MITSUBISHI PROGRAMMABLE CONTROLLER

Instruction
Manual
Type MELSEC-KOJ1U

1. FEATURES $1 \sim 2$
2. CONFIGURATION $3 \sim 11$
2.1 Overall Configuration 4
2.2 System Configuration 5
2.3 Overall Block Diagram 6
2.4 Main Unit Configuration 7
2.4.1 Equipment configuration 7
2.4.2 External view of equipment 8
2.5 Peripherals. 10
2.6 Selection of Peripherals 11
3. SPECIFICATIONS $12 \sim 28$
3.1 General Specifications 13
3.2 Performance Specifications 14
3.3 Individual Specifications 15
3.3.1 Basic unit (KOJ1U**-***) 15
3.3.2 Type DR I/O specification (DC 24 V input, relay contact output) 16
3.3.3 Type AR I/O specification (AC 115 V input, relay contact output) 17
3.3.4 Type AS I/O specification (AC 115 V input, triac output) 19
3.3.5 Type AT I/O specification (AC 115 V input, transistor output) 20
3.3.6 Power capacity calculation 21
3.4 Terminal Arrangement 22
3.4.1 Terminal arrangement of basic unit 22
3.4.2 Terminal arrangement of Type E56 extension unit 23
3.4.3 Terminal arrangement of Type E32 extension unit 24
3.5 Cautions and Corrective Actions for Input and Output Circuits 25
3.5.1 Cautions and corrective actions for input circuits 25
3.5.2 Cautions and corrective actions for output circuits 28
4. NOMENCLATURE AND CONFIGURATION $29 \sim 35$
4.1 External View of Basic Unit 30
4.2 External View of Type 56 Extension Unit 32
4.3 External View of Type 32 Extension Unit 34
4.4 External View of K68B Extension Base Unit 35
5. EXPLANATION OF PROGRAM 36 87
5.1 Instruction 37
5.2 Explanation of Instruction 38
5.2.1 Load (LD)/Load inverse (LDI)/Out (OUT) 38
5.2.2 And (AND)/And inverse (ANI) 39
5.2.3 Or (OR)/Or inverse (ORI) 40
5.2.4 And block (ANB) 41
5.2.5 Or block (ORB) 42
5.2.6 Master control (MC) 43
5.2.7 Set, reset (SET, RST) 44
5.2.8 Shift instruction (SFT) 45
5.2.9 Conditional jump instruction (CJ). 46
5.2.10 Pulse instruction (PLS) 47
5.2.11 No operation instruction (NOP) 48
5.2.12 Program end 48
5.3 Data Instructions. 49
5.3.1 Instructions 50
5.3.2 BCD convert instruction 51
5.3.3 BIN convert instruction (BIN) 52
5.3.4 Data compare instruction ($>,=,<$) 53
5.3.5 Add instruction (+), subtract instruction (-) 54
5.3.6 Move instruction (MOV) 55
5.4 Application Instruction 56
5.4.1 Application Instruction 56
5.4.2 Functions and practical use of application instructions 57
5.4.3 16-bit data dissociation 58
5.4.4 16-bit data AND operation 59
5.4.5 16-bit data OR operation 60
5.4.6 Batch shift of temporary memory M. 61
5.4.7 Batch shift of data register D 66
5.4.8 Batch reset of data register D 69
5.4.9 Indirect reading of T, C, D (Timer, Counter, Register D) 70
5.4.10 Indirect writing of T, C, D 71
5.4.11 Data transference from Y to D 72
5.4.12 $4 \leftrightarrow 16$ Decode/encode 75
5.4.13 16-bit check 78
5.4.14 Data inversion 80
5.4.15 Functions and practical use of high-speed processing instructions. 81
5.4.16 Programming error display 84
5.4.17 Scan time restriction 85
5.4.18 List of arithmetic operation processing time 86
6. PROGRAMMING UNIT $87 \sim 92$
6.1 Explanation of Programming Unit Functions 88
6.2 List of Operations 90
6.3 Error Messages and Corrective Actions 91
7. OPERATING PROCEDURE $94 ~ 97$
8. INSTALLATION AND WIRING 98 104
8.1 Instructions for Installing Locations 99
8.2 External Dimensions 100
8.2.1 Mounting dimensions 100
8.3 Panel Mounting Dimensions 101
8.4 Panel Wiring 103
8.5 Measure against "Thunder" Power Surge when AC Power Supply is used 104
9. STRUCTURE OF UNIT $105 \sim 110$
9.1 Structure of Basic Unit 106
9.2 Structure of Type 56 Extension Unit 107
9.3 Structure of Type 32 Extension Unit 108
9.4 Structure of Extension Power Supply 109
9.5 Loading and Unloading of I/O Module Terminal Block 110
10.MAINTENANCE AND INSPECTION 111 ~ 116
10.1 Periodic Maintenance 112
10.2 Checking Procedure during Abnormal Condition 113
10.2.1 In case POWER indicator of basic unit is off. 113
10.2.2 In case input signal fails to turn on while input device has turned on 113
10.2.3 In case external output load fails to turn on
while output signal has turned on 114
10.2.4 In case RUN indicator flickers or turns off when RUN switch of basic unit is moved to RUN position 115
10.3 Battery Changing Procedure 116

MEMO

1. FEATURES

1. FEATURES $1 \sim 2$

1. FEATURES

- High Performance in a Compact Unit

In addition to the standard instruction functions, the Model KOJ1U Series of controllers give you addition, subtration, comparsion and a variety of other practical functions.

- Full Range of Peripherals

For easier planning and maintenance, a full range of peripherals is available.

- High-speed Processing Capability

The executing time is equivalent to K2 CPU.

- High Speed Excution and Subroutine Call

High speed response and subroutine calls are possible by calling high speed processing programs during main program excution.

- Built-in Timers

The built-in timers offer a choice of settings in units of 0.1 second or 0.01 second for highprecision operations.

- All the Units in the MELSEC K2 Series Can Be Used High-speed counter unit, A/D and D/A converter units etc.
* For details about the MELSEC K2 series, refer to our separate catalogs.

- Removable Terminal Block

The terminal block can be removed from the main unit with cables connected.

2. CONFIGURATION

2. CONFIGURATION $3 \sim 11$
2.1 Overall Configuration 4
2.2 System Configuration 5
2.3 Overall Block Diagram 6
2.4 Main Unit Configuration 7
2.4.1 Equipment configuration 7
2.4.2 External view of equipment 8
2.5 Peripherals. 10
2.6 Selection of Peripherals 11

2. CONFIGURATION

2.1 Overall Configuration

-Extension base

This is a base used to mount input/output unit for K2.
A maximum of 128 inputs/outputs can be packaged.

ке58/K68 Inputa/Outputs : Nax. 128

2.2 System configuration

Seven types of system configurations are available as shown below.

2.3 Overall Block Diagram

Peripheral
equipment port

2. CONFIGURATION

2.4 Main Unit Configuration

2.4.1 Equipment configuration

*1 Extension unit is equipped with KOJ-61CBL.

2. CONFIGURATION

2.4.2 External view of equipment

K68B

KOJ1-EX1

KOJ1-EX2

KOJ1U-PW

KORAM

2KROM

KOJ-61CBL

KOJ-62CBL

K6BAT

GGC3 GGL10 GTH-5

2. CONFIGURATION

2.5 Peripherals

Unit	Description	Type No.	Remarks	Weight (kg)
GPP	Graphic programming panel	K8GPPE	Programming unit with CRT. Used together with K6GPFE and K63CBL.	11.8
	GPP interface unit	K6GPFE	Interface used for connection between main unit CPU and K8GPPE.	0.45
	GPF cable	K63CBL	Cable used for connection between K8GPPE and K6GPFE.	0.7
PU	Programmint unit	K7PUE	Program I/O unit for main unit CPU.	0.5
MT for industrial	Data cassette interface	K7MTFE	Interface used for connection between main unit CPU, K8GPPE and K7MTE.	0.45
	Data cassette	K7MTE	Data cassette for industrial use.	4.5
	Data cassette cable	K63CBL	Cable used for connection between K7MTE and K7MTFE. Same as GPF cable.	0.7
HGP	HGP interface	K6HGPFE	Interface used for connection between main unit CPU and K6HGPE.	0.33
	Handy graphic programmer	K6HGPE	Programming unit with liquid crystal display	1.1
	Interface cable	K70CBL	Cable used for connection between K6HGPFE and K6HGPE.	0.27
PRT	Handy recorder	K6PRT	Cassette loader with liquid crystal display, P-ROM writer, printer interface unit.	0.95
	PRT interface	K6HGPFE	Interface used for connection between main unit and K6PRT.	0.33
	Interface cable	K70CBL	Cable used for connection between K6HGPFE and K6PRT.	0.27

2. CONFIGURATION

2.6 Selection of Peripherals

MEMO

3. SPECIFICATIONS

3. SPECIFICATIONS $12 \sim 28$
3.1 General Specifications 13
3.2 Performance Specifications 14
3.3 Individual Specifications 15
3.3.1 Basic unit (KOJ1U-*****) 15
3.3.2 Type DR I/O specification (DC 24 V input, relay contact output) 16
3.3.3 Type AR I/O specification (AC 115 V input, relay contact output) 17
3.3.4 Type AS I/O specification (AC 115 V input, triac output) 19
3.3.5 Type AT I/O specification (AC 115 V input, transistor output) 20
3.3.6 Power capacity calculation 21
3.4 Terminal Arrangement 22
3.4.1 Terminal arrangement of basic unit. 22
3.4.2 Terminal arrangement of Type E56 extension unit 23
3.4.3 Terminal arrangement of Type E32 extension unit 24
3.5 Cautions and Corrective Actions for Input and Output Circuits 25
3.5.1 Cautions and corrective actions for input circuits 25
3.5.2 Cautions and corrective actions for output circuits 28

3. SPECIFICATIONS

3.1 General Specifications

Item		Specifications
Power Sypply	Applied voltage	AC 115V $\pm 15 \% \quad 50,60 \mathrm{~Hz}$
	Power Consumption	85 VA, 62W
Operating ambient temp.		$0 \sim 55^{\circ} \mathrm{C}$
Storage ambient temp.		$-10 \sim 75^{\circ} \mathrm{C}$
Operating ambient humidity		10 $\sim 90 \%$ RH, free of dew condensation
Storing ambient humdity		$10 \sim 90 \% \mathrm{RH}$, free of dew condensation
Vibration resistance		Shall conform to class 3, IIB, JIS C0911 ($16.7 \mathrm{~Hz}, 3-\mathrm{mm}$ double amplitude, 2 hrs.)
Shock resistance		Shall confrom to JIS C 0912 (10 g x 3 times in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, directions)
Noise resistance		1000 Vpp noise voltage, $1 \mu \mathrm{~s}$ noise width, $25 \sim 60 \mathrm{~Hz}$ noise frequency by noise simulator
Dielectric withstand voltage	AC 1500 V for 1 minute	Across batch of AC terminals and case
		Across batch of external AC terminals and batch of external DC terminals
	AC 500V for 1minute	Across batch of external DC terminals and case
Insulation resistance	$5 \mathrm{M} \Omega$ larger by 500 V insulation registance meter	Across batch of external AC terminals and case
		Across batch of external AC terminals and batch of external terminals
		Across external DC terminals and case
Grounding		100Ω or smaller grounding resistance. When grounding is impossible, connect LG and FG terminals with panel.
Operating ambience		Particularly dust and corrosive gas should be little.
Cooling method		Self-cooling
Applicable cable rating		22 AWG ~ 14 AWG ($\left.0.3 \mathrm{~mm}^{2} \sim 2 \mathrm{~mm}^{2}\right)$
Reference terminal board tightening torque		$11.2 \pm 15 \% \mathrm{~kg} \cdot \mathrm{f} \cdot \mathrm{cm}$ (M3.5 screw used)

3.2 Performance Specifications

Item		Specifications
Control method		Stored program, repeated operation
I/O control method		Input and output are made each time during repeated operation.
Programming language		Dedicated language to sequence control (relay symbol type, used together with logic symbolic language)
Instruction	No. of instructions	26 types of basic instructions (sequence instruction + data instruction) +15 types of application instruction
	Word length	16 bits/1 step
Sequence instruction excution time		$5.6 \mu \mathrm{~S} / 1$ step in average
Program capacity and memory		1024 steps, RAM (Standard equipped) 2048 steps, RAM (KORAM fitted to socket) 2048 steps, ROM (2KROM fitted to socket)
No. of I/O points		Basic unit: 32 inputs, 24 outputs
		E32 extension unit: 16 inputs, 16 outputs
		E56 extension unit: 32 inputs, 24 outputs
		K65B extension base: Up.to 5 I/O cards for K2 can be fitted.
		K68B extension base:Up to $8 \mathrm{I} / \mathrm{O}$ cards for K2 can be fitted.
No. of temporary storage points		254 points (MO ~M253). Turned on when M254 battery is abnormal. Turned on when M255 self-diagonsis result output is run.
Timer, counter (bulit-in)	No. of usable points	128 points (T.CO ~ 127 incl. timers and counters)
	Timer specifications	TO \sim T95: $\quad 0.1 \sim 99.9$ sec. setup time, 0.1 sec. setup increments, on delay. T96 ~ T127: $0.01 \sim 99.99$ sec. setup time, 0.01 sec. setup increments, on delay.
	Counter specifications	$1 \sim 9999$ setting ragnes, max. $10 \mathrm{c} / \mathrm{s}$ counting speed (at 1 K steps.)
Shift register	No. of usable points	253 bits ($\mathrm{M} 1 \sim 253$) excluding those used for temporary storage.
	Specifications	With temporary storang in units of 1 bit combined, up to 253 bits are possible (data shift is also possible).
Data	Data register specifications	96 points (D0 ~ D95), 16 bits for 1 data, max. 4 digits can be handled in units of 4 bits.
	Data input/output	4 I/O points make up 1 digit. Usable jointly with process input/output. Decimal $1 \sim 4$ digits from 0 to 9999.
Backup for power failure		Backup for power failure is possible by LATCH ON switch on basic unit. M128 ~253, T.C64~111, D64~95
Allowable instant stop time		$\mathbf{2 0 ~ m s . ~ I n i t i a l ~ s t a r t ~ i n ~ c a s e ~ i f ~} \mathbf{2 0 ~ m s}$ or longer period.
Self-diagnostic functions		Arithmetic operation jam monitor, abnormal machine code detection, abnormal power supply detection, RUN signal is output from exterior by program.
Battery functions		Backup for program memory (RAM) and latch function. Lithium battery. Total 300 -day backup period. 5 -year battery service life.

