) is proper. Check whether the module configuration uses more I/O points more than the I/O points of CPU specifications.
6	Fuse	(1) Check if the fuse has blown or been damaged.
7	Connection of power and I/O cables	 Check the cables connected to each terminal of the terminal block. Check the terminal screws of terminal block for the power supply module and terminal block for I/O module. Check the cable size.

Table 11.1 Check Points

11.2 Test Operation and Adjusting Procedure

12. MAINTENANCE AND INSPECTION

This chapter describes items for daily and periodic maintenance and inspection in order to maintain the programmable controller in the normal and best conditions.

12.1 Daily Inspection

Table 12.1 shown the inspection items which are to be checked daily.

Number		Check Item	Check Point	Judgement	Corrective Action															
1	В	ase unit mounting conditions	Check for loose mounting screws and cover.	The base unit should be securely mounted.	Retighten screws.															
2		ounting conditions f I/O module, etc.	Check if the module is disengaged or the hook is securely engaged.	The hook should be securely engaged and the module should be positively mounted.	Securely engage the hook.															
			Check for loose terminal screws.	Screws should not be loose.	Retighten terminal screws.															
3	Connecting conditions		Check distance between solderless terminals.	Proper clearance should be provided between solderless terminals.	Correct.															
			Check connectors of extension cable.		Retighten connector mounting screws.															
	A CPU module indicator lamps	"POWER" LED	Check that the LED is on.	On. (Off indicates an error.)	See section 13.3.2.															
		dule indicator lamps	dule indicator lamps	dule indicator lamps	dule indicator lamps	dule indicator lamps	dule indicator lamps	dule indicator lamps	dule indicator lamps	dule indicator lamps	dule indicator lamps	dule indicator lamps	dule indicator lamps	dule indicator lamps	lamps	lamps	"RUN" LED	Check that the LED is on during run.	On. (Off or flicker indicates an error.)	See Section 13.3.3 and 13.3.4.
4															Input LED	Check that the LED turns on and off.	On when input is on. Off when input is off. (Display, which is not as mentioned above, indicates an error.)	See Section 13.3.6.		
		Output LED	Check that the LED turns on and off.	On when output is on. Off when output is off. (Dis- play, which is not as mentioned above, indi- cates an error.)	See Section 13.3.5.															

Table 12.1 Daily Inspection

12.2 Periodic Inspection

This section explains the inspection items which are to be checked every six months to one year. If the equipment have been moved or modified or wiring has been changed, also make the inspection.

Number	Check Item		Check Item Checking Method Judgement		Corrective Action						
	Ambient environment	Ambient temperature	Measure with	0 to 55°C	When PC is used inside a						
1	nbie	Ambient humidity	thermometer and hygrometer. Measure	10 to 90%RH	panel, the temperature in the panel is ambient						
	Arenvi	Ambience	corrosive gas.	There should be no corrosive gases.	temperature.						
2	,	ine voltage check	Measure voltage across	85 to 132V	Change supply power.						
		tine voitage check	100/200V AC terminal.	170 to 264V AC	Change transformer tap.						
3	Mounting conditions	Looseness, play	Move the unit.	The module should be mounted securely and positively.	Retighten screws. For CPU, I/O, and power supply modules check all connections.						
	Mo	Ingress of dust or foreign material	Visual check.	There should be no dust or foreign material, in the vicinity of the P.C.	Remove and clean.						
	litions	Loose terminal screws	Retighten.	Connectors should not be loose.	Retighten.						
4	Connecting conditions	cting conc	cting cond	cting con	cting con	ecting con	ecting con	Distances between solderless terminals.	Visual check.	Proper clearance should be provided between solderless terminals.	Correct.
	Conne	Loose connector	Visual check.	Connectors should not be loose.	Retighten connector mounting screws.						
5	Battery		Check battery status by monitoring special auxiliary relays M9006 and M9007. Replace battery if necessary.	Preventive maintenance	If battery capacity reduction is not indicated, change the battery when specified service life is exceeded.						
6		Fuse	Check fuses.	Preventive maintenance	Change the fuse periodically due to rush current.						

Table 12.2 Periodic Inspection

12.3 Replacement of Battery

M9006 or M9007 turns on when the voltage of battery for program backup and power failure compensation reduces.

Even if this special relay turns on, the contents of the program and power failure compensation are not lost immediately.

However, if the ON state is overlooked, the PC contents may be lost.

Special auxiliary relays M9006 and M9007 are switched on to indicate that the battery life has reduced to the time (minimum) indicated in Table 12.3 and it must be replaced if continued power failure RAM and/or data back-up is required.

The following sections gives the battery service life and the battery changing procedure.

12.3.1 Service life of battery

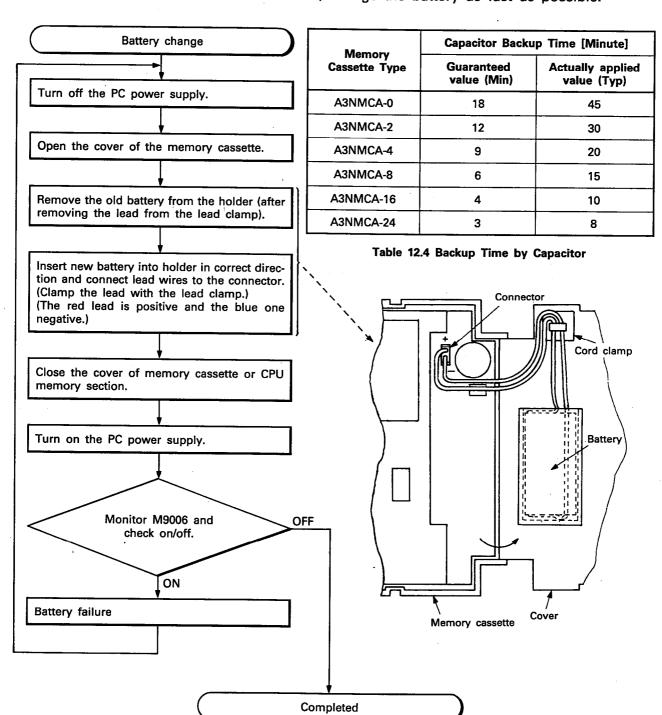
This service life of the battery depends on the capacity of the memory. Table 12.3 shows service life according to memory.

Battery Life	Battery Life (Total power failure time) [Hr]			
Memory Cassette Type	Guaranteed value (Min)	Actually applied value (Typ)	After M9006 & M9007 are set ON. (Min)	
A3NMCA-0	10800	27000	200	
A3NMCA-2	7200	18000	200	
A3NMCA-4	5400	13000	170	
АЗИМСА-8	3600	9000	170	
A3NMCA-16	2150	5400	130	
A3NMCA-24	1950	4900	100	

^{*}The actually applied value indicates a typical value and the guaranteed value indicates the minimum value.

Table 12.3 Battery Life

Preventive maintenance is as described below.

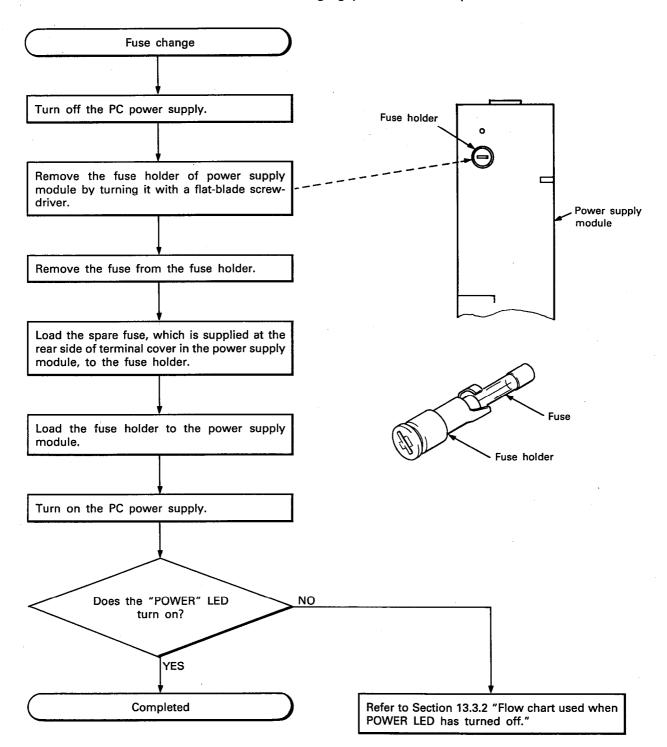

- Even if the total power failure time is less than the guaranteed value in the above table, change the battery after four to five years.
- When the total power failure time has exceeded the guaranteed value in the above table and M9006 has turned on, change the battery.

12.3.2 Battery changing procedure

When the service life of the battery has expired, change the battery using the following procedure.

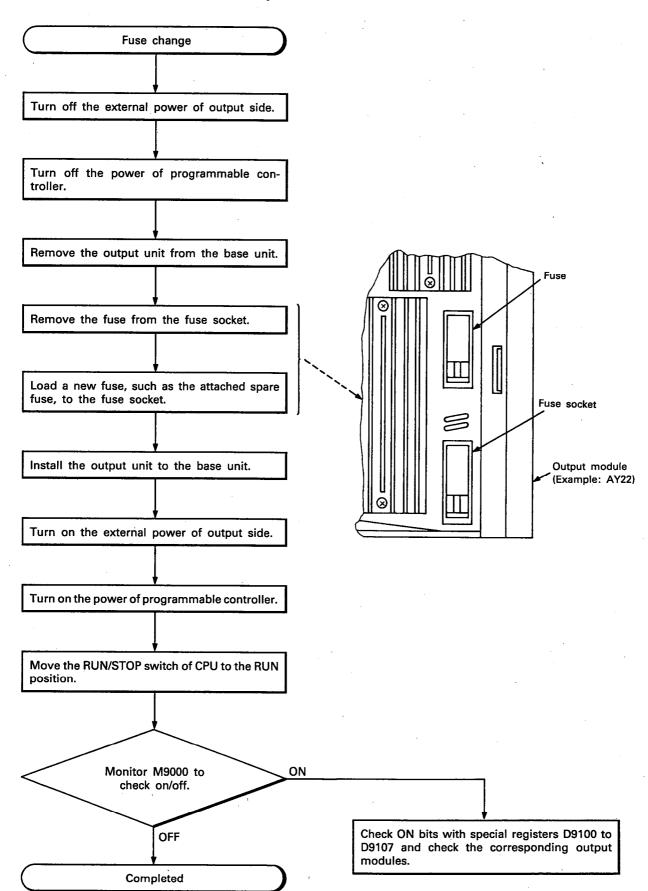
Even if the battery is removed, the memory is backed by a capacitor for some time.

However, if the changing time exceeds the guaranteed value shown in the following table, the contents of the memory may be lost. Therefore, change the battery as fast as possible.



12.4 Replacement of Fuse

Even if the fuse does not blow, its element may be consumed due to rush current. Therefore, it is recommended to change the fuse periodically.


12.4.1 Replacement of fuse for power supply

The fuse changing procedure is explained.

12.4.2 Replacement of fuse for output module

12

13. TROUBLESHOOTING

13.1 Error Code List

When an error is generated when a programmable controller is started or while it is running, the self-diagnosis function will stop the CPU or system. An error message is displayed and the error code (including step number) corresponding to the contents of the error are stored in the register.

Two self-diagnosis functions are provided in the A3VTS system, one for diagnosis of each of the A3VCPUs and the other for diagnosis of the A3VTU. The following section explains the error descriptions provided by the diagnosis concerning the source of the errors, how to restore them, and how to read the error codes (error step).

13.1.1 Errors diagnosed by the A3VCPU

The self-diagnosis function is used in each of the three A3VCPUs for diagnosis of each of the A3VCPUs and A3VTUs.

The following explains the error numbers, error messages, and the means to restore errors.

In the following table, the numbers appearing in the far right column reflect the precedence a particular error has over other errors in being displayed, with those of the smaller numbers having the higher priority. If two errors of the same precedence occur, the one being generated earlier is given precedence.

Error Message (Check timing)	Content of Special Register D9008 (BIN value)	CPU States	Error and Cause	Corrective Action	No.
"A3VTU ERROR" (Checked continuously)	5	Stop	Data communication cannot be conducted with the A3VTU.	 When generated while installing an A3VCPU during system operation, reset the A3VCPU. Check to see if the A3VTU has been properly installed. Since it is possible that the A3VTU is locked up, try resetting it. Since continued trouble indicates a hardware malfunction in the A3VTU or A3VCPU, consult Mitsubishi representative. 	2
"BATTERY ERROR" (Checked continuously)	70	Run	(1) The battery voltage has reduced to less than the specified value.(2) The battery lead is disconnected.		5
"CAN'T EXECUTE (I)" (Checked at the execution of IRET instruction)	15	Stop	The IRET instruction is present in the main routine program. (When present after the FEND instruction an error is not generated.)	Read the step containing the error using a peripheral device and remove the IRET instruction.	3

Table 13.1 Error Code List (Continue)

Error Message (Check timing)	Content of Special Register D9008 (BIN value)	CPU States	Error and Cause	Corrective Action	No.
"CAN'T EXECUTE (P)" (Checked at CJ, SCJ, JMP, CALLP execution, STOP to RUN, PAUSE to RUN)	13	Stop	 There is no jump destination or plural destinations specified by the CJ, SCJ, CALL, CALLP or JMP instruction. There is a CHG instruction and no setting of subprogram. Although there is no CALL instruction, the RET instruction exists in the program and has been executed. The CJ, SCJ, CALL, CALLP or JMP instruction has been executed with its jump destination located below the END instruction. 	(1) Read the error step by use of peripheral equipment and correct the program at that step. (Make correction such as the insertion of jump destination or the changing of jump destinations to one.)	α
"CASSETTE ERROR" (Checked at power on, reset)	16	Stop	The memory cassette is not loaded.	Load the memory cassette and reset.	3
"CHK FORMAT ERR." (Checked at STOP to RUN, PAUSE to RUN)	14	Stop	 An instruction other than LDX, LDIX, ANDX, and ANIX, (including NOP) has been included in the CHK instruction circuit block. Multiple CHK instructions are present. The number of connect points within the CHK instruction circuit block exceeds 150. The X device No. within the CHK instruction circuit block exceeds X7FE. The CHK instruction circuit block exceeds X7FE. The CHK instruction circuit block is not preceded by a CHK DT D2 instruction and the connect point device (No.) prior to the CHK instruction do not match. Pointer P254 is not appended to the top of the CHK DT D2 	(1) Check to see if (1) through (7) of the column on the left applies to the CHK instruction circuit block program. Use peripheral device to correct any mistakes, and begin operation again.	3
"DPRAM ERROR" (Checked at power on, reset)	6	Stop	Can not access the dual port RAM.	 When generated while installing an A3VCPU during system operation, reset the A3VCPU. Check to see if the A3VTU has been properly installed. Since it is possible that the A3VTU is locked up, try resetting it. Since continued trouble indicates a hardware malfunction in the A3VTU or A3VCPU, consult Mitsubishi representative. 	2

Table 13.1 Error Code List (Continue)

Error Message (Check timing)	Content of Special Register D9008 (BIN value)	CPU States	Error and Cause	Corrective Action	No.
"END NOT EXECUTE" (Checked at the execution of END instruction)	24	Stop	 (1) When the END instruction is executed, another instruction code has been read due to noise, etc. (2) The END instruction has changed to another instruction code for some reason. 	Perform reset and run. If the same error is displayed again, it is the CPU hardware error. Therefore, consult Mitsubishi representative.	3
"INSTRCT. CODE ERR." (Checked during instruction execution)	10	Stop	Instruction code, which cannot be decoded by CPU, is included in the program. (1) ROM including invalid instruction code, has been loaded. (2) Memory contents have been corrected.	(1) Read the error step by use of peripheral equipment and correct the program at that step.(2) In the case of ROM, rewrite the contents of the ROM or change the ROM.	3
"MISSING END INS." (Checked at M9056 or M9057 ON, STOP to RUN, PAUSE to RUN)	12	Stop	 (1) There is no END (FEND) instruction in the program. (2) When subprogram has been set in parameters, there is no END instruction in the subprogram. 	Write END at the end of the program/subprogram.	3
"OPE. CIRCUIT ERR." (Checked at power on, reset)	21	Stop	The operation circuit, which performs the sequence processing in the CPU, does not operate properly.	Since this is CPU hardware error, consult Mitsubishi, representative.	3
"OPERATION ERROR" (Checked at instruction execution)	50	Run (Stop)	 The result of BCD conversion has exceeded the specified range (9999 or 99999999). Setting has been performed exceeding the specified device range and operation cannot be performed. File registers are used in the program without performing the capacity setting of file registers. 	Read the error step by use of peripheral equipment, and check and correct the program at that step. (Check device setting range, BCD conversion value, etc.)	4
"PARAMETER ERROR" (Checked at power on, reset, STOP to RUN, PAUSE to RUN)	11	Stop	 Capacity larger than the memory capacity of CPU has been set and then write to CPU has been performed. The contents of parameters of CPU memory have changed due to noise or the improper loading of memory. 	 (1) Check the memory capacity of CPU with the memory capacity set by peripheral equipment and re-set incorrect portion by the peripheral equipment. (2) Check the loading of CPU memory and load it correctly. (3) Read the parameter contents of CPU memory, check and correct the contents, and write them to the memory again. 	3
"RAN ERROR" (Checked at power on, reset)	20	Stop	The CPU has checked if write and read operations can be performed properly to the data memory area of CPU, and as a result, either or both has not been performed.	Since this is CPU hardware error, consult Mitsubishi, representative.	

Table 13.1 Error Code List (Continue)

Error Message (Check timing)	Content of Special Register D9008 (BIN value)	CPU States	Error and Cause	Corrective Action	No.
"SP. UNIT ERROR" (Checked at the execution of FROM and TO instructions)	46	Stop (Run)	Access (execution of FROM to TO instruction) has been made to a location where there is no special function module.	Read the error step by use of peripheral equipment, and check and correct the content of FROM or TO instruction at that step by use of peripheral equipment.	4
"WDT ERROR" (Checked continuously)	25	Stop	The END instruction cannot be executed with the program looped.		1
"WDT ERROR" (Checked at the execution of END instruction)	22	Stop	Scan time exceeds watch dog error monitor time. (1) Scan time of user program has become excessive. (2) Scan time has lengthened due to instantaneous power failure which occurred during scan.	 Calculate and check the scan time of user program and reduce the scan time by use of CJ instruction, etc. Monitor the content of special register D9005 by use of peripheral equipment. When the content is other than 0, line voltage is insufficient. Therefore, check the power and eliminate the voltage fluctuation. 	3

Table 13.1 Error Code List

POINT

- (1) When an "A3VTU ERROR" or "DPRAM ERROR" is generated, an error code is entered into special register D9008 of the A3VCPU generating the error. However, there are occasions when the error numbers and error codes are not set for special relays M9096 to M9098, special registers D9096 to D9098 of each A3VCPU.
- (2) In the table, when Run (Stop) is indicated at the CPU Status, whether the CPU should Run or Stop can be selected with a parameter.

13.1.2 Errors diagnosed by the A3VTU

There is self-diagnosis that is conducted by the A3VTU on itself and that which is based on error messages from the dual power supply modules. Self-diagnosis is conducted on the three A3VCPUs and A3VTUs.

The following explains the error numbers, error messages, and the means to restore errors.

In the following table, the numbers appearing in the far right column reflect the precedence a particular error has over other errors in being displayed, with those of the smaller numbers having the higher priority. If two errors of the same precedence occur, the one being generated earlier is given precedence.

Error Message (Check timing)	Content of Special Register D9008 (BIN value)	CPU States	Error and Cause	Corrective Action	No			
"CIRCUIT ERROR" (Checked at power on, reset)	101	Stop	Faulty majority circuit.	There is a hardware malfunction in the A3VTU. Consult Mitsubishi representative.	1 .			
"CONTROL -BUS ERR." (Checked at the execution of FROM and TO instructions)	40	Stop	FROM and TO instructions cannot be executed. (1) Malfunction in control bus to a special function module.	A hardware malfunction exists in either the special function module, CPU module, or base unit. Isolate the malfunction by replacing the units. Consult Mitsubishi representative.				
"ERROR CPU A[[]]" (Checked continuously)	130	Operation continued if switching	 Parameters of each of the A3VCPUs do not match. Synchronous communication cannot be conducted between the A3VTU and A3VCPU due to one of the following 	 (1) Check the parameters and programs of each A3VCPU and correct any mistakes. After correcting reset the A3VTU. (2) Ensure that the A3VCPU is 				
"ERROR CPU B[[]]" (Checked continuously)	131	to other CPUs possible. Operation stopped if switching to other CPUs not possible.	CPUs possible. Operation stopped if switching to other CPUs not	CPUs possible. Operation stopped if switching to other CPUs not	CPUs possible. Operation stopped if switching	reasons. • A3VCPU is not installed. • A3VCPU has been reset. • A3VCPU is locked-up. • A3VCPU generated an error. • Programs are different.	properly installed. (3) Check if the error message LEDs on the front panel of the A3VCPU are displayed, and if so, remedy the errors according to the messages. (4) Reset the A3VCPU.	
"ERROR CPU C[[[]]" (Checked continuously)	132					(5) A possible hardware malfunction exists in either the A3VTU, base unit, or A3VCPU if none of the above measures restores normal operation. If so, replace the faulty module.		
"FUSE BREAK OFF" (Checked at the execution of END instruction)	32	Run (Stop)	There is an output module of which fuse has blown.	 Check the fuse blow indicator LED of output module and change the fuse of module of which LED is on. The check of fuse blow module can also be made by the peripheral equipment. Among special registers D9100 to D9107, the bit corresponding to the module of verify error is "1". Therefore, make checks by monitoring the registers. 				

Table 13.2 Error Code List (Continue)

Error Message (Check timing)	Content of Special Register D9008 (BIN value)	CPU States	Error and Cause	Corrective Action	No.
"HEAT ERROR" (Checked continuously)	170	Run	Either one or both of the dual power supply modules are over- heating.	 Check to see if the operating ambient temperature is not excessively high, and that the amount of space available around the programmable controller is not less than minimum requirements. If no problem is found in (1), a hardware malfunction exists in the power supply module. Consult Mitsubishi representative. 	7
"I/O INT. ERROR" (Checked at the occurrence of interruption)	43	Stop	An interrupt was generated even though an interrupt module is not installed.	A hardware malfunction exists in one of the modules. Isolate the malfunction by replacing the units. Consult Mitsubishi representative.	1
"LINK F ERROR" (Checked continuously)	180	Run	An error has been generated in the F-LINK loop circuit. (Power may be OFF, or the link module or cable may be faulty.) Only the A3VTU of the master station is detected.	 Check the power supply module and, if it is OFF, turn to ON, and then press the reset button on the link module. Check to see if there is a faulty cable or connector. Repair if 	4
"LINK R ERROR" (Checked continuously)	181	Run	An error has been generated in the R-LINK loop circuit. (Power may be OFF, or the link module or cable may be faulty.) Only the A3VTU of the master station is detected.	necessary. (3) If (1) and (2) reveal normal, a hardware malfunction exists in the power supply module. Consult Mitsubishi representative.	4
"LINK PARA. ERROR" (Checked at power on, reset, STOP to RUN, PAUSE to RUN)	47	Run	 The contents, which have been written to the parameter area of link by setting the link range in the parameter setting of A6GPP, A6PHP or A6HGP, are different from the link parameter contents for some reason. The setting of the total number of slave stations is 0. 	 (1) Write parameters again and make check. (2) When the error is displayed again, it is the hardware error. Therefore, consult Mitsubishi representative. 	6
"LINK UNIT ERROR" (Checked at power on, reset, STOP to RUN, PAUSE to RUN)	42	Stop	AJ71R22 or AJ71P22 is loaded in the master station.	Remove the AJ71R22 or PJ71P22 from the master station. After correction, perform reset and start at the initial operation.	1
"POWER ERROR" (Checked continuously)	150	Continued operation possible if other power supply module operating normally. If not, operation stops.	One of the two power supply modules malfunctioned. (Power OFF or hardware malfunction)	 Check that wiring to the power supply modules and that the power is ON. If (1) is normal, a hardware malfunction exists in the power supply module. Consult Mitsubishi representative. 	5

Table 13.2 Error Code List (Continue)

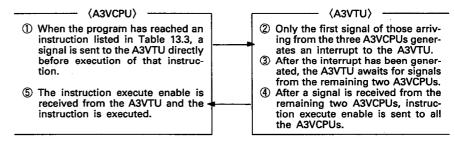
			<u> </u>	·	
Error Message (Check timing)	Content of Special Register D9008 (BIN value)	CPU States	Error and Cause	Corrective Action	No.
"RAM ERROR []" [[]—DPRAM A [2]—DPRAM B [3]—DPRAM C [4]—Internal RAM [5]—Addressed RAM (Checked at power on, reset)		Stop	 (1) Data read/write cannot be conducted between the A3VTU and A3VCPU 2-port RAM. (2) Data read/write cannot be conducted between the A3VTU and internal RAM. 	A hardware malfunction exists. Consult Mitsubishi representative.	1
"ROM ERROR" (Checked at power on, reset)	· · · · ·	Stop	OS-ROM malfunction.	A hardware malfunction exists in the A3VTU. Consult Mitsubishi representative.	1
"SOURC CPU DOWN" (Checked at power on, reset, STOP to RUN, PAUSE to RUN)	102	Stop	At the point of power application, when changing from STOP/PAUSE to RUN, or during CPU restore processing, all A3VCPUs originating transmission stop during data memory transmission.	Reset the A3VTU. If operation is not restored to normal, a hardware malfunction exists in the A3VCPU. Consult Mitsubishi representative.	1
"SP. UNIT DOWN" (Checked at the execution of FROM and TO instructions)	41	Stop	When the FROM or TO instruction is executed, access has been made to the special function module but the answer is not given. (1) The accessed special function module is defective.	Since this is the accessed special function unit error, consult Mitsubishi representative.	1
"SP.UNIT LAY.ERR." (Checked at power on, reset, STOP to RUN, PAUSE to RUN)	44	Stop	 Three or more computer link modules are loaded with respect to A3VTS one system. Two or more units of AJ71P21 or AJ71R21 are loaded. Two or more interrupt modules are loaded. In the parameter setting of A6GPP, while I/O module is actually loaded, special function module has been set in the I/O assignment, and vice versa. Malfunction in special function unit used in access execution. 	 Remove the AJ71C24(S3) as it can no longer be used. For the AD51, use only one or two units. Reduce the AJ71P21 or AJ71R21 to one or less. Reduce the interrupt module to one. Re-set the I/O assignment of parameter setting by use of A6GPP according to the actually loaded special function module. 	
"STATION No. "IM * IM"" Displays set station numbers of the right and left link modules in hexadecimal. (Checked at power on, reset)	190	Stop	The station numbers of the two link modules AJ71VP21/R21s are incorrect.	Reset the station numbers to the same value. Reset the A3VTU.	1

Table 13.2 Error Code List (Continue)

Error Message (Check timing)	Content of Special Register D9008 (BIN value)	CPU States	Error and Cause	Corrective Action	No.
"STATION No. ERR." (Checked at starting up of link operation, reset of the link module)	191	Run	The station number of a link module AJ71VP21/R21 that has been newly installed during system operation differs from the station number of the other AJ71VP21/R21.	Reset the station number, and press the RESET button located on the front panel of the link module.	2
"TIME OVER CPU A"	110	Operation continued if switching	Timing instructions executed by the A3VTU during majority operation or single-module operation	(1) Check the program between the A3VCPUs and correct mistaken portions. After finishing,	3
"TIME OVER CPU B"	111	to other CPUs possible, Operation stopped if switching	cannot be executed within the period allocated when a mistake in a program of a A3VCPU is present after one A3VCPU (two	reset the A3VTU. (2) If (1) is normal, a hardware malfunction exists in the A3VCPU. Consult Mitsubishi	
"TIME OVER CPU C"	112	switching to other CPUs not possible.	during majority operation) has executed operation, or when a hardware malfunction exists in a A3VCPU.	representative.	
"UNIT VERIFY ERR." (Checked at the execution of END instruction)	31	Stop (Run)	I/O module data is different from that at power-on. (1) The I/O module (including the special function module) is incorrectly disengaged or has been removed, or a different module has been loaded.	(1) Among special registers D9116 to D9123, the bit corresponding to the module verify error is "1". Therefore, monitor the registers by use of peripheral equipment and check for the module with "1". (2) When the fault has been corrected reset CPU.	2
"VERIFY ERROR" (Checked when two units are operating)	140	Run	 Generated when an inconsistency is found in output (Y) after an output verification of a standby CPU and an operating CPU when both modules are operating. There is a program error or a hardware malfunction in the A3VCPU. 	 Check the program between the two CPUs and correct mistaken portions. After finishing, reset the A3VTU. If (1) is normal, a hardware malfunction exists in the A3VCPU. Consult Mitsubishi representative. 	3
"VOTE ERROR CPU A" (Checked during majority operation)	120	Operation continued if	Generated when, during majority operation, a program differs with that of another CPU or a hardware malfunction in the A3VCPU results in the CPU [[]] data being deter-	 Check the program between the A3VCPUs and correct mis- taken portions. After finishing, reset the A3VTU. If (1) is normal, a hardware 	3
"VOTE ERROR CPU B" (Checked during majority operation)	121	switching to other CPUs possible. Operation stopped if switching	mined as a majority error.	malfunction exists in the A3VCPU. Consult Mitsubishi representative.	
"VOTE ERROR CPU C" (Checked during majority operation)	122	to other CPUs not possible.	·		

Table 13.2 Error Code List (Continue)

Error Message (Check timing)	Content of Special Register D9008 (BIN value)	CPU States	Error and Cause	Corrective Action	No.
"WDT ERROR" (Check continuously)	25	Stop	Infinite-loop execution on lock-up due to frequent occurrence of momentary power failure within a short period (approx. 200 ms) or a hardware malfunction in A3VTU.	(1) Check the contents of special register D9005 and reset the A3VTU. If the contents of D9005 is "0", a hardware malfunction exists in the A3VTU. Consult Mitsubishi representative.	1


Table 13.2 Error Code List

REMARKS

- In the table, when Run (Stop) is indicated at the CPU Status, whether the CPU should Run or Stop can be selected with a parameter of each A3VCPU.
 This enables system operation and stop to be determined by the majority of the parameters of three A3VCPUs.
 - Stopping A3VTU operation means stopping system operation.
- Detailed information concerning the contents of error messages are shown below.

