MELSEC A/Q Series

Programmable Logic Controllers

User's Manual

High-Speed Counter Modules AJ65BT-D62, AJ65BT-D62D, AJ65BT-D62D-S1

Precautions Regarding Safety

(Always read this instruction before using the equipment)

Before using this product, please read this manual and the relevant manuals introduced in this manual carefully and pay full attention to safety to handle the product correctly.
The instructions given in this manual are concerned with this product. For the safety instructions of the programmable controller system, please read the CPU module user's manual.
In this manual, the safety instructions are ranked as "WARNING" and "CAUTION".

Items marked with an exclamation point in a triangle Δ could also cause severe consequences, depending on the circumstances, if not handled properly.
They indicate information that should be taken seriously and observed conscientiously.
Manuals supplied with the products should be stored carefully where they can be accessed whenever necessary, and should always be passed on to the end user along with the equipment.

[Precaution Regarding Design]

DANGER

- When a communication error occurs in data link, the faulty station will result in the following status. Using the communication status information, configure up an interlock circuit in the sequence program to make the system safe.
Misoutput or misoperation may cause an accident.
(1) General-purpose inputs from this module all switch off.
(2) General-purpose outputs from this module all switch off.
- Some module failures may keep input/output on or off. Provide an external monitoring circuit for I/O signals which may lead to serious accidents.

[^0]
[Precautions Regarding Assembly]

- Use the module in an environment that conforms to the general specifications in the manual. Otherwise, an electric shock, fire, misoperation or product damage or deterioration can occur.
- Securely fix the module using the DIN rail or mounting screws and fully tighten the mounting screws within the specified torque range.
Undertightening can cause a drop or misoperation.
Overtightening can cause a drop or misoperation due to damaged screws or module.
- Do not touch the conductive areas of the module directly.

Otherwise, the module can misoperate or fail.

[Precautions Regarding Wiring]

DANGER

- Before starting mounting, wiring or other work, always switch power off externally in all phases. Otherwise, an electric shock, product damage or misoperation may occur.
- When switching power on or starting operation after mounting, wiring or other work, always install the supplied terminal cover to the product.
Otherwise, you may get an electric shock.

$$
\text { ! } \text { CAUTION }
$$

- Always connect the FG terminal to the ground using class 3 or higher grounding exclusively designed for PC.
Otherwise, an electric shock or misoperation may occur.
- Before wiring the module, confirm the rated voltage and terminal arrangement of the product.

A fire or failure can occur if the power supply connected is different from the rating or wiring is incorrect.

- Tighten the terminal screws within the specified torque range.

Undertightening can cause a short circuit or misoperation.
Overtightening can cause a short circuit or misoperation due to damaged screws or module.

- Ensure that foreign matters such as chips and wire off-cuts do not enter the module.

They can cause a fire, failure or misoperation.

[Precautions Regarding Wiring]

!. CAUTION

- Always secure the communication and power cables connected to the module, e.g. run them in conduits or clamp them.
Otherwise, the module or cables can be damaged due to dangling, moved or accidentally pulled cables or misoperation can occur due to improper cable connection.
- Do not hold the cable part when unplugging the communication or power cable connected to the module.
When the cable is fitted with a connector, hold the connector of the cable part connected to the module.
When the cable is not fitted with a connector, loosen the screw in the cable part connected to the module. If you pull the cable connected to the module, the module or cable can be damaged or misoperation can occur due to improper cable connection.

[Precautions Regarding Startup and Maintenance]

DANGER

- Do not touch the terminals while power is on.

This can cause misoperation.

- Before starting cleaning or terminal screw retightening, always switch power off externally in all phases.
Otherwise, a module failure or misoperation can occur.
Undertightening can cause a drop, short circuit or misoperation.
Overtightening can cause a drop, short circuit or misoperation due to damaged screws or module.

- Do not disassemble or modify the module.

This can cause a failure, misoperation, injury or fire.

- The module case is made of resin. Do not drop it or give it hard impact.

This can damage the module.

- Before mounting or dismounting the module to or from an enclosure, always switch power off externally in all phases.
Otherwise, the module can fail or misoperate.
- The pulse/external input voltage setting pins must be set after switching power off externally in all phases.
Otherwise, the module can fail or misoperate.

[Precautions Regarding Product Disposal]

! CAUTION

- When disposing of the product, handle it as industrial waste.

Revisions
*The manual number is given on the bottom left of the back cover.

Print Date	${ }^{*}$ Manual Number	Revision
Oct.1997	IB(NA)-66823-A	First edition
Mar.2000	IB(NA)-66823-B	Contents of 3.4 greatly changed Output signal list in 3.7 (2) modified Partial correction made to POINT in 7.3 Partial addition made to contents of 10.2 Partial addition made to Appendix 1 Partial correction made to 4.2.1 (2) Partial correction made to 11.3 (4)

This manual confers no industrial property rights or any right of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

Introduction

> Thank you for the Mitsubishi MELSEC-A Series of General Purpose Programmable Controllers. Please read this manual carefully so that equipment is used to its optimum.
> A copy of this manual should be forwarded to the end user.