3.3 Individual Specifications

3.3.1 Basic unit (KOJ1U-**-***)

Item	Specifications	
Input voltage	AC 115V $\pm 15 \%$	
Input frequency	$50,60 \mathrm{~Hz}$	
Max. apparant input power	85 VA	
Max. effective input power		
Rush current	- 20 A or lower	
Output voltage	DC 24 V	
Max. output current	0.9 A	(7)
Excess current protection	$150 \% \sim 220 \%$ of rated value	

RUN switch

This switch is used to start and stop the sequencer. Move the switch to "RUN" position and the sequencer is started. Move it to "STOP" position, and program excecution is suspended and the sequencer comes to a stop. When the sequencer is at a stop, all outputs are off.

LATCH switch

This switch is used to select the setting of backup for power failure. "ON" position is for backup for power failure. "OFF" position is for no backup.
(3)

RESET switch

This switch is used to reset abnormal arithmetic operation and to initialize arithmetic operation. Also use this switch to clear all contents of arithmetic operation and restart arithmetic operation. At this time, M, T, C, D, which are not backed up for power failure, and output Y are all cleared.

POWER indicator

This is a power indicator light for DC 5 V output.

RUN indicator light

This light turns on when normal operation is made. The light turns off when the sequencer comes to a stop or power is cut off. It flickers and turns on when watchdog error or illegal code is detected.
(6) CONNECTOR

This is a connector which connects peripheral unit.

(7) CONNECTOR

This is a connector for extension cable attached to extension adaptor. When adaptor is not provided, blind cap is furnished instead of this connector. The basic unit is standard equipped with blind cap.
(8) TERMINAL BLOCK

This is a terminal block which connects power supply and I/O signal cable. Equipped with finger protector.

3.3.2 Type DR I/O specificatin (DC 24 V input, relay contact output)

Input Specifications			Output Specifications		
Insulation method	Photocoupler insulation		Insulation method	Relay insulation	
Operation display	All points displayed by LEDs		Operation display	All points displayed by LED	
Input voltage	DC 12/24 V		Max. load Voltage	DC 125 V/AC 132 V	
Input current	4/10 mA		Load current	$2 \mathrm{~A} / 1$ point	
Operation voltage	OFF \rightarrow ON	10 V min.		$8 \mathrm{~A} / 8$ points totally	
	ON \rightarrow OFF	8 V max.	Min. load	100 mW (mA, 1V min.) 5 mA (AC 100 V at AC 200V	
Response time (at DC 24 V)	OFF \rightarrow ON	$3 \sim 6 \mathrm{mSec}$	Response time	OFF \rightarrow ON	5 mS max.
	ON \rightarrow OFF			ON \rightarrow OFF	15 mS max.
Input system	Sink input (input current efflux system)		Life (Mechanical)	20,000,000 times min.	
Common connection	16 points connected with 1 common		Leak current	2 mA (AC $220 \mathrm{~V}, 60 \mathrm{~Hz}$)	
Terminal block specifications	2-piece type, with finger protector		Common connection	8 points connected with 1 common	
			Terminal block specifications	2-piece type, with finger protector	
			Current consumption	525 mA (DC $24 \mathrm{~V}, 25^{\circ} \mathrm{C}$ when 24 points turn on simultaneously)	
			Short-circuit Protection fuse	$$	

3. SPECIFICATIONS

3.3.3 Type AR I/O specificatin (AC 115 V input, relay contact output)

Input Specifications		Output Specifications		
Insulation method	Photocoupler insulation	Insulation method	Relay insulation	
Operation display	All points displayed by LEDs	Operation display	All points displayed by LEDs	
Input voltage	$\begin{gathered} A C 115 V \pm 15 \% \\ (A C 85 V \sim A C 132 V) \end{gathered}$	Max. load Voltage	DC $125 \mathrm{~V} / \mathrm{AC} 132 \mathrm{~V}$	
Input current	$10 \mathrm{~mA} \pm 1.5$ (AC 115V, 50 Hz)	Load current Min. load	$2 \mathrm{~A} / 1$ point	
Operation voltage	ON Voltage 90 V min .		$8 \mathrm{~A} / 8$ point totally	
	OFF Voltage 50 V max.		100 mW (mA, 1 V min.) 5 mA (AC 100 V at AC 200V)	
Response time (at DC 24 V)	OFF \rightarrow ON $4 \sim 12 \mathrm{mSec}$	Response time	OFF \rightarrow ON	8 mS max.
	ON \rightarrow OFF $\quad 3 \sim 15 \mathrm{mSec}$		ON \rightarrow OFF	15 mS max.
Input inrush current	$71 \mathrm{~mA}(90 \mathrm{~V}), 105 \mathrm{~mA}(132 \mathrm{~V})$	Life (Mechanical)	20,000,000 times min.	
Input inpedance	$12 \mathrm{~K} \Omega(50 \mathrm{~Hz}), 10 \mathrm{~K} \Omega(60 \mathrm{~Hz})$	Leak current	2 mA (AC $220 \mathrm{~V}, 60 \mathrm{~Hz}$)	
Common connection	16 points connected with 1 common	Common connection	8 points connected with 1 common	
Terminal block specifications	2-piece type, with finger protector	Terminal block specifications	2-piece type, with finger protector	
:		Current consumption	525 mA (DC $24 \mathrm{~V}, 25^{\circ} \mathrm{C}$ when 24 points turn on simultaneously)	
		Short-circuit Protection fuse	1 fuse/4 points, GGL7, 7A, AC 250V	

- Contact Life of Contact Output

Relation between the load current and the contact life (expressed by number of times) of contact output used for Type AR and DR is as shown in the chart below.

Contact life curve
Note: When DC 100V load is opened and closed at the contact, set load current at 0.1 A or lower. When frequency is too high even at 0:1 A load, be sure to connect C-R surge killer or flywheel diode in parallel with the load.

Example of drivable magnetic contactor (Mitsubishi Electric make)

Type of magnetic contactor	
Direct drive possible	Direct drive impossible
S-A10RM ~S-A12RM	$1,000,000$ times
S-K20 ~S-K400	$1,000,000$ times

3. SPECIFICATIONS

3.3.4 Type AS I/O specificatin (AC 115 V input, triac output)

Input Specifications			Output Specifications			
Insulation method	Photocoupler insulation		Insulation method	Photocoupler insulation		
Operation display	All points displayed by LEDs		Operation display	All points displayed by LEDs		
Input voltage	$\begin{gathered} \text { AC } 115 \mathrm{~V} \pm 15 \% \\ (95 \sim 132 \%) \end{gathered}$		Max. load Voltage	AC 132 V		
Input current	$10 \mathrm{~mA} \pm 1.5$ (AC 115V, 50 Hz)		Load current	1 A/1 point		
Operation voltage				5 A/8 point totally		
	ON Voltage	85 V min.	Max. rush load power supply	30 A, 1 sycle		
	OFF Voltage	40 V max.				
Response time (at DC 24 V)	OFF \rightarrow ON	$5 \sim 15 \mathrm{mSec}$	Output voltage drop	1.5 V max. (at 1 A)		
	ON \rightarrow OFF		Response time	OFF \rightarrow ON	1 mS max.	
Input inrush current	$71 \mathrm{~mA}(90 \mathrm{~V})$, $105 \mathrm{~mA}(132 \mathrm{~V})$			ON \rightarrow OFF	(AC 1/2 cycle	
Input inpedance	$12 \mathrm{~K} \Omega(50 \mathrm{~Hz}), 10 \mathrm{~K} \Omega(60 \mathrm{~Hz})$		Leak current		1 mA (AC $120 \mathrm{~V}, 60 \mathrm{~Hz}$)	
Common connection	16 points connected with 1 common					
			Common connection	8 points connected with 1 common		
Terminal block specifications	2-piece type, with finger protector		Terminal block specifications	2-piece type, with finger protector		
			Short-circuit Protection fuse	GTH-5 (5 A)		

3.3.5 Type AT I/O specificatin (AC 115 V input, transistor output)

Input Specifications			Output Specifications		
Insulation method	Photocoupler insulation		Insulation method	Photocupler insulation	
Operation display	All points displayed by LEDs		Operation display	All points displayed by LEDs	
Input voltage	$\begin{gathered} A C 115 V \pm 15 \% \\ (A C 85 V \sim A C 132 V) \end{gathered}$		Rated Voltage	DC 12/24 V	
Input current	$10 \mathrm{~mA} \pm 1.5$ (AC 115V, 50 Hz)		Max. output voltage	DC 50V (DC 24V + 20\%, single phase full-wave rectification usable)	
Operation voltage	ON Voltage	90 V min.			
	OFF Voltage	50 V max.	Rush current	$10 \mathrm{~A}, 10 \mathrm{mS}$	
Response time (at DC 24 V)	OFF \rightarrow ON	4~12 mSec	Max. output current	$0.5 \mathrm{~A} / 1$ point, $4 \mathrm{~A} / 8$ points, all points ON	
	ON \rightarrow OFF	$3 \sim 15 \mathrm{mSec}$	Output voltage drop	0.8 V (TYP), 1.2 V (MAX)	
Input inrush current	71 mA (90V), $105 \mathrm{~mA}(132 \mathrm{~V})$		Response time	OFF \rightarrow ON	0.1 mS max.
Input inpedance	$12 \mathrm{~K} \Omega(50 \mathrm{~Hz}), 10 \mathrm{~K} \Omega(60 \mathrm{~Hz})$			ON \rightarrow OFF	1 mS max.
Common connection	16 points connected with 1 common		Leak current	1 mA max.	
Terminal block specifications	2-piece type, with finger protector		Built-in 24 V current consumption	$50 \mathrm{~mA}(32 \text { TYP) }$	
			Common connection	8 points connected /1 common	
			Protection	Excess voltage protection: varistor Short-circuit protection: fuse	
			Terminal block specifications	2-piece type, with finger protector	

3.3.6 Power capacity calculation

DC 24 V of power supply (KOJ1U-PW) is supplied to the basic unit, the DC input circuits of E32 and E56 extension units, the relay power supply of contact output, etc. When the capacity of DC 24 V power supply within the basic unit is insufficient, it is possible to incorporate KOJ1U-PW into the E56 extension unit.
Calculate capacity as described below.
(1) Rated current of DC 24 V power supply (KOJ1U-PW)

Ambinent temp.	Current capacity
$\sim 45^{\circ} \mathrm{C}$	1.1 A
$55^{\circ} \mathrm{C}$	0.9 A

(1) Current consumption of DC 24 V of each unit

| I/O symbol | 24 V current consumption | |
| :---: | :---: | :--- | :--- | :--- | :--- |
| | | |\(\left.\quad \begin{array}{c}Current consumption

of basic unit\end{array} \quad $$
\begin{array}{c}\text { Current consumption } \\
\text { of E32 ext. unit }\end{array}
$$ \quad $$
\begin{array}{c}\text { Current consumption } \\
\text { of E56 ex }\end{array}
$$\right]\)

* Current consumption in above table is based on values obtained when all points are turned on at the same time.
(2) Example of capacity calculation $\left(55^{\circ} \mathrm{C}\right)$

Unit configuration

When capacity is calculated on the assumption that each unit has simultaneous 60\% "ON" ratio, values in parentheses are obtained. In this case, power supply unit is added to the E56 extension unit in order to supply power also to the E32 extension unit.