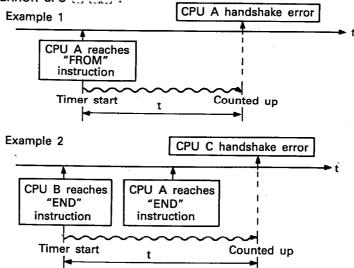
(1) [TIME OVER CPU[]]

(a) The A3VTU provides timing so that A3VCPUs (two during single-module operation, three during majority operation) can synchronously execute the commands listed in Table 13.3. The following gives the procedure.

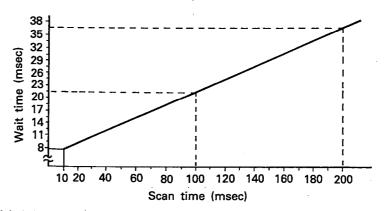
END	DFROP	DTOP	FEND
FROM	то	SEG	CHG
FROMP	ТОР	PR	STOP
DFRO	DTO	PRC	SUB
LRDP	LWTP		

Table. 13.3 Instructions whose Execution is Based on A3VTU Timing

(b) Single-module operation


When the next instruction to be executed by the operating CPU is one of the above instructions and the standby CPU has yet to reach that instruction, or if the reverse is true, the standby CPU generates the error "TIME OVER CPU []" and operation continues with the operating CPU.

(c) Majority operation


The error content differs depending on whether one of the above instructions is to be executed by one or two CPUs.

If the program of one CPU reaches that point of the program and the other two CPUs have not reached it within a determined time, the CPU that reached the instruction generates a handshake error, "ERROR CPU []] []]." If two CPUs reached that point of the program and the third has not, the CPU that did not reach the instruction generates a time check error, "TIME OVER CPU []]" and is dropped from operation. If two CPUs reach a certain instruction and the third CPU reaches a different timing instruction, the third CPU generates a handshake error, "ERROR CPU []] [][]]".

(d) The A3VTU checks whether or not timing of instruction listed in Table 13.3 falls within determined limits.

The value of the time limits varies according to scan time as shown in the following figure.

(e) A3VTU synchronization does not take into account the CPU in the error or wait status.

(2) Majority decision error

(a) The A3VTU verifies the results of majority operations with operation results of each A3VCPU to check that they are the same. The majority decision error "VOTE ERROR CPU

"is generated with the A3VCPU which provides different operation result and the A3VTU forces operation of that A3VCPU to stop.

(b) The majority check verifies only the output (Y) data. The following figure shows the contents of the output (Y) Majority check.

CPU A	CPU B	CPU C	Majority Decision Results	Check Results
1	1	1	1	No errors
1	1	0	1	Error in CPU C
1	0	1	1	Error in CPU B
1	0	0	0	Error in CPU A
0	1	1	1	Error in CPU A
0	1	0	0	Error in CPU B
0	0	1	0	Error in CPU C
0	0	0	0	No errors

- (c) The following could be sources of a "Majority Decision Error": error in programming, malfunctioning A3VCPU, faulty input/output due to noise, etc. When the "Majority Decision Error" is generated, reset the A3VCPU one time and check if operation is restored to normal.
- (3) CPU handshake error, "ERROR CPU[]] [[][]"

Handshaking is normally monitored between the A3VTU and each A3VCPU, and an error is generated when handshaking fails to occur normally.

If a malfunction occurs in the A3VTU, the A3VCPU detects the malfunction and displays "A3VTU ERROR".

When one of the following malfunctions occurs in the A3VCPU, the A3VTU detects it and displays the message "A3VTU ERROR".

- (a) During majority operation, when power is applied, when changing from STOP/PAUSE to RUN, or during CPU restore processing, the parameters of each CPU are checked to see if they agree.
 - When power is applied or when changing from STOP/PAUSE to RUN
 - If the values of two of the CPUs agree, an error "ERROR CPU[]]

 [[]] is generated for the CPU with the value not agreeing.
 - If none of the three CPUs agrees, an error "ERROR CPU[[] [[]]" is generated for CPU B and CPU C.
 - · During CPU restore processing
 - The parameters of all CPUs in either RUN/PAUSE/STOP status are checked to see if they agree with the parameters of the CPU being restored. If they are not in agreement, an error "ERROR CPU[]]
 "" is generated.
- (b) During processing of an instruction listed in Table 13.3, a check is conducted by the A3VTU to determine whether or not the instruction was reached by each of the CPUs within a set time limit (See 2-(1)-(d).)
 - Majority operation
 - If two of the CPUs reached the same instruction and the third CPU reaches a different instruction listed in Table 13.3, an error "ERROR CPU!!" [[]]" is generated for the third CPU.
 - If each of the three CPUs reach different instructions, then an error "ERROR CPU[] [[]]" is generated for CPU B and CPU C.
 - Single-module operation
 - If both of the CPUs reach different instructions, then error "ERROR CPU! [[]]" is generated for the standby CPU.

(4) Dual power supply module error "POWER ERROR".

If a dual power supply module detects a malfunction during self-diagnosis, power is switched immediately to the other power supply module, a fault number is output to the A3VTU, and the "POWER" LED of the malfunctioning module is lit.

The A3VTU is provided with logical sum of the malfunction signals from all dual power modules installed in the base unit or extension base unit. Therefore, determine the malfunctioning power supply module by checking the "POWER" LED of each unit.

(5) Dual power supply module overheat error "HEAT ERROR" If a dual power supply module detects an overheating during self-diagnosis, the "HEAT" LED of the overheating module is lit.

The A3VTU is provided with logical sum of the overheat from all dual power modules installed in the base unit or extension base unit. Therefore, determine the malfunctioning power supply module by checking the "HEAT" LED of each unit.

Since the overheat error is an alarm and not a malfunction, it is not necessary that an immediate replacement of a power supply module be made. However, if the reasons for the overheating condition are not remedied, the module may malfunction. It is therefore important that a fan be used to lower quickly the ambient temperature and that the cause of overheating be found and remedied.

3. How to read error codes

When an error has been generated, the error code can be read with the use of peripheral device.

When an error has been detected by an A3VCPU, connect a peripheral device to the malfunctioning A3VCPU and read the error code (error step) by putting the peripheral device in the test mode.

When an error has been detected by an A3VTU, the connect a peripheral device to the an A3VCPU and read the error code by monitoring the special registers D9096 to D9099.

13.2 Basic Troubleshooting

System reliability depends not only on reliable equipment but also on short down-fines in the event of faults.

Since the A3VTS system provides multiple power supply and CPU modules, operation can continue without stopping even when one module malfunctions.

However, it is important that modules be replaced or troubleshooting be conducted to determine the cause of failure in order to prevent the system from stopping in case of recurrence of the problem.

This section describes the basic points of troubleshooting.

(1) Visual checks

Check the following points.

- 1) Machine motions (in stop and operating statuses)
- 2) On or off of power
- 3) Status of I/O equipment
- 4) Conditions of wiring (I/O wires, cables)
- 5) Display states of various indicators (such as POWER LED, RUN LED, and I/O LED)
- 6) States of various setting switches (such as extension base)

After checking 1) to 6), connect the peripheral equipment and check the running status of PC and the contents of program.

(2) Trouble check

Since the system can continue normal operation even with a power supply module or CPU malfunctioning, it is sometimes difficult to determine the cause of the malfunction. While some checks can be conducted without stopping system operation, there are some checks that can be made only with the operation stopped. If system operation cannot be immediately stopped, wait until it can be stopped (as soon as possible) and then conduct the following operations to determine how the malfunction changes.

- 1) Set the RUN key switch to the "STOP" position. (A3VTU, A3VCPU)
- 2) Perform reset by the RESET key switch. (A3VTU, A3VCPU)
- 3) Turn the power on and off.

(3) Narrow down the possible causes of teh trouble

In order to determine the cause of a malfunction as soon as possible, it is necessary to narrow the range of possibilities in which the malfunction may have occurred.

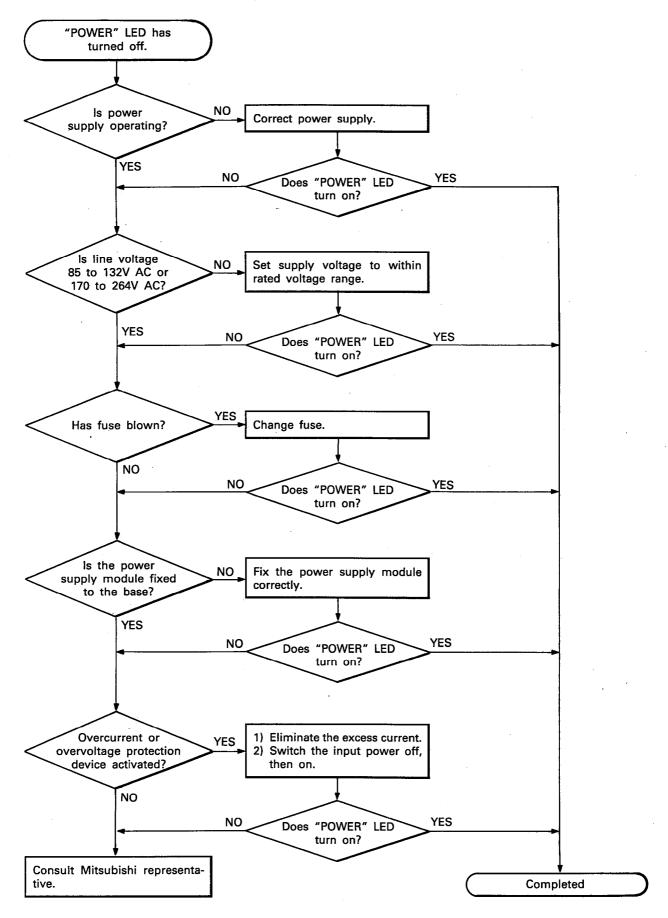
Assume the cause of malfunction from the following through steps (1) and (2).

- 1) Inside or outside of PC.
- 2) I/O module or another module.
- 3) Sequence program.

13.3 Troubleshooting

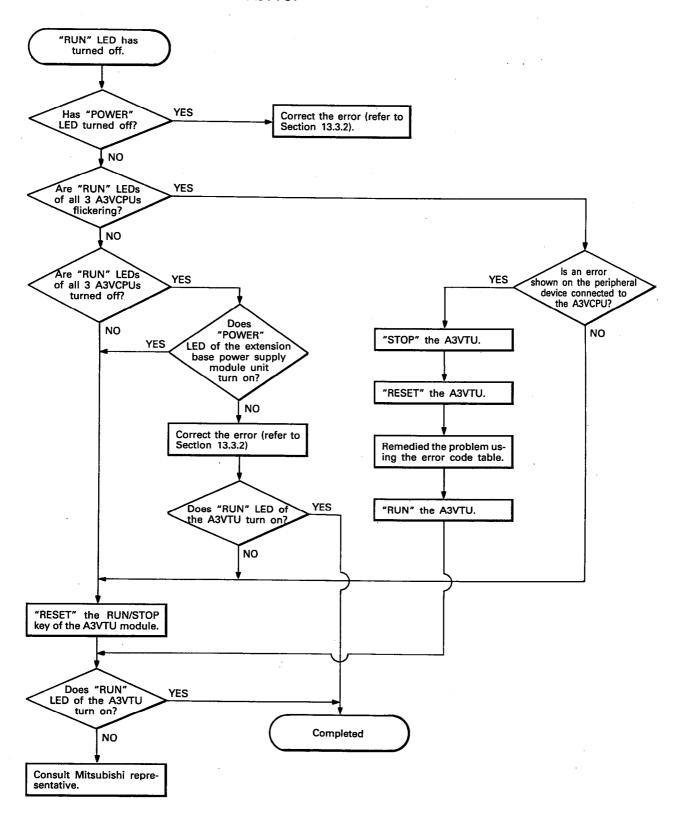
The multiplex configuration of the A3VTS system enables the system to continue operations even when a malfunction has occurred. However, if the cause of malfunction is left unremedied, it is possible that operation will stop with the next appearance of the next malfunction.

When a malfunction occurs, follow the troubleshooting flowchart provided below to determine the cause of the problem and remedy the same.

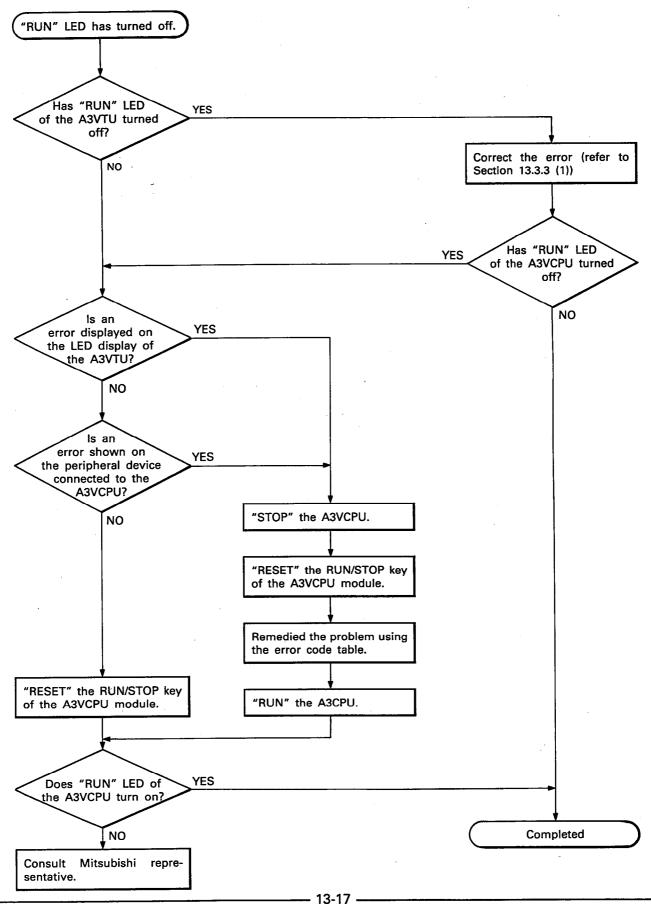

13.3.1 Troubleshooting flow charts

Details for fault finding may be found as follows.

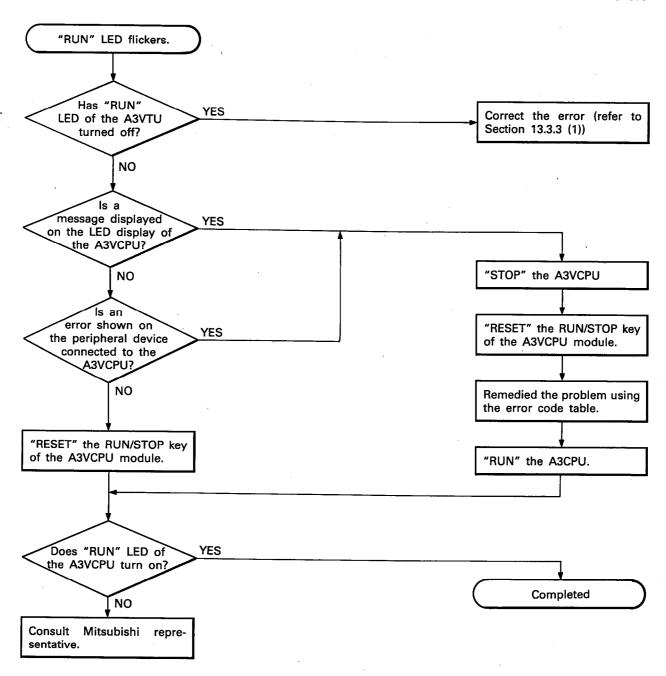
Occurrence of error		
Is "POWER" LED off?	ightharpoons	To Section 13.3.2 "Flow chart used when "POWER" LED has turned off"
·		
Is "RUN" LED off?	ightharpoons	To Section 13.3.3 "Flow chart used when "RUN" LED has turned off"
Is "RUN" LED of the A3VTU or A3VCPU flickering?	ightharpoons	To Section 13.3.4 "Flow chart used when "RUN" LED flickers"
Output module does not operate properly.		To Section 13.3.5 "Flow chart used when output load of output module does not turn on"
Input signal cannot be fetched.	ightharpoons	To Section 13.3.6 "Flow chart used when input cannot be fetched from the input module"
Special function module does not operate properly.	ightharpoons	To Section 13.3.7 "Flow chart used when special function module does not operate properly"
Program cannot be written.	\Rightarrow	To Section 13.3.8 "Flow chart used when program cannot be written"

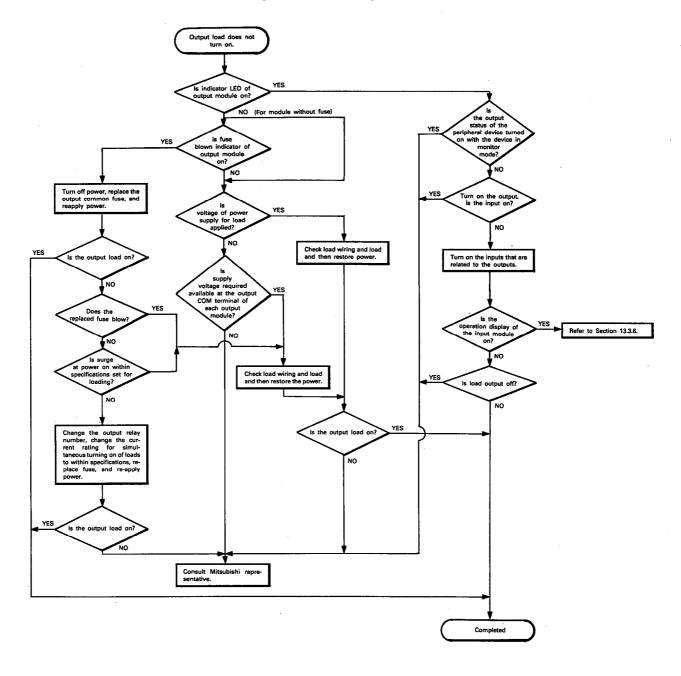

13.3.2 Flow chart used when "POWER" LED has turned off

13.3.3 Flow chart used when "RUN" LED has turned off

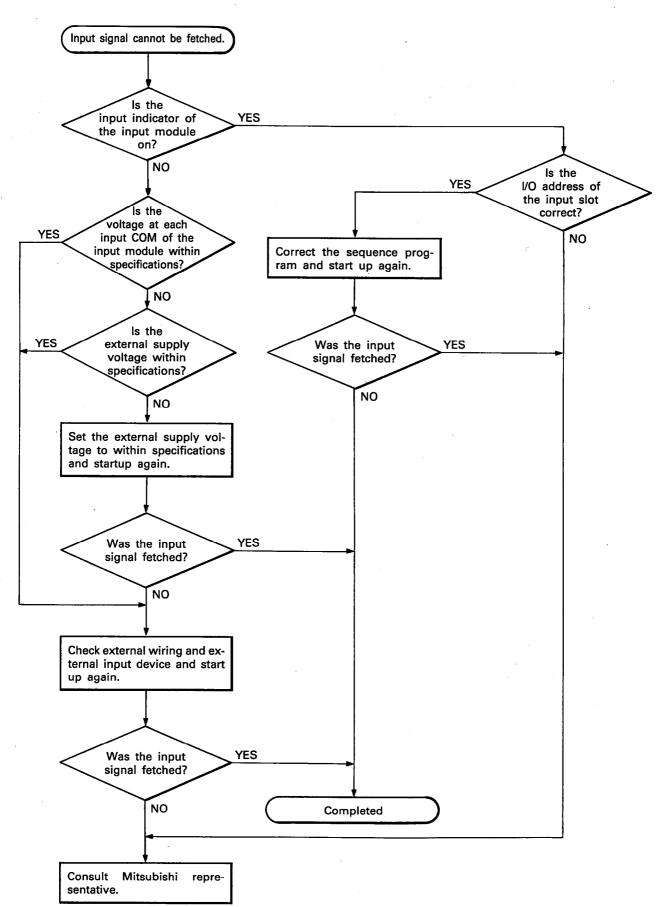

"RUN" LEDs are provided on the A3VTU and A3VCPU. Flow charts are provided for both.

(1) Flow chart used when "RUN" LED has turned off on the A3VTU.

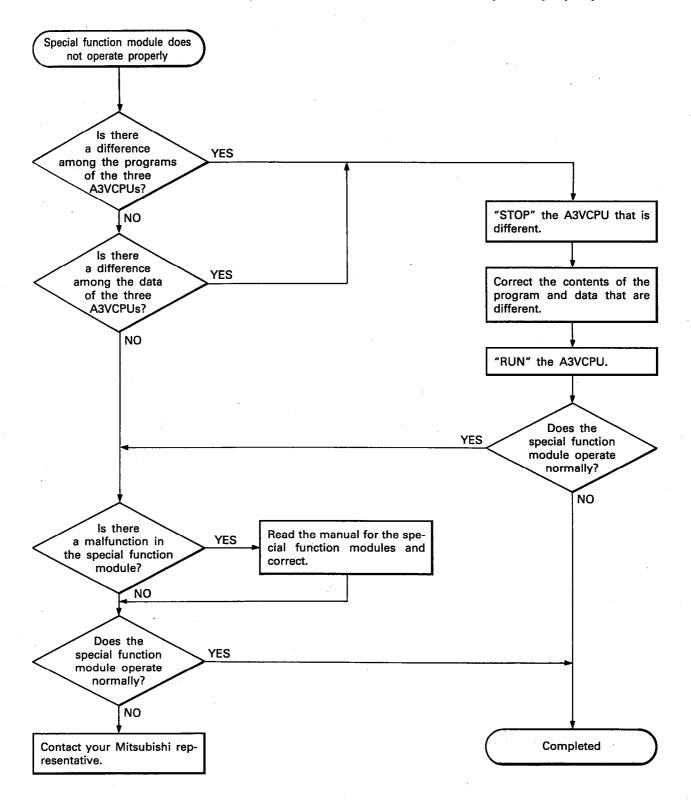

(2) Flow chart used when "RUN" LED has turned off on the A3VCPU.


13.3.4 Flow chart used when "RUN" LED flickers

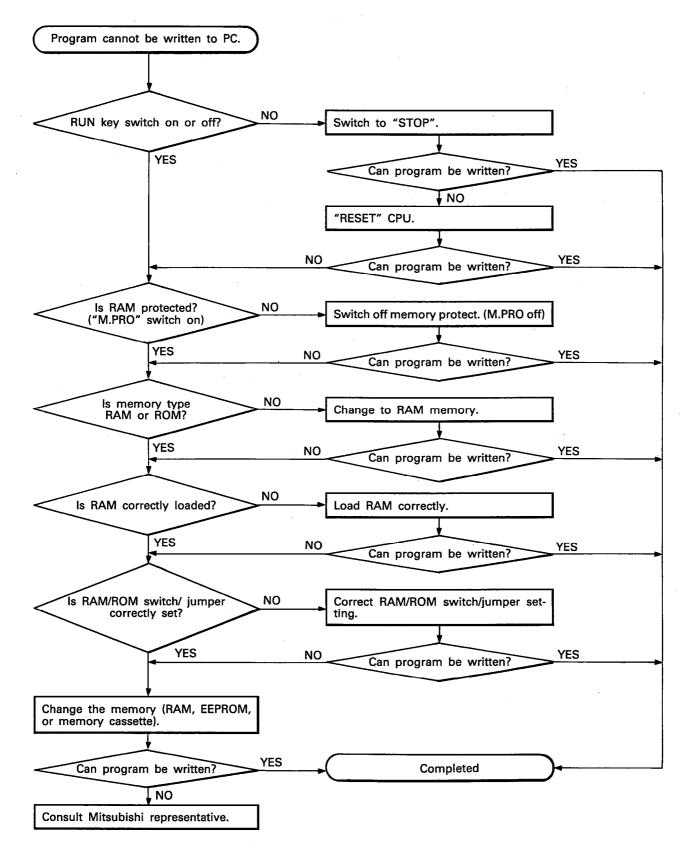
(1) Flow chart used when "RUN" LED of the A3VCPU flickers



13.3.5 Flow chart used when output load of output module does not turn on



13.3.6 Flow chart used when input cannot be fetched from the input module



13.3.7 Flow chart used when special function module does not operate properly

13.3.8 Malfunction in program down load to PC

13

13.4 I/O Connection Troubleshooting

13.4.1 Input wiring troubleshooting

	Condition	Cause	Corrective Action
		Leakage current of input switch (such as drive by non-contact switch).	Connect an appropriate register which will make the voltage across terminals of input module lower than OFF voltage value.
Example 1	Input signal does not turn off.	AC input Input module Power supply	AC input Input module
_		,	It is recommended to use 0.1 to 0.47 μ F $+$ 47 to 120 Ω (1/2W) for the constant of CR.
		Drive by a limit switch with neon lamp.	Same as Example 1. Or make up another independent display circuit.
Example 2	Input signal does not turn off.	AC input Input module	
		Power supply	
		 Leakage current due to line capacity of wiring cable. Line capacity C of twisted pair wire is approx. 100 PF/m(39.37inch). 	 Same as Example 1. However, leakage current is not generated when power supply is located on the input equipment side as shown below.
Example 3	Input signal does not turn off.	AC input Input module Power supply	AC input Input module
		Drive by switch with LED indicator.	Connect a resistor which will make the voltage across input unit terminal and-common higher than OFF voltage, as shown below.
Example 4	Input signal does not turn off.	DC input (sink) Leakage current module	DC input (sink)
,			*The calculation example of connected resistor value is shown in the following page.