3.4 Terminal Arrangement

3.4.1 Terminal arrangement of basic unit

I/O No. allocation

IN	X00 \sim XOF	(16 points)
X	$X 10 \sim X 1 F$	(16 points)
OUT	$Y 20 \sim Y 2 F$	(16 points)
Y	$Y 30 \sim Y 37$	(8 points)

3.4.2 Terminal arrangement of Type E56 extension unit

I/O No. allocation

	EXTENSION I		EXTENSION II	
IN	X80 \sim X8F	(16 points)	XCO \sim XCF	(16 points)
\times	X90 \sim X9F	(16 points)	XDO \sim XDF	(16 points)
OUT	XAO \sim XAF	(16 points)	YEO \sim YEF	(16 points)
Y	XBO \sim XBF	(8 points)	YFO \sim YF7	(8 points)

*1, *2 To be unilized only when extension power supply is used with E56AS.

3.4.3 Terminal arrangement of Type E32 extension unit

EXTENSION I							
0 4 8 C 1						C 8	40
1 5 9 D						D 9	5
2 6 A E						E A	62
3 7 B F						F \quad B	73
		DR, AR, AS, AT	DR, AR, AT	AS			
TB1	TB1	X80	DC 24V	NC	TB20		TB20
	TB2	$\times 81$	DC24G	NC	TB19	TB19	TB20
TB2	TB3	$\times 82$	YAO		TB18	TB19	
TB4 TB3	TB4	X83	YA1		TB17	TB17	TB18
TB4	TB5	X84	YA2		TB16	TB17	
TB6	TB6	X85	YA3		TB15		TB16
	TB7	X86	YA4		TB14	TB15	TB14
	TB8	X87	YA5		TB13	TB13	
TB8 TB9	TB9	NON CONNECTION	YA6		TB12	TB13	TB12
TB10 TB9	TB10	X88	YA7		TB11	TB11	TB12
TB10	TB11	X89	COMMO		TB10	TB11	TB10
TB12 ${ }^{\text {TB11 }}$	TB12	X8A	YA8		TB9	TB9	TB10
TB12	TB13	X8B	YA9		TB8	TB9	
TB14 ${ }^{\text {TB13 }}$	TB14	X88	YAA		TB7	TB7	TB8
TB14	TB15	X8D	YAB		TB6		
TB16	TB16	X8E	YAC		TB5	TB5	TB6
	TB17	X8F	YAD		TB4	TB5	TB4
	TB18	COMMON1	YAE		TB3	TB3	TB4
TB18 TB19	TB19	NON CONNECTION	YAF		TB2	TB3	TB2
TB20 ${ }^{\text {TB19 }}$	TB20	FG	COMMO		TB1	TB1	

$$
\begin{array}{|l|ll|}
\hline \text { IN } & \text { X } & \text { X80 } \sim \text { X8F } \\
\hline \text { OUT }^{\prime} & \text { XA points }) \\
\hline
\end{array}
$$

EXTENSION II

IN	X
	$X C O \sim$ XCF
${ }^{2}$ (16 points)	

3.5 Cautions and Corrective Actions for Input and Output Circuits

3.5.1 Cautions and corrective actions for input circuits.

Table 3.5.1

Ex.	Condition	Cause	Corrective Action
1	Though triac is not on, input turns on. Though triac is turned off, input fails to turn off.	Input is turned on by leak current from the CR absorber used to protect triac from surge. AC 2-wire type proximity switch, etc. This occurs in AR, AS, or AT when leak current excedds 4 mA .	Connect resistor or series combination of resistor and capacitor as shown below in order to reduce input impedance so that voltage across input terminals of input unit is lower than input operation "off" voltage. Example: 15K $\Omega \mathbf{2 W}$
2	Though limit switch is not on, turns on. Though limit switch is turned off, input fails to turn off.	When limit switch is provided with neon lamp, input is turned on by leak current caused by neon lamp. Limit switch with neon lamp	Example: CR: $0.5 \mu \mathrm{~F}+50 \Omega$
3	Same as example 2.	In case input signal line is wired long distance in parallel to other power line, etc., input turns on because voltage is induced by induced voltage from power line.	Note: Determine R and $C R$ values depending on leak current values. When only resistors is used, more heat is generated. If possible, use the combination of resistor and capacitor. This combination produces an effect also on large surge.

Ex.	Condition	Cause	Corrective Action
4	Same as example 2.	Input is turned on by leak current caused by line-to-line capacity across wired cable.	(a) Same as examples 1,2, and 3. (b) As shown below, provide power supply on limit switch side.
5	Same as example 2. Though limit switch is not on, lamp turn on.	With 2 power supplies used, since E1 voltage is larger than E2 voltage, unidentified flowing current flows as show below.	(a) Use 1 power supply. (b) Take action so that E1 \leqq E2 is established. (c) Connect snake path prevention diode as shown below.

Input cable wiring
Input has many problems of wrong input and noise. These problems can be reduced by the aforementioned corrective actions and the following wiring method.
(1) Input signal cable shall not be bundled or provided close to high-voltage and large-current power lines and main circuit line. If possible, keep it more than 100 mm away from the aforementioned lines.
(2) When wiring is made at 200 mm or longer distance with AR, AS or AT, prblem indicated in example 4 of Table 3.5 .1 arises with only the use of 2 cables connected with input device. In this case, take corrective cation described in examples 1 and 2 or provide an intermediary relay.
(3) When shielded cable is used, shield coating shall be ground in a bundle at 1 point on the sequencer side. If both ends are ground, current will flow through the shield coating and therefore shielding effect is not produced at all.
(4) When conduit wiring is made by means of metal pipe, ground the pipe securely.

3. SPECIFICATIONS

3.5.2 Cautions and corrective actions for output circuits

Table 3.5.2

Condition	Cause	Corrective Action
-Example 1When output off, ecess voltage is applied to load.	- Load is half-wave rectified internally (seen in some solenoids) When power supply polarity is as shown by (1), C is charged. When polarity is as shown by (2), voltage charged in C plus line voltage are applied across D1. Max. voltage is approx. 2V2E.	Connect resistor of several ten K across load. Note: When resistor is used in this way, it does not offer problem to output elemnt, be may sometimes cause the diode, which is built in the load, to deteriorate or burn.
- Example 2Load does not turn off.	- Leak current caused by built-in snubber. This is especially liable to occur in the case of small-capacity load.	- Connect resistor of approx. several ten K across load. Note: In case wiring distance from output card to load is long, take care because there may exist leak current due to line-to-line capacity. - Connect \mathbf{C} and \mathbf{R} across load. CR: $0.1 \sim 0.47 \mu \mathrm{~F}+47 \sim 120 \Omega$
-Example 3When motor type or C, R type timer is used as load, time limit fluctuates.		- After driving relay, drive timer at the same contact. - Connect \mathbf{C} and \mathbf{R} across $\mathbf{C R}$ timer. CR: $0.1 \sim 0.47 \mu \mathrm{~F}+47 \sim 120 \Omega$
-Example $4-$ Load fails (for direct current).	- Circulation occurs because 2 power supplies are used. - If $+\mathbf{2 4 V}<\mathrm{E}$, circulation occurs.	- Use load power supply of DC 24 V . Connect circulation preventive diode. (See note.) Note: In case relay or the like is used as load, it is necessary to connect reverse voltage absorbing diode (shown in dotted line in figure at left) with load.

Condition	Cause	Corrective Action
-Example 5- Output transistor is destroyed.	In case transistor is used for output and lamp is used as load, since inrush current flows through lamp when transistor turn on, output transistor is destroyed.	(a) Provide resistor as shown below so that small current, which will not turn on the flows at all times, in order to prevent rush current from generating.
Example I : rush current		
e $1 / 3 \sim 1 / 4$		

Output cable wiring

(1) Keep output cable as far away as possible from input cable.
(2) Since leak current due to line-to-line capacity is generated in addition to the leak current of output in the case of wiring at $\mathbf{2 0 0} \mathbf{m}$ or longer distance, it is necessary to take action mentioned in Example 2 of Table 3.5.2.
(3) Take care to prevent contact with cable at different potential and to prevent grounding.
(4) Keep DC output line as far away as possible from AC line.

MEMO

4. NOMENCLATURE AND CONFIGURATION

4. NOMENCLATURE AND CONFIGURATION $29 \sim 35$
4.1 External View of Basic Unit 30
4.2 External View of Type 56 Extension Unit 32
4.3 External View of Type 32 Extension Unit 34
4.4 External View of K68B Extension Base Unit 35

4. NOMENCLATURE AND CONFIGURATION

4. NOMENCLATURE AND CONFIGURATION

4.1 External View of Basic Unit

CONNECTOR

Extension cable connector

- Connector for cable used when extension adaptor (KOJ1-EX1/KOJ1-EX2) is fitted.
- When extension adaptor is not provided, blind cap is furnished.

Internal Configuration of Basic Unit

4.2 External View of Type 56 Extension Unit

Internal Configuration of Type 56 Extension Unit

4.3 External View of Type 32 Extension Unit

Internal Configuration of Type 32 Extension Unit

4.4 External View of K68B Extension Base Unit

MEMO

5. EXPLANATION OF PROGRAM

5. EXPLANATION OF PROGRAM 36 87
5.1 Instruction 37
5.2 Explanation of Instruction 38
5.2.1 Load (LD)/Load inverse (LDI)/Out (OUT) 38
5.2.2 And (AND)/And inverse (ANI) 39
5.2.3 Or (OR)/Or inverse (ORI) 40
5.2.4 And block (ANB) 41
5.2.5 Or block (ORB) 42
5.2.6 Master control (MC) 43
5.2.7 Set, reset (SET, RST) 44
5.2.8 Shift instruction (SFT) 45
5.2.9 Conditional jump instruction (CJ) 46
5.2.10 Pulse instruction (PLS) 47
5.2.11 No operation instruction (NOP) 48
5.2.12 Program end 48
5.3 Data Instructions. 49
5.3.1 Instructions 50
5.3.2 BCD convert instruction 51
5.3.3 BIN convert instruction (BIN) 52
5.3.4 Data compare instruction $(>,=,<)$ 53
5.3.5 Add instruction (+), subtract instruction (-) 54
5.3.6 Move instruction (MOV) 55
5.4 Application Instruction 56
5.4.1 Application Instruction 56
5.4.2 Functions and practical use of application instructions 57
5.4.3 16-bit data dissociation 58
5.4.4 16-bit data AND operation 59
5.4.5 16-bit data OR operation 60
5.4.6 Batch shift of temporary memory M 61
5.4.7 Batch shift of data register D 66
5.4.8 Batch reset of data register D 69
5.4.9 Indirect reading of T, C, D (Timer, Counter, Register D) 70
5.4.10 Indirect writing of T, C, D. 71
5.4.11 Data transference from Y to D 72
5.4.12 $4 \leftrightarrow 16$ Decode/encode 75
5.4.13 16-bit check 78
5.4.14 Data inversion 80
5.4.15 Functions and practical use of high-speed processing instructions. 81
5.4.16 Programming error display 84
5.4.17 Scan time restriction 85
5.4.18 List of arithmetic operation processing time 86

5. EXPLANATION OF PROGRAM

5. EXPLANATION OF PROGRAM

5.1 INSTRUCTION

- Sequence Instructions

Table 5.1.1

No.	Ins. code	Instruction	Symbol	No.	Ins. code	Instruction	Symbol
1	LD	Load		10	MC	Master control	
2	LDI	Load inverse		11	MCR	Master control reset	
3	AND	And		12	SET	Set memory	HH SET Y.M.F
4	ANI	And inverse		13	RST	Reset memory \& counter	$\mid-\mathrm{H}-\text { RST Y.M.C.F } \mid$
5	OR	OR		14	SFT	Shift memory	
6	ORI	OR inverse		15	CJ	Conditional jump	
7	ANB	And block		16	PLS	Pulse generate	$\|-1 H-P L S \quad M \quad\|$
8	ORB	OR block		17	NOP	No operation	Use for program delete or space
9	OUT	Out		18	END	End	Return to step 0. END definitely entered at end of program

Note: Instructions for timer and counter-values can be entered using constant K or data register D.
Out T.C and CJ are 2-word instructions and all others are 1-step instructions.

5.2 Explanation of Instruction

5.2.1 Load (LD)/load inverse (LDI)/out (OUT)

- Arithmetic operation principle

LD Specific I/O No. content (on or off) is stored into answer register A and the result is transferred to the lowest order $B 0$ of auxiliary registers ($B 0 \sim B 7$).

LDI Specific relay No. content is inversed and stored into register A.

OUT Content in register B is output to specific relay No.

At this time, content in register B does not change.

- Consecutive OUT instructions

OUT instruction can be consecutively used for program.

Note: The number of consecutive OUT instructions is up to 22 in the case of GPP and HGP.

5.2.2 And (AND)/and inverse (ANI)

	Coding		Register content	
	Step	Instruction	A	B
X00 X01 X02	0000	LD $\times 00$	$\underset{\sim}{\text { ¢00 }}$	$\underset{\substack{\text { X00 }}}{ }$
$00 \rightarrow \mathrm{HL}$	0001	AND X01	$\times 00 \times 01$	$\times 00 \times 01$
-	0002	ANI X02	-1F-1t	- $\times 1+\longrightarrow 1-$
	0003	OUT M10	-11-1-dk	-1H1+
			$\begin{gathered} \times 00 \times 01 \times 02 \\ -1 H 1+\nmid \end{gathered}$	$\begin{gathered} \times 00 \times 01 \times 02 \\ \text { - } 1 \text { H } \end{gathered}$

AND Contact "a" series connection
ANI Contact "b" series connection

- Arithmetic operation principle AND . . AND or ANI operation of specific relay No. content is performed with register BO ANI and the result is stored into register BO .

- Number of contacts

The number of contacts is limitless. AND Note: Consecutive contact writing by GPP or ANI can be used consecutively for any number of contacts.
and HGP with circuit mode is allowed up to 161 contacts.

Step	Instruction
0000	LD $\times 00$
0001	AND X01
0002	AND X02
0003	AND X03
\vdots	\vdots

In this case, since the contact for the 1st relay No. X00 is logic start, it is programmed as "LD X00".

5. EXPLANATION OF PROGRAM

5.2.3 Or (OR)/or inverse (ORI)

- Arithmetic operation principle

OR ... OR or ORI operation of specific relay No. Content is performed with register BO ORI and the result is stored into BO.

- Number of contacts

The number of contacts is limitless. OR or ORI can be used consecutively for any number of contacts.

Note: The number of consecutive para lel contacts by GPP and HGP is to 22.

In this case, since the first X00 is logical start, it is programmed as "LDX00".

5.2.4 And block (ANB)

Arithmetic operation principle

(1) First, the arithmetic operation result of block A is stored in register BO.
(2) When the arithmetic operation of block B is initiated, content in BO is transferred to B1.
(3) The arithmetic operation result of block B is stored in BO .
(4) AND operation of BO content and B1 content is performed by "ANB" instruction, and the result is stored in BO again.

(4)

- Number of blocks
*1 The number of AND bolcks (ANBs) is limitless.

Step		
0000	LD M1	
0001	OR M2	
0002	LDI	M3
0003	OR M4	
0004	ANB	
0005	LD	M5
0006	OR	M6
0007	ANB	
\vdots	\vdots	
\vdots	OUT Yn	

*1 When ANB is utilized consecutively, use programming of ANB instruction per block.

5.2.5 Or block (ORB)

- Arithmetic operation principle

(1) First, the arithmetic operation result of block A is stored in register BO.
(2) When the arithmetic operation of block B is initiated, content in BO is transferred to B1.
(3) The arithmetic operation result of block B is stored in BO .
(4) OR operation of BO content and B1 content is performed by "ORB" instruction, and the result is stored in BO again.

(4)
- Number of blocks
*1 The number of OR blocks (ORBs) is limitless.

Step	Instruction	
0000	LD M1	
0001	AND M2	
0002	LD M3	
0003	ANI M4	
0004	ORB	
0005	LDI M5	
0006	AND M6	
0007	ORB	
\vdots	\vdots	
\vdots	OUT Yn	

*1 When ORB is utilized consecutively, use programming of ORB instruction per block.

5. EXPLANATION OF PROGRAM

5.2.6 Master control (MC)

Arithmetic operation principle
(1) I/O data ($X 00$) is placed in register A and then the content
 in register A is transferred to register C .
(2) AND operation of I/O data (Y 10) and register C content is performed, and OUT Y11 is executed.

MC and MCR require index No. "Kn". Be sure to provide MCR Kn for MC Kn.

Step	Instruction	
0000	LD	M0
0001	MC	K1
0002	LD	X00
0003	OUT	Y10
0004	LD	X01
0005	OR	M10
0006	ANB	
0007	OUT	Y 11
0008	MCR	

5.2.7 Set, reset (SET, RST)

- Arithmetic operation principle

When I/O data for set are input, internal flip-flop is set. When I/O data for reset are input, flipflop is reset.

5.2.8 Shift instruction (SFT)

SFT Temporary memory shift

- Arithmetic operation principle

By giving SFT instruction to temporary memory (M), 1-bit shift register can be constituted.
$\left.\begin{array}{l}\text { If } \mathrm{Mn}-1=1 \rightarrow \mathrm{Mn}=1 \\ \text { If } \mathrm{Mn}-1=0 \rightarrow \mathrm{Mn}=0\end{array}\right\} \begin{aligned} & \text { Establish } \mathrm{Mn}=0 \text { after SFT } \\ & \text { instruction. }\end{aligned}$

It is necessary to set Mn , which is the head of shift register, at " 1 " by SET instruction.

Note: Do not give SFT instruction to MO because M255 may possibly shift to MO. For the same reason, do not give SFT instruction to M254.

Step	Instruction	
0000	LDI	M17
0001	OUT	T0
0002	K10	
0003	LD	T0
0004	OUT	M17
0005	LD	M6
0006	RST	M10
0007	LD	M17
0008	SFT	M10
0009	SFT	M9
0010	SFT	M8
0011	SFT	M7
0012	LDI	M18

Step	Instruction	
0013	PLS	M15
0014	LD	M15
0015	OR	M10
0016	SET	M6

5.2.9 Conditional jump instruction (CJ)

Coding		
Step	Instruction	
0100	LD	X0
0101	CJ	
0102	K150	

CJ Conditional jump

> *1 Unnecessary circuit is jumped temporarily.
> Process circuit is separated depending on conditions in order to perform high-speed arithmetic operation processing.

- Arithmetic operation principle

By conditional jump instruction, program seuqence skips to jump destination and the programs from the jump destination on are executed.

By using CJ instruction, it is possible to force the program sequence to jump the program which is normally not required (program A) and to execute on necessary programs. Therefore, scan time can be economized, and at the same time, program can be separated.

Differences between Master Control (MC) and Conditional Jump (CJ)

Item	MC	CJ
Operation time	Unchanged	Reduced
Program	Complicated	Simplified
Step control	Not required	Required*1

*1 It is necessary to specify the jump destination. Therefore, it is required to control the step No. Especially when instruction is inserted or deleted in debugging of program, the step No. of jump destination changes. However, the step No. is automatically altered in the case of PU, GPP and HGP.

5.2.10 Pulse instruction (PLS)

PLS Pulse generation
Pulse signals for one program sequence are generated.

Leading edge detection pulse

Pulse width
Trailing edge detection pulse

- This pulse is generated in order to process internal program. Therefore, it cannot be used as a pulse signal by drawing it to the exterior.

5. EXPLANATION OF PROGRAM

5.2.11 No operation (NOP) \qquad instruction used to progress the program unique to sequencer.

NOP No operation

NOP is a no operation instruction and has no influence on the results of preceding arithmetic operation. An effective use of this instruction is to write NOP per desired step when preparing a program and to delete it when the program is completeld.

* Although NOP is a no operation instruction, the use of this instruction results in loss of scan time because the step with NOP is not skipped but scanned.

5.2.12 END instruction (END)

END Program end
Write this at the end of program.

END is entered at the end of a required program step to declare the end of the program. The CPU returns the program counter to " 0 " and initiates scanning again from the step No. " 0 ".

The END Instruction can also be utilized temporarily at the time of program debugging or test and also when program is executed halfway.

5.3 Data Instructions

Data instructions such as addition, subtraction, comparison, BCD, BIN, and conversion are provided in addition to the sequence instructions which use relay and logic symbols.
The tada instruction consists of 3 steps and is expressed as shown below.

5. EXPLANATION OF PROGRAM

5.3.1 Instructions

- Data-Handling Instructions

Table 5.3.1

* 1. This instruction is executed using input signal ON. 2. S means source; data initiation.

3. D means destination; data results.
4. These are a contact instructions; other instructions are coil-contact instructions.
5. Cannot handle negative value.
6. All data instructions are 3-word instructions.

MOV

S	K	D	T	C	X	Y	M
K		0					
D		0	0	0		0	0
T		0					
C		0					
X		0					
Y							
M		0					

MOV	Km	Dn
MOV	Dm	Dn
MOV	Dm	T, Cn
MOV	Dm	KnY, M
MOV	T, Cm	Dn
MOV	KmX, M	Dn

Store constant min Dn: constant set.
Transmit Dm data to Dn: number shift.
Transmit Dm data to T, Cn : temporary value change of T or C.
Output Dm data to Y or M : n is decimal unit No. $1 \sim$ 4,1 unit consists of 4 digits.
Transmit temporary value of T or Cm to Dn .
Transmit X or M of m decimals
(1 m unit $=4$ digits) to Dn : input instruction.

$>$	Km	Dn
$<$	Km	Dn
$=$	Dm	Dn
+	Km	Dn
+	Dm	Dn
-	Km	Dn
-	Dm	Dn

Compare whether constant $m>$ Dn data.
Compare whether constant $\mathrm{m} K$ Dn data.
Compare whether data of $\mathrm{Dm}=$ data of Dn .
Add constant m to Dn data, and store the result in Dn.
Add Dm data to Dn data, and store the result in Dn.
Subtract constant m from Dn data, and store the result in Dn.
Subtract Dm data from Dn data, and store the result in Dn.

BCD(o)
$\operatorname{BIN}(\bullet)$

D	K	D	T	C	X	Y	M
K							
D		\bullet					
T		\circ					
C		\circ					
X		\bullet					
Y							
M							

BCD	Dm	Dn
BCD	T, Cm	Dn
BIN	Dm	Dn
BIN	KmX	Dn

Convert Dm data (BIN) to BCD, and store the result in Dn.
Convert Tor C data to BCD, and store the result in Dn. Convert Dm data (BCD) to BIN, and store the result in Dn.
Convert input of 4 -decimal units (1 unit $=4$ digits) to BIN, and store the result in Dn.

5.3.2 BCD convert instruction (BCD)

BCD
BCD convert instruction (Binary coded decimal)
Coding

Step	Instruction	
0000	LD	X10
0001	BCD	
0002		D1
0003		D2

Instruction which is used to convert BIN (binary code) into BCD (binary coded decimal).

- Arithmetic operation principle

O mark shows convertible combination.

$S D$	K	D	T	C	X	Y	M
K							
D		0					
T		0					
C		0					
X							
Y							
M							

" 21 " is expressed in BIN and BCD as shown above. BCD instruction performs BIN to BCD conversion as shown by the arrow, and is utilized to output the content of register to the exterior, as a decimal number, through output unit.

5. EXPLANATION OF PROGRAM

5.3.3 BIN covert instruction (BIN)

Coding

Step	Instruction	
0000	LD	X10
0001	BIN	
0002	D1	
0003	D2	

BIN Binary convert instruction

Since input data generally has many decimal numbers, this BIN instruction is provided. The input data of BCD is converted and input, and then internally processed in binary code.

- Arithmetic operation principie

" 52 " is expressed in BCD or BIN as shown above. BIN inst-

O mark shows convertible combination.

S	K	D	T	C	X	Y	M
K							
D		0					
T							
C							
X		0					
Y							
M							

Step	Instruction	
0000	LDI M0	
0001	BIN	
0002	K2X00	
0003	D0	

5.3.4 Data compare instruction $(>,=,<)$

Omark shows operable S/D combination.

$S D$	K	D	T	C	X	Y	M
K		0					
D		0					
T							
C							
X							
Y							
M							

The compare operation executed in binary code.

The compare instruction is equivalent to contact in handling.
However, since OR instruction cannot be performed, do as shown below.

Provide a dummy contact.

Step	Instruction
0000	LD X00
0001	$>$
0002	D1
0003	D0
0004	LDI MO
0005	$<$
0006	D2
0007	D0
0008	ORB
0009	OUT Y20

5.3.5 Add instruction (+), subtract instruction (-)

D - S \rightarrow D
Add instruction

Subtract instruction
Coding

Step	Instruction	
0010	LD	M4
0011	$+(-)$	
0012	D1	
0013		D2

*Be sure to use pulse instruction and also use M, which has been converted into pulse signal, prior to this add or subtract instruction.

When M0 turns on, D1 is added to 10 and the value is entered into D1.

Step	Instruction	
0000	LD	X10
0001	PLS	M0
0002	LD	M0
0003	+	
0004		10
0005		D1

O mark shows operable combination.

$S V$	K	D	T	C	X	Y	M
K		0					
D		0					
T							
C							
X							
Y							
M							

$-\cdots$	0	0	1	0	0	1	1	0

Cotent of D1 before execution of instruction
$\left[\begin{array}{ll|l|l|l|l|l|l|l|l|}\hline--- & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline\end{array}\right.$

Binary coded 10

---	0	0	1	1	0	0	0	0

Content of D1 after execution of add instruction

* Take care of subtract instruction because it is reverse in position to a normal arithmetic equation, i.e. the subtracted value is located in D and the subtracting value in S .
Also take care not to make the result of arithmetic operation negative because only positive integers are handled. When there is a possibility that arithmetic result may become negative, compare whether S or D is larger. When S is larger than D, subtract D from S and store into M the fact that the result is negative.