Table 13.3 Input Circuit Troubles and Corrective Actions (Continue)

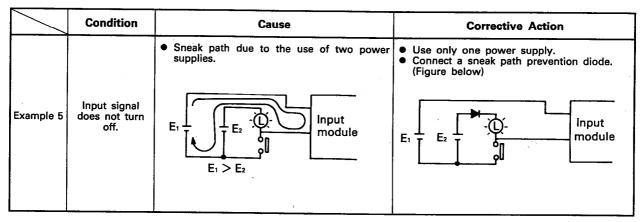
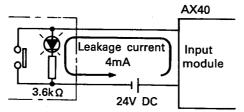
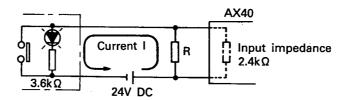



Table 13.3 Input Circuit Troubles and Corrective Actions

Calculation example for Example 4



The switch with LED indicator is connected to AX40 and there is 4mA leakage current.

 The voltage V_™ across terminal and common is obtained by the following expression:

 $V_{\text{\tiny TB}} = 4 \text{ [mA]} \times 2.4 \text{ [k}\Omega] = 9.6 \text{ [V]}$ (The voltage drop of LED is ignored.)

Since this voltage does not satisfy the OFF voltage of 6 [V] or lower, the input signal does not turn off. Therefor, connect a resistor as show below.

Calculate the resistor value, R, as shown below:
 For an input voltage < 6V, current I must be:

$$(24-6 [V]) \div 3.6 [k\Omega] = 5mA$$

Resistor R must be selected to give a current I > 5mA.

Hence, for resistor, R

6 [V]
$$\div$$
 R > 5 - 2.5 [mA]
6 [V] \div 2.5 [mA] > R
2.4 [k Ω] > R

For $R = 2k\Omega$, the power capacity must be:

 $W = (applied \ voltage)^2 / R \quad (or \ W = (maximum \ current)^2 \times R)$

Resistor R terminal voltage is:

$$\frac{2.4 \times 2}{2.4 + 2}$$
 [k\O]: $\frac{2.4 \times 2}{2.4 + 2} + 3.6$ [k\O] = X: 24 [V]
X = 5.58 [V]

Therefore, the power capacity W of resistor R is

$$W = (5.58 \text{ [V]})^2/2 \text{ [k}\Omega] = 0.015 \text{ [W]}$$

 Use a safety factor of 3 to 5. Resistor should therefore be rated at 0.5 to 1W.

A $2k\Omega$, 0.5 to 1W resistor should therefor be connected across the relevant input terminal and its COM.

13.4.2 Output circuit problems and corrective action

	Condition	Cause	Corrective Action
Example 1	When output in off, excessive voltage is applied to load.	Load is half-wave rectified inside (seen in some solenoids). AY22, AY23 Output	 Connect a resistor of several ten kΩ to several hundred kΩ across the load. It a resistor is used in this way, it dose not pose problem to output element but may sometimes cause the diode, which is built in the load, to deteriorate, resulting in burning etc.
Example 2	Load does not turn off. (Triac output)	Leakage current due to built-in noise suppression AY22, AY23 Output module Load Leakage current	Connect C and R across the load. When wiring distance from output card to load is long, there may be a leakage current due to the line capacity. Resistor Load It is recommended to use 0.1 to 0.47 μ F + 47 to 120Ω (1/2W) for the constant of CR.
Example 3	When load is C-R type timer, time constant fluctuates. (Triac output)	AY22, AY23 Output module CR timer Leakage current	After driving the relay, drive the C-R type timer by the same contact. Some timers have half-wave rectified internal circuits. Therefor, take precautions as indicated in example. Resistor Load Calculate the CR constant depending on the load.
Example 4	Load does not turn off. (For direct current)	Sneak path due to the use of two power supplies. AY40, 41, 42 Output module 12/24V Load E1 < E2, snake path occurs.	● Reduce the power supplies from two to one. • Connect a sneak path prevention diode. When the load is a relay or similar device, it is necessary to connect reverse-voltage absorbing diode to the load. (Shown by the dotted line in the figure at left)

Table 13.4 Output Circuit Failures and Corrective Actions

APPENDICES

APPENDIX 1 Table of Characteristics for the A3VTS, A3HCPU, A3NCPU, and A3CPU

The following table provides a list of characteristics for the A3VTS, A3HCPU, A3NCPU, and A3CPU. Detailed information concerning precautions and the differences related to the use of these CPUs in the A3VTS system is provided in Appendices 2 to 4.

1.1 Characteristics

Type Item		A3VTS		A3HCPU A3NCPU A3CF		A3CPU	
Control method		Storedome program, rep	etitive operation	Storedome p	rogram, repetiti	ve operation	
I/O control method		Refresh method		Storedome program, repetitive Refresh method Dir		Direct method	
Program language		Special language for sequence control Relay symbol type, logic symbol type		Special language for sequence control Relay symbol type, logic symbol type			
Compatible	with MELSAP language	Yes		No	Ye	es	
	Sequence instructions	22 types			22 types		
Number of instructions	Basic instructions	128 types	5		132 types		
	Application instructions	105 types	3	107 types	109 types	107 types	
	ocessing speed ence instructions) (µ sec step)			Direct time: 0.2 to 2 Refresh time: 0.2 to 0.4	Direct time: 1.0 to 2.3 Refresh time: 1.0	1.25 to 2.25	
	I/O points	2048 type	s		2048 points		
	tant scan function of program execution)	Can be set in units of 10ms within a range of 10 to 1990ms.		Can be set in units of 10ms within a range of 10 to 1990ms.	Can be set in units of 10ms within a range of 10 to 1990ms.	None	
Congested ope	ration monitor timer (WDT)	Can be set in units of 10ms 0 to 2000m		Set at 200ms.	Can be set in unit a range of 1	ts of 10ms within 0 to 2000ms.	
Permissi	ble momentary stop	Within 20n	ns.	Within 20ms.			
Curren	t consumption (A)	A3VTU: 1 A3VCPU: 2		3.0	0.83	1.7	
External of	dimensions mm (inch)	(250(9.84)×79.5(3.13)×12	1(4.76))×4 units	250(9.84	¥)×79.5(3.13)×1	21(4.76)	
V	Veight kg (lb)	A3VTU: 0.78(1.72) A3VCPU: 0.84(1.85)		0.9(1.98)	0.8(1.76)	0.8(1.76)	
Me	emory capacity	Maximum of 144	K bytes	Maximum of 448K bytes Maximum of 320K bytes		f 320K bytes	
	Main sequence program	Maximum of 30	K steps	Maximum of 30K steps			
Program capacity	Sub-sequence program	Maximum of 30	K steps	Maximum of 30K steps			
	Micro-computer program	Maximum of 58	K bytes	Maximum of 58K bytes		ytes	
Inte	ernal relays (M)	1000 points (M0 to 999)	Total of 2048)	1024 points points includir (L1000 to 2047) L, S. (Set by		of 2048)	
Li	atch relays (L)	1024 points (L1000 to 2047)	points including M, L, S. (Set by parameters)			s including M, (Set by para-	
S	tep relays (S)	0 points (No initial status)	(parameters))	0 points (No initial status) meters)		illeters)	
L	ink relays (B)	1024 points (B0	to 3FF)	1024 points (B0 to 3FF)		3FF)	
	Points	256 point	S		256 points		
Timer (T)	Specifications	100 ms timer: set p 10 ms timer: set per 100 ms accumulating time	period 0.1 to 3276.7 riod 0.01 to 327.67 s r: set period 0.1 to 3	ec (t200 to 255) {(Set by parameters)			
Points		256 point	s	256 points			
Counter (C)	Specifications	Normal counter: set range 1 to 32767 Interrupt counter: None	(C0 to 255)	Normal counter: set range 1 to 32767 (C0 to 255) Interrupt counters set range 1 to 32767 (C224 to C255 can be set) interrupt cycle counter	Normal counte set range 1 to 3. Interrupt count set range (C224 to C25: Counter us the interrup	2767 (C0 to 255) er: 1 to 32767 5 can be set) sed within	
Data register (D)		1024 points (D0	to 1023)	1024 points (D0 to 1023)			
Link register (W)		1024 points (W0 to 3FF)		1024 points (W0 to 3FF)			
Annunciator (F)		256 points (F0 to 255)		256 points (F0 to 255)			
File register (R)		Maximum 8192 points (R0 to 8191) Maximum 8192 points		8192 points (R	0 to 8191)		
Accumulator (A)		2 points (A0 to A1) 2 points (A0 to A1)		.1)			
Index register (V, Z)		2 points (V, Z) 2 points (V, Z)					

Table 1.1 Table of Characteristics (Continue)

Type Item	A3VTS	АЗНСРИ	A3NCPU	АЗСРИ
Pointer (P)	256 points (P0 to 255)	256 points (P0 to 255)		255)
Interrupt pointer (I)	None	32	32 points (I0 to 31)	
Special function relay (M)	256 points (M9000 to 9255)	256 p	256 points (M9000 to 9255)	
Special register (D)	256 points (D9000 to 9255)	256 p	oints (D9000 to	9255)
Comment points	Maximum of 4032 points	Maxi	mum of 4032 p	oints
Status latch function	Yes		Available	
Sampling trace function	Yes		Available	
Off line switch function	Yes (Y, M, L, B, F)	None	None Yes (Y, M, L, B, F)	
Annunciator display function	F number display	F number display		
Remote RUN/PAUSE contact setting	Available	Available		
Operation mode switching when error occurs	Available	Available		
Output mode switching when STOP → RUN	Available	Available		
Keyword recording	Available	Available		
Print title recording	Available	Available		
Assignment change of I/O points	Available via GPP, PHP, HGP	Available via GPP, PHP, HGP		P, HGP
Latch (held during power loss) range setting	B0 to 3FF, T0 to 255, C0 to 255, D0 to 1023, W0 to 3FF Latch range setting available			g available
Step operation	None	Step operation available in terms of break point stops and a stop at each instruction		
Clock	None	None	Year, month, hour, minute, second, day register can be written to and read from.	None

Table 1.1 Table of Characteristics

APPENDIX 2 Precautions concerning the use of an A3VTS in system already using an A3CPU

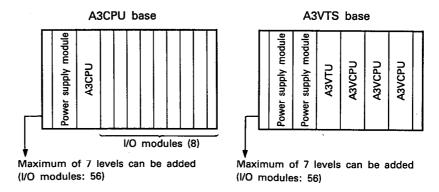
When converting a system that is already configured with an A3CPU to the A3VTS system, certain precautions must be taken concerning hardware and the sequence program. This section describes these precautions.

2.1 Differences in instruction set between A3CPU and A3VTS

Instructions for the A3VTS (A3VCPU) and A3CPU other than those shown below are the same. For information concerning instructions not shown below, refer to the A3CPU Programming Manual.

Instruction	Description
SEG CHG	The contents of the instruction shown on the left vary between the A3VTS and A3CPU. For details see Appendix 2.4.3.
COM DI EI IRET RFRP RTOP	The instructions shown on the left cannot be used with the A3VTS. However, their inclusion in a program does not lead to error generation as they are ignored.

2.2 Differences in special relays and special registers between A3CPU and A3VTS

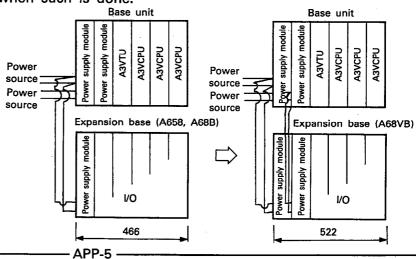

The special relays and special registers of the A3VTS (A3VCPU) and A3CPU other than those shown below are the same. For information concerning the contents of the special relays and special registers, refer to the appropriate CPU User's Manual.

Device	Device No.	Name of Device No.	Description
	M9030 to M9034	Timing clock 0.1sec, 0.2sec, 1sec, 2sec, and 1 minute clock	The special relays listed on the left cannot be used. However, their inclusion in
	M9050	Signal flow communica- tion contact	a program does not lead to error generation as they are ignored.
	M9018	Data link monitor switch	The special relays listed on
Special	M9091	Microcomputer sub-routine call error flag	the left are relays that have been added to the A3VTS. For detail information see
relays	M9092	Dual power supply module overheat error	Appendix 8 "Special Relay Table"
	M9093	Dual power supply module malfunction	
	M9096	A3VCPU(A) self-diagnosis error	
	M9097	A3VCPU(B) self-diagnosis error	
	M9098	A3VCPU(C) self-diagnosis error	
	M9099	A3VTU self-diagnosis error	
	D9006	Low battery	The special registers listed
	D9020	Constant scan time	on the left are registers that have been added to the
	D9072	PC communication check	A3VTS. For detail information see
	D9090	Microcomputer subroutine INPUT data area head device No.	Appendix 8 "Special Registers Table"
·	D9091	Error code generated for microcomputer sub-routine call	·
Special registers	D9094	Communication I/O number	
	D9095	Operation display for CPU section	
	D9096	Self-diagnosis error code for A3VCPU (A)	
,	D9097	Self-diagnosis error code for A3VCPU (B)	
	D9098	Self-diagnosis error code for A3VCPU (C)	
	D9099	Self-diagnosis error code for A3VTU	

2.3 Cautions concerning module replacement

(1) When the A3CPU system is to be changed to the A3VTS system, the I/O modules cannot be installed in the base unit of the A3VTS system. This means that the maximum number of I/O modules that can be installed is limited to 56, 8 less than what would otherwise be possible.

If a full number of 64 slots is to be used for the I/O modules, change I/O module with more I/O points so that the total number of slots to be used is within 56.



(2) Some special function modules cannot be used in the A3VTS system. The special function modules listed below that were used in the existing systems cannot be used and must be removed.

AD57 (S1), AD58, Al61,AD51E (may be used under certain conditions), AJ71C24 (S3)

(3) When the system is changed to the A3VTS system, the base unit contains a dual power supply to supply the power in two systems, thus improving reliability in supplying power including power supply modules. However, since the power supply module installed in the expansion base unit is not duplexed, a malfunction in the power supply, including the power supply module could stop the system operation.

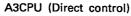
By changing the expansion base to the one for dual power supply modules, increased operation ratio and reliability can be attained. However, external dimensions will increase in size when such is done.

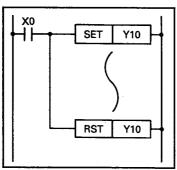
(4) Expansion base unit (A55B, A58B), in which the power supply module cannot be installed, cannot be used in the A3VTS system. If this is used in the existing system, change to an expansion unit in which the power supply modules can be installed.

2.4 Cautions concerning the use of sequence programs

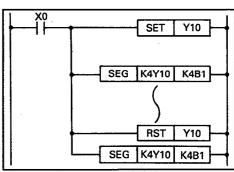
Sequence programs created with the A3CPU can be used in the A3VTS system in principle. However, note that differences exist as shown below.

- (1) Differences in I/O control methods
- (2) Pulse processing program using the SET / RST instructions
- (3) Instructions, special relays, and special registers


2.4.1 Differences in I/O control methods


The A3CPU uses direct control for input (X) and output (Y) while the A3VTS uses refresh control.

Care must be taken as the timing used for both methods vary. If there is a problem, use the segment I/O refresh instruction (
SEG instruction) and write the program so that it takes a form as close to the direct method as possible in the required area. Refer to Section 4.3 for detailed information concerning refresh control.


2.4.2 Pulse processing program using the SET / RST instructions

When using the SET / RST instructions to output a pulse signal to an external device when using refresh control for A3CPU output (Y), the segment I/O refresh instruction should be used in the manner shown in the following diagram.

A3VTS (Refresh control)

POINT

When using the AD61(S1) high-speed counter module, it is necessary to output a pulse signal specifically for the AD61.

2.4.3 Instructions, special relays, and special registers

(1) Instructions

The instructions shown below either vary with those of the A3CPU or cannot be used in the A3VTS. Care must be exercised when they have been used in a present program. For detailed information concerning the instructions, see Appendix 5 and the A3CPU Programming Manual.

(a) SEG instruction

The specifications are different as follows:

	A3VTS	A3CPU
Instruction function	Refresh instruction for the segment I/O.	7 segment decode instruction.

(b) CHG instruction

The specifications are different as follows:

	A3VTS	A3CPU
Instruction function	The contents of the CHG instruction do not change during execution because the A3VTS does not have M9050.	The contents of the CHG instruction changes during execution because M9050 is set ON/OFF.

For details, refer to explanations for CHG instruction given in the ACPU Programming Manual. Contents of A3VTS are the same as those of A3CPU.

(c) COM, EI, DI, IRET, RFRP, and RTOP instructions

The COM, EI, DI, IRET, RFRP, and RTOP instructions are not used in the A3VTS. However, inclusion of these instructions in the program will not result in error generation.

(If the IRET is included in the main routine program, an error will be generated.)

Correct the program as necessary.

(2) Special relays and Special registers

Some of the special relays cannot be used and some are newly added.

Some special registers are newly added.

See Appendix 2.2 for information concerning the device numbers. For detailed information concerning each of the special relays and special relays, refer to the CPU User's Manual.

APPENDIX 3 Cautions Concerning the Use of an A3VTS in System Already Using an A3NCPU

When converting the system that is already configured with an A3NCPU to the A3VTS system, certain cautions must be taken concerning hardware and the sequence program. This section describes these cautions.

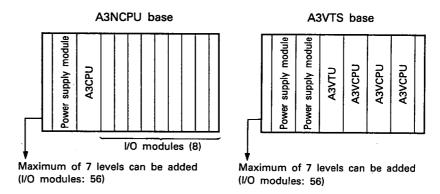
3.1 Differences in instruction set between A3NCPU and A3VTS

Instructions for the A3VTS (A3VCPU) and A3NCPU other than those shown below are the same. For information concerning instructions not shown below, refer to the A3CPU Programming Manual.

Instruction	Description
SEG CHG PR	The contents of the instruction shown on the left vary between the A3VTS and A3NCPU. For details see Appendix 2.4.3.
COM DI EI IRET RFRP RTOP	The instructions shown on the left cannot be used with the A3VTS. However, their inclusion in a program does not lead to error generation as they are ignored.

3.2 Differences between the special relays and special registers of the A3NCPU and A3VTS

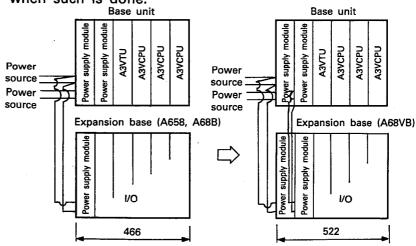
The special relays and special registers of the A3VTS (A3VCPU) and A3NCPU other than those shown below are the same. For information concerning the contents of the special relays and special registers, refer to the appropriate CPU User's Manual.


Device	Device No.	Name of Device No.	Description
	M9025	Clock data set request	The special relays listed on
	M9026	Clock data error	the left cannot be used. However, their inclusion in
	M9027	Clock data display	a program does not lead to
	M9028	Clock data read request	error generation as they are ignored.
	M9030 to M9034	Timing clock 0.1sec, 0.2sec, 1sec, 2sec, and 1 minute clock	
	M9052	SEG instruction switch	
	M9053	El/DI instruction switch	
	M9084	Error check	
	M9094	I/O change flag	
Special relays	M9018	Data link monitor switch	The special relays listed on
	M9091	Microcomputer routine call	the left are relays that have been added to the A3VTS.
	M9092	error flag Dual power supply module overheat error	For detail information see Appendix 8 "Special Relay Table"
	M9093	Dual power supply module malfunction	
	M9096	A3VCPU(A) self-diagnosis error	
	M9097	A3VCPU(B) self-diagnosis error	,
,	M9098	A3VCPU(C) self-diagnosis error	
<u></u>	M9099	A3VTU self-diagnosis error	
	D9014	Method of I/O control	The special relays listed on the left cannot be used in the
	D9025 to D9028	Clock data (year, month, day, hour, minute, second)	A3VTS. However, their inclusion in a program does not lead to error generation as they are ignored.
	D9006	Low battery	The special relays listed on
	D9072	PC communication check	the left are relays that have been added to the A3VTS.
	D9090	Microcomputer sub-routine INPUT data area head device No.	For detail information see Appendix 8 "Special Relay Table"
Special	D9091	Error code generated for microcomputer sub-routine call	
registers	D9094	Communication I/O number	·
	D9095	Operation display for CPU section	
	D9096	Self-diagnosis error code for A3VCPU (A)	
	D9097	Self-diagnosis error code for A3VCPU (B)	
	D9098	Self-diagnosis error code for A3VCPU (C)	
	D9099	Self-diagnosis error code for A3VTU	

3.3 Cautions concerning module replacement

(1) When the A3NCPU system is to be changed to the A3VTS system, the I/O modules cannot be installed in the base unit of the A3VTS system. This means that the maximum number of I/O modules that can be installed is limited to 56, 8 less than what would otherwise be possible.

If a full number of 64 slots is to be used for the I/O modules, change I/O module with more I/O points so that the total number of slots to be used is within 56.



(2) Some special function modules cannot be used in the A3VTS system. The special function modules listed below that were used in the existing systems cannot be used and must be removed.

AD57 (S1), AD58, Al61, AJ71C23, AD51E (may be used under certain conditions), AJ71C24 (S3)

(3) When the system is changed to the A3VTS system, the base unit contains a dual power supply to supply the power in two systems, thus improving reliability in supplying power including power supply modules. However, since the power supply module installed in the expansion base unit is not duplexed, a malfunction in the power supply, including the power supply module could stop the system operation.

By changing the expansion base to the one for dual power supply modules, increased operation ratio and reliability can be attained. However, external dimensions will increase in size when such is done.

APP-10

(4) Expansion base unit (A55B, A58B), in which the power supply module cannot be installed, cannot be used in the A3VTS system. If this is used in the existing system, change to an expansion unit in which the power supply modules can be installed.

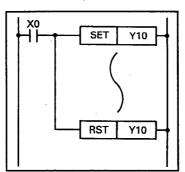
3.4 Cautions concerning the use of sequence programs

Sequence programs created with the A3NCPU can be used in the A3VTS system in principle. However, note that differences exist as shown below.

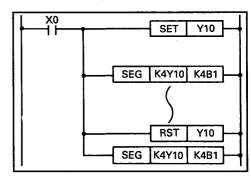
- (1) Differences in I/O control methods
- (2) Pulse processing program using the SET / RST instructions
- (3) Data link processing
- (4) Instructions, special relays, and special registers

3.4.1 Differences in I/O control methods

The A3NCPU can switch between direct and refresh control for input (X) and output (Y).


No problem should occur when refresh control is used for both input and output. However, care must be taken when using direct control since the A3VTS uses refresh control and differences between input (X) fetch timing and output timing of output (Y) to external devices may differ.

If there is a problem, use the segment I/O refresh instruction (SEG instruction) and write the program so that it takes a form as close to the direct method as possible in the required area. Refer to Section 4.3 for detailed information concerning refresh control.


3.4.2 Pulse processing program with the SET / RST instruction

When using the SET / RST instructions to output a pulse signal to an external device when using refresh control for A3NCPU output (Y), the segment I/O refresh instruction should be used in the manner shown in the following diagram.

A3NCPU (Direct control)

A3VTS (Refresh control)

POINT

When using the AD61(S1) high-speed counter module, it is necessary to output a pulse signal specifically for the AD61.

3.4.3 Data link processing

The A3NCPU can change the timing for link refresh using the EI / DI instruction by using the sequence program to set the special relay M9053 ON. However, the A3VTS is not provided with this function and cannot use the EI / DI instruction. Link refresh is automatically set by the timing of the link scan as designated by the master station.

For details, refer to the A3VTS Data Link User's Manual.

3.4.4 Instructions, special relays, and special registers

(1) Instructions

The instructions shown below either vary with those of the A3NCPU or cannot be used in the A3VTS. Care must be exercised when they have been used in a present program. For detailed information concerning the instructions, see Appendix 5 and the A3CPU Programming Manual.

(a) SEG instruction

The specifications are different as follows:

	A3VTS	A3NCPU
Instruction function	Refresh instruction for the segment I/O.	When M9052 is OFF 7 segment decode instruction. When M9052 is ON Refresh instruction for the segment I/O.

(b) CHK instruction

The specifications are different as follows:

	A3VTS	A3NCPU
Instruction function	Becomes a malfunction check instruction for special formats	When the I/O control for both inputs and outputs is set to direct control, the instruction becomes a malfunction check for special formats. When the I/O control for either one or both of the inputs and outputs is set to refresh control, the instruction inverts the outputs of the designated bit device when executed.

(c) PR instruction

The specifications are different as follows:

	A3VTS	A3NCPU
Instruction function	Outputs 16 characters of ASCII code.	When M9049 is OFF The instruction outputs until the NULL code (00H) is reached. When M9049 is ON The instruction outputs 16 characters of ASCII code.

ADE

(d)	COM, EI, DI, IRET, RFRP, and RTOP
	instructions
	The COM, EI, DI, IRET, RFRP, and
	RTOP instructions are not used in the A3VTS. However,
	inclusion of these instructions in the program will not
	result in error generation.
	(If the IRET is included in the main routine program, an

Correct the program as necessary

(2) Special relays and Special registers

error will be generated.)

Some of the special relays and special registers cannot be used and some are newly added.

See Appendix 3.2 for information concerning the device numbers. For detailed information concerning each of the special relays and special registers, refer to the CPU User's Manual.

APPENDIX 4 Cautions Concerning the Use of an A3VTS in System Already Using an A3HCPU 4.1 Differences in instruction set between A3HCPU and A3VTS

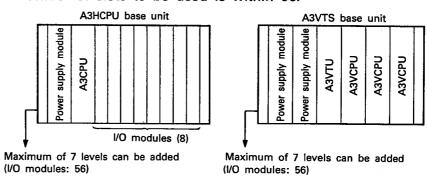
Instructions for the A3VTS (A3VCPU) and A3HCPU other than those shown below are the same. For information concerning instructions not shown below, refer to the A3CPU Programming

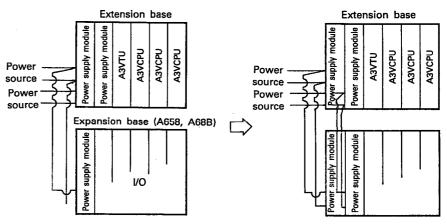
Manual.

Instruction	Description
SEG PR CHG	The contents of the instruction shown on the left vary between the A3VTS and A3HCPU. For details see Appendix 4.4.3.
COM EI DI IRET RFRP RTOP	The instructions shown on the left cannot be used with the A3VTS. However, their inclusion in a program does not lead to error generation as they are ignored.

4.2 Differences in special relays and special registers between A3HCPU and A3VTS

The special relays and special registers of the A3VTS (A3VCPU) and A3HCPU other than those shown below are the same. For information concerning the contents of the special relays and special registers, refer to the appropriate CPU User's Manual.