5.3.6 Move instruction (MOV)

Coding		
Step	Instruction	
0000	LD \quad X0	
0001	MOV	
0002	D1	
0003	D2	

- After arithmetic operation, S and D contents are the same.
- After execution of instruction, S content does not change.
- K, D, T, and C are transmitted in 16 bits.
- Constant set

O mark shows operable S/D combination.

S	K	D	T	C	X	Y	M
K		0					
D		0	0	0		0	0
T		0					
C		0					
X		0					
Y							
M		0					

Step	Instruction	
0000	LD X10	
0001	MOV	
0002	K30	
0003	D0	

Decimal " 30 " is converted into binary code, and is entered into DO.

* The constants handled by PU or GPP become binary numbers inside the sequencer.

Content of D0 (Data registration consists of 16 bits)

- Data transfer
$16+8+4+2=30$

$\begin{aligned} & \text { *1, } \frac{\mathrm{Km}}{\downarrow}, \quad \frac{\mathrm{Y} 20}{\downarrow} \quad \text { specifying method } \\ & 4 \text { bit } \times \mathrm{m}(1 \sim 4) \text { Leading bit }=\mathrm{Y} 20 \sim \mathrm{Y} 27\end{aligned}$
(Exampla)

$$
\text { K4 x X00 = } 4 \text { bits } \times 4 \quad \text { X00 (leading bit) }
$$

$$
=X O O \sim X O F
$$

(DO)
(D1)

5. EXPLANATION OF PROGRAM

5.4 Application Instructions

5.4.1 Application Instruction

* $\left\{\begin{array}{l}\text { " } 1 " ~ s h o w s ~ t h e ~ d a t a ~ t o ~ b e ~ p r e p a r e d ~ b e f o r e ~ e x e c u t i o n ~ o f ~ a p p l i c a t i o n ~ i n s t r u c t i o n . ~\end{array}\right.$ " " O " shows the resultant data after execution of application instruction.

Note: D No. shown in the above list is data register No. ($0 \sim 95$) for operand. Arithmetic operation is actually performed with the specified data register.

5.4.2 Functions and practical use of application instructions

8-bit data association

When AND or OR operation is performed with 16 -bit data in the standard K series CPU, only plus integer ranging from 0 to 9999 can be specified. When the additional function is used, however, 16 -bit data can be formed as follows:

5.4.2.1 Functions

Function No. F110

Fig. 5.4.2. 1 Data association
Note: D (D110) indicates the contents of the data register specified by D110.
(1) When D No. storing lower (low-order) 8-bit data to be added with counterpart and other D No. storing higher 8 -bit data are set in D110 and D111 respectively, and F111 is executed, the resultant 16-bit data is placed in Dn (D110).
(2) The content in Dm (D111) do not change. The resultant data is placed in Dn.
(3) The data to which another data is associated, may be either BCD 2-digit data, or binary 8bit data.
(4) When the newly formed binary 16-bit data is larger than 9999 and BCD instruction is executed, "RUN" display flickers. No substantial problem is caused by data exceeding 9999 as far as BCD instruction is not executed. However, monitor data by PU or GPP cannot be normally displayed.
(Circuit application)

5. EXPLANATION OF PROGRAM

5.4.3 16-bit data dissociation

The result from AND or Or with 16 -bit data is divided into one pair of 8 -bit data when this function is used.

5.4.3.1 Functions

Function No.: F111

Fig. 5.4.3.1 Data dissociation
(1) When D No. (Dn) storing 16-bit data to be dissociated is entered in D110 and D No. in which upper 8 -bit data is placed after the dissociation is entered in D111, and F111 is executed, the dissociated two data are placed in Dm (D111) and Dn (D110).
(2) The data to be dissociated may be binary 16-bit data or BCD 4-digit data.

5.4.3.2 Circuit applications

Ex.: Content (BCD 4-digit data) of D5 are divided into two-digit BCD data, and placed in D5 and D20 separately.

Fig. 5.4.3.2 Data Dissociation Circuit

5. EXPLANATION OF PROGRAM

5.4.4 16-bit data AND operation

Each bit-to-bit AND operation is performed between two data registers.

5.4.4.1 Functions

Function No.: F112

Dm (D110)

AND
Dn (D111)

Dm•(D111)

0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0

Fig. 5.4.4.1 16-bit data AND operation

5.4.4.2 Circuit applications

Ex.: The third digit of BCD 4-digit data of D10 should be masked with " 0 ". When D10 is "1 23 4", for example,

Fig. 5.4.4.2 AND Operation Circuit

5. EXPLANATION OF PROGRAM

5.4.5 16-bit data OR operation

Each bit-to-bit OR operation is performed between two data registers as follows:

5.4.5.1 Functions

Function No.: F113

Dm (D110)

| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | OR

Dn (D111)

| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | \dagger

Dm (D110)

0	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1

Fig. 5.4.5.1 16-bit data OR operation

5.4.5.2 Circuit applications

Ex.: OR operation is performed between D10 and D20 and the result is placed in D10.

Fig. 5.4.5.2 16-bit data OR operation circuit

5.4.6 Batch shift of temporary memory M

Temporary memory M shift (SFT) instruction available in the standard CPU is of one bit shift instruction, and several steps are required for shift instruction with plural bits. When the function F114 is used, contents of desired number of bits may be batch shifted leftward or rightward from the specified head No. of M.

5.4.6.1 Functions

Function No.: F114			
Head No. of M: D110 0060 Binary numerals			
Number of bits to be shifted: D111 0030 Binary numerals Shift direction (leftward/rightward) D112 0000 0001 Leftward shift Right ward shift			

Note:
 M may be specified between the range from MO to M249. If number of bits specified in D111 exceeds this range, shift is not executed.

(1) The head No. of shift register to be formed is placed in D110. The No. should be junior one no matter whether shift is leftward or rightward, and written with binary numerals* in D110.
(2) The length of shift register, that is, number of bits to be shifted, is written in D111 with binary numerals*.

* Writing with binary numerals

When decimal numeral " n " is written on PU or GPP in the form of MOV Kn D110,D111, it is automatically converted into binary numerals. However, binary numeral should be used as converting from decimal numeral when head No. and number of bits are specified in BCD code.
(3) Direction of shift should be specified in D112. When the contents in D112 are " 0 ", the shift is leftward from junior No. to senior No. The shift, however, is rightward from senior No. to junior No. when the contents are " 1 ".
(4) Circuit composition.

Fig. 5.4.6. 1 Shift Register Circuit Composition

1) Shift command should be converted into pulses, otherwise "racing" (shift goes on without interruption although only one pulse is given) might occur.
2) When only one shift register is available in a program, it is recommended to enter the data (head No., number of bits, etc.) at start of execution, thereby " B " block may be simplified with only Mn and F114.
3) Actual shift register requires, in addition to the circuit shown in Fig. 5.4.6.1, reset circuit and data set circuit. For details, refer to para 5.4.6.2.
4) One-bit shift occurs each time when Mn turns on.
(5) The status of the shift register exemplified in Fig. 5.4.6.1 is as follows:
5) Leftward shift

Fig. 5.4.6.2 Left ward Shift
2) Rightward shift

Before execution

After execution
(After shifting)

Fig. 5.4.6.3 Rightward Shift
a) In leftward as well as rightward shift, the first bit (M60 for leftward shift, and M89 for rightward (shift) is not affected by shifting, and replaced with " 0 " at all times. If any shift data must be entered, it should be placed after the shifting.
b) The contents at the final bit of the shift register (M89 for leftward shift, and M60 for rightward shift) is erased due to overflow.
(6) Any bit "Mn" in the shift register may be set or reset with set (SET) instruction or reset (RST) instruction.

5.4.6.2 Circuit applications

(1) Leftward shift register

Fig. 5.4.6.4 Leftward Shift Register Circuit
(1) Contents shift from junior M No. to seniór M No.
(2) " B " circuit block is for multi-bit batch reset that is accomplished as follows:

Fig. 5.4.6.5 Batch Reset of M
In " a ", " 0 " is transferred to M60~75 with MOV \sim M89 with MOV
Total 30 bits may be reset at the same time.
Although no function or instruction is available for batch reset, batch reset can be programmed as shown in Fig. 5.4.6.5.
(3) The " E " and " F " circuit blocks are for setting of shift data to the fead bit. The setting is accomplished without synchronization with shift pulse, and immediately realized when data is given.
(4) Any bit in the shift register may be forcedly set or reset with input signal, as the case may be with " G ", " H ", " I " and " J " circuit blocks.
(5) It is recommended for prevention of overlap of timing to convert each input signal into pulses, like in " A ", " C ", " E ", " G " or " I " circuit block.
(6) Timing chart of circuit operation

Fig. 5.4.6.6 Left ward Shift Register Timing Chart
(2) Rightward shift register

Fig. 5.4.6.7 Rightward Shift Register Circuit
(1) Circuit block "D" reads shift data, being synchronized with shift pulses, and sets the head No. of the rightward shift register "M89".
(2) Other functions and operations are the same as those of the leftward shift register.
(3) Timing chart of circuit operation

Fig. 5.4.6.8 Rightward Shift Register Timing Chart

5.4.7 Batch shift of data register D

In order to shift contents in data register of the standard CPU, MOV instruction must be repeated the same time as the number of data to be shifted and therefore a considerable number of steps must be programmed for a large number of data.
When the additional function is used, the data shift may be accomplished only by specifying head No. of data register, length of data (number of bits), and direction of shifting, thus facilitating programming with a short number of steps.

5.4.7.1 Functions

Function No.: F115

Head No. of register D:	D110	0057	Binary numerals
Number of data registers to be shifted:	D111	0016	Binary numerals
Direction of shift: (leftward/rightward)	D112	0000	0001

Note: Applicable number of register range is from DO to D95. If number of registers specified by D111 exceeds D95, batch shift becomes impossible.

5. EXPLANATION OF PROGRAM

(1) Shift status
(1) Leftward shift

Fig. 5.4.7.1 Batch Shift (Leftward shift)
(2) Rightward shift

Fig. 5.4.7.2 Batch Shift (Rightward shift)
(2) The head No. of data register (junior No.) to be shifted should be specified in D110. The head No. should be one with junior No., no matter whether data shift is leftward or rightward, and be "D57" in Fig. 5.4.7.1 and Fig. 5.4.7.2.
(3) Length of data (words) to be shifted should be specified in D111. When 16 datas are desired to be shifted, for example, "16" is entered in D111. Care should be taken not to enter data over the range at D95 (leftsward shift) or D0 (rightward shift).
(4) Direction of shift is specified in D112.

| Leftward | 0000 |
| :--- | :--- | :--- |
| Rightward | $0001 \quad$ Junior No. |\Rightarrow Senior No.

(5) With a shift signal, leftward or rightward batch shift (a group of data is shifted at the same time) occurs once.
(6) Circuit composition.

Fig. 5.4.7.3 Batch Shift Circuit Composition
(1) In order to prevent racing, be sure to convert shift signal into pulse .
(2) Circuit block "B" may be simplified to only Mn and F114 when one program has only one batch shift) in F115 and three MOV instructions in that block are given at initial time.
(3) A separate circuit is required to enter data in the register with shift top (D72 in this example).
(4) Each time shift signal Mn turns on, batch data shift occurs once.
(5) As the result of data shift, the content of the final data register (D57 for rightward shift in Fig. 5.4.7.2, and D72 for leftward shift in Fig. 5.4.7.1) are judged as in circuit block " C " and the judged result ($M 150,151$) may be used in a sequential control system.
(7) The shift head register content becomes " 0 ", as shown in Fig. 5.4.7.1 and 5.4.7.2 when F115 is executed.
Therefore, the data set mentioned in (3) should be performed at a step coming after the execution of F115.
(8) The last register content is erased after the execution of F115, due to overflow.
(9) Contents in the data registers out of shifting range are not affected by batch shifting.

5. EXPLANATION OF PROGRAM

5.4.8 Batch reset of data register D

All consecutive data register contents are cleared to " 0 ".

5.4.8.1 Functions

Function No.: F116
Head No. of register D. D110 0045 Binary numerals
Number of data registers to be reset: D111 0020 Binary numerals

Note: Number of data registers ranges from DO to D95. Batch reset becomes impossible when the number of data registers is out of this range.
(1) The head No. of data registers to be reset is specified in D110.
(2) Number (length) of data to be reset is specified in D111.
(3) When F116 is executed under the above-mentioned conditions (1) and (2), all the contents in the data registers up to 20 wds . from D45 (D45 ~ D64) are cleared to "0".

5.4.8.2 Circuit applications

Fig. 5.4.8.2 Data Register Batch Reset Circuit
(1) Reset input signal should be converted into pulse signal at all times.
(2) The register D not backed up (latched) for power failure is automatically reset when the programmable controller is turned on or CPU "RESET" switch is operated.
(3) The functions may be used to reset the register D backed up for power failure.