Device	Device No.	Name of Device No.	Description
	M9030 to M9034	Timing clock 0.1sec, 0.2sec, 1sec, 2sec, and 1 minute clock	The special relays listed on the left cannot be used in the A3VTS.
	M9052	SEG instruction switch	However, their inclusion in a program does not lead to
	M9084	Error check	error generation as they are ignored.
	M9018	Data link monitor switch	The special relays listed on
Special relays	M9091	Microcomputer routine call error flag	the left are relays that have been added to the A3VTS. For detail information see
	M9092	Dual power supply module over- heat error	Appendix 8 "Special Relay Table"
	M9093	Dual power supply module mal- function	
	M9096	A3VCPU(A) self-diagnosis error	
	M9097	A3VCPU(B) self-diagnosis error	
	M9098	A3VCPU(C) self-diagnosis error	
	M9099	A3VTU self-diagnosis error	· -
	D9006	Low battery	The special relays listed on
	D9072	PC communication check	the left cannot be used in the
	D9090	Microcomputer sub-routine INPUT data area head device No.	For detail information see Appendix 8 "Special Relay
	D9091	Error code generated for micro-computer sub-routine call	Table"
Special	D9094	Communication I/O number	<u> </u>
registers	D9095	Operation display for CPU section	i
	D9096	Self-diagnosis error code for A3VCPU (A)	
	D9097	Self-diagnosis error code for A3VCPU (B)	·
	D9098	Self-diagnosis error code for A3VCPU (C)	
	D9099	Self-diagnosis error code for A3VTU	


4.3 Cautions concerning module replacement

(1) When changing the A3HCPU system to the A3VTS system, the I/O modules cannot be installed in the base unit of the A3VTS system. This means that the maximum number of I/O modules that can be installed is limited to 56, 8 less than what would otherwise be possible.

If a full number of 64 slots is to be used for the I/O modules, change I/O modules with more I/O points so that the total number of slots to be used is within 56.

- (2) Some special function modules cannot be used in the A3VTS system. The special function modules listed below that were used in the existing system cannot be used and must be removed.
 - AD57 (S1), AD58, Al61, AD51E (may be used under certain conditions), AJ71C24 (S3)
- (3) When changing the system is changed to the A3VTS system, the base unit contains a dual power supply to supply the power in two systems, thus improving reliability in supplying power including power supply modules. However, since the power supply module installed in the extension base unit is not duplexed, a malfunction in the power supply, including the power supply module could stop the system operation. By changing the extension base to the one for dual power supply modules, increased operating ratio and reliability can be attained. However, external dimensions will increase in size when such is done.

(4) Extension base unit (A55B, A58B), in which the power supply module cannot be installed, cannot be used in the A3VTS system. If this is used in the existing system, change to an extension unit in which the power supply modules can be installed.

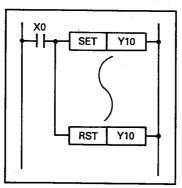
4.4 Cautions concerning the use of sequence programs

Sequence programs created with the A3HCPU can be used in the A3VTS system in principle. However, the time required for processing instructions will increase resulting in increased scan time as well. Also note that differences exist as shown below.

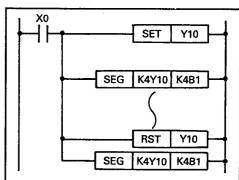
- (1) Differences I/O control methods
- (2) Pulse processing program using the SET / RST instructions
- (3) Instructions, special relays, and special registers

4.4.1 Differences in I/O control methods

The A3HCPU can switch between either direct or refresh control for input (X) and output (Y).


No problem should occur when refresh control is used for both input and output. However, care must be taken when using direct control since the A3VTS uses refresh control and differences between input (X) fetch timing and output timing of output (Y) to external modules may differ.

If there is a problem, use the segment I/O refresh instruction (SEG instruction) and write the program so that it takes a form as close to the direct method as possible in the required area. Refer to Section 4.3 for detailed information concerning refresh control.


4.4.2 Pulse processing program using the SET / RST instructions

When using the SET / RST instructions to output a pulse signal to an external device when using refresh control for A3HCPU output (Y), the segment I/O refresh instruction should be used in the manner shown in the following diagram.

A3HCPU (Direct control)

A3VTS (Refresh control)

POINT

When using the AD61(S1) high-speed counter module, it is necessary to output a pulse signal specifically for the AD61.

4.4.3 Instructions, special relays, and special registers

(1) Instructions

The instructions shown below either vary with those of the A3HCPU or cannot be used in the A3VTS. Care must be exercised when they have been used in a present program. For detailed information concerning the instructions, see Appendix 5 and the A3CPU Programming Manual.

(a) SEG instruction
The specifications are different as follows:

	A3VTS	АЗНСРИ
Instruction function	Refresh instruction for the segment I/O.	 When M9052 is OFF 7 segment decode instruction. When M9052 is ON Refresh instruction for the segment I/O.

(b) PR instruction
The characteristics vary as shown below.

	A3VTS	АЗНСРИ
Instructio function	Outputs 16 characters of ASCII code.	The instruction outputs until the NUL code (00 _H) is reached.

(c) CHG instruction

The specifications are different as follows:

	A3VTS	АЗНСРИ
Instruction function	The CHG instruction is executed only when the condition contacts are set from OFF to ON.	The CHG instruction is normally executed during the period in which the condition contracts of the CHG instruction are ON.

(d) COM, EI, DI, IRET, RFRP, RTOP instructions
The COM, EI, DI, IRET, RFRP, and RTOP instructions are not
used in the A3VTS. However, inclusion of these instructions in the program will not result in error generation.
(If the IRET is included in the main routine program, an
error will be generated.)

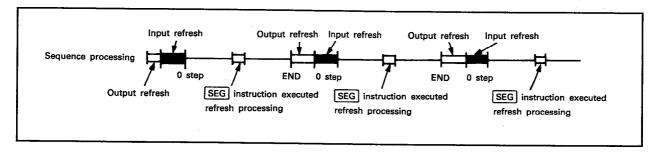
Correct the program as necessary.

(2) Special relays and Special registers Some of the special relays cannot be used, however, their inclusion in a program will not result in error generation. Some special relays and special registers have been added. See Appendix 4.2 for information concerning the device numbers. For detailed information concerning each of the special relays and special relays, refer to the CPU User's Manual.



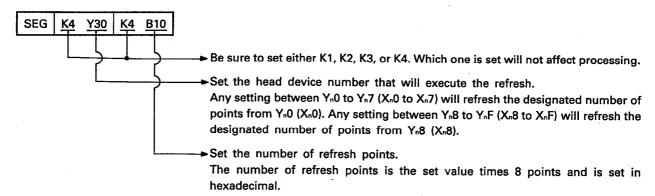
APPENDIX 5 SEG Instructions Used in the A3VTS

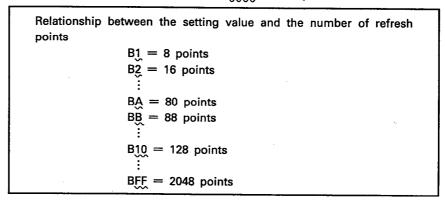
The SEG instruction as it is used in the A3VTS differs from when it is used in the A3HCPU, A3NCPU, and A3CPU.


SEG instruction l/O Segment refresh

/			Usable Devices										ing	Sde	#		≥ 50	_									
		В	it d	evic	es			1	Vor	i (16)-bit) de	vice	3		Cons	tants	Poi	ints	Level		of St	p-S-di	dex	Fa	Error	Flag
	X	Y	M/S	L	В	F	Т	С	D	w	R	AO	A 1	Z	V	K	Н	P	1	N	Digit	٤	S	-	M9012	M9010	M9011
S	0	0																-			0	7					

Functions

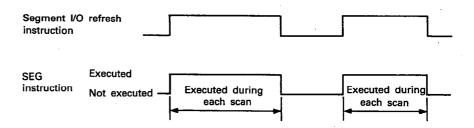

- (1) Executes segment refresh processing of the I/O points contained within the number of bytes designated by D beginning from the device number designated by S (source).
- (2) Segment refreshing is accomplished by the SEG instruction in a program only for the device points designated in the program. External data is fetched or outputs are given to an external device when refresh processing is executed. Thus segment refresh can be executed during a single scan at whatever point is necessary.


- (3) Better program processing response time can be provided for inputs from external modules during sequence processing by fetching the ON/OFF status of the external inputs at the point at which the segment refresh instruction is executed. This can be done by executing segment I/O refresh in relation to input (X).
- (4) When segment I/O fresh is executed in relation to output (Y), the ON/OFF status of output (Y) at the point the segment I/O refresh instruction is executed is output. Therefore, ON/OFF can be repeated during one scan by using the segment I/O refresh instruction.

AP

(5) The following shows how to set S (source) and n.

The maximum setting range is BFF (2048 points).



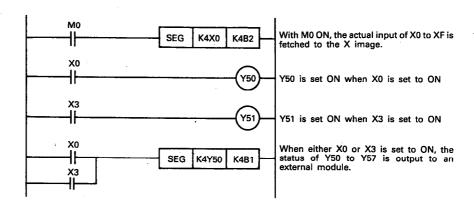
POINT

- (1) The "B" used in the refresh point setting has no relationship with the "B" of link relay "B". Link relay "B" can be used for up to 1024 points.
- (2) When setting the number of refresh points to "B0" (0 points), all of the device numbers (installed units) set by the head device number are refreshed.

Execution Conditions

The following shows what conditions must exist for the SEG instruction to be executed.

Operation Error


In the following examples, an error is generated during operation and the error flag is set to ON.

- (1) A mistake has been made in the S (source) or n device. (Set to a value other than X, Y, or B.)
- (2) The segment I/O refresh range exceeded X, Y7FF.

Program Example

To fetch the actual input from X0 to XF to the X image when M0 is ON and after the next step, to set Y50 and Y51 ON in response to setting ON of X0 and X3 respectively.

APPENDIX 6 System Operation Status

This section describes the system operation status for the independent operation mode and majority operation mode when the factors which determine the system operational status are combined.

6.1 System operation status in independent operation mode

There are four factors that determine operation status for a system in the independent operation mode. The following describes the system operational status when these factors are combined together.

Factors

- Position of the A3VTU RUN/STOP key switch
- Position of the A3VCPU RUN/STOP key switch
- Instruction from external source (Remote RUN/ STOP contacts, remote PAUSE contacts, Remote RUN/PAUSE from peripheral device)
- ON/OFF status of M9040 (PAUSE enable coil)
- (1) Determine the operation status of the system in the following status
 - 1) Check the operation status of the A3VCPU.
 - 2) Check the system operation status with information received from 1., the position of the RUN/STOP key switch, and the ON/OFF status of M9040.

(2) Operation status of the A3VCPU

	GPP/PHP/HGP			Rem	note RU	N		Remote STOP	Remote PAUSE
	Remote RUN/STOP Contacts			OFF			ON	7	
	STOP Instruction		Not ex	ecuted		Executed			
RUN/STOP Key Switch	M9040	O	FF	0	N		$ \times $		
of the VCPU	Remote PAUSE Contact	OFF	ON	OFF	ON				
	STOP					STOP			
	RUN		RUN		PAUSE		STOP		PAUSE
	REPAIR		RUN		PAUSE		STOP		PAUSE

(3) System operation status

The operation status of the system is determined by the operation status of the A3VCPU and the setting of RUN/STOP key switch of the A3VTU.

The table below shows system operation status.

	M9040		OFF			ON	
A3VTU RUN/STOP Key Switch	Operation Status of the A3VCPU	STOP	PAUSE	RUN	STOP	PAUSE	RUN
STOP				ST	ОР		
PAUSE		STOP	PAUSE	RUN	STOP	PAUSE	PAUSE
RUN		STOP	PAUSE	RUN	STOP	PAUSE	RUN

6.2 System operation status in majority operation mode

Factors

There are four factors that determine operation status for a majority system. The following describes the system operational status when these factors are combined together.

Position of the A3VTU RUN/STOP key switch

 Position of the A3VCPU RUN/STOP key switches of the three modules.

 Instruction from external source (Remote RUN/ STOP contacts, remote PAUSE contacts)

ON/OFF status of M9040 (PAUSE enable coil)

- (1) Determine the operation status of the system in the following status
 - Check the operation status of each of the three A3VCPU modules.
 - 2) Check the system operation status with information received from 1., the position of the RUN/STOP key switch, and the ON/OFF status of M9040.
- (2) Operation status of the A3VCPU

Check the status of each of the A3VCPUs using table 6.1-(2). (Neither error status nor WAIT status has any relationship with the system operation status.)

(3) System operation status

The operation status of the system is determined by the operation status of the A3VCPUs of each of the three stations, the RUN/STOP key switch of the A3VTU, and the ON/OFF status of M9040.

The table on the next page shows system operational status.

	<u> </u>		RUN/STOP by Switch	SIUP												RU	JN				
CPU C (A3VCPU) Operations	CPU (A3V		(A3NCPU)	M90	40 =	OFF	М90)40 =	ON	M90	40 =	OFF	M90	40 =	ON	M90	40 =	OFF	M90	40 =	ON
Status	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	perational \$	Status	STOP	PAUSE	RUN	STOP	PAUSE	RUN	STOP	PAUSE	RUN	STOP	PAUSE	RUN	STOP	PAUSE	RUN	STOP	PAUSE	RUN
			STOP		\angle	\angle						0						0			0
		M9040 = OFF	PAUSE			\angle						0						0			0
	STOP		RUN							0	0	0	0	0	0	0	0	0	0	0	0
	3101		STOP									0						0			0
		M9040 = ON	PAUSE									0						0			0
			RUN									0				0	0	0	0	0	0
			STOP									0			7			0			0
		M9040 = OFF	PAUSE									0						0			0
M9040	PAUSE		RUN							0	0	0	0	0	0	0	0	0	0	0	Q
= OFF	FAUSE		STOP									0						0			0
		M9040 = ON	PAUSE									0						0	-		0
			RUN									0				0	0	0	0	0	0
			STOP							0	0	0	0	0	0	0	0	0	0	0	0
		M9040 = OFF	PAUSE							0	0	0	0	0	0	0	0	0	0	0	0
	DUM	0	RUN							0	0	0.	0	0	0	0	0	О	0	0	0
	RUN		STOP							0	0	0	0	0	0	0	0	0	0	0	0
		M9040 = ON	PAUSE							0	0	0	0	0	0	0	0	0	0	0	0
		0.1	RUN							0	0	0	0	0	0	0	0	0	0	0	0
			STOP									0						0			0
		M9040 = OFF	PAUSE									0						0			0
	OTOD	0	RUN							0	0	0	0	0	0	0	0	0	0	0	0
	STOP		STOP									0						0			0
		M9040 = ON	PAUSE									0						0			0
		0	RUN									0				0.	0	0	0	0	0
	,		STOP	$\overline{}$								0						Ó			0
		M9040 = OFF	PAUSE									0						0			0
M9040			RUN							0	0	0	0	0	0	0	0	0	0	0	0
M9040 = ON	i l		STOP			$\overline{}$						0						0			0
	M	M9040 = ON	PAUSE									0						0			0
		5.1	RUN									0				0	0	0	0	0	0
			STOP									0				0	0	0	0	0	0
		M9040	PAUSE	$\overline{}$					/			0				0	0	0	0	0	0
		- OFF	RUN							0	0	0	0	0	0	0	0	0	0	0	Ö
	RUN		STOP									0				0	0	0	0	0	0
		M9040	PAUSE									0				0	0	0	0	0	0
		_ 011	RUN									0				0	0	0	0	0	O.

Table 6.1 Operation Status in Majority Operation Mode

System	operational	status·····	STOP,	: PA	AUSE,	0:	RUN,	0:	Majority
operatio	n								

APP

APPENDIX 7 Instruction Table

7.1 Types of instructions

	Type of Instruction	Description
	Contact instruction	Start of operations, serial connections, parallel connections
	Connect instruction	Circuit block connections, write and read of arithmetic operation results
	Output instruction	Bit device output, pulse output, output reverse
	Shift instruction	Bit device shift
-	Master control instruction	Master control
Sequence instructions	Program branch instruction	Program jump, call of sub-routines, interrupt programs, etc.
	Program switching instruction	Main program ←→ sub-program switching
	FOR to NEXT instruction	Program repetition between FOR and NEXT instructions
	Refresh instruction	Executes link and segment refreshes
	END instruction	Program END
	Other instructions	Instructions not listed above that include program halt and non-processing.
	Relational operation instruction	=, >, < and other relative symbols
Basic	Arithmetic operation instruction	Arithmetic operations for BIN and BCD (addition, subtraction, multiplication, and division)
instructions	BCD ←→ BIN conversion instruction	BCD → BIN and BIN → BCD conversion
	Data transmit instruction	Transmits designated data
	Logical operation instruction	Provides logic operations such as OR and AND
,	Rotation instruction	Rotates designated data
•	Shift instruction	Shifts designated data
	Data processing instruction	16-bit data search, decode, encode and other data processing functions
Application instructions	FIFO instruction	FIFO table read/write
	Buffer memory access instruction	Special function module data read/write
	Local, remote I/O station access instruction	Local station data read/write
	Display instruction	ASCII code print, character LED display, etc.
	Others	WDT reset, carry flag set/reset and other instruction not listed above.

Table 7.1 Type of Instruction

7.2 Instruction table

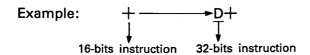
7.2.1 How to read the tables

The instruction table lists all the instructions usable in the MELSEC-A series.

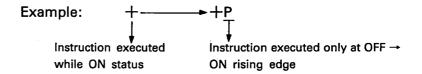
Those which cannot be used in the A3VTS are marked with an "X". All other instructions can be used in the A3VTS. The instruction tables given in Sections 7.2.2 to 7.2.4 use the following format.

Туре	Processing Unit	Instruction	Symbol	Process Description	Condition of	Steps	¥	Set	F 50						<i>A</i>	lpp	lica	ble	D	evic	es				
.,,,,	Proce	Code	Oymson .	Trocess Description	Execution	No. of Step	tndex	Subs	Carry Flag		x	Υ .	VI S	F	L	7	0	w	κ	н	PA	o A	z	V	RN
		+	+ 6 0	(D) + (S) → (D)		5	•	•	•	s	•	•	•	•	•	•	•	•	•	•	1	•	•	•	•
		+ P	-+P	(U) + (S) - (U)	<u> </u>	5	•	•	•	Ь		•	•	•	•	•	•	•			•	•	•	•	•
		+	-+ S1 S2 D+			7	•	•	•	S1	•	•	•	•	•	•	•	•	•	•		•	•	•	•
BIN 16-bit	16	+ P	-+P \$1 \$2 0 +	(S1) + (S2) → (D)	<u></u>	7	•	•	•	S2 D	•	•		•	•	•		•	•	•		-∤	ŀ⋯	•	
Addition	16 bits		- S D	(0) (0) (0)	\prod	5	•	•	•	s	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		— P		$(D) - (S) \rightarrow (D)$	<u>-</u>	5	•	•	•	D		•	•	•	•	•	•	•			•	•	•	•	•
			- SI S2 0 +	·	П	7	•	•	•	S1	•	•	•	•	•	•	•	•	•	•	•	•	•	• (•
	•	—Р	-P \$1 \$2 0 +	(S1) – (S2) → (D)	7	•	•	•	S2 D	•	•	• •	•	•	•	•	•	•	•			∤ ∤			
1	2	3	4	5	1 6 7	8		9	100	1		2					<u></u>)						

Explanation


- ①·····Instructions are classified by applications.
- ②·····Indicates processing unit used when instruction is being executed.

Processing Unit	Device	Points
16 bits	X, Y, M, L, S, F, B	4 points per unit with maximum of 16 points
	T, C, D, W, R, A, Z, V	1 point
32 bits	X, Y, M, L, S, F, B	4 points per unit with maximum of 32 points
	T, C, D, W, R, A0, V	2 points


Fig. 7.1 Device Processing Units

- ③······Indicates the instruction symbol used in a program. A 16-bit instruction is the standard instruction. 32-bit and instructions executed only at OFF to ON rising edge become as shown in the following diagram.
 - 32-bit instruction.....D is added to the head of instruction.

Instructions executed only at OFF \rightarrow ON rising edge.....P is added to the END of the instruction.

4.....Shows symbol used on circuit.

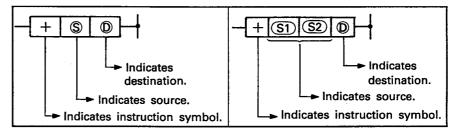
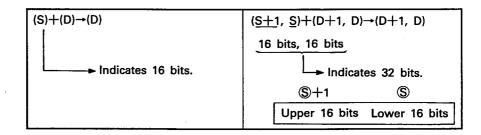



Fig. 4.2 Symbol Representations in Ladder

Destination indicates where data is going after operation. Source indicates from where the data was provided prior to operation.

⑤······Indicates the contents of the processing used for an instruction.

6.....The conditions of execution for each instruction are detailed as shown below.

Symbol	Condition of Execution
No symbol	An instruction to be executed unconditionally; this instruction is executed without regard to any ON/OFF conditions. If the prior condition is OFF, the instruction will conduct OFF processing.
Л	A modal type instruction to be executed during ON; this instruction is executed only while the prior condition stays ON. If the prior condition is OFF, the instruction is not executed and thus processing is not made.
	A one-shot type instruction to be executed during ON; this instruction is executed at the rising edge of the preceding condition. Once it has been executed, it is not executed again even when the condition stays ON.
1	A one-shot type instruction to be executed during OFF; this instruction is executed at the falling edge of the preceding condition. Once it has been executed, it is not executed again even when the condition stays ON.

- This indicates the number of steps used for an instruction. When the number of steps varies depending on conditions, they are indicated in two steps.
 For more detail, refer to the description of each instruction.
- ⑧······ indicates an instruction to which an index (Z, V) can be added.
- ⑨·····• indicates an instruction which has subset instructions.
- ⊕·····

 indicates that the instruction changes the carry flag.
- ①·····• indicates that the error flag is set to ON when an operation error is generated.
- ①-----Alphabetic letters at S (source) and D (destination) positions in the symbol chart are entered. The devices usable as a source or destination for that instruction are indicated in the corresponding columns.
- ③······The devices which can be used for S and D indicated in column ②. The entry of a marker (●) indicates the usable device and the lack of a marker indicates that it cannot be used.

7.2.2 Sequence instruction

(1) Contact instructions

Туре	rocessing Unit	Instruction	Symbol	Process Description	Condition	Steps	×	¥ .							Αp	plic	ab	le	Dev	ice	\$				
.,,,,	Proce	Code	Symbol	Process Description	Condition of Execution	No. of	Index	툸	ETG	х	Y	A E	3 F	L	т	С	D	w	K	Р	Αo	A1	z	V F	R N
		LD	 	Begin logical operations (begin a contact logical operations)		1				•	•	•	•	•	•	•			T					T	П
		LDI	 	Begin logical NOT opera- tions (begin b contact logical operations)		1				•	•	•	•	•	•	•							1	T	\prod
Contact	_	AND		AND (a contact serial con- nections)		1				•	•	•	•	•	•	•								1	
Contact		ANI		NAND (b contact serial connections)		1			T	•	•	•	•	•	•	•	1							T	\prod
		OR		OR (a contact parallel con- nections)		1			T	•	•	•	•	•	•	•								T	П
		ORI	<u></u>	NOR (b contact parallel connections)		1		T		•	•	•	•	•	•	•								T	П

Table 7.2 Contact Instruction

(2) Connect instructions

Туре	Processing Unit	Instruction	Symbol	Process Description	Condition	Steps	×	ţ	Flag	ē.				•		A	ppl	ica	ble	De	vice	es ,				٦
	F 2	Code	Symbol	Process Description	of Execution	No. of	Index	Sub-Set	Carry Flag	Ето	[۲	M/S	В	F	L.	т	D	w	ĸ	1 P	Αo	A ₁	zv	/ R	N
		ANB	─┬╶┥┞╶ ╒── ┦╴┤┞╶┬─ └╶┤┡╼┘ └─┤┝╾┙	AND for between logical blocks (serial connection of blocks)		1					Ī	T					T	Ī							П	П
		ORB		OR for between logic blocks (parallel connection of blocks)		1					1										T					
Connect	-	MPS	- (*)	Stores results of logical operations		1					İ				ı		T						Ì			
		MRD	MPS III	Reads results of logical operations stored with MPS		1							T			1					Ì				П	
		МРР	MPP	Reads and resets results of logical operations stored with MPS		1																				

Table 7.3 Connect Instructions

(3) Output instruction

Туре	rocessing Unit	Instruction	Symbol	Process Description	Condition	Steps		ž,		Γ						Ap	olic	ab	ie	De	vice	s		_		
.,,,,	Proce	Code	·	Process Description	of Execution	No. of	that	Sub-Set	Engr		x	Y	yı E	3 F	L	т	С	D	w	ĸ	1 P	Αo	A1	zv	/R	N
		OUT		Device output		1/3			T	F	П	•	•	•	•	•	•		7		Ŧ	П	7	Ŧ	Ŧ	П
		SET	SET ®	Device set	*	1	П	1	T	D D	H	•			•	Ħ			1	7	+		#	#	‡	
		RST	- RST ®	Device reset	*	1		1	Ť	0 0	H	•	+	Ť	•	•	•	-	•	#	+	•	•	•	•	
Output	-	PLS	- PLS ®	Generates 1 program cy- cle of pulses at rising edge of input signal	<u>-</u>	3			\dagger	D		•	+	+	t					1				\dagger		
		PLF	PLF	Generates 1 program cy- cle of pulses at falling edge of input signal	7	3			T	D		•	•	•	•								1	T		
		СНК	-CHK DI DZ	Reverses device output at I/O refresh	<u> </u>	5		7	F	D1 D2		•		•	•	•	•	•	•			•	•	•		-

Table 7.4 Output Instructions

POINT

- 1. The number of steps for the OUT, SET, and RST instructions varies (1 or 3) depending on the device.

 3 step devices are the following:
 OUT instruction: F, M9000 to M9255, SET instruction: B, F, M9000 to M9255, RST instruction: B, F, W, M9000 to M9255
- 2. For the execute conditions of the output instruction, the asterisk "\mathbb{X}" indicates that the device operates as for F (annunciator) and the otherwise.