5.4.9 Indirect reading of T,C,D (Timer, Counter, Register D)

When temporary values of timer (T) or counter (C); or contents of register (D) are read in the standard CPU, each one circuit must be programmed for each No. to be read.
On the contrary, desired current values or contents can be readily read with this additional function, only by specifying No. of T, C or D and executing this function (F117).
Therefore, the use of F117 is very advantageous when externally display or determination is desired for reading of current values or contents of T, C or D because the circuit may be simplified.

5.4.9.1 Functions

Function No.: F117
No. of T, C or D: D110

Note: T or C No. should be within a range from 0 to 127, and D within a range from O to 95. F117 may not be realized when No. out of this range is specified.
(1) Desired No. of T, C or D is binary specified in D110. When timer or counter temporary value is read, the 4th digit is filled with " 0 " (decimal numeral).
The 4 th digit is filled with " 1 " when register contnts is read.
Ex.: 0064 T64 or C64
1064 D64
(2) When F117 12 executed, the temporary value or content of specified No. is read out in D111. It should be noted that timer/counter is of binary, or BCD or bit pattern.

5. EXPLANATION OF PROGRAM

5.4.10 Indirect writing of T, C, D

With this fuction, temporary values of timer (T), counter (C) or register (D) contents are written with the No. of timer of register specified.
The indirect writing is mainly used to change content of register D, and utilizing this, it may be usable to change set values of T, C.
Although temporary values of timer (T) or counter (C) may be changed be using this function, it is recommended to change the temporary values by usual program edition.
It should be noted that \mathbf{T}, C set value with Kn has been written at programming steps and therefore may not be changed with this function.
To change T, C set value, Dn should be specified for set value and the content of Dn should be changed with this function.

5.4.10.1 Functions

Function No.: F118
Function No.

Data to be written:

Specify T, C or D
0 : Tor C
1: D

Note: T, C No. should be specified within a range from 0 to 127 and D No. should be specified within a range from 0 to 95 . If specified No. is out of the range, F118 cannot be executed.

> .

$$
4-\log
$$.

(1) T, C or D No. is entered in D110 with binary numerals. Numerals ranging from 0 to 127 may be used for T, C No. and numerals added with "1000", ranging from 1000 to 1095, may be used for D No.
(2) Data is written in D111 with binary numerals.
(3) The data entered in D111 is written to the T, C or D No. specified in D110 when F118 is executed.

5.4.11 Data transference from \mathbf{Y} to D

Although the standard CPU permits data transference from D to Y, reverse data transference from Y to D is impossible. 16 -bit ON-OFF (L-H) status of Y, grouped for each four bits, can be transferred to the specified D when this function is executed.
The function may be used to check bit pattern (ON-OFF status) output from Y against the standard bit pattern, or to latch bit pattern in D in case of power failure.

5.4.11.1 Functions

Function No.:
Y No. and digits: Head No. of Y : refer to Table 5.4.11.1

D No. to be transferred:

D110
Binary numerals

To be " 0 " at all times

- Number of digits: $1 \sim 4$

F119

(1) D110 can be set up to as follows:
(1) $n \quad:$ Number of 4-bit groups $\quad 1 \sim 4$

Number of bit groups	Total number of bits
1	4
2	8
3	12
4	16

Note: D should be within a range from 0 to 95.
If D is out of this range, F119 cannot be executed.
(2) 0 : To be " 0 " at all times.
(3) Y. No.: Head No. of Y refer to Table 5.4.11
a) Y No. should be the head No. of 16 -bit group, and expressed in decimal notation, as shown in Table 5.4.11.1.

Table 5.4.11.1 Y No. and Applicable Code

Y No.	Code
020	02
030	03
080	08
090	09
OAO	10
OBO	11
OCO	12
ODO	13
OEO	14
OFO	15

b) The head No. of Y is the head No. of 16 -bit group. Therefore, transference of partial bits, such as 4 -bits from ' 028 ', is impossible.
c) Example of setting of D110.

Con

Content of D110	Area of which data can be transferred	Bits
1011	YOBO \sim OB3	4
4014	YEO \sim YEY	16

(2) D111 is used to specify No. of D to which contents of Y (4 bits ~ 16 bits) are transferred, and filled with D No. plus "1000".

Ex.:	D 0	1000
	D39	1039
	D74	1074

(3) Even when transferred data contents are of $4 \sim 12$ bits, one register D should be used.

5.4.11.2 Circuit applications

As an example of the function F119, a circuit that permits checking of bit pattern with 12 bits starting from Y20 against the standard bit pattern is described here. The description also includes checking of 8 -bit pattern from Y30, and how to form the standard bit pattern. Number of bits and destination of transference are also exemplified in this paragraph.

5. EXPLANATION OF PROGRAM

(1) When 12-bit contents starting from Y20 are transferred to D8

Y2B	2A	29	28	27	26	25	24	23	22	21	20
0	1	0	1	1	0	0	0	1	0	1	1

(2) When 8-bit contents from Y30 are transferred to D24

$Y 37$	36	35	34	33	32	31	30

1	0	1	1	1	0	1	0

128	64	32	16	8	4	2	1
\downarrow		\downarrow	\downarrow	\downarrow		\downarrow	
128	+	32	+16	+	8	+	2

When K1419 for Y20, or K186 for Y30, is entered to the specified D by using MOV instruction, the bit pattern in the D becomes as shown above and the standard pattern can be obtained.

Fig. 5.4.11.2 $Y \rightarrow D$ Data Transfer Circuit.

5.4.12 $4 \leftrightarrow 16$ Decode/encode

Decode means that 4-bit binary numerals are converted into 16 -bit pattern. On the contrary, encode means that 16 -bit pattern is converted into 4-bit binary numerals.
The decode function includes transference of converted 16 -bit pattern to M, thereby M is used as control means. With this function, 1-bit in 16 bits is identified, and converted into binary numerals, thereby significant bit position is found.
The encode function may be used to identify step No. of counter, or shift position in 1-bit shift register.

5.4.12.1 Functions

Function No.: F108

Data to be decoded or encoded:

Decode

Lower 4 bits are effective and upper 12 bits are ignored in decoding.
$0 \cdots 010 \cdots 0$ Encode

Only one " 1 " (H) bit exists in 16 bits in the case of encoding.
Decode/encode designation:

Decode/encode result:

D111	0000
	0001
D112	0..010..0

Only one " 1 " bit exists in 16 bits in the case of decoding.

| 000 | $n \quad$ Encode |
| :--- | :--- | :--- |

In encoding, bit position is specified in lower four bits. Upper digits are filled all with " 0 ".
(1) The data to be decoded or encoded is stored in D110.
a) In decoding, only lower four bits ($0 \sim 15$ in decimal notation) are effective, and converted into bit pattern to be stored in D112.

b) In encoding, data having only one " 1 " (H) bit in 16 bits is handled. This single " 1 " bit is converted into 4-bit binary numerals, and stored in D112.
The data handled in encoding should have only one "1" bit in 16 bits.
(2) Discrimination between decode and encode is specified in D111.

	D111
a) Decode	0000
b) Encode	0001

(3) Decoded or encoded result is stored in D112.
a) Decode

b) Encode

Data to be encoded	D110
Encoded result	D112

(4) Decoded/encoded result

Table 5.4.12.1 Decoded/Encoded Results

	D112						- D110															
DECODE							$\longrightarrow \quad$ D112															
		15~4	3	2	1	$\begin{gathered} \mathrm{Bit} \\ 0 \end{gathered}$	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	$\begin{gathered} \mathrm{Bit} \\ 0 \end{gathered}$
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	3	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	O	0
	4	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	5	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	6	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	7	0	0	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	8	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	9	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	10	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	11	0	1	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	12	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	13	0	1	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	14	0	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

a) In decoding, upper 12 bits of the data (D110) to be decoded are ignored.
b) In encoding, all upper 12 bits of the encoded result (D112) turn to " 0 ".
(5) Circuit composition

Fig. 5.4.12.1 Decode/Encode Circuit Composition

5.4.12.2 Circuit applications

(1) Decode circuit

In this example, numerical data are taken from computer or N/C unit and converted into bit pattern for sequential control.

Input data and timing are assumed as follows:

Fig. 5.4.12.3 Decode Circuit Composition
(2) Encode circuit

The example is that control command is changed by significant bit position where counter (1-bit data shift register) is on.

Counter: M130~145 16 bits
Bit position : $\quad 3 \sim 6$ A control $\quad 7 \sim 11$ B control $12 \sim 15$ C control

Fig. 5.4.12.4 Encode Circuit Composition

In this circuit, D112 is directly used for comparison. When D112 is used in any other circuit, M40 ~ M42 should be self-held, or D112 contents should be transferred to Dm for comparison.

5.4.13 16-bit check

This function is used to check and examine how many " 1 " (ON) bits exist in 16 bits of one register.
Practical application example of the function is that number of stored goods can be identified when flow of goods is traced in conveyor or any transfer, or material handling control system by making use of shift register functions, or the case where how many outputs are in ON within a certain range of output Y is examined.

5.4.13.1 Functions

(1) Check data (how many bits of which are in ON is to be identified) are entered in D110.
(2) When F109 is executed, total number of bits in ON is stored in the lower four bits of D111 in the form of binary code and all upper 12 bits turn to " 0 ".
(3) Circuit composition

Fig. 5.4.13.1 16-bit Check Circuit Composition

5. EXPLANATION OF PROGRAM

5.4.13.2 Circuit applications

(1) Checking of number of bits " 1 " (ON) in shift register

This application example is used when number of goods in a conveyor line must be numerically displayed, for example.
$\begin{array}{llll}\text { Ex.: } & \text { Shift register } & \text { M50 ~M81 } & \text { 32 bits } \\ & \text { Display unit } & \text { Y80 } \sim \text { Y87 } & \text { Decimal } 2 \text { digits }\end{array}$

Command is converted into pulse signal.
Lower 16 bits (M50 ~ 65) of shift register are transferred to D110.

Execution of bit check
Result is saved in D16.
Upper 16 bits (M66~81) of shift register are transferred to D110.

Resultant upper bits are added to resultant lower bits (total bits). Total bits are converted from binary notation into BCD.
Total bits are output to display unit (2 digits).

Fig. 5.4.13.2 Display of Number of Bits " 1 " in Shift Register
In the example shown in Fig. 5.4.13.2, number of stocked goods is numerically displayed. However, this circuit may be used for other control, such as quantitative comprison or definition of quantitative range of stored goods, by using instructions $(>,<,=)$.
(2) Checking of number of bits " 1 " (ON) of output Y

In this example, number of bits being in " 1 " in output $\mathrm{Y}(4$ bits) is checked. This application example may be actually employed for error detection.

Ex.: Output $Y 20 \sim 2 B \quad 12$ bits
Error exists when number of bits " 1 " is larger than 9 bits.

Fig. 5.4.13.3 Checking of Number of Bits " 1 " of Output Y

5.4.14 Data inversion

With this function, the contents in the specified data register are inversed, that is, " 1 "'s complement is obtained.

5.4.14.1 Functions

Function No.: F100

D (D110)

Fig. 5.4.14.1 Data Inversion

5.4.14.2 Circuit applications

Ex.: Since the subtracted result is obtained as " 2 "'s complement when the result is minus, it must be changed to absolute value as follows:
When (D10) - (D20) is equal to (D10), for example,

$$
5-7=-2 \longrightarrow 2
$$

(D10)

D10 is specified in D110.
(D10)

(D10)

Fig. 5.4.14.2 Data Inversion Circuit

5. EXPLANATION OF PROGRAM

5.4.15 Functions and practical use of high-speed processing instructions

The high-speed processing instructions are that a program component required to high-speed processing is picked up, and high frequently executed several time as subroutine during execution of the main program at low speed, thus the executing time can be apparently shortened.

5.4.15.1 High-speed processing instructions and application data registers

(1) SET F126 : High-speed program call instruction
(2) RST F126 : High-speed program return instruction
(3) D126 : Register for storing of high-speed processing program head step No. (when 10 mS timer is used)
(4) D123 : Register for storing of high-speed processing program head step No. (when call instruction is used)

5.4.15.2 Circuit applications

The circuit shown below is an example of practical application of the high-speed processing instructions, where it is intended to minimize timing error when Y20 and Y21 turn off.

Fig. 5.4.15.1 High-speed Processing Circuit
(1) In order to minimize timing error at the time Y20, Y21 turn off, only Y20/Y21 reset circuit is programmed for high-speed processing.
(2) At the head of the low-speed program, the head step No. " m " of high-speed program component should be placed in D123, as shown in Fig. 5.4.15.1.
(3) For example, high-speed processing call instruction F126 should be inserted with suitable step internal, like 6 mS .
(4) At the end of the low-speed processing program, CJ instruction should be inserted without fail and program sequence should be jumped to the step with END instruction.
(5) At the end of the high-speed processing instruction, return instruction F126 should be inserted without fail.
(6) END instruction should come next to the return instruction. This means that the high-speed processing program should be inserted before the END instruction.
(7) Program execution flow chart and execution time

Note 1: When scanning time exceeds 100 mS , WDT error occurs.

Fig. 5.4.15.2 Program excution flow chart and excution time (when used Call instruction.)

5.4.15.3 Program for 10 mS high-precision timer

96 timers $(100 \mathrm{mS})$, $\mathrm{TO} \sim$ T95, and 32 timers (10 mS), T96 \sim T127, are incorporated in MEL-SEC-K0J1U.
Fig. 5.4.16.3 shows an example of circuit used in programming for 10 mS precision timers.

Fig. 5.4.15.3 Circuit for Programming with 10 mS Timers
(1) When 10 mS timer is used, the high-speed program head step No. " m " should be entered in D126 without fail.
(2) CJ instruction should be inserted at the end of low-speed program to let the program sequence jump to the step with END instruction.
(3) Return instruction RST F126 should be inserted at the end of high-speed program.
(4) Coil of 100 mS timer ($\mathrm{TO} \sim \mathrm{T} 95$) should be inserted in the low-speed program, and coil of 10 mS timer (T96 $\sim \mathrm{T} 127$) in the high-speed program.
(5) Program execution flow chart and execution time

Fig. 5.4.15.4 shows an example of execution flow chart and execution time, where the lowspeed program has about 1000 steps and the high-speed program has 33 steps (same as the example shown in above mentioned (7) of 5.4.15.2).
In this example, execution times are 30 mS and 1 mS for low-speed program and high-speed program respectively.

Note 1: High-speed program is executed at every 10 ms .
Note 2: Scanning time: 33mS

Fig. 5.4.15.4 Program Execution Flow Chart and Execution Time (When used with 10 mS timer)
(6) High-speed timer function may be associated with call instruction SET function F126. When the both functions are used at the same time, high-speed program head step No. " m " should be entered in D126 as well as D123.
In the case where the example in Fig. 5.4.15.2 combined with the example in Fig. 5.4.15.4, the high-speed program is called 8 times and the scanning time is 38 mS .

5.4.16 Programming error display

The following two types of error check are available in the programming related to high-speed program.
When error is found, "RUN" display flickers.
(1) High-speed program time over (Error No.: 5030)

If execution time exceeds 10 mS in high-speed processing (timer 10 mS is used), the time over error occurs.
The high-speed processing should be executed within 10 mS .
(2) Programming error (Error No.: 5031)

This error occurs when CJ Kn, RST F126 shown in Fig. 5.4.15.1 and 5.4.15.3 are not entered.

Note: Error No. may be verified in test mode of PU and GPP.

5.4.17 Scan time restriction

The check time of arithmetic operation watchdog timer (WDT) of KOJ1U is 0.1 second. The CPU resets the WDT after END instruction. When scan time exceeds 0.1 second, WDT error occurs and all outputs are turned off by hardware.

```
Scan time (Ts) = instruction execution time (T1) + peripheral unit intervention time (T2)
(Max. 10mS)
```

- Example of maximum instruction execution time

Max. instruction execution time $=100 \mathrm{~ms}-10 \mathrm{mS}=90 \mathrm{mS}$
(T2)

- Instruction execution time measuring method

1. Add the following program to the prepared program.

2. When the sequencer is run, Y20 to Y27 displays are indicated with $0 \sim 255 \sim 0$. Therefore, measure the time T, i.e. from when Y20 to Y27 are all turned off to when they are all turned on again.
3. Overall instruction execution time (T1)
$T 1=T / 256$

5.4.18 List of arithmetic operation processing time

Sequence instruction

Instruction	Condition		Time ($\mu \mathrm{S}$)	Instruction	Condition			$\begin{array}{\|c\|} \hline \text { Time }(\mu s) \\ \hline 5.6 \\ \hline \end{array}$
LD	X, Y		5.6	ANB				
	M,T,C,F			ORB				5.6
LDI	$\mathbf{X , Y}$			MC	—			84
	M,T,C,F			MCR				79
AND	X, Y			NOP		-		5.6
	M,T,C,F			END	——			170
ANI	X, Y			OUT.T	Non execution			93
	M,T,C,F					Not ad		103
OR	X, Y				Execution	After t	ne-up	90
OR	M,T,C,F				Execution	Add	K	130
ORI	X, Y					dded	D	120
ORI	M,T,C,F				Non	xecutio		90
OU	M					Not ad		90
	Y			OUT.C	Exocution	After c	unt-up	90
OUT	Non ex	cution	81		Execution	Add	K	100
FO ~ 99	Executi		260			Add	D	100
SET Y	Non ex	cution	5.6	Cl	Non	xecutio		83
,	Executi			CJ		cution		120
SET, M	Non ex	cution						
SET, M	Executi		\downarrow					
SET	Non ex	cution	77					
F0 ~ F99	Executi		260			.		
RST M	Non ex	cution	78					
RST F	Executi		83					
RST Y	Non exe	cution	78					
	Executio		93					
RST C	Non exe	cution	78					
RST C	Execution		95					
SFT M	Non exe	cution.	82					.
SFT M	Executio		82					
	Non exe	cution	82					
PLS M	Execu-	1st scan	87					
	tion	2nd scan	88					-

Data instruction

Instruction	Condition	Time ($\mu \mathrm{S}$)
Data instruction	Non execution	83

S	D	TIME $(\mu \mathrm{S})$
K	D	150
D	D	190
T	D	180
C	D	180
X	D	480
M	D	440
D	T	190
D	C	200
D	Y	500
D	M	630

Instruction	S	D	Time ($\mu \mathbf{S}$)
BCD	D	D	660
	T	D	660
	C	D	660
BIN	D	D	290
	X	D	660

Instruction	S	D	Time ($\mu \mathrm{S})$
$>$	K	D	180
	D	D	
$<$	K	D	
	D	D	
	D	D	
	D	D	

Instruction	S	D	Time ($\mu \mathbf{S})$
+	K	D	180
	D	D	
-	K	D	180
	D	D	

Application instruction

Ins. code	Content		Time (mS)	Ins. code	Con		Time (mS)
F108	$4 \leftrightarrow 16$	Decode	0.14	F116	Batch reset of D	10 data	0.33
		Encode	0.16			30 data	0.56
F109	16-bit check		0.33			90 data	1.3
F114	Batch shift of M	10 bits	0.30	F117	Indirect read	T,C,D	0.25
		100 bits	1.2	F118	Indirect wr	f T,C,D	0.27
		200 bits	2.1	F119	$\mathrm{Y} \rightarrow \mathrm{D}$ da	ransfer	0.66
F115	Batch shift of D	5 data	0.31	F100	16-bit data	version	0.13
		10 data	0.48	F110	8-bit data	ciation	0.19
		50 data	1.0	F111	16-bit data	ociation	0.19
				F112	16-bit d	AND	0.21
				F113	16-bit d	OR	0.21

6. PROGRAMMING UNIT

6. PROGRAMMING UNIT $88 ~ 93$
6.1 Explanation of Programming Unit Functions 89
6.2 List of Operations 91
6.3 Error Messages and Corrective Actions 92

6. PROGRAMMING UNIT

6.1 Explanation of Programming Unit Functions (K7PUE)

(1)Outline

0	Program read-out	(READ)
-	Program search	(READ)
0	Program write	(WRITE)
\bigcirc	Program insertion	(INSERT)
-	Program deletion	(DELETE)
\bigcirc	Check of the operation status	(MONITOR)
\bigcirc	Forced output	(TEST)
\bigcirc	Set and reset of latch and temporary memory, etc.	(TEST)

(2)DISPLAYS

Name	Display example	Function
Step No. (left side)	1 2 3	Display of step number, display of temporary values of timers and counters, and display of data register content are excuted. Leading zeros are not displayed. Example: $0056 \rightarrow 56$
Instruction or constant, ON, OFF (center)	(1)A N D \square (2) \square (3) $\begin{array}{\|l\|l\|l\|l\|} \hline O & F & F & \\ \hline \end{array}$	(1) Display of instructions (2) Display of constants, digit symbol K (3) Display of ON, OFF at the time of monitor
Input/output (right side)	x 0 1 0 T 2	Display of input/output No. (device No.) is executed. X and Y are displayed as hexadecimal numbers, while others are displayed as decimal numbers. Leading zeros are not displayed for decimal numbers, but they are displayed for hexadecimal numbers.

Message display is executed using all of the above 3 types of displays.
Example: \square SET ERR.

(3)MODE KEYS

Operation mode	Functions and Applications
READ (RD)	Read-out of the programs written into the memory and step number search by instructions or input/output number are possible. This is used for check of the memory contents.
WRITE (WR)	Writting of programs, timer and counter set values, etc. into the memory and consecutive writing of NOP instructions are possible. This is used for program writing and changes.
INSERT/DELETE (IN/DL)	All programs from the set step number on are shifted down by one step, and the newly set instruction is inserted at the position of the step number. Otherwise, all programs from the set step number +1 on are shifted up by 1 step and the instruction which was at the set step number is deleted. This is used for program additions and deletions.
MONITOR (MNT)	The ON, OFF status of X, Y, M, T, C, F, and K, the temporary value of timers and counters, and the countent of D can be monitored. This is used for check of the operation status.
TEST (TST)	Forced output and latch of \mathbf{Y}, set and reset of \mathbf{M} and F, reset of T and \mathbf{C} temporary value and contact, and reset of the content of \mathbf{D} can be executed. Error generation step number readout at the time of abnormal code error occurance is also possible. This is used at the time of test, at the time of inspection, and operation rise, etc.
Key name	Functions and applications
POWER ON (PW ON) POWER OFF (PW OFF)	These keys are used to turn on and off the program unit power control section. The CPU power cannot be turned on and off by these keys.
$\begin{aligned} & \text { SET (INT = Set the } \\ & \text { initial step No.) } \end{aligned}$	This key is used to declare the setting of initial step number.
CLEAR (CL)	This key is used to clear set content and display. It does not have influence on CPU program. This key is used to confirm ready status after power turns on and to re-execute operation in the case of key operation errors.
STEP (+) (STP(+)	This key is used to execute the step number or to insert for the step number of the input/output instruction, or when output is forced ON.
STEP (-) ISTP(-))	This key is used to execute the step number or to delete for the step number of the input/output instruction, or when output is forced OFF.

(5)device KeYs

6．PROGRAMMING UNIT

6．2 List of Operations

6.3 Error Messages and Corrective Actions

No.	Message	Message Contents	Corrective Action
1	CANT FIND	Search was executed at the time of program search, but the searched number could not be found. (This is not an error.)	Since this is not an error, the next operation can be executed.
2	CANT OPE.	Operations of write and insert/delete and not possible during RUN of CPU switch to reset the CPU. Writing during RUN can be made by changing initialization.	After stopping the CPU, execute the operation again. If the operation cannot be made, press the RESET.
3	CJ STEP ERR.	In WRITE or INSERT mode (1) Jump destination step number of a CJ instruction is smaller than the present step number. (2) Jump destination step number has exceeded the max. step number of CPU (1023, 2047, 4095). (3) Jump destination step number has exceeded the max. step number because it was inserted in INSERT mode. (At this time, program insertion is executed.)	Press the WRITE or INSERT mode key again, and set jump destination step number again or alter program.
4	DUAL COIL ERR.	The same coil has been set in WRITE or INSERT mode. In this case, only program writing is executed.	Write a correct program. (Even if the same coil is set, error message may not be displayed sometimes.) When correct, proceed with writing operation.
5	INS. CODE ERR.	Conversion to an instruction is not possible, because of a wrong machine code.	Rewrite the correct instruction in WRITE mode.
6	INS. SET ERR.	In WRITE or INSERT mode (1) Combination of instruction and input/ output number is wrong. (2) The 2nd or 3rd word is not written when 2-word or 3-word instruction is written.	Press the WRITE or INSERT mode key again and set the instruction again with instruction key.

No.	Message	Message Contents	Corrective Action
7	IO SET ERR.	Input/output number which cannot be set has been set.	Set the input/output number which is within correct range.
8	IONO OVER ERR.	The set input/output number exceeds the maximum number.	Set the input/output number which is within correct range.
9	MODE SET ERR.	A key other than the CLEAR key has been operated without selecting a mode key.	First select an operation mode with a mode key.
10	OPE. ERR.	Operation other than those listed in 6.2 has been set.	Restart setting from the pressing of the INT key.
11	RDY	This is not an error message and displayed in normal conditions. (1) The POWER ON key has been pressed and the control power of PU has been turned on. (2) The CLEARkey has been pressed.	When RDY is displayed, proceed with the operation as desired. When RDY is not displayed with the operations described at left. (1) Press the POWER OFF key and then press the POWER $\overline{\mathrm{ON}}$ key again. If RDY is not displayed after aforementioned operation, the hardware is defective. (2) Possible cause is the wrong installation of PU. Remove and reinstall the PU.
12	STEP OVER ERR.	The step number is larger than the maximum step number.	Press the INT key and set a correct step number.
13	WR. ERR.	A program cannot be written into memory. (Although program has been written, the results of automatic check shows no coincidence.)	(1) Check if RAM is mounted. (2) Check if P-ROM is mounted. (3) Check if RAM is fitted to socket properiy. (4) If the error is displayed again after rewriting, possible cause is the failure of RAM. Therefore, change RAM.