(4) Shift instruction

Туре	ocessing Unit	Instruction	Symbol	Process Description	Condition	Steps	ж	Set	Fe .						A	ppl	icat	ole	De	vic	s				
Lype	Proce	Code	Oymboi	riocess Description	Execution	No. of	puj	कु ह	Enor		x	Y ×	В	F	L	T	D	w	ĸ	H F	Ao	Αs	z١	V R	N
Shift		SFT	- SFT ®	1-bit shift for a device		3				D		•	•	•	•								ĺ		П
Silit		SFTP	-SFTP ®	1-Dit Stiff for a device	<u></u>	3				D		•	•	•	•						T				П

Table 7.5 Shift Instructions

(5) Master control instructions

Туре	seing it	Instruction	Symbol	Process Description	Condition of	Steps	χe	, je	Fag						A	\pp	lica	ble	De	evic	es			-	
.,,,,	Proce Un	Code	Oymbo!	1 Totess Description	Execution	No. of	르		Fro		x	Y \\	В	F	L	т	D	w	ĸ	н	A	Αı	z	V	RN
Master		МС	MC n 0	Begins master control		5				n	Н	٦.		•			Ŧ		П	\blacksquare	Ţ	П		H	P
control	_	MCR	MCR n	Terminates master con- trol		3		†		n		Ť				1	T				Ť				•

Table 7.6 Master Control Instructions

(6) Program branch instructions

Туре	Processing	Instruction	Symbol	Process Description	Condition	Steps	Index	Sub-Set								A	ppl	ica	bie	De	vic	es				
.,,,,	Proce	Code	- Cymbol	1700css Bescription	Execution	No. of	Ē	Sub	Augo	ET O	×	Y	M/S	В	F	L	T	D	w	ĸ	HF	A	Αı	z	VR	N
		ಒ	CJP***	Jump to PXX after input conditions fulfilled	厂	3	•		•												•	·			Ī	\prod
Jump	-	ડ્ય	-SCJ P**	Jump to PXX in the next scan after input conditions fulfilled		3	•		•	•		ľ									•	,				П
		JMP	→ JMP P **	Jump to PXX unconditionally		3	•		•	•											•	•				\prod
		CALL	-CALL P**	Execute sub-routine PXX after input conditions ful-		3	•		•	•														T	T	П
Sub- routine call	_	CALLP	CALLP P**	filled	<u></u>	3	•		•	•											ľ					
		RET	♦ RET →	Return to sequence prog- ram after sub-routine program		1											T							1	1	П
		EI	∳ EI ∳	Enables interrupt prog- ram run. Valid for AS N- with M9053 off.	-	4		1	+	-		F	F			1	Ŧ				Ī			7	Ť	П
Interrupt program	-	DI	Di Di	Disables interrupt prog- ram run. Valid for ACM with M9053 off.		#		+	Ŧ	-	F	F	F				Ŧ							1	T	П
		IRET	IRET	Return from the interrupt program to the sequence program.		+		7	Ŧ	F		F				-	Ī					Ī		7		П
Micro- computer	_	SUB	- SUB n	Executes the micro-	\prod	3	•		•	1	Ī		Γ			1		l			Ī			1	T	П
program call	_	SUBP	- SUBP n →	computer program desig- nated by n.		3	•		•	n						ľ	•		•	•		•			•	

Table 7.7 Program Branch Instructions

– APP-29 -

APP

(7) Program switch instructions

Туре	assing nk	Instruction	Symbol	Process Description	Condition	Steps	ОХ	Set	Flag						A	\pp	lic	ab	le	De	vic	es					
	Program	Code	720.		Execution	No.	Pul	Sep	C T	×	Y	M S	В	F	L	т	c	D	w	ĸ	4 6	A	o A	z	v	R	N
Switch	-	CHG	- CHG +	Switches between main- and sub-programs	<u></u>	1											1			Ī	Ī	Ī					7

Table 7.8 Program Switch Instructions

(8) FOR to NEXT Instruction

Туре	cessing Unit	Instruction	Symbol	Process Description	Condition of	Steps	×	Set		Ī						\pp										7
	Proc	Code	- Cymbol		Evandian	No. of	ᄪ	ġ,			x	Y	M S	F	L	т	C	V	K	н	P	Ao/	A1 Z	v v	R	N
FOR to		FOR	FOR n	Executes program be-		3			•	n						•	•	•		•		•	•	•	•	
NEXT		NEXT	NEXT	tween FOR and NEXT for n times		1			•															Γ		

Table 7.9 FOR to NEXT Instruction

(9) Refresh instructions

Туре	ocessing Unit	Instruction	Symbol	Process Description	Condition of	Steps	×	şe.	Tag	681						Α	ppl	ca	ble	De	vic	es				
	Proce	Code	Cymbol	Process Description	Execution	No. of	pul	Sub-Set	È		x	Y	M S	В	F	<u>.</u>	rc	Þ	w	ĸ	н	PA	10 A	z	v	RN
Link refresh	_	сом	СОМ	Link refresh, general data processing executed	F	3		=	+	Ŧ	F			_		7	Ī	F			1	1	I			
Link refresh	_	EI	EI -	Clears link refresh dis- abled status: when M9053 is UN		#		=	-	Ŧ	F	F			1	1	Ī	F								
Enable /disable		DI	DI	Enables link refresh: when M9053 is ON		-#		-	+	-	F	F		4	1	-	Ŧ					1				Ť
Segment refresh	-	SEG	SEG ® n	Executes a segment re- fresh of selected device only during 1 scan.	Л	7																				

Table 7.10 Refresh Instructions

(10) END instructions

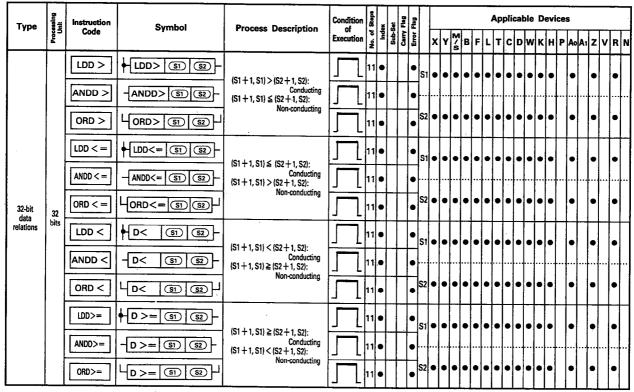
Туре	ssing it	Instruction	Symbol	Process Description	Condition of	Steps	ж	ş l	Flag										vice					
.,,,,,	Proce L	Code	Symbol		Execution	No. of	P.	ģ	Fa	x	Υ [VI S	F	L	T	D	w	ĸ	НР	Ao	Αı	z	v	RN
END	-	FEND	FEND	Always placed at end of main routine program to end processing.		1						T												T
instruction	-	END		Always placed at end of sequence routine prog- ram to end processing.		1														Ī				T

Table 7.11 END Instructions

(11) Other instructions

Туре	saing It	Instruction	Symbol	Process Description	Condition of	Steps	×		Pag Pag				7	Α	ppl	ical	ole	De	vice	es.			_	
1,750	Proce	Code	Symbol	Process Description	Execution	No. of	틸	gg.	E ST	х	Y	В	F	4	тС	D	w	ĸ	НР	A	A1	z	V	RN
Stop	_	STOP	- STOP	Results output after the input conditions are fulfiled, and stops the sequence program. When the RUN key switch is again set to "RUN", the sequence program begins execution again.	厂	1																		
No processing	-	NOP		No processing For program erasure or spaces.		1																	1	\prod

Table 7.12 Other Instructions



7.2.3 Basic instructions

(1) Relational operation instructions

Туре	Processing Unit	Instruction	Symbol	Process Description	Condition of		Sub-Set	y Flag	. Flag		_		_		,	lpp	ica	ble	De	evic	es				
	Proc	Code			Execution 2	+	g,	Ş	Епо	Ц	x	Υ [/B	F	L	T	20	w	κ	н	PA	o A	1 Z	v	RN
		LD =	LD= S1 S2 -		5 7		•		•	S1.	•	•	•	•	•	•	•		•	•				•	•
		AND =	-AND= S1 S2 -	(S1) = (S2): Conducting (S1) = (S2): Non-conducting	5 7	•	•		•				+-				.	 				-	ļ		
		OR =	UOR= S1 S2 J		5 7	•	•		•	S2	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•
		LD < >	+LD<>51 52		J 5	•	•		•	S1	•	•	•	•	•	•		•	•	•			•	•	•
		AND <>	-AND<> \$1 \$2	(S1) = (S2): Conducting (S1) = (S2): Non-conducting	5 7	•	•		•				. 	ļ		-		ļ			-		ļ		
		OR < >	LOR<> (\$1) (\$2) J		5 7	•	•		•	S2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		LD >	LD> (S1) (S2)		5 7	ŀ	•		•	S1	•	•		•	•	•		•	•	•			•	•	•
		AND >	-AND> (51) (52)-	(S1) > (S2): Conducting (S1) ≤ (S2): Non-conducting	J 5	•	•		•				.ļ					ļ			-	-	 		
16-bit	16	OR >	OR> \$1 \$2		5_ ₇	•	•		•	S2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
data relations	bits	LD <=	LD<= \$1 \$2	-	5 7	•	•		•	S1	•	•		•	•				•	•			•	•	•
		AND <=	-AND<= 51 52-	(S1) ≤ (S2): Conducting (S1) > (S2): Non-conducting	5 7	•	•		•				ļ			.	ļ	ļ					 		<u>.</u>
		OR < =	UR<= (\$1) (\$2)		5 7	•	•		•	S2	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•
		LD <	< (S1) (S2)-		5 7	•	•		•	S1	•	•	•	•	•	•	•	0	•	•		•	•	•	•
-		AND <	- < (\$1) (\$2)-	(S1) < (S2): Conducting (S1) ≥ (S2): Non-conducting	5 7	•	•		•			-∤.	ļ				ļ	ļ			.ļ				
		OR <	L < (21) (22) L		5 7	•	•		•	S2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		LD >=	>= S1 S2-		5 7	•	•		•	Sı	•			•	•			•	•	•			•	•	•
		AND >=	- >= S1 S2 -	(S1) ≥ (S2): Conducting (S1) < (S2): Non-conducting	5 7	•	•		•		-		ļ				-				.ļ	ļ			
		OR >=	- S1 S2 -		5 7	•	•		•	S2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		LDD =	LDD= S1 S2 H	(Ca 4 Ca) - (Ca 4 Ca)	11	•			•	S1	•			•	•	•		•	•	•				1,	•
		ANDD =	-ANDD= \$1 \$2-	(S1+1, S1) = (S2+1, S2): Conducting $(S1+1, S1) \le (S2+1, S2)$:]11	•			•				ļ		-		ļ				ļ	ļ			
32-bit data	32	ORD =	- ORD= S1 S2 -	Non-conducting	וי 🖳	•		-	•	S2 (•	•	•	•	•	•	•	•	•	•	•		•	•	•
relations	bits	LDD <>	↓ LDD<> \$1 \$2 −	(S1 + 1, S1) ≠ (S2 + 1, S2):	J 11	•		ŀ	•	S1 (•	•	•	•	•	•	•	•	•	•	•		•	1,	•
		ANDD <>		(S1 + 1, S1) + (S2 + 1, S2): Conducting (S1 + 1, S1) = (S2 + 1, S2): Non-conducting		•			•	-	-	.ļ	ļ		-						ļ			.	
		ORD < >	LORD<>S1 S2 J	Horr-conducting	J11	•		•	•	S2 (• •	•	•	•	•	•	•	•	•	•	•		•	_ •	•

Table 7.13 Relational Operation Instructions (Continue)

Table 7.13 Relational Operation Instructions

(2) Arithmetic operation instructions

г	T		1					,	_	_	_									_						
Туре	Processing Unit	Instruction	Symbol	Process Description	Condition of Execution	Steps	×	Sub-Set	Flag	BE						Apı	olic	abl	le [)eı	vice	S				
	Proc	Code	, , ,	Trocess Bescription	Execution	No. of	Ĕ	Sub	Ş.	Error	×	Y	M S	В	FL	т	С	D	W	4	ł P	Αo	Αı	z۱	√ R	N
		+	- + S D	(D) + (S) → (D)		5	•	•	1	• !	5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		+P	-{ +P \$ 0 +	(D) + (S) → (D)	J	5	•	•		•	9	•	•	•	•	•	•	•	•		1	•	•	•	•	,
		+	-+ S1 S2 ®		П	7	•	•	,	- [1	1	•	•	• !	•	•	•	•	•	•	<u>, </u>	•	•	•	•	
BIN 16-bit addition/	16	+ P	-+P S1 S2 0 +	(S1) + (S2) → (D)	<u></u>	7	•	•	1	- S	2 •	•	•			•	•	•		1	<u>.</u>	•	∤ ∤			
subtraction	bits		-[- S D +			5	•	•	1	• !	s •	•	•	•	•	•	•	•	•	•	,	•	•	• 1	•	
		— P	P S D +	(D) — (S) → (D)	<u></u>	5	•	•	1	• [,	•	•	•	•	•	•	•	•		1	•	•	•	• •	
			- S1 S2 0 +			7	•	•	1		.+	•	•	•	•	•	•	•	•	,	<u>, </u>	•	•	•	•	
		— Р	-P (\$1 (\$2 0) +	(S1) — (S2) → (D)	<u></u>	7	•	•	1	• S	-4	•	•		•	•	•	• •	•	•	.	•	•	•	•	-
		D+	-D+	(D + 1, D) + (S + 1, S)		9	•	•	,	• 5	•	•	•	•	•	•	•	•	•	,	,	•	1	•	•	П
BIN 32-bit addition/	32	D+P	- D+P	(D + 1, D) + (S + 1, S) $\rightarrow (D + 1, D)$	<u></u>	9	•	•	,	• [,	•	•	•	•	•	•	•	•	1	<u>†</u>	•		•	•	
subtraction	bits	D+	-D+ S1 S2 0 +			11	•	•	•	s	1 •	•	•	•	•	•	•	• (• •	•	Ţ	•	١,	•	•	П
				(S1 + 1, S1) + (S2 + 1, S2) $\rightarrow (D + 1, D)$	╬═┤	-	Н	\dashv	+	-[s	2	•	•	•	•	•	•	•	•	,	1	•	•	•	•	[]
		D+P	-D+P(S)(S2)(0)+		∱	11	•	•	ľ	<u>ַ</u>		•	•	•	•	•	•	•	• "	Ϊ	Ī	•		•	•	$ \cdot $

Table 7.14 Arithmetic Operation Instructions (Continue)

Туре	Processing Unit	Instruction	Symbol	Process Description	Condition of	Steps	ye,	Sub-Set	Flac		L					Ap	pli	cab	le	De	vic	es					
.,,,,	Proc	Code	-,		Execution	No. of	Ě	ang E	Ē		x	Υ	M Ś	В	FL	. ₹	c	D	w	ĸ	н	P A	۸ ₀ A	ı z	v	R	N
		D —	D- S D	(D + 1, D) - (S + 1, S)		9	•	•	•	s	•	•	•	•	•	•	•	•	•	•	•	ŀ	•	•		•	
BIN 32-bit addition/	32	D-P		→(D+1, D)	<u></u>	9	•	•	•	D		•	•	•	•	•	•	•	•				•	•		•	
subtraction	bits	D —	-D- S1 S2 0	(S1 + 1, S1) - (S2 + 1, S2)	\prod	11	•	•	•	Si	· • • • •	·	•	∤-		+-		•	•	•	•	··∤·	•	•	:	•	
		D-P	D-P (\$1 (\$2 (\$0)	→ (D + 1, D)	<u> </u>	11	•	•	•	ļ	ļ	•			•	+	٠	ļ	•		-		•	•		•	
		*	-*\\$1\\$2\0\+	(S1) × (S2) → (D + 1, D)	\prod	7	•	•	•	S	+	•	•	•	•	•	•	•	•	•	•	┅╁	• •	· ····	•	•	
BIN 16-bit multipli-	16	ЖР	-XP S1 S2 0 +	(01) × (02) (0)	<u></u>	7	•	•	•	ļ	∔…	•	•	∔	•	٠+۰۰	ļ		•		-		•	•		•	
cation/ division	bits	/	-/S1 S2 0 +	(S1) ÷ (S2) → Quotient (D),		7	•	•	•	S	∔…	•	•	•	•	•	•	•		•	•	┅╂╌	•	· ···	•	•	
		/P	- IP (S1) (S2) (D) +	Remainder (D + 1)	<u></u>	7	•	•	•	į	.	•		-+	•	+	·+···	٠	•	-		†-	•	•		•	
		D*	-D* S1 52 0 +	(S1 + 1, S1) × (S2 + 1, S2)	Л	11	•	•	•	Si	ት ⋯	•	•	•	•	•	•	•	··· 	•	•	┅╂╌	•	•		•	
BIN 32-bit multipli-	32	DXP	-DXP (\$1) (\$2) (6)	→ (D + 3, D + 2, D + 1, D)	<u></u>	11	•	•	•	ļ	+	•	•			· · ·	-∤…		•	•						•	
cation/ division	bits	D/	-D/ S1 S2 0 +	(S1 + 1, S1) ÷ (S2 + 1, S2) → Quotient (D + 1, D),	\prod	9	•	•	•	S	╁…	 	•	∔	•	. 	•	•		•	•		•	•		•	
		D/P	D/P S1 S2 0	Remainder (D + 3, D + 2)	<u> </u>	9	•	•	•	ļ	+…	•	ŀ…	∔			·+···	} …∤	•							•	
		B+	-B+ S D +	(D) + (S) → (D)	\prod	7	•		•	s	•	•	•	•	•	•	•	•	•	•	•	ŀ	•	•	•	•	
		B+P	-B+P ® ®		<u></u>	7	•		•	D		•	•	•	•	•	•	•	•			ŀ	•	•	•	•	
		B+	-B+ S1 S2 0 →	(S1) + (S2) → (D)	Л	9	•		•	S	╁…	•	•	+		-	+	•		+	•	┅╁╌	•	•		•	
BCD 4-digit addition/	BCD 4	B+P	-B+P (\$1 (\$2 (\$0 -\$4	(5) (62) (5)	<u> </u>	9	•		•	ļ.,	ļ	•	•			+	·		•		-	∤-	∤	•		•	
subtraction	digits	В	- B- S D	(S1) — (S2) → (D)	Л	7	•		•	s	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		В-Р	— B−P ⑤ ⑥	(0.1, (0.1, 1,0.1)	<u></u>	7	•		•	D		•	•	•	• •	•	•	•	•			•	• •	•	•	•	
		В-	-B- S1 S2 0 →	$(S_1) - (S_2) \rightarrow (D)$	\prod	9	•		•	S	ł	╁┅╁	•	∔	•	. 	ļ	•	}	-+	•	+-	•	+	ŀ…	•	
		В-Р	-B-P \$1 \$2 0 +		<u> </u>	9	•		•	D	1	·	} ⋯∤			· -	•						∤	•		•	
		DB+		(D+1, D)+(S+1, S)	\prod	9	•	1	•	s	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	
		DB+P		→ (D + 1, D)	<u></u>	9	•		╀	D	L	Ш	Ц	_	• •	L	•	•	•			ŀ	•	•		•	╝
		DB+	-DB+ S1 S2 ® →	(S1 + 1, S1) + (S2 + 1, S2)	Л	11	•		•	S	+…	•	••••	•••	+	٠+٠٠	•		•		•	··∤·	•	•		•	
BCD 8-digit addition/	BCD 8	DB+P	-DB+P(\$1\\$2\D\-	→ (D + 1, D)	<u></u>	11	•		•	l		ļ		··· ·		· -	•		•			∤-	•	•		•	
subtraction		DB —	- DB- § ® +	(D+1, D) - (S+1, S)	\prod	9	•		•	s	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	
		DB — P	-[DB-P § ® +	→ (D+1, D)	<u></u>	9	•		1	D	L	•	•	•	•	•	•	•	•			ŀ	•	•		•	
:		DB-	-DB- S1 S2 0 +	(S1 + 1, S1) + (S2 + 1, S2)	\prod	11	•		•	S	т	-	•	+	•	·+··	•	ŀ…	•		•	∤-	•	•		•	
		DBP	-DB-PS1 S2 ® →	→ (D + 1, D)	<u></u>	11	•		•	١.,	···			∤.		· • • •		ŀ···		-			•	•		•	

Table 7.14 Arithmetic Operation Instructions (Continue)

	seing It	Instruction	0		Condition	Steps	×	Flag	Rag						F	γpp	lica	ble	. D	evi	ces				
Туре	Processing Unit	Code	Symbol	Process Description	_ "	No. of	жериј	Sub	Error Flag		x	Y	A B	F	L	т	C	V	K	Н	P	Ao A	\1 Z	٧	RN
		вж	-BX (S1) (S2) (0) →	(C4) V (C0) (D 4 D)		9	•		•	ŀ⋯ŀ	•	•	•	•	•	•			•	ļ			-+	ł	•
BCD 4-digit multipli-	BCD 4	вжР	-B*P (\$1 (\$2 (\$0)	$(S1) \times (S2) \rightarrow (D+1, D)$	<u>}</u>	9	•		•	LI.	-	•		•	•	•							-+	ŀ	•
cation/ division	digits	B/	-B/ S3 S2 0 +	(S1) ÷ (S2)		9	•		•			•		ļ	•										
		B/P	-B/P S1 S2 0 +	→ Quotient (D) remainder (D + 1)	لم	9	•		•	LI.	-	•		•	•	•							-+	ļ	•
		DB*	-DBX (\$1) (\$2) (0) -	(S1 + 1, S1) × (S2 + 1, S2)		11	•		•		•••	•	•	.		•	•			ļ		· -	++		
BCD 8-digit multipli-	BCD 8	DB*P	-DB*P\$1\$20-	\rightarrow (D + 3, D + 2, D + 1, D)	<u>_</u>	11	•		•	L l .	-	•		.		•			.			-	-		•
cation/ division	digits	DB/	-DB/ (\$1) (\$2) (b) +	(S1 + 1, S1) ÷ (S2 + 1, S2) → Quotient (D + 1, D)	П	11	•		•			•	+-	· ···	•	•	•		•	ļ	ŀ…ŀ		-4		•
		DB/P	-DB/P \$1 \$2 ® →	remainder (D + 3, D + 2)	$\mathbf{\Pi}$	11	•		•	S1	! 	•													
	16	INC	- INC ® +	(D) + 1 → (D)	П	3	•	•	•																
BIN data	bits	INCP	- INCP ®	(U) + 1 → (U)	<u></u>	3	•	•	•						Ī	"						"			
increment	32	DINC	- DINC ®	(D+1, D)+1→(D+1, D)	Л	3	•	•	•	11															•
	bits	DINCP	DINCP ®	יט דו אינט דו אינט איני	_	3	•	•	•	11															
	16	DEC	- DEC ®	(D) 1 -→ (D)	Л	3	•	•	•	Ιİ															
BIN data	bits	DECP	- DECP ®	(0) 1 (0)	<u></u>	3	•	•	•						•										
increment	32	DDEC	DDEC ®	(D+1, D) - 1 → (D+1, D)		3	•	•	•	H				,											
	bits	DDECP	DDECP ©	(U T I, U) - I - (U T I, U)	J	3	•	•	•	٦		1													

Table 7.14 Arithmetic Operation Instructions

(3) BCD ↔ BIN conversion instructions

	ocessing Unit	Instruction			Condition	Steps	×	, i		T					•	ppl	ica	ble	De	vice	 SS				٦
Туре	Proces Un	Code	Symbol	Process Description	of Execution	No. of	Pde	Sub-Set	Error		x	Y	M S	F	L	Т	; D	w	K	H P	, Ao	Αı	zν	/R	N
	16	BCD	BCD S D	BCD conversion	П	5	•	•	•	s	•	•	•	•	•	•	•	•			•	•	•	•	
BCD	bits	BCDP	- BCDP S D	(S) (D) BIN (0 to 9999)	厂	5	•	•	•	D		•	•	•	•	•	•	•			•	•	•	•	
conversion	32	DBCD	-DBCD S D	BCD conversion	П	9	•		•	s	•	•	•	•	•	•	•	•	П	T	•		•	•	
	bits	DBCDP	- DBCDP S D	$(S_1 + 1, S_1) \rightarrow (D + 1, D)$ BIN (0 to 99999999)	<u></u>	9	•		•	D		•	•	•	•	•	•	•		T	•		•	•	
	4	BIN	- BIN (\$ (0) +	BIN conversion	几	5	•	•	•	s	•	•	•	•	•	•	•	•			•	•	•	•	
BIN	digits	BINP	BINP S D	(S) —————(D) BCD (0 to 9999)	<u></u>	5	•	•	•	D		•	•	•	•	•	•	•			•	•	•	•	
conversion	8	DBIN	- DBIN S D	BIN conversion	Л	9	•		•	s	•	•	•	•	•	•	•	•	П		•		•	•	\prod
	digits	DBINP	- DBINP S D	$(S_1 + 1, S_1) \rightarrow (D + 1, D)$ BCD (0 to 99999999)		9	•		•	D		•	•	•	•	•	•	•		Ī	•		•	•	

Table 7.15 BCD ↔ BIN Conversion Instructions

(4) Data transmit instructions

Tuna	ssing K	Instruction	Symbol	Process Description	Condition	Steps	ž	Set		2						Apı	plic	ab	le [)eı	vice	s				
Туре	Processing Unit	Code	Symbol	Process Description	Execution	No. of Steps	þul	Sub-Set	3	2	x	Y	M S	В	Ŀ	Т	С	D	W	<u>.</u>	1 P	Αo	A ₁	z	/R	N
	16	MOV	- MOV (S) (D)	(S) → (D)		5	•	•	•	9	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Tonomia	bits	MOVP	- MOVP (\$ (\$)	(3) → (U)	<u></u>	5	•	•	•	• [•	•	•	•	•	•	•	•	Ī		•	•	•	•	
Transmit	32	DMOV	- DMOV (S) (D) +	(C1	П	7	•	•	•	9	•	•	•	•	•	•	•	•	•	,	•	•		•	•	П
	bits	DMOVP	- DMOVP S D	$(S1+1, S) \rightarrow (D+1, D)$	_	7	•	•	•			•	•	•	•	•	•	•	•	Ï	Ī	•		•	•	
	16	CML	- CML (S (D)	(S) → (D)	Л	5	•	•	•	9	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Negation	bits	CMLP	CMLP S D	(S) ~ (D)	J	5	•	•	•			•	•	•	•	•	•	•	•	ľ	T	•		•	•	
transmit	32	DCML	- DCML S D	$\overline{(S1+1, S)} \rightarrow (D+1, D)$	\prod	7	•	•	•	s	•	•	•	•	•	•	•	•	•	•	•	•	\prod_{i}	•	•	
	bits	DCMLP	DCMLP S D	(51 T 1, 5) - (U T 1, U)	<u></u>	7	•	•	•	•		•	•	•	•	•	•	•	•		Ī	•		•	•	
		вмоч		(S) (D)		9	•		•	1	· · · ·	•	•	-	•	•		•	•	Ţ	Ţ				•	
Block	16	вмочр	-BMOVP S D n	==	<u></u>	9	•		•	• -	·	•	•	•			•	•	-		•				•	
transmit	bits	FMOV	- FMOV ⑤ ⑤ n →	(D)	П	9	•		•	` Ի-	+	•	•	•		•		•	•	•	•	•	•	•		
		FMOVP	-FMOVP S ® n →		<u> </u>	9	•		•	- [· · · ·	•	•	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓			•	•	•		•					
	16	ХСН	-XCH DD 002 +	(D1) ↔ (D2)	П	5	•	•	•	P	1	•	•	•	•	•	•	•	•	T	T	•	•	•	•	
Exchange	bits	XCHP	-XCHP D1 D2	(01) (02)	<u> </u>	5	•	•	•	D	2	•	•	•	•	•	•	•	•		Ī	•	•	•	•	
Exchange	32	DXCH	-DXCH 団 🐵 🛉	(D1 + 1, D1) →		7	•	•	•	D	1	•	•	•	•	•	•	•	•		I	•	-	•	•	П
	bits	DXCHP	-DXCHP DI DE	← (D2 + 1, D2)	_	7	•	•	•	D.	2	•	•	•	•	•	•	•	•			•		•	•	