7. OPERATING PROCEDURE

7. OPERATING PROCEDURE. $94 \sim 97$

7．OPERATING PROCEDURE

Memory types and Settings	Memory	No．of steps	Memory fitted to socket	CON setting	Socket fitting
	RAM	1024	Standard equipped	RAM ROM $\square \square$ 008 000	
		2048	\qquad		
	ROM	2048	2KROM（equivalent to 2732）	$\begin{aligned} & \text { RAM ROM } \\ & {[000]} \\ & \hline 0 ⿴ 囗 ⿰ 丿 ㇄ \end{aligned}$	

Note：When fitting socket，do not bend the lead legs of IC memory．
Do not touch the lead areas by hand．

Battery connection

7. OPERATING PROCEDURE

Step 2 \rightarrow Power on | \bullet After confirming line voltage, turn on the power. |
| :---: | :---: | :---: |
| (Line voltage) |
| AC $115 \mathrm{~V} \pm 15 \%$ |

- Set the RUN switch of basic unit to RUN position.
- Make sure that the RUN LED is lit. If the RUN LED flickers, something is
 wrong. In this case, check the following: Program not provided with END instruction
Mistake in selecting between ROM and RAM
Abnormal program, etc.

STEP 5

TEST RUN END

8. INSTALLATION AND WIRING

8. INSTALLATION AND WIRING. $98 \sim 104$
8.1 Instructions for Installing Locations 99
8.2 External Dimensions 100
8.2.1 Mounting dimensions 100
8.3 Panel Mounting Dimensions 101
8.4 Panel Wiring 103
8.5 Measure against "Thunder" Power Surge when AC Power Supply is used 104

8. INSTALLATION AND WIRING

8. INSTALLATION AND WIRING

8.1 Instructions for Installing Location

The KOJ1U has excellent durability against severe environmental conditions as well as high reliability.
However, in order to obtain higher reliability as a system, please install the KOJ1U in full consideration of the following:

Avoid installation at the locations described below.
(1) When the KOJ1JU is installed at locations or within panels where ambient temperature is outside the range of $0^{\circ} \mathrm{C}$ and $55^{\circ} \mathrm{C}$, it is recommended to provide a ventilation fan at top.
(2) Locations where ambient humidity exceeds $90 \% \mathrm{RH}$, and locations where dew. condensation takes place due to sudden temperature changes.
(3) Locations where acceleration exceeds 2 g with vibration at 10 to 55 Hz and amplitude at 0.5 mm , and locations where shock exceeds 10 g .
(4) Locations where there are particularly a lot of conductive powder such as dust and iron fittings, corrosive gases (acid, alkali), oil mist, salt, and organic solvents.
(5) Locations exposed to the direct rays of the sun.
(6) Locations having high electric field or high magnetic field.

8.2 External Dimensions

Fig. 8.2.1 External Dimensions of Basic Unit

Fig. 8.2.3 External Dimensions of E32 Extension Unit

Fig. 8.2.2 External dimensions of E56 Extension Unit

Fig. 8.2.4 External Dimensions of K68B Extension Unit

8.2.1 Mounting dimensions

Fig. 8.2.5 Mounting Dimensions of Basic Unit and E56
$5-\mathrm{mm}$ dia. mounting hole or M4 mounting screw
\qquad M4 mounting screw

Fig. 8.2.7 Mounting
Dimensions of K68B

8. INSTALLATION AND WIRING

8.3 Panel Mounting Dimensions

Fig. 8.3.1 Mounting Methods of KOJ1U

The KOJ1U may be mounted horizontally on the bottom surface of operating panel. However, because of poor ventilation and the absence of ventilating hole, temperature may possibly rise to excess. In horizontal mounting, therefore, provide cooling means.

Fig. 8.3.2 Horizontal Mounting

(2) Series Mounting

Fig. 8.3.3 Mounting to Extension Base

When the KOJ1U is used together with K65B/K68B extension base, install as shown in Fig. 8.3.3. When the panel door is on the left, the KOJ1U can be mounted on the door, and the extension base on the panel. In this case, cable used is KOJ-62CBL2 in 1000 mm length.
In the case of (2) Series Mounting, side mounting may be applied to the basic unit. Horizontal mounting shown in Fig. 8.3.2 is not applicable to the extension base. Side mounting of input/ output unit, etc. is not possible, either.

8.4 Panel Wiring

Cautions

- Noise of larger than 1000 Vpp may possibly be trapped in AC power supply. Therefore, provide a transformer or line filter ahead of the power supply terminals POWER 1 and POWER 2.
- For the wires connected with power supply, use twiested cables of $1.25 \mathrm{~mm}^{2}$ to $2 \mathrm{~mm}^{2}$. When wiring, keep them at least $\mathbf{2 0 0} \mathbf{~ m m}$ away from high-voltage line and power line.
- Do not utilize POWER 1 and POWER 2 terminals as the junctions with other equipment.
- Wire the FG and LG terminals at grounding resistance of 100 ohms, using dedicated grounding cable ($2 \mathrm{~mm}^{2}$ or larger cable). The length of grounding cable should be as short as possible. When grounding is impossible, connect the cable to the panel.
- If grounding cable is used also for other equipment or connected with the beam of building, contrary effect is produced and the units may be adversely affected. For this reason, be sure to perform dedicated grounding.

8.5 Measures against "Thunder" Power Surge when AC Power Supply is used

Ground FG and LG separately from surge absorber.

- As measures against power surge due to thunder, it is recommended to wire and ground as shown above.
- Select the varistor of surge absorber which will not cause voltage to exceed the maximum allowable value even when line voltage rises to maximum.

MEMO

9. STRUCTURE OF UNIT

9. STRUCTURE OF UNIT 105 110
9.1 Structure of Basic Unit 106
9.2 Structure of Type 56 Extension Unit 107
9.3 Structure of Type 32 Extension Unit 108
9.4 Structure of Extension Power Supply 109
9.5 Loading and Unloading of I/O Module Terminal Block. 110

9. STRUCTURE OF UNIT

9. STRUCTURE OF UNIT

9.1 Structure of Basic Unit

*1 When extension adaptor is used, this support is utilized. Fit it with attached screws.
*2 When extension adaptor is used, remove the cap (blind cap) located at the bottom of case.

Mounting of Shielding Board

9．2 Structure of Type 56 Exention Unit

＊Power Supply
When DC 24 V current capacity is insufficient for the extension unit，use the power supply unit KOJ1U－PW． In this case，DC 5 V connector is not used．
Therefore，connect it with the connector in power supply unit．

9. STRUCTURE OF UNIT

9.3 Structure of Type 32 Extension Unit

9．4 Structure of Extension Power Supply

When the capacity of power supply built in the basic unit is insufficient，provide extension power supply within the E56 extension unit．

（1）Connector for DC 24 V ：
（2）Connector for DC 5 V ：
（3）Connector for DC 5 V ：
（4）Connector for power supply：

Connected with specific connector in I／O unit．
In the case of extension unit，it is not necessary to supply DC 5 V to I / O unit．
Before installing power supply，be sure to confirm that con－ nectors（2）and（3）are connected with each other．
Connected with specific connector in I／O unit．
＊The mounting procedure of extension power supply is identical to that of the basic unit． Refer to 9.1 ．

9.5 Loading and Unloading of I/O Module Terminal Block

Since the I/O module utilizes a 2-piece type terminal block, it can be loaded or unloaded without disconnecting cables in the terminal block. When the machine screws indicated by arrows are turned clockwise, the terminal block is gradually pushed and then fixed. Conversely, when they are turned counterclockwise, the terminal block is gradually lifted and eventually comes off of itself.

1/O module

Terminal Block Specifications	
Specifications	2-piece type w/finger protector
Applicale cable rating	22 AWG ~ 14 AWG
Reference screw tightening torque	$11.2 \pm 15 \%$ kg.f.cm

10. MAINTENANCE AND INSPECTION

10. MAINTENANCE AND INSPECTION 111 ~ 116
10.1 Periodic Maintenance 112
10.2 Checking Procedure during Abnormal Condition 113
10.2.1 In case POWER indicator of basic unit is off 113
10.2.2 In case input signal fails to turn on while input device has turned on 113
10.2.3 In case external output load fails to turn on while output signal has turned on. 114
10.2.4 In case RUN indicator flickers or turns off when RUN switch of basic unit is moved to RUN position 115
10.3 Battery Changing Procedure 116

10.MAINTENANCE AND INSPECTION

10.1 Periodic Maintenance

The following table shows the items to be inspected daily or periodically so that the KOJ1U is always operated in the best conditions.

General Items

Inspection item	Inspection	Standard	Remark
Ambient temperature	Check if the items are within the range of values in specification table. (When installed inside panel, temp. within panel is regarded as ambient temperature.)	$0 \sim 55^{\circ} \mathrm{C}$	Check for dew condensation.
Ambient humidity		10\% ~ 90\% RH	
Ambience		Without dust and corrosive gases.	
Vibration		16.7 Hz , double amplitude 3 mm 2 hr	
Shock		$10 \mathrm{~g} \times 3$ times in X, Y and Z directions	

Control Unit

No.	Inspection Item	Inspection Method	Standard	Corrective Action
1	Voltage			
	Line voltage	Measure voltage across "POWER $1,2^{\prime \prime}$ terminals of basic unit with tester or synchroscope.	$\begin{aligned} & \text { AC } 115 \mathrm{~V} \pm 15 \% \\ & 50,60 \mathrm{~Hz} \end{aligned}$	Modify supply power circuit so that it becomes within the range of specification.
2	Unit mounting condition			
	(1) Looseness or rattle	Retighten.	Unit should be mounted firmly.	Retighten unit fixing screws.
	(2) Adhesion of dust or foreign materials	Visual inspection.	Free of dust or foreign materials	Remove and clean.
3	Connecting condition			
	(1) Loose terminal screw	Retighten.	Screws should not be loose.	Retighten.
	(2) Solderless terminals too close	Visual inspection.	Provide proper space.	Correct.
	(3) Loose connector	Retighten.	Connectors should not be loose.	Retighten.
	(4) Loose screws for wiring I/O devices	Retighten.	Screws should not be loose.	Retighten.
4	Battery	(1) Check how many years have passed since data of manufacture. (2) Make sure that M254 battery capacity reduction signal is not on.	(1) Within 5 years. battery. (2) M254 should not be on.	Change iwith spare.
5	Fuse	If fuse is not melted off, change periodically because element may be worn due to rush current.	(Preventive maintenance)	Change.
6	IC	Make sure that IC inserted in socket is set firmly.	IC should be set firmly.	Set firmly.

10.2 Checking Procedure during Abnormal Condition

10.2.1 In case POWER indicator of basic unit is off

10.2.2 In case input signal fails to turn on while input device has turned on

10.2.3 In case external output load fails to turn on while output signal has turned on

10.2.4 In case RUN indicator flickers or turns off when RUN switch of basic unit is moved to RUN position

10.3 Battery Changing Procedure

The battery for memory backup which is used for the KOJ1U gives alarm (M254) when the battery voltage (capacity) reduces. Please change the battery within one month after this alarm is given.

- When the battery abnormal relay M254 turns on

*1 When the battery is changed, the time from when the power is turned off and the battery is changed to when the power is turned on again should be within 10 minutes. If it exceeds 10 minutes, enough care should be taken because the contents of program and latch function will be cleared.
- The guides of preventive maintenance are as follows:

1) When the battery is guaranteed within 5 years and the total power cut time is less than 300 days (7200 hours), change the battery in 4 to 5 years.
2) When the battery is guaranteed within 5 years and the total power cut time has exceeded 300 days ($\mathbf{7 2 0 0}$ hours), calculate the day when the total power cut time will exceed 7200 hours, in terms of the operating hours during one day or one week and also the power cut time, thus obtaining the time to change the battery.

Example: If the operating time is 10 hours a day (i.e. power is stopped for 14 hours a day) and the power is stopped for 2 days (i.e. 24 hours) a week,

$$
\begin{aligned}
& 14 \text { hours } \times 5=70 \text { hours } \\
& 24 \text { hours } \times 2=48 \text { hours } \\
& 7200 \text { hours } /(70+48) \text { hours }=61 \text { weeks } \\
& 61 \text { weeks } \times 7 \text { days } / 30 \text { days }=\text { approx. } 14 \text { months }
\end{aligned}
$$

Therefore, change the battery every 14 months.

CAUTION

Since the printed circuit boards inside the KOJ1U are mounted with the electronic parts which will be adversely affected by static electricity, handle the printed circuit board as described below when they are handled directly.
(1) Ground human body and work bench.
(2) Do not touch directly the conductive area of printed circuit board and the electrical parts.

MEMO