Table 7.16 Data Transmit Instructions

7.2.4 Application instructions

(1) Logical operation instructions

	ğ	Instruction			Condition	Steps		_ =	2						Aŗ	plic	cab	le	Dev	ices				
Туре	Processing Unit	Instruction Code	Symbol	Process Description	of Execution	No. of S	Index	Sub-Se	Error Flag		x	Y	В	F	LT	С	D	w	КН	Р	Ao A	11 Z	V	RN
		WAND	-WAND S D+		П	5	•	•	•	s	•	•	•	•	• •	•	•	•	•		•	•	•	•
	16	WANDP	- WANDP ® ®	(D) ∧ (S) → (D)	<u></u>	5	•	•	•	D	•	•	•	•	•	•	•	•	••••		•	•	•	•
AND	bits	WAND	-WAND (\$1) (\$2) (0) +		Л	7	•	T	•	···	•	•	•	•	•	•	•	•	•		•	•	•	•
operations		WANDP	-WANDP (\$1 (\$2 (0))	(S1) ∧ (S2) → (D)	<u></u>	7	•		•			•		···	•	•	ŀ⋯ŀ	•	• •	-	•	-+	-	•
	32	DAND	- DAND (S) (D) +	(D+1, D) \(\Lambda\) (S+1, S)	丌	9	•		•	s	•	•	•	•	•	•	•	•	• •		•	•	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•
	bits	DANDP		→ (D + 1, D)	<u></u>	9	•		•	D		•	•	•	•	•	•	•			•	•		•
		WOR	- WOR (\$ (\$) -		丌	5	•	•	•	s	•	•	•	•	•	•	•	•	• •		•	• •	•	•
	16	WORP	- WORP (S (D)	(D) ∨ (S) → (D)	<u></u>	5	•	•	•	D		•	•	•	•	•	•	•			•	•	•	•
OR	bits	WOR	-WOR (\$1) (\$2) (\$0)		П	7	•	Ť	•	S1	•	•	•	•	•	•	•	•	•		•	•	•	•
operations		WORP	-WORP \$1 \$2 ®	(S1) ∨ (S2) → (D)	<u></u>	7	•		•		•		+	1	•	.	·	•	• •	¦	•	-+	-	•
	32	DOR		(D+1, D) V (S+1, S)	丌	9	•		•	s	•	•	•	•	•	•	•	•	• •		•	•	\prod_{i}	•
	bits	DORP	- DORP S D	→ (D+1, D)	1	9	•	1	•	D	•••	•	•	•	•	•	•	•	1	t	•	•		•
		WXOR	-WXOR S D		厂	5	•	•	•	s	•	•	•	•	•	•	•	•	• •	,	•	•	•	•
	16	WXORP	- WXORP S D	(S1) ¥ (S2) → (D)	<u></u>	5	•	•	•	D		•	•	•	•	•	•	•			•	•	•	•
Exclusive	bits	WXOR	-WXOR S1 S2 0 +		Л	7	•	Ì	•	1111	•	•	•	+	•	· ···	}···∤	-	• •	╁┄┧		•	-	•
OR operations		WXORP	-WXORP (S1) (S2) (D) +	$(S_1) \not\leftarrow (S_2) \rightarrow (D)$	<u></u>	7	•		•	S2 D	•				•		} ⋯∤	•		.				
	32	DXOR	-DXOR S D	(D+1, D) ¥ (S+1, S)	П	9	•		•	s	•	•	•	•	•	•	•	•	• •		•	•	Π	•
	bits	DXORP	-DXORP S D	→ (D + 1, D)	1	9	•		•	D		•	•	•	•	•	•	•		T	•	•		•
		WXNR	- WXNR (\$ (0) +	(D) \ (D)		5	•	•	•	s	•	•	•	•	•	•	•	•	•		•	• •	•	•
	16	WXNRP	-WXNRP S D	$(D) \not \hookrightarrow (S) \rightarrow (D)$	<u></u>	5	•	•	•	D		•	•	•	•	•	•	•			•	•	•	•
Exclusive	bits	WXNR	-WXNR (S1 (S2 (0) +		Л	7	•		•	11	••••	•	· · · ·		•	.	}···∤	∤-	• •	+	}.	• •		•
NOR operations		WXNRP	-WXNRP S1 S2 0 +	$\overline{(S1)} \leftrightarrow \overline{(S2)} \rightarrow (D)$	1	7	•		•	S2 D	•			ļļ		. ···	} 	•	• •	<u>'</u>		.+		•
	32	DXNR	- DXNR (\$ (0) +	(D+1, D) \(\lambda\) (S+1, S)	几	9	•		•	s	•	•	•	•	•	•	•	•	•		•	•		•
	bits	DXNRP	- DXNRP S D	→ (D + 1, D)	<u></u>	9	•	•	•	D		•	•	•	•	•	•	•			•	•		•
Comple- ments	16	NEG	NEG D	(D) ± 1 - (D)	П	3	•		•	1 1														
of 2	bits	NEGP	NEGP ®	(D) + 1 → (D)	<u></u>	3	•		•	D		1		•	•						•			

Table 7.17 Logical Operation Instructions

(2) Rotation instructions

Туре	Processing Unit	Instruction	Symbol	Process Description	Condition of	Steps	×	Set	e l	8						Α	ppl	ica	bie	D	evic	es			_		
Туре	Proce	Code	Symbol	Process Description	Execution	No. of Steps	Index	Sub	Š	ETTO	x	Y	M/S	В	F		T	D	w	ĸ	н	PA	10 A	1 2	· v	/R	N
		ROR	ROR n	Carry 15 AO n 0	\prod	3	•		•														Ī		T	T	
Rotate		RORP	- RORP n →	RCRP n Street to the right Street to th																							
right		RCR	RCR n	RORP n n-bit rotate to the right 3 n n n n n-bit rotate to the left 3 n n n n n n n n n n n n n n n n n n																							
	16	RCRP	RCRP n	n carry 15 A0 n 0																							
	bits	ROL	-ROL n	Carry 15 (16-n) 0	П	3	•		•]_															T		
Rotate		ROLP	ROLP n		<u></u>	3	•		•	"										•							
left		RCL	- RCL n	Carry 15 (16—n) n 0		3	•		•														Ī	T			
		RCLP	- RCLP n	Curry	_	3	•		•											•							
		DROR	- DROR n →	Carry 15 0.15 n 0	\prod	3	•		•											•							
Rotate		DRORP	- DRORP n →		<u></u>	3	•		•	"																	
right		DRCR	— DRCR n →	A1 A0 15 (16—n)0.15 n 0 Carry	\prod	3	•		•																		
	32	DRCRP	- DRCRP n →		<u> </u>	3	•		•											•							
	bits	DROL	- DROL n →	Carry 15 (16-n) 0.15 0		3	•		•																Ī		
Rotate		DROLP	DROLP n	<u> </u>	<u></u>	3	•		•]"										•							
left		DRCL	- DRCL n →	[[[]]] 	П	3	•		•																		
		DRCLP	DRCLP n		<u></u>	3	•	-	•	''										_							

Table 7.18 Rotation Instructions

(3) Shift instructions

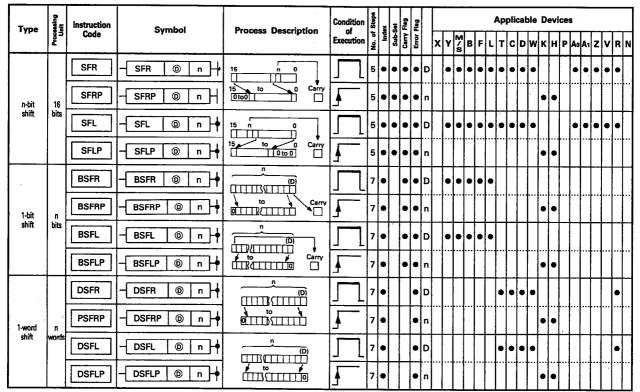


Table 7.19 Shift Instructions

(4) Data processing instruction

	Buja.	Instruction			Condition	Steps	× .	F 50							A	ilqq	cal	ble	De	vic	es					
Туре	Processing Unit	Code	Symbol	Process Description	of Execution	No. of Step		Sub-Set Cerry Flag	Error		X.	Y X	В	F	L	С	D	w	ĸ	н	P /	۸ ۰ A	1 Z	v	R	N
Data		SER	-SER S1 S2 n	(S1) (S2) n		9	•		•	S1 S2		<u>.</u>	ļ			•	ļ	ļ	•	•		•	•	•	•	•
search	16	SERP	SERP S1 S2 n	A0: Not found A1: No. of found search objectives	1	9	•		•	ļ									•	•			1	<u> </u>		
	bits	SUM	- SUM S	15 (S) 0 A0: No. of 1s		3	•		•	s																
Bit		SUMP	- SUMP S		<u>_</u>	3	•		•	i																
check	32	DSUM	- DSUM S	(S+1) (S) → A0: No. of 1s	\prod	3	•		•	s															•	
	bits	DSUMP	DSUMP S		<u></u>	3	•		•	ı															L	
		DECO	DECO S D n	8 → 256 decode (S) (D) — 4		9	•		•	S	ŀ··ŀ		· <u></u>	•		•	 	−-	•	•		•	•	•	•	
Decode/	2 ⁿ	DECOP	-DECOP ® ® n	Decode 2 ⁿ bits	<u>-</u>	9	•		1	L								-	•	•			+			
encode	bits	ENCO	-ENCO S D n	256 → 8 encode (S)	П	9	•		•		•	•	•	•		•	·-	+			ŀ…ŀ	.	•	-∤	· ·	
		ENCOP	ENCOP S D n	2n (D) bits Encode	1	9	•		1	D n							•	•	•	•		•	•	•	•	
7 segment decode		SEG	SEG S D	(S) 7SEG (D) n 0 Valid for ACN, Decode ASH when MS052 is off.		7	•		T	S	∤ ∤	•		•		•		+	·	•	ŀ	…∤.	•	-4		
		BSET	BSET ® n	(D) 15 n 0	Л	7	•		•	P					,	• •	•	•				•	•	•	•	
Bit		BSETP	BSETP ® n	1	<u></u>	7	•		•	n		1						Ī	•	•			T			-
set/reset		BRST	BRST ® n	(D) 15 n 0	П	7	•		•	D						•	•	•				•	•	•	•	
	16	BRSTP	BRSTP © n		1	7	•		•	n		1				- - -			•	•			Ī			
	bits	DIS	- DIS \$ 0 n	A bits All 4 bits A bits D D D D D D D D D D D D D D D D D D D		9	•		•	ļ	ŀ··ŀ				} ⋯∤	•	∤	٠+	ļ	•		•	•	•		
Disperse/		DISP	DISP S D n	S (D)+1 When n=3	_	9	•		•) 	···		+	. '		•			•	•				- -		
unify		UNI	-UNI S D n	4 bits 4 bits	П	9	•		•	1	∤ ⋯∤				∤ …∤	•		. †	·	ļ]		•	ļ
		UNIP	-UNIP S D n	(S)+1 (S)+2 When n=3	<u></u>	9	•	1	1	D	·		+			•		•	•	•	 	•	•	•	•	ļ
ASCII conversion	-	ASC	ASC Alphanumeric (1)	Alphanumeric is converted to ASCII code and written from (D) device to 4 points	1	13	•		•	P			Ī		П	•	•	•					T	T	•	

Table 7.20 Data Processing Instruction

(5) FIFO instructions

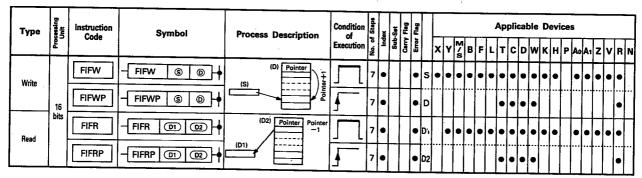


Table 7.21 FIFO Instructions

(6) Buffer memory access instructions

Туре	Processing	Instruction Code	Symbol	Process Description	Condition of	Staps	Index	Set		<u>.</u>					,	\ppi	ica	ble	De	vic	es			_	
	e e	Code	,	Vicesso Bescription	Execution	\$ 0	틸	Sub-Set	T L		x	Y	B	F	L	T	-	w	ĸ	н	2 A.	Α1	z	VR	N
	,	FROM	FROM n1 n2 ® n3			9	•		•	n1	ł						ļ	4	•		Ţ				
Data	word	FROMP	FROMP n1 n2 (1) n3	Reads data from a	<u></u>	9	•	T		۵	•	•	•	•	•	•	•	•		1	<u> </u>				
read	2	DFRO	— DFRO n1 n2 ⑩ n3 →	special function module		9	•	1	•	n1 n2		_	<u> </u>		-		ļ		•	•	<u> </u>		_	<u> </u>	H
	words	DFROP	— DFROP n1 n2 ◎ n3 →		1	9	•	\dagger	•	D	•	•	•	•	•	•	•	•	•	<u> </u>	<u> </u>			•	
	1	то	—TO n1 n2 ⑤ n3 →			9	•	+	•			 	<u> </u>		1				•	•	 	Н	\pm	+	Н
Data	word	ТОР	— TOP n1 n2 S n3 →			9	•	\dagger	•	n2 S	•	•	•	•	•	•	•	•	•	•	ļ			•	
write	2	ОТО	— DTO n1 n2 S n3 →	Writes data to a spe- cial function module		11	•	\dagger	•	n3 n1		+	 		+	 			•	•			+	+	H
	words	DTOP	- DTOP n1 n2 (\$) n3			9	•	\dagger	•	n2 S	•	• •	•	•	•	•	•	•	•	•				•	
	Щ.							\perp	Ĺ	n3					\perp	L			•	▶		П	_[1	

Table 7.22 Buffer Memory Access Instructions

(7) Local, remote I/O station access instructions

Туре	cessing Unit	Instruction Code	Symbol	Process Description	Condition	Steps	Index	Sub-Set	Blace .							Ap	plic	abl	e C	Dev	rice	\$				_
<u></u>	P.	Code	•		Execution	₹. 0	Ĕ	a ,			x	Υ	M S	В	: L	Т	С	D	N K	(F	í P	A٥	Αı	z١	/ F	N
Local station		LRDP	LRDP n1 S D n2	Reads local station data	<u></u>	11	•		•	n1 S				-	-	•	•			•						
read/ write	1	LWTP	LWTP n1 \$ 0 n2 +	Writes data to local sta- tion	<u></u>	11	•		•	D n2			-	- -	-	•	•	•			ļ			-		
Remote station	word	RFRP	RFRP n1 n2 @ n3	Reads data from special function unit of remote station	Ц	11	•	+		n1 n2											-				+	H
read/ write		RTOP	RTOP n1 n2 @ n3 -	Writes data to special function unit of remote station		11	•	-	-	D n3	Ē							+			Ţ					H

Table 7.23 Local, Remote I/O Station Access Instructions

(8) Display instructions

Туре	Processing Unit	Instruction	Symbol	Process Description	Condition	Steps	ř	şë.	F 60	2					,	\ppi	ica	ble	De	vic	 es				
	P. 700	Code	- Cyllibol	Trocess Description	Execution	No. of	Index	g,	Ē		x	Y	A B	F	L	T	; D	w	ĸ	H F	, A0	Aı	zv	R	N
		PR	PR (S) (D)	Reads 8 points of ASCII code (16 characters) from the designated device and outputs to an output module.	J	7	•		1	S	+	•	-	H		•	•	•	П	7	Ŧ	Ħ	‡	•	
ASCII print	-	PR	- PR (S) (D) +	Reads ASCII codes continuously from the designated device until a NULL (00H) code is reached and eutrous them to an output module.	_	7	•	#	-	S	Ŧ	•				•	•				+		+	•	
		PRC	- PRC S D	Converts designated device comments to ASCII code and outputs them to an output module. Comments from device 1 is permissible.	<u></u>	7	•	Ì	1	S	+	•	•	•	•	•	•	•		•	+	H	Ŧ	•	
		LED	LED S	(S) to Display (S)+7 16 characters	<u></u>	3	•		•	s			T			•	•	•	•	\dagger	T		Ť	•	
Display	_	LEDA	LEDA Alphanumeric	Displays the designated alphanumeric characters on LED.	<u></u>	13							Ì			1				1	T	П	†		
Бізріву		LEDB	LEDB Alphanumeric	(LEDA: First 8 characters) (LEDB: Last 8 characters)	<u>}</u>	13							T						П	1	Г	П	T	Ħ	
		LEDC	- LEDC S	Displays comments of (S) device.	<u></u>	3	•		•	s	•	•	•	•	•	•	•	•		•		П	T	•	
Display reset	-	LEDR	- LEDR →	Resets LED display.	_	1																П	T	\prod	

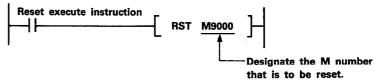
Table 7.24 Display Instructions

(9) Other instructions

	Туре	Processing Unit	Instruction	Symbol	Process Description	Condition of Execution	Steps	ă c	190	Flac						<u> </u>	Αp	pli	cal	ole	De	vic	es				٦
L		Š.	Code		Troctor Beschpton	Execution	No. of	xepul	Carry Flan	į		x	Y	M/S	3 F	L	. +	С	D	w	ĸ	Нſ	A	0 A1	z	V R	N
	WDT	-	WDT	- WDT →	Resets WDT during sequ-		1			Ī					T		Ī			П	1	Ī	1		П	T	П
	reset	-	WDTP	- WDTP	ence program	J	1		T							T	T					†	T		П	Ť	П
M	alfunction check	-	СНК	- CHK (b) (02)	If malfunction (D1):ON (D2):Malfunction NO If normal (D1):OFF, (D2);0 A□N in I/O direct control	<u></u>	5		T		D1 D2	J I	•	J		•	4				1	7					H
Status latch	Set		SLT	- SLT	Stores data in the status latch memory in the conditions set by the parameter settings.	<u></u>	1							T	1	1	r				1	†	Ť			Ť	П
Statu	Reset		SLTR	- SLTR	Clears the status latch and enables the SIT instruction again.	<u></u>	1		T	Ī				1	T	T					1	T	\dagger			T	П
Sampling trace	Set		STRA	- STRA	Stores the sampling data in the sampling trace memory in the conditions set by the parameter settings.	<u></u>	1	T		Ī					Ī						1	Ť	T		1	T	П
Sampli	Reset		STRAR	STRAR	Restarts sampling trace. (enables the STRA instruction.)	Ţ	1							1	T	T	T				†	Ť	T			T	П
<u>_</u>	Set	- 1	STC	- stc →	Sets the carry flag contact (M9012) to ON.	<u></u>	1								T						1	T	T		1	T	
Ŝ	Reset	bit	CLC	- CLC	Sets the carry flag contact (M9012) to OFF.	1	1								T						1	†	T		1	Ť	П
	Timing	,			Generates the timing clock shown below.						n1										•	•	T		\dagger	T	
	clock	bit	DUTY	DUTY n1 n2 @ +	Special register n1 scans n2 scans	_	7			•	n2			.ļ.	.	ļ	ļ				•		ļ				
					(D)			╧			D		-	•			ļ				T	1			-	1	ĺ

Table 7.25 Other Instructions

APPENDIX 8 Special Relay, Special Register List


8.1 Special relay list

The special relays are internal relays that are used for predetermined purposes. The use of each of the special relays is divided into the types shown in the table below. These special relays should be used based on the uses given below.

	Туре	Special Relay Application	Remarks
1	Relays turned ON/OFF by User	(1) Turned ON/OFF with the sequence program. (2) Turned ON/OFF forcibly with a peripheral device (GPP,HGP,PHP,PU) set to test mode.	Since a peripheral device can only be con- nected to the A3VCPU, individual A3VCPUs have different data from each other.
2	Relays turned ON by A3VCPU OS	 (1) Used by the sequence program as a contact. (2) Monitored by a peripheral device (GPP,HGP,PHP,PU). * (3) To turn OFF, either reset with the sequence program or reset forcibly with a peripheral device (GPP,HGP,PHP,PU) set to the test mode. 	Since the OS of the A3CPU handles only its own special relays, individual A3VCPUs have different data in these special relays from each other.
3	Relays turned ON/ OFF by A3VCPU OS	(1) Used by the sequence program as a contact.(2) Monitored by a peripheral device (GPP,HGP,PHP,PU).(3) User should not turn this relay ON/OFF.	
4	Relays turned ON by A3VTU OS	(1) Used by the sequence program as a contact. (2) Monitored by a peripheral device (GPP,HGP,PHP,PU). * (3) To turn OFF, either reset with the sequence program or reset forcibly with a peripheral device (GPP,HGP,PHP,PU) set to the test mode.	Since the OS of the A3VTU provides special relay data to all of the A3VCPUs during operation, the data held by this type of relay is identical in all of the A3VCPUs. However, when the sequence program or the peripheral device (the peripheral device can be connected only to
5	Relays turned ON/ OFF by A3VTU [OP- ERATION/STOP]	(1) Used by the sequence program as a contact.(2) Monitored by a peripheral device (GPP,HGP,PHP,PU).(3) User should not turn this relay ON/OFF.	the A3VCPU) resets the data, the data held by individual A3VCPUs.

POINT

(1) To reset the special relays using a sequence program in the procedure as indicated by an asterisk "★" in the above table, insert the circuit shown below into the sequence program and reset (OFF) the designated special relays by setting the reset execute instruction contact to ON.

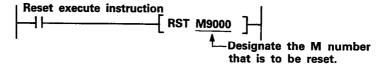
- (2) Because the peripheral device (GPP,HGP,PHP,PU) can be connected only to the A3VCPU, the monitor, forced ON/OFF, etc., can only be accessed via the A3VCPU. However, when operating the system in the majority operation mode, and if a special relay is forcibly turned ON/OFF, the A3VCPU which has been accessed for this operation has the data different from other A3VCPUs. If that data is connected to output (Y), the related A3VCPU will be dropped from operation.
- (3) All special relays are reset when power is turned ON. Setting the reset switch at the front panel of a CPU module also resets all special relays.
- (4) Relay numbers marked in the table with x indicate special relays which are not transmitted to restored A3VCPU or the A3VCPU whose operation status has been change from PAUSE/STOP to RUN in the data memory transmit operation.

API

Table 8.1 Special Relay List (Continue)

Number	Name	Stored Data	Description	Type Number
* M9046	Sampling trace	0: Except during trace 1: During trace		3
* M9047	Sampling trace preparation	0: Sampling trace stop 1: Sampling trace start	Sampling trace is not executed until M9047 is turned on. By turning off M9047, sampling trace is stopped.	1
M9051	CHG instruction execution dis- able	0: Disable 1: Enable		
M9054	STEP RUN flag	0: Not during step run 1: During step run	·	3
* M9055	Status latch com- pletion flag	0: Uncompleted 1: Completed	Turned on when status latch is completed. Turned off by reset instruction.	
M9056	Main program P, I set request	1: During P, I set request 0: Except during P, I set request	Switch on upon completion of the transfer to another program (e.g. subprogram during RUN of the main program). Automatically switched off when P, I setting is complete.	
M9057	Subprogram P, I set request	1: During P, I set request 0: Except during P, I set request		3
M9091	Microcomputer sub-routine call error flag	0: No error 1: Error		2
M9092	Dual power supply module overheat error	0: Normal 1: Normal Overheated	Set to ON when overheat of the dual power supply module is detected.	5
M9093	Dual power supply module malfunction	Normal Malfunction or no AC supply	Set to ON when the dual power supply module has malfunctioned or ther is no AC supply.	5
M9096	A3VCPU (A) self- diagnosis error	0: No error 1: Error	Set to ON if the A3VCPU next to the A3VTU is the A3VCPU A and detects an error during self-diagnosis.	4
M9097	A3VCPU (B) self- diagnosis error	0: No error 1: Error	Set to ON if the next to the A3VCPU A is the A3VCPU B and detects an error during self-diagnosis.	4
M9098	A3VCPU (C) self- diagnosis error	0: No error 1: Error	Set to ON if the A3VCPU right end of the A3CPU is the A3VCPU C and detects an error during self-diagnosis.	4
М9099	A3VTU self- diagnosis error	0: No error 1: Error	Set to ON if the A3VTU detects an error during self-diagnosis.	4

Table 8.1 Special Relay List



8.2 Special register list

\setminus	Туре	Special Register Application	Remarks
1	Registers set by user	(1) Set with the sequence program.(2) Set with the peripheral device (GPP,HGP,PHP,PU) set to test mode.	 Peripheral device can be connected only to the A3VCPU. When data is set in the A3VCPU by a peripheral device, individual A3VCPUs have different data from each other.
2	Registers set by A3VCPU OS	 (1) The register data is read and used by the sequence program. (2) Monitored by the peripheral device (GPP,HGP,PHP,PU). * (3) To clear the data in a register, either reset with the sequence program or set the peripheral device (GPP,HGP,PHP,PU) to the test mode and forcibly reset it. 	 Since the OS of the A3CPU handles only its own special registers, individual A3VCPUs have different data on this type of special registers from each other.
3	Registers set/re- set by A3VCPU OS	(1) The register data is read and used by the sequence program.(2) Monitored by the peripheral device (GPP,HGP,PHP,PU).(3) User should not set the data to this register.	
4	Registers set by A3VTU OS	 (1) The register data is read and used by the sequence program. (2) Monitored by the peripheral device (GPP,HGP,PHP,PU). (3) To clear the data in a register, either reset with the sequence program or set the peripheral device (GPP,HGP,PHP,PU) to the test mode and forcibly reset it. 	Since the OS of the A3VTU provides special register data to all of the A3VCPUs during operation, the data held by this type of register is identical in all of the A3VCPUs. However, when the sequence program or the peripheral device (the peripheral device)
5	Registers set/re- set by A3VTU [OPERATION/STOP]	(1) The register data is read and used by the sequence program.(2) Monitored by the peripheral device (GPP,HGP,PHP,PU).(3) User should not set the data to this register.	can be connected only to the A3VCPU) resets the data, the data held by individual A3VCPUs.

POINT

(1) To clear the special registers using a sequence program in the procedure as indicated by an asterisk "★" in the above table, insert the circuit shown below into the sequence program and clear the designated special registers by setting the reset execute instruction contact to ON.

- (2) Because the peripheral device (GPP,HGP,PHP,PU) can be accessed only via the A3VCPU, the monitor, data write, etc., can only be connected to the A3VCPU. However, when operating the system in the majority operation mode, and if the data is written, the A3VCPU which has been accessed for this operation has the data different from other A3VCPUs. If that data is connected to output (Y), the related A3VCPU will be dropped from operation.
- (3) All special registers are cleared when power is turned ON. Setting the reset switch at the front panel of a CPU module also clears all special registers.
- (4) Register numbers marked in the table with * indicate special registers which are not transmitted to restored A3VCPU or the A3VCPU whose operation status has been change from PAUSE/STOP to RUN in the data memory transmit operation.

Number	Name	Stored Data	Description	Type Number
D9000	Fuse blown	Fuse blow module number	When fuse flow modules are detected, the lowest number of detected units is stored in hexadecimal. (Example: When fuses of Y50 to 6F output modules have blown, "50" is stored in hexadecimal) The module number monitored by the peripheral is hexadecimal. (Cleared when all contents of D9100 to D9107 are reset to 0.)	3
D9002	I/O unit verify error	I/O module verify error module number	 If I/O module data is different from data entered are detected when the power is turned on, the first I/O number of the lowest number module among the detected modules stored in hexadecimal. (Storing method is the same as that of D9000.) The module number monitored by the peripheral is hexadecimal. (Cleared when all contents of D9116 of D9123 are reset to 0.) 	3
D9005	AC DOWN counter	AC DOWN time count	 1 is added each time input voltage becomes 80% or less of rating while the CPU unit is performing operation, and the value is stored in BIN code. 	4
D9006	Low battery	Display CPU containing low battery	When a battery is determined to be low, the bits corresponding to the CPU are set in D9006 as shown below. B15 B3 B2 B1 B0 CPU A CPU B CPU C 1: Low battery	5
*D9008	Self-diagnostic error	Self-diagnostic error number	When error is found as a result of self-diagnosis, error number is stored in BIN code.	2
D9009	Annunciator de- tection	F number at which external failure has occurred	When one of F0 to 255 is turned on by OUTF or SETF, the F number, which has been detected earliest among the F numbers which have turned on, is stored in BIN code. D9009 can be cleared by RSTF or LEDR instruction or moving INDICATOR RESET switch on CPU front to ON position. If another F number has been detected, the clearing of D9009 causes the next number to be stored in D9009. When D9125 to D9132 are cleared, D9009 is cleared.	3
*D9010	Error step	Step number at which op- eration error has occurred	When operation error has occurred during execution of application instruction, the step number, at which the error has occurred, is stored in BIN code. Thereafter, each time operation error occurs, the contents of D9010 are renewed.	3
*D9011	Error step	Step number at which operation error has occurred	When operation error has occurred during execution of application instruction, the step number, at which the error has occurred, is stored in BIN code. Since storage into D9011 is made when M9011 changes from off to on, the contents of D9010 cannot be renewed unless M9011 is cleared by user program.	3
D9014	VO control mode	I/O control mode number	The set mode is represented as follows: 3 = VO in refresh mode	2

Table 8.2 Special Register List (Continue)

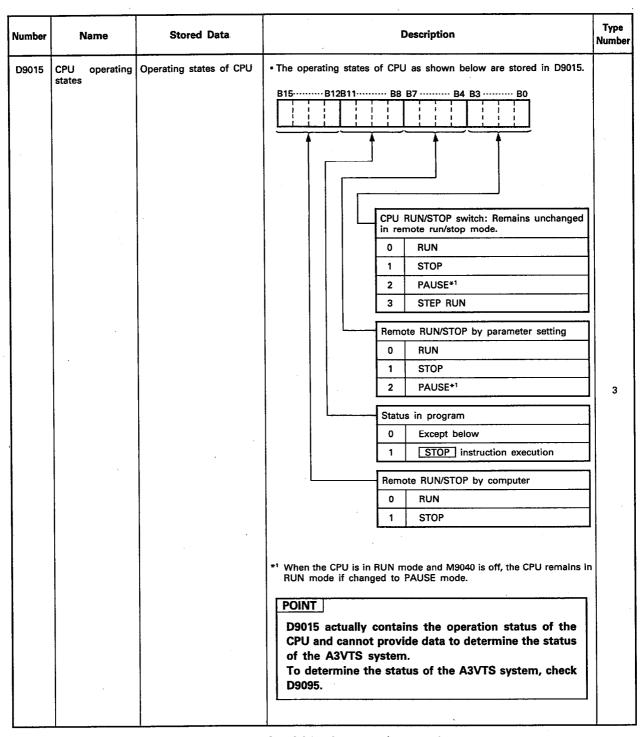


Table 8.2 Special Register List (Continue)

Number	Name	Stored Data	Description	Type Number
D9016	Program number	0: Main program (ROM) 1: Main program (RAM) 2: Subprogram (RAM)	• Indicates which sequence program is urn presently. One value of 0 to 2 is stored in BIN code.	3
D9017	Scan time	Minimum scan time (per 10ms)	 If scan time is smaller than the content of D9017, the value is newly stored at each END. Namely, the minimum value of scan time is stored into D9017 in BIN code. 	3
D9018	Scan time	Scan time (per 10ms)	Scan time is stored in BIN code at each END and always rewritten.	3
D9019	Scan time	Maximum scan time (per 10ms)	 If scan time is larger than the content of D9019, the value is newly stored at each END. Namely, the maximum value of scan time is stored into D9019 in BIN code. 	3
D9072	PC communica- tion check	Data written from AJ71C24	• In the self loopback test if the AJ71C24, the data is written by the AJ71C24 and read for verification.	5
D9090	Microcomputer sub-routine IN- PUT data area head device No.	Depends on the micro- computer package	For details, refer to the microcomputer package manual.	1
D9091	Error code generated for microcomputer sub-routine call	Depends on the micro- computer package	For details, refer to the microcomputer package manual.	2
*D9094	I/O address of in- put module to be replaced	Value of the head I/O address of the replacement input module excepting the least significant digit	 This register is used to latch input data yet to be communicated, when an input module is exchanged during RUN. The number excluding the least significant digit if the address is set in hexadecimal. The initial value is "-1" (FFFFH); reset to "-1" after module replacement. 	1
			This register monitors the operation status of the A3VTS system and A3VCPUs. B15 B12 B8 B4 B0 CPU A CPU B CPU C System operation status	,
	Operation status	Contouts of the acceptional	Value (н) Operation Status Value (н) Operation Status	
D9095	of the A3VTS system and	Contents of the operational status in four hexadecimal	A RUN 0 RUN	5
	A3VCPUs	digits	B STEP-RUN 1 Standby	
			C PAUSE 2 STEP-RUN	
	,		D STOP 3 PAUSE E Error 4 STOP	
			E Error 4 STOP 5 WAIT	
		,	6 Error	
-			7 No operation right	

Table 8.2 Special Register List (Continue)

Number	Name	Stored Data	Description	Type Number
D9096	CPU (A) self- diagnosis error	Self-diagnosis error number	 The number of an error generated during a self- diagnosis by CPU A is stored in BiN code. D9096 is cleared when D9008 of CPU A is cleared. 	5
D9097	CPU (B) self- diagnosis error	Self-diagnosis error number	The number of an error generated during a self- diagnosis by CPU B is stored in BIN code. D9097 is cleared when D9008 of CPU B is cleared.	5
D9098	CPU (C) self- diagnosis error	Self-diagnosis error number	The number of an error generated during a self- diagnosis by CPU C is stored in BIN code. D9098 is cleared when D9008 of CPU C is cleared.	5
D9099	A3VTU self- diagnosis error	Self-diagnosis error number	 The number of an error generated during a self- diagnosis by A3VTU is stored in BIN code. 	4
D9100			Output module numbers (in units of 16 points), of which fuses have blown, are entered in bit pattern. (Preset output number when parameter setting has been performed.)	
D9101				Ì
D9102		 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•
D9103	Fuse blown	Bit pattern in modules of	D9107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
D9104	module	16 points of fuse blow modules	Indicates fuse blow.	
D9105			maidates rase blow.	
D9106		•		
D9107		:	(If normal status is restored, clear is not performed. Therefore, it is required to perform clear by user program.)	
D9116		·	When I/O module data is different from those entered at power-on have been detected, the I/O module numbers (in units of 16 points) are	4
D9117			entered in bit pattern. (Preset I/O module numbers when parameter setting has been performed.)	
D9118			15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	
D9119	I/O module verify	Bit pattern in modules of	D9116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
D9120	error	16 points of verify error modules	D9123 0 N/7E0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
D9121		,	Indicates I/O unit work	
D9122		·	Indicates I/O unit verify error.	
D9123			(If normal status is restored, clear is not performed. Therefore, it is required to perform clear by user program.)	
D9124	Annunciator detection quantity	Annunciator detection quantity	When one of F0 to 255 is turned on by OUT F or SET F 1, 1 is added to the contents of D9124. When RST F 1 or LED R instruction is executed, 1 is subtracted from the contents of D9124. (For A3CPU, it can be performed by use of INDICATOR RESET switch on front face of CPU module.) Quantity, which has been turned on by OUT F 1 or SET F 1 is stored into D9124 in BIN code. The value of D9124 is maximum 8.	

Table 8.2 Special Register List (Continue)

Number	Name	Stored Data						I	Desc	ripti	on							Type Number
D9125			• Wher which code. • F nur D912	n has mber 5 to 1	turn , wh 0913:	ed o ich l 2, an	n, is in a second	enter oeen e con	ed ir turn tents	ed o	9125 off by latar	to D	9132 TF: ters s	in do	ue or	der i sed g the	n BIN from data	
D9126			regist prece By ex shifte INDIC	ding ecut d up ATO	data ing [ward R RE	LED by	ister R ir one. swi	s. nstru (For tch c	ction A3N	, the NCPL	con I, it o	tents can b	of Coe pe	09129 erforr	ō to ! med	D913 by u	2 are se of	
D9127			D912	5 to	9132		n if	dete	cted.		ı.						CATOR	
50400			D9009	0	50	50	50	50	50	50	50	50	50	50	50	99	15	
D9128	Annunciator	Annunciator	D9124	<u> </u>	1	2	3	2	3	4	5	6	7	8	8	8	7	
	detection number	detection number	D9125	0	50 0	50 25	50 25	50 99	50 99	50 99	50 99	50 99	50 99	50 99	50 99	99	70	3
D9129			D9127	0	0	0	99	0	15	15	15	15	15	15	15	70	65	
			D9128	0	0	0	0	0	0	70	70	70	70	70	70	65	38	
D9130			D9129	0	0	0	0	0	0	0	65	65	65	65	65	38	110	
55130			D9130	0	0	0	0	0	0	0	0	38	38	38	38	110	151	
	* .		D9131	0	0	0	0	0	0	0	0	0			110		Н	
D9131	· .		D9132	*Wh		0 50 is		0 F21	0 0 and	0 d F50	0 Var	0 ies d	L	L	151 on		ence	
D9132				·														

Table 8.2 Special Register List

APPENDIX 9 Instructions Permissible to Use with the AD51E when Used in the A3VTS System

Not all AD51E functions (instructions) can be used when using the AD51E in the A3VTS system. The following provides details concerning the usage of these instructions.

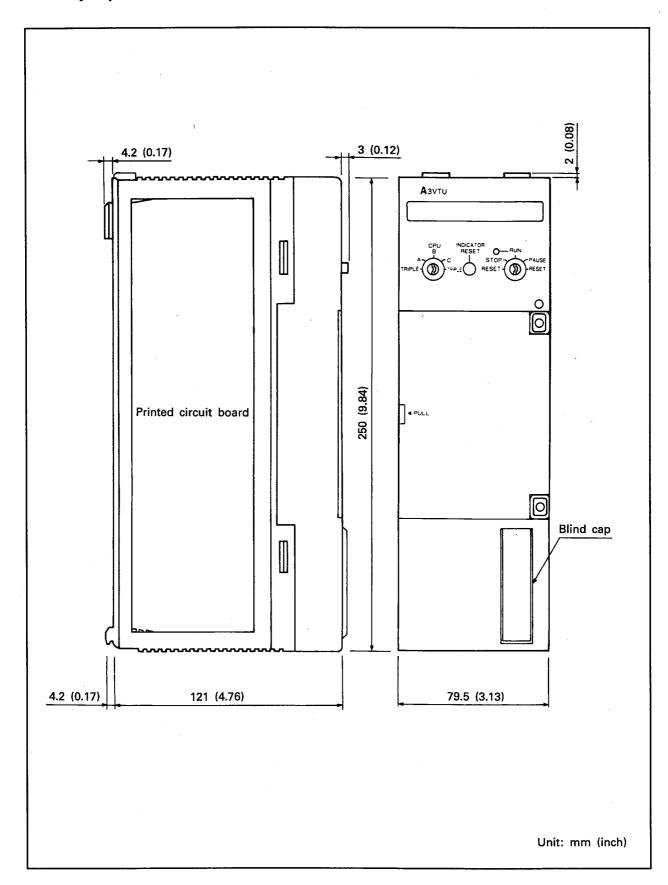
Basic instructions
 All basic instructions can be used.

(2) System subroutines

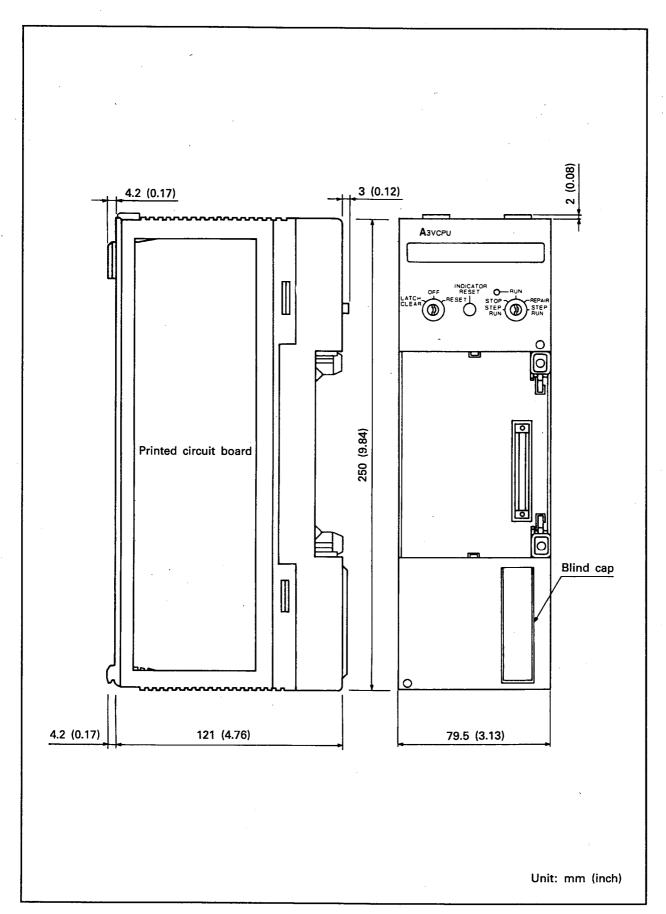
Instructions that communicate with the CPU cannot be used in system subroutines.

The righthand column of the following table provides information concerning those instructions that may be used with the A3VTS system. Those marked with "\rightarrow" may be and those marked with "\rightarrow" may not be used.

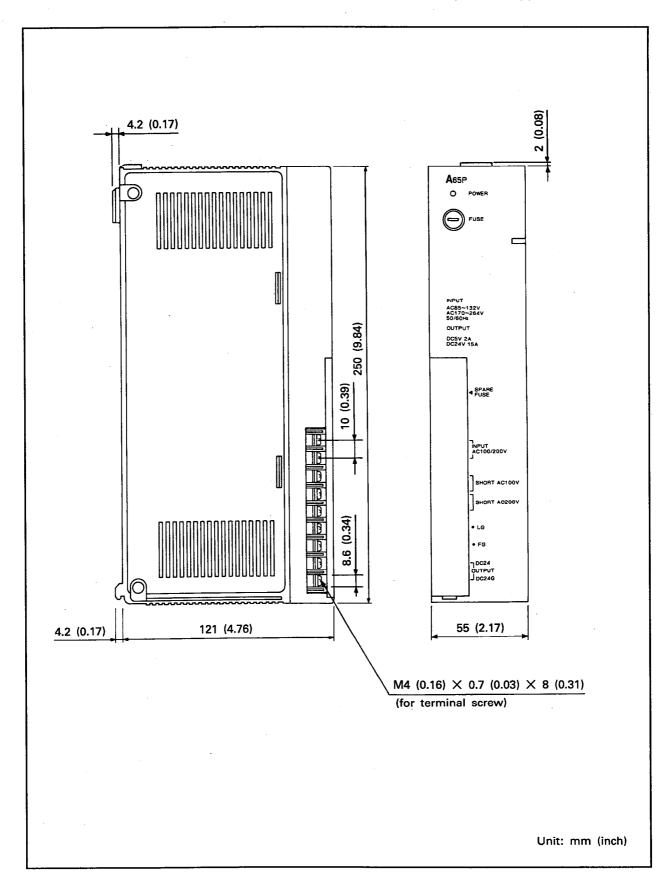
	System Subrouti	ne	Function	Channel	Address	Usable in the A3VTS System
1	SAI		ASCII (hexadecimal) to BIN	0	8060н	0
2	SIA		BIN to ASCII (hexadecimal)	0	8063н	0
3	SAN		ASCII (decimal) to BIN	0	8072н	0
4	SNA		BIN to ASCII (decimal)	0	8075н	0
5	SAF		ASCII to real numbers	0	8066н	0
6	SFA		Real numbers to ASCII	0	8069н	0
7	SBF		Integers to real numbers	0	806Сн	. 0
8	SFB		Real numbers to integers	0	806Fн	0
9	SBD4		BIN to 4-digit BCD	0	8042н	0
10	SDB4		4-digit BCD to BIN	0	8045н	0
11	SBD6		BIN to 6-digit BCD	0	8048н	0
12	SDB6		6-digit BCD to BIN	0	804Вн	0
13	SBA		BIN addition (24 bits)	0	804Ен	0
14	SBS		BIN subtraction (24 bits)	0	8051н	0
15	SBM		BIN multiplication (24 bits)	0	8054н	0
16	SBW		BIN division (24 bits)	0	8057н	0
17	SCA -	— В	Write to clock device (year, month, day, hour, minute, second)	0	803Сн	0
18	SCB -	-	Read from clock device (year, month, day, hour, minute, second)	0	803F _H	0
19	SPC	— В	Programmable controller CPU discrimination	0	8078н	×
20	skc -	— В	RUN/STOP check of programmable controller CPU	0	8030н	×

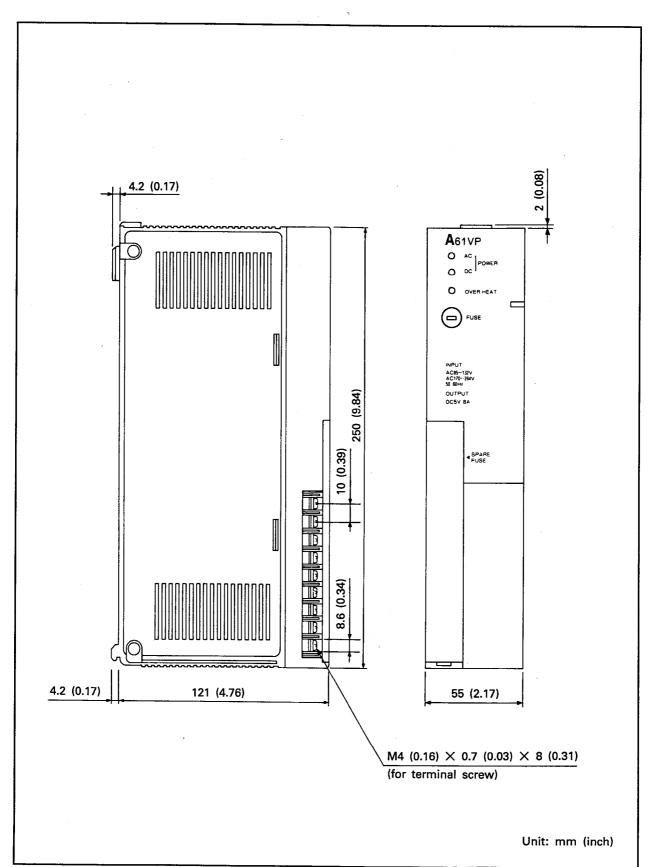


	System Subrou	tine	Function	Channel	Address	Usable in the A3VTS System
21	SKR	 В	Programmable controller CPU remote RUN	0	8033н	×
22	SKP	<u> </u>	Programmable controller CPU remote STOP	0	8036н	×
23	SRB	A B	Receives data of a designated byte length sent to a designated channel.	0	8009н	0
24	SWB	A B	Receives data of a designated byte length from a designated channel.	0	800Сн	0
25	SRC		Reads data byte size received via a designated channel.	0	800Fн	0
26	SRF		Reads amount of bytes open in receive buffer of a designated channel.	0	8012н	0
27	SHX	В	Controls data communication at a designated channel using the Xon/Xoff code.	0	8015н	0
28	SHD	<u>—</u>	Controls data communication at a designated channel using the DR terminal.	0	8018н	0
29	SAE		Converts all data communicated via a designated channel to EBCDIC code.	0	801Ен	0
30	SEA		Does not convert data communicated via a designated channel.	0	8021н	0
31	STC		Reads the number of bytes remaining in a buffer for a designated channel.	. 0	801Вн	0
32	SRP		Reads the status of a designated channel.	0	8027н	. 0
33	SR2		Reads buffer memory.	0	8000н	0
34	SW2		Writes to buffer memory.	0	8003н	0
35	SADR		Reads the data memory of the programmable controller CPU.	0	807B _H	×
36	SADW		Writes to data memory of the programmable controller CPU.	0	807Ен	×
37	SADT		Writes to data memory of the programmable controller CPU at random.	0	8081н	×
38	SADM0		Records data read at random from data memory of the programmable controller CPU.	0	8084н	×
39	SADM1		Reads from data memory of the programmable controller CPU at random.	0	8087н	×
40	SAAR		Reads sequence program.	0	808Ан	×
41	SAAW		Writes sequence program.	0	808D _H	×
42	SAPR		Reads parameters of programmable controller CPU.	0	8090н	×
43	SAPW		Writes parameters of programmable controller CPU.	0 .	8093н	×
44	SAPS		Requests for analysis of CPU parameters.	0	8096н	×
45	SIT		Generates interrupt to programmable controller CPU.	0	802Ан	×
46	SIR		Reads error code.	0	8024н	0
47	SC2	T	Sets retry time of SR2/SW2.	0	8006н	0

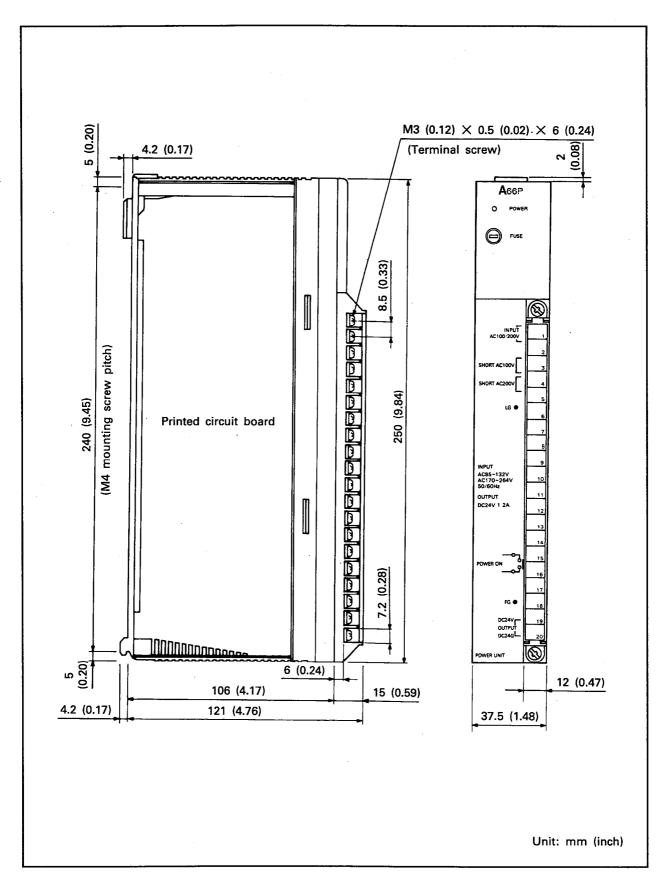

APPENDIX 10 Dimensions

10.1 Majority module (A3VTU)

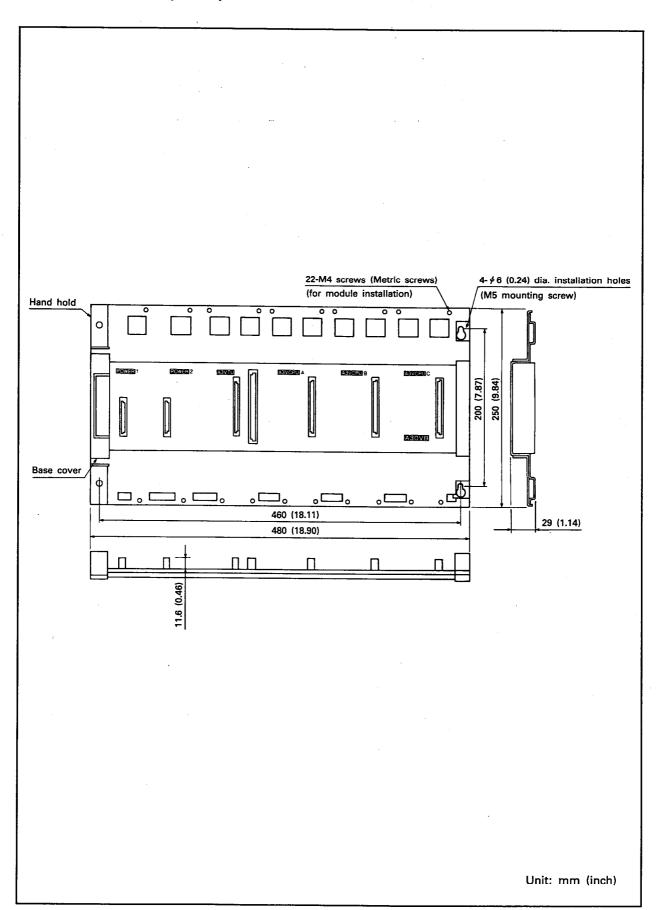

10.2 CPU module (A3VCPU)


10.3 Power supply modules

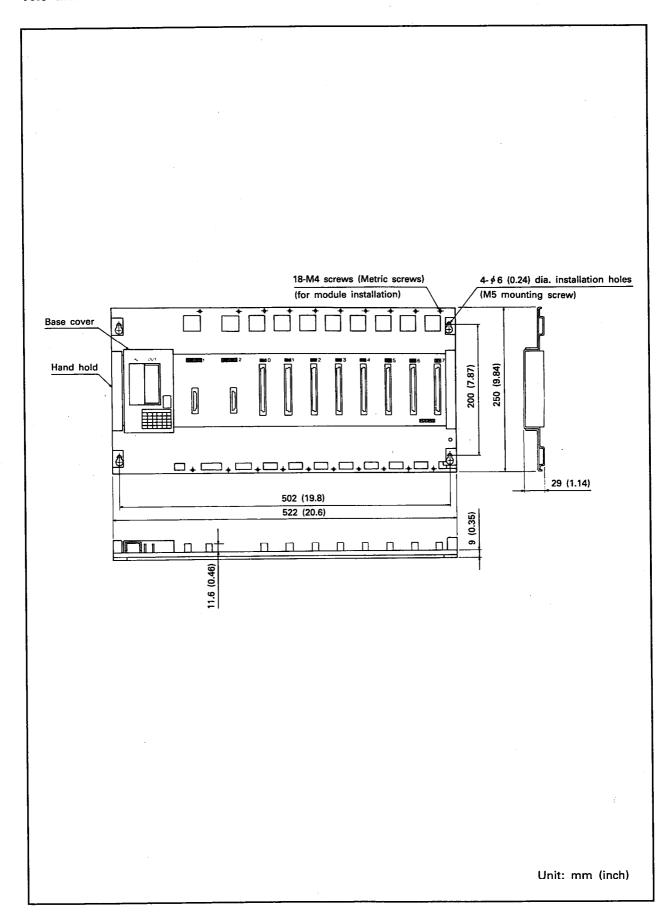
(1) Type A61P, A62P, A63P, A65P power supply modules

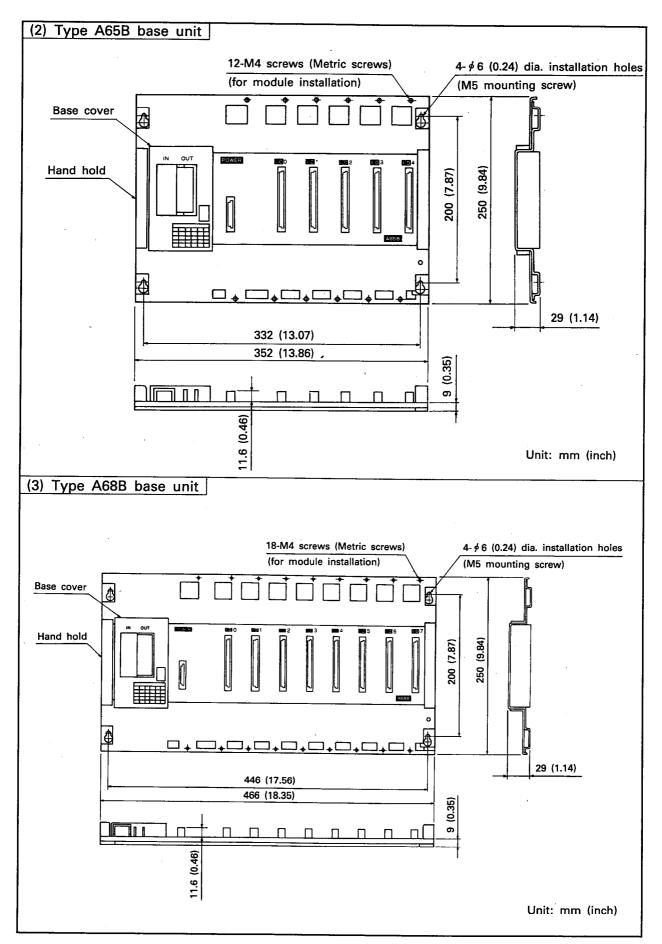


(2) Type A61VP power supply module

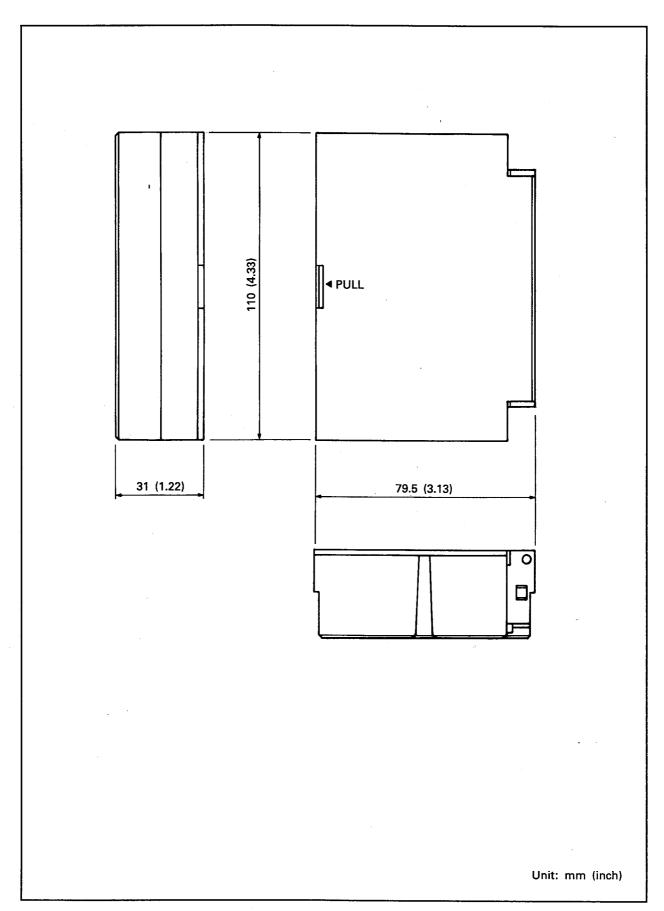

APP

(3) Type A66P power supply module


10.4 Basic base unit (A30VB)



APF


10.5 Extension base units

10.6 Memory cassettes (A3NMCA-[])

APP

APPENDIX 11 Processing Time List

The processing times required for instructions used in the A3VTS system is shown in the table provided on subsequent pages.

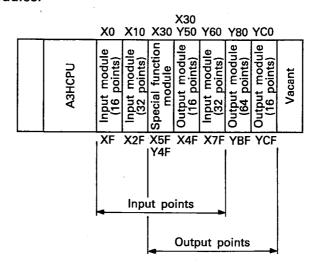
(1) Time required for refreshing is not included in the times shown for each instruction.

To calculate the amount of time required for the sequence program, it is necessary to add the refresh processing time that occurs following the execution of the END instruction. The following is an example of calculations made to determine the amount of time required for the sequence program and refresh processing.

Sequence program processing time =

(Processing time for a particular instruction) + END processing time +

Calculated from table Refresh processing time


(END processing time)

END processing time = time required to execute END instruction + the count processing time at T/C END

(Refresh processing time)

Refresh time =
$$\frac{Input points + output points}{16} \times 111.4 \text{ (} \mu \text{ sec)}$$

The number of input points and output points are determined by the location of the I/O modules and special function modules.

POINT

The number of I/O points for the special function module is 32 each for inputs and outputs.

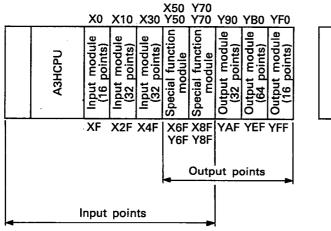
Example) X30 to X4F, Y30 to Y4F

The number of input points is the total of points of all modules installed between the input or special function module input/output installed in the lowest numbered slot and the one in the highest numbered slot.

Example) In the example shown in the above figure, the total number of points of the modules located between X0 and X7F is

Input points =
$$16 + 32 + 32 + 16 + 32 = 128$$
 points

The number of output points is the total of points of all modules installed between the output or special function module input/output installed in the lowest numbered slot and the one in the highest numbered slot.


Example) In the example shown in the above figure, the total number of points of the modules located between Y30 and YCF is

Output points =
$$32 + 16 + 32 + 64 + 16 = 160$$
 points

The following is an example of how refresh time is calculated.

Calculation of refresh time

The amount of refresh time required can be shortened by installed the input, output, and special function modules in blocks as shown in Fig. 7.1.

	Y0	X20	Y30	X50	Y70	YB0	YD0	YE0
АЗНСРО	Special function module	Input module (16 points)	Output module (32 points)	Input module (32 points)	Output module (64 points)	Input module (32 points)	Output module (16 points)	Special function module
	Y1F						YDF	YFF

Fig. 7.1 Example of Modules Installed by Type

Fig. 7.2 Example of Modules Installed at Random

Refresh time for Fig. 7.1

Input points =
$$16 + 32 + 32 + 32 + 32 = 144$$
 points
Output points = $32 + 32 + 32 + 64 + 16 = 176$ points

Refresh time =
$$\frac{144 + 176}{16} \times 111.4 = 2228 (\mu sec)$$

Refresh time for Fig. 7.2

$$32 + 16 + 32 + 32 + 64 + 32 + 16 + 32 = 256$$
 points

Refresh time =
$$\frac{256 + 256}{16} \times 111.4 = 3564.8 \text{ (} \mu \text{ sec)}$$

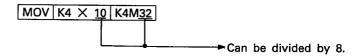
APP

YEN

(2) Non-execution times for basic and application instructions

Non-execution processing time = (number of instruction steps + 1) \times 1.0 (μ sec)

(3) Processing time for Type A and Type B of basic and application instructions


Type A

Type A are those instructions that meet all of the following criteria.

- 1) Indexing qualifiers are not used.
- 2) File register is not used.
- 3) The number of digits designated for use when using bit devices is either K4 or K8.

(K4 for 16-bit instructions) K8 for 32-bit instructions

4) The designated device numbers used in bit devices can be divided by "8". Example)

Type B

Type B are those instructions that meet any of the following criteria.

- 1) Indexing qualifiers are used.
- 2) File register is used.
- 3) The number of digits designated for use when using bit devices is either K1 to K3 and K5 to K7.
- The designated device numbers used in bit devices cannot be divided by "8".
 Example)

11.1 Sequence instructions

Instruction			- (Condition (Device)		Processing Time (μ sec)	Comments										
LD LDI AND				x		1.0											
OR ORI			Υ,	M. L, S, B, F, T, C		1.0											
ANB		•	,														
ORB				<u> </u>													
				ON/OFF status uncha	anged OFF to OFF	1.0											
	,	Y		ON/OFF status char		1.0											
	M (Ex	cludir		ON/OFF status uncha		1.0											
	speci	ial M 3, S),	ON/OFF status char		1.0											
				Special M	(======================================	37.1											
				Not executed		61.1											
	F			Executed		663.1											
				Instruction execution	n time	1.0											
	A Processing time at END	g time at		Not executed		38.0											
OUT			9	After tim	ne-up	11.2											
					Processing t END Executed	essing	essing	essing	essing	essing	Sessing	Sessing	ocute		К	23.8	
		Proc	P. P.	P.	ă	When to be added	D	29.5	•								
			·	Instruction execution	n time	1.0											
		at END		Not execut	ed	0											
					When not o	counted	0										
	С	time	ecuted	After cou	nt-up	0											
		Processing time at	Execu	NAME - A - L	К	25.1											
		Pro	"	When to be counted	D	29.5											
				Not executed		1.0											
	Y	Even	uted	ON/OFF status uncha	nged (ON to ON)	1.0											
		Exec	utea	ON/OFF status chang	ged (OFF to ON)	1.0											
				Not executed		1.0											
SET	M, L, S	Evos	uted	ON/OFF status unchar	nged (ON to ON)	1.0											
35.		LAGO		ON/OFF status chang	ged (OFF to ON)	1.0											
	Special			Not executed		3.0											
	М, В			Executed		32.3											
	F			Not executed		3.0											
				Executed		637.7											

Instruction	Condition (Device)			Processing Time (µ sec)	Comments								
			Not executed	1.0	***								
·	Y		ON/OFF status unchanged (ON to ON)	1.0									
		Executed	ON/OFF status changed (OFF to ON)	1.0									
			Not executed	1.0	·								
	M, L, S		ON/OFF status unchanged (ON to ON)	1.0									
		Executed	ON/OFF status changed (OFF to ON)	1.0									
	Special M,		Not executed	3.0									
	В		Executed	32.1									
RST	F		Not executed	3.0									
			Executed	477.1									
	T 0	T.C		Not executed	3.0	·							
	T, C		Executed	43.1									
	D, W,		Not executed	3.0	·								
	D, W, A0, A1, V, Z		Executed	27.5									
			Not executed	3.0									
	R		Executed	34.6									
NOP				1.0									
END				17000									
	Y		Not executed	43.1									
L MC		, T	T	T	, Y	Y	Y	, Y	Y	Ţ		Executed	39.4
MC MC	M, L, S,		Not executed	43.1									
	M, L, S, F, B		Executed	39.4									
MCR				26.4									
			Not executed	59.3	:								
	Y	Executed	On	61.9									
PLS		Executed	Off	60.3									
PLF			Not executed	59.1									
	M, L, S B, F	Executed	On	62.2									
·		Executed	Off	60.6									
	Y		Not executed	3.0									
SFT	•		Executed	37.6									
SFTP	M, L, S		Not executed	3.0									
	M, L, S B, F		Executed	37.6									
MPS													
MRD				1.0									
MPP													

APF

11.2 Basic instructions

11.2.1 Relational instructions

	Instruct	Processing `		
	Instruction Type Device Used	Type A	Туре В	Remarks
Instruction	Used	All devices	All devices	
LD=	S1 S2	70	108	
AND=	S1 S2	61	96	
OR=	S1 S2	67	104	
LDD=	S1 S2	133	140	
ANDD=	S1 S2	124	131	
ORD=	S1 S2	133	140	
LD< >	S1 S2	69	106	
AND<>	S1 S2	60	101	
OR< >	S1 S2	66	99	
LDD< >	S1 S2	131	137	
ANDD< >	S1 S2	129	135	
ORD< >	S1 S2	129	135	
LD>	S1 S2	67	105	
AND>	S1 S2	60	101	
OR>	S1 S2	66	99	
LDD>	S1 S2	133	139	
ANDD>	S1 S2	131	137	
ORD>	S1 S2	131	137	

	Instruct	Processing	Time (µsec)	
	Device Used	Type A	Type B	Remarks
Instruction	Used	All devices	All devices	
LD<=	S1 S2	71	108	
AND<=	S1 S2	61	96	
OR<=	S1 S2	69	104	
LDD<=	S1 S2	137	143	
ANDD<=	S1 S2	128	133	
ORD<=	S1 S2	137	143	
LD<	S1 S2	69	136	
AND<	S1 S2	59	99	
OR<	S1 S2	66	100	
LDD<	S1 S2	133	139	
ANDD<	S1 S2	131	137	-
ORD<	S1 S2	131	137	
LD>=	S1 S2	70	109	
AND>=	S1 S2	61	96	
OR>=	S1 S2	69	104	
LDD>=	S1 S2	137	142	
ANDD>=	S1 S2	127	133	
ORD>=	S1 S2	137	143	

11.2.2 BIN arithmetic operation instructions

	Instruction Type	Processing '	Time (µsec)	
	Device Used		Type B	Remarks
Instruction	369	All devices	All devices	
+	S D	44	78	
+P	S D	44	78	
D+	S D	69	130	
D+P	S D	69	130	
+	S1 S2 D	77	109	
+P	S1 S2 D	77	109	
D+	S1 S2 D	99	139	
D+P	S1 S2 D	99	139	
	S D	45	78	
—Р	S D	45	78	
D—	S D	69	131	
D-P	S D	69	131	
_	S1 S2 D	79	111	
—Р	S1 S2 D	79	111	
D—	S1 S2 D	99	139	
D-P	S1 S2 D	99	139	
*	S1 S2 D	94	123	
ЖР	S1 S2 D	94	123	
D*	S1 S2 D	341	387	
D*P	S1 S2 D	341	387	

	Instructi		Time (µ sec)	
	Instruction Type Device Used	Type A	Type B	Remarks
Instruction	Used	All devices	All devices	
	S1 S2 D	102	117	
/P	S1 S2 D	102	117	
D/	S1 S2 D	393	431	
D/P	S1 S2 D	393	431	
INC	D	29	65	
INCP	D	29	65	
DINC	D	42	81	
DINCP	D	42	81	
DEC	D.	31	68	
DECP	D	31	68	
DDEC	D	42	84	
DDECP	D	42	84	

11.2.3 BCD arithmetic operation instructions

	Instructi		Time (µsec)	
	Instruction Type Device Used	Type A	Type B	Remarks
Instruction	Used	All devices	All devices	
B+	S D	123	138	·
B+P	S D	123	138	
DB+	S D	175	181	
DB+P	S D	175	181	
В+	S1 S2 D	129	143	
B+P	S1 S2 D	129	143	
DB+	S1 S2 D	187	193	
DB+P	S1 S2 D	187	193	
В-	S D	125	140	
В-Р	S D	125	140	
DB-	S D	175	181	
DB-P	S D	175	181	
В-	S1 S2 D	133	149	
В-Р	S1 S2 D	133	149	
DB-	S1 S2 D	185	193	
DB-P	S1 S2 D	185	193	
ВЖ	S1 S2 D	299	313	
ВЖР	S1 S2 D	299	313	
DB*	S1 S2 D	941	946	
ОВЖР	S1 S2 D	941	946	

	Instruce	Processing ⁻		
	Instruction Type Device Used	Type A	Type B	Remarks
Instruction	Used	All devices	All devices	
B/	S1 S2 D	235	249	
B/P	S1 S2 D	235	249	
DB/	S1 S2 D	896	901	
DB/P	S1 S2 D	896	901	

11.2.4 BCD to BIN conversion instructions

	Instruc		Processing T	ime (µsec)	
	Del	tion Type Vice Used	Type A	Type B	Remarks
Instruction		Used	All devices	All devices	
BCD	S	D	82	114	í
BCDP	S	D.	82	114	
DBCD	S	D	219	225	-
DBCDP	S	D	219	225	
BIN	S	D	79	110	
BINP	S	D	79	110	
DBIN	S	D	215	221	
DBINP	S	D	215	221	

11.2.5 Data transmit instructions

	Instruct	Processing	Time (µ sec)	
	Instruction Type Device Used	Туре А	Type B	Remarks
Instruction	Used	All devices	All devices	
MOV	S D	47	80	
MOVP	S D	47	80	
DMOV	S D	67	92	
DMOVP	S D	67	92	
ХСН	D1 D2	60	116	
XCHP	D1 D2	60	116	
DXCH	D1 D2	107	157	
DXCHP	D1 D2	107	157	
CML	S D	43	85	
CMLP	S D	43	85	
DCML	S D	74	95	
DCMLP	S D	74	95	
BMOV	S D n	399	416	
BMOVP	S D n	399	416	
FMOV	S D n	229	243	
FMOVP	S D n	229	243	

11.2.6 Program branch instructions

Instruction	Processing Time (µsec)	Remarks
CJ P**	39.2	Indexing qualifiers are not used.
	47.7	Indexing qualifiers are used.
SCJ P**	71.2	Indexing qualifiers are not used.
	80.5	Indexing qualifiers are used.
JMP P**	39.2	
FEND	17000	
CALL P**	69.7	Indexing qualifiers are not used.
UNIT TAX	78.2	Indexing qualifiers are used.
CALLP PXX	69.7	Indexing qualifiers are not used.
O ILLI I IVA	78.2	Indexing qualifiers are used.
RET	50.2	
FOR n	53.2	
NEXT	40.7	
STOP		
*1 CHG	16260	
SUB n	2473	Indexing qualifiers are not used.
000 11	2486	Indexing qualifiers are used.
SUBP n	2473	Indexing qualifiers are not used.
	2486	Indexing qualifiers are used.

POINT

Processing time for T/C count (processing time at END) and refresh time are not included in processing time for *1 FEND and CHG instructions.

11.3 Application instructions

11.3.1 Display instructions

Instruction		Processing Time (µ sec)	Remarks
LED	S	202.7	
LEDC	S	264.7	
LEDA	ASCII characters	201.7	
LEDB	ASCII characters	210.7	
LEDR		637.7	

11.3.2 Logic operation instructions

Instruction Type		Processing Time (µ sec)		
	Device Used	Туре А	Type B	Remarks
Instruction	Used	All devices	All devices	
WAND	S D	59.5	112.5	
WANDP	S D	59.5	112.5	·
DAND	S D	139.5	151.5	
DANDP	S D	139.5	151.5	
WAND	S1 S2 D	95.5	127.5	
WANDP	S1 S2 D	95.5	127.5	
WOR	S D	60.5	112.5	
WORP	S D	60.5	112.5	
DOR	S D	139.5	151.5	
DORP	S D	139.5	151.5	
WOR	S1 S2 D	96.5	143.5	
WORP	S1 S2 D	96.5	143.5	
WXOR	S D	59.5	112.5	
WXORP	S D	59.5	112.5	
DXOR	S D	139.5	151.5	
DXORP	S D	139.5	151.5	
WXOR	S1 S2 D	96.5	143.5	
WXORP	S1 S2 D	96.5	143.5	
WXNR	S D	63.5	113.5	
WXNRP	S D	63.5	113.5	

	Instruct	Processing	Time (µ sec)	
	Instruction Type Device Used	Туре А	Type B	Remarks
Instruction	Used Used	All devices	All devices	
DXNR	S D	141.5	151.5	
DXNRP	S D	141.5	151.5	
WXNR	S1 S2 D	97.5	143.5	
WXNRP	S1 S2 D	97.5	143.5	
NEG	D	49.5	65.5	
NEGP	D	49.5	65.5	

11.3.3 Rotation instructions

The values for processing time are those for when n=3.

Instruction		Processing Time (µ sec)	Remarks
ROR		51.5	Indexing qualifiers are not used.
1.011		56.5	Indexing qualifiers are used.
RORP		51.5	Indexing qualifiers are not used.
TIOI I		56.5	Indexing qualifiers are used.
RCR	n	58.5	Indexing qualifiers are not used.
TION		63.5	Indexing qualifiers are used.
RCRP		58.5	Indexing qualifiers are not used.
понг	n	63.5	Indexing qualifiers are used.
ROL		53.5	Indexing qualifiers are not used.
NOL		58.5	Indexing qualifiers are used.
ROLP	n	53.5	Indexing qualifiers are not used.
NOLF		58.5	Indexing qualifiers are used.
RCL	- n	56.5	Indexing qualifiers are not used.
ITOL	<u>n</u>	62.5	Indexing qualifiers are used.
RCLP		56.5	Indexing qualifiers are not used.
HOLI	n	62.5	Indexing qualifiers are used.
DROR		69.5	Indexing qualifiers are not used.
DIOR	n	74.5	Indexing qualifiers are used.
DRORP		69.5	Indexing qualifiers are not used.
DION	<u>n</u>	74.5	Indexing qualifiers are used.
DRCR		71.5	Indexing qualifiers are not used.
DRON	n	77.5	Indexing qualifiers are used.
DRCRP		71.5	Indexing qualifiers are not used.
DITCHE	n	77.5	Indexing qualifiers are used.
DROL		69.5	Indexing qualifiers are not used.
DITOL	n -	74.5	Indexing qualifiers are used.
DROLP		69.5	Indexing qualifiers are not used.
DNULF	<u>n</u>	74.5	Indexing qualifiers are used.

Instruction	Processing Time (µ sec)	Remarks
DBCI n	67.5	Indexing qualifiers are not used.
DRCL n	73.5	Indexing qualifiers are used.
DDCI D	67.5	Indexing qualifiers are not used.
DRCLP n	73.5	Indexing qualifiers are used.

11.3.4 Shift instructions

	Instruction Type	Processing	Time (µ sec)	
	Device Used		Type B	Remarks
Instruction	- Sed	All devices	All devices	
SFR	D n	73.5	99.5	When n = 5
SFRP	D n	73.5	99.5	When n = 5
BSFR	D n	123.5	141.5	When n = 5
DOTT	<u> </u>	129.5	151.5	When n = 15
BSFRP	D n	123.5	141.5	When n = 5
BOTTH	<u> </u>	129.5	151.5	When n = 15
DSFR	D n	117.5	123.5	When n = 5
DOIN		179.5	187.5	When n = 15
DSFRP	D n	117.5	123.5	When n = 5
DOTT	DSFRP D n	179.5	187.5	When n = 15
SFL	D n	73.5	109.5	
SFLP	D n	73.5	109.5	When n = 5
BSFL	D n	133.5	145.5	When n = 5
		137.5	155.5	When n = 15
BSFLP	D n	133.5	145.5	When n = 5
DOLLI		137.5	155.5	When n = 15
DSFL D n	117.5	124.5	When n = 5	
	<u> </u>	181.5	189.5	When n = 15
DSFLP	D n	117.5	124.5	When n = 5
	D n	181.5	189.5	When n = 15

11.3.5 Data processing instructions

Instruct		Processing	Time (µsec)	
	Instruction Typ Device Used	e Type A	Type B	Remarks
Instruction	July Used	All devices	All devices	
CEB	S1 S2 n	199.5	231.5	When n = 5
SER	S1 S2 n	321.5	353.5	When n = 15
SERP	S1 S2 n	199.5	231.5	When n = 5
JEI III	101 02 111	321.5	353.5	When n = 15
SUM	S	114.5	128.5	
SUMP	S	113.5	129.5	
DSUM	S	199.5	203.5	
DSUMP	S	199.5	203.5	
DECO	S D n	163.5	193.5	When n = 2
	3 0 11	247.5	279.5	When n = 8
DECOP	S D n	163.5	193.5	When n = 2
DECOI	3 0 11	247.5	279.5	When n = 8
SEG	S D	D = B1 91.5	D = B100 977.5	
ENCO	S D n	163.5	195.5	When n = 2
LIVOO	S D n	301.5	331.5	When n = 8
ENCOP	S D n	163.5	199.5	When n = 2
LINCOF	S D n	301.5	331.5	When n = 8
BSET	D n	89.5	106.5	When n = 5
DOLI	D n	92.5	111.5	When n = 15
BSETP	D n	89.5	106.5	When n = 5
DOEIF	D n	92.5	111.5	When n = 15

	Instruction Type	Processing	Time (µ sec)	
	Device Used	Type A	Type B	Remarks
Instruction	Used	All devices	All devices	
BRST	D n	96.5	110.5	When n = 5
		99.5	114.5	When n = 15
BRSTP	D n	96.5	110.5	When n = 5
5.1011	DROTT D II	99.5	114.5	When n = 15
UNI	S D n	108.5	142.5	When n = 1
<u> </u>	0 0 11	130.5	164.5	When n = 4
UNIP	S D n	108.5	142.5	When n = 1
O T T	0 0 11	130.5	164.5	When n = 4
DIS	S D n	137.5	169.5	When n = 1
	DIS SDn	153.5	183.5	When n = 4
DISP	DICD C D	137.5	169.5	When n = 1
DISP S D n	153.5	183.5	When n = 4	

11.3.6 FIFO instructions

	Instruction Type		Processing	Time (µsec)	
	Dev	tion Type Vice Used	Туре А	Type B	Remarks
Instruction		Used	All devices	All devices	
FIFW	S	D	100.5	131.5	
FIFWP	S	D	100.5	131.5	
FIFR	D1	D2	117.5	147.5	
FIFRP	D1	D2	117.5	147.5	

11.3.7 ASCII conversion instruction

Instruction	Processing Time (µ sec)	Remarks
ASC ASCII characters D	120	

11.3.8 Special function module instructions

Instruction	Processing Time (µsec)	Remarks
FROM n1 n2 D n3	3347	When n3 = 1
	12605	When n3 = 1000
FROMP n1 n2 D n3	3347	When $n3 = 1$
	12605	When $n3 = 1000$
DFRO n1 n2 D n3	3051	When $n3 = 1$
D. 110 111 112 D 110	12595	When n3 = 500
DFROP n1 n2 D n3	3051	When n3 = 1
	12595	When n3 = 500
TO n1 n2 S n3	3247	When n3 = 1
	22590	When n3 = 1000
TOP n1 n2 S n3	3247	When n3 = 1
101 111 112 0 110	22590	When n3 = 1000
DTO n1 n2 S n3	3523	When n3 = 1
210 111 112 3 113	19340	When n3 = 500
DTOP n1 n2 S n3	3523	When n3 = 1
0101 111 112 3 113	19340	When n3 = 500

11.3.9 Other instructions

Instruction	Processing Time (µ sec)	Remarks
WDT	63.7	
WDTP	63.7	
	771	When the number of conditional contacts is 1 point.
CHK D1 D2	3380	When the number of conditional contacts is 50 points.
CHK D1 D2	6887	When the number of conditional contacts is 100 points.
	10137	When the number of conditional contacts is 150 points.
CLT	8448	When device memory only
SLT	24598	When device memory + R (8K points)
SLTR	29.3	
STRA	30.2	
STRAR	27.7	
STC	28.1	
CLC	30.5	
DUTY n1 n2 D	60.4	
PR S D	3183	
PRC S D	3172	

IMPORTANT

The components on the printed circuit boards will be damaged by static electricity, so avoid handling them directly. If it is necessary to handle them take the following precautions.

- (1) Ground human body and work bench.
- (2) Do not touch the conductive areas of the printed circuit board and its electrical parts with any non-grounded tools etc.

Under no circumstances will Mitsubishi Electric be liable or responsible for any consequential damage that may arise as a result of the installation or use of this equipment.

All examples and diagrams shown in this manual are intended only as an aid to understanding the text, not to guarantee operation. Mitsubishi Electric will accept no responsibility for actual use of the product based on these illustrative examples.

Owing to the very great variety in possible applications of this equipment, you must satisfy yourself as to its suitability for your specific application.

Multiplex system type A3VTS

User's Manual

MODEL	A3VTS-USERS-E	
MODEL CODE	13J656	
IB(NA)66190-A(8905)MEE		

HEAD OFFICE : MITSUBISHI DENKI BLDG MARUNOUCHI TOKYO 100-0005 TELEX : J24532 CABLE MELCO TOKYO NAGOYA WORKS : 1-14 , YADA-MINAMI 5 , HIGASHI-KU, NAGOYA , JAPAN

When exported from Japan, this manual does not require application to the Ministry of International Trade and Industry for service transaction permission.