CONTENTS

1. INTRODUCTION 1-1 to 1-4
1.1 Features 1-3
1.2 Abbreviations, Generic Names and Terms Used in This Manual 1-4
2. SYSTEM CONFIGURATION. 2-1 to 2-2
2.1 Overall Configuration. 2-1
2.2 Applicable System 2- 2
3. SPECIFICATIONS 3-1 to 3-20
3.1 General Specifications 3-1
3.2 Performance Specifications 3-2
3.3 Maximum Transmission Distance in CC-Link System. 3-8
3.4 Specifications of the Twisted Cable 3-9
3.5 Functions 3-10
3.6 Interfaces with External Devices 3-11
3.7 I/O Signals Transferred to/from the Master Module 3-14
3.8 Remote Register Allocation 3-16
3.9 Applicable Encoders 3-17
3.10 Data Link Processing Times 3-18
4. INSTALLATION AND PRE-OPERATION SETTING PROCEDURE 4- 1 to 4-15
4.1 Pre-Operation Setting Procedure 4-1
4.2 Installation 4-2
4.2.1 Handling instructions 4-2
4.2.2 Installation environment 4-3
4.3 Part Names and Settings. 4-4
4.4 Wiring 4-8
4.4.1 Twisted cable handling instructions 4-8
4.4.2 Connection of cables with the modules. 4-9
4.4.3 Instructions for wiring pulse generator 4-10
4.4.4 Wiring examples of pulse generators 4-11
4.4.5 Wiring examples of controller and external input (PRESET, F.START) terminals 4-14
4.4.6 Wiring examples of external output (EQU1, EQU2) terminals 4-15
5. PULSE INPUT AND COUNTING METHOD 5-1 to 5-4
5.1 1-phase pulse input 5-2
5.2 2-phase pulse input 5-3
5.3 Reading the Present Value 5-4
6. EXECUTING THE COINCIDENCE OUTPUT FUNCTION 6-1 to 6-3
6.1 Coincidence Output Function 6-1
6.1.1 Coincidence output function operation 6-2
7. EXECUTING THE PRESET FUNCTION 7-1 to 7-3
7.1 Preset Function 7-1
7.2 Preset Using the Sequence Program 7-2
7.3 Preset by External Control Signal. 7-3
8. EXECUTING THE RING COUNTER FUNCTION 8-1 to 8-4
8.1 Ring Counter Function 8-1
8.1.1 Ring counter function operation 8-3
8.1.2 Count range 8-4
9. SELECTING AND EXECUTING THE COUNTER FUNCTION 9-1 to 9-11
9.1 Selecting the Counter Function 9-1
9.1.1 Reading the counter function selection count value. 9-3
9.1.2 Counting errors 9-4
9.2 Count Disable Function 9-5
9.3 Latch Counter Function 9-7
9.4 Sampling Counter Function 9-8
9.5 Periodic Pulse Counter Function 9-10
10. SEQUENCE PROGRAM EXAMPLES 10-1 to 10-13
10.1 System Used in This Chapter 10-1
10.2 Sequence Programs for QnA Series 10-2
10.3 Sequence Program Example for Execution of the Coincidence Output Function 10-3
10.4 Sequence Program Example for Execution of the Preset Function 10-5
10.4.1 When preset is made by sequence program 10-5
10.4.2 When preset is made by external control signal 10-7
10.5 Program Example for Execution of the Ring Counter Function 10-8
10.6 Program Example for Selection and Execution of the Counter Function 10-10
10.6.1 When using the count disable function 10-10
10.6.2 When using the latch counter function. 10-11
10.6.3 When using the sampling counter function 10-12
10.6.4 When using the periodic pulse counter function 10-13
11. TROUBLESHOOTING 11-1 to 11-5
11.1 Count Value Is Incorrect 11-1
11.2 Count Operation Is Not Performed 11-1
11.3 How to Check an Error with the LED Lamps 11-2
11.4 If Communication Error Occurs between Master Station and This Module 11-4
APPENDIX
Appendix- 1 to Appendix- 2
Appendix 1 Directions for Use Appendix- 1
Appendix 2 Outline Drawing Appendix- 2

About the Manuals

The following product manuals are available. Please use this table as a reference to request the appropriate manual as necessary.

Related Manuals

Manual Name	$\begin{array}{c}\text { Manual No. } \\ \text { (Model Code) }\end{array}$
$\begin{array}{l}\text { High-Speed Counter Module type AJ65BT-D62/AJ65BT-D62D/AJ65BT-D62D-S1/ } \\ \text { User's Manual(Hardware) }\end{array}$	
$\begin{array}{l}\text { Describes the module specifications, applicable systems, handling, wiring and other } \\ \text { information for use of the module. }\end{array}$	$\begin{array}{c}\text { IB-66822 } \\ (13 J L 44)\end{array}$
(Option)	

1. INTRODUCTION

This user's manual describes the specifications, handling and programming of the AJ65BT-D62/D62D/D62D-S1 type high-speed counter module (hereinafter called the high-speed counter module) to be used in a Control Communication Link (hereinafter called CC-Link) system.
The high-speed counter module can import and count pulses of a pulse generator which cannot be imported by a programmable controller CPU.
The high-speed counter module can detect and count up to 400,000 pulses per second.

The high-speed counter module is available in the following three different types.

Item		AJ65BT-D62	AJ65BT-D62D	AJ65BT-D62D-S1
Type		DC input sink output type	Differential input sink output type	
External input	Preset	5/12/24VDC 2 to 15mA		Differential input
	Function start			$\begin{gathered} 5 / 12 / 24 \mathrm{VDC} \\ 2 \text { to } 5 \mathrm{~mA} \end{gathered}$
Max. counting speed		Max. 200kPPS	Max. 400kPPS	
CC-Link station type		Remote device station		
Counting range		24-bit binary (0 to 16777215)		
Counting switch-over		200k/10k	$\begin{aligned} & 1 \text { phase:400k } / 10 \mathrm{k} \\ & 2 \text { phases:300k } \end{aligned}$	

The high-speed counter module counts 1-phase and 2-phase pulse inputs as described below.
1-phase pulse input multiplied by one........... Counts on the leading edge or trailing edge of a pulse.
1-phase pulse input multiplied by two Counts on the leading edge and trailing edge of a pulse.
2-phase pulse input multiplied by one........... Counts on the leading edge or trailing edge of a phase A pulse.
2-phase pulse input multiplied by two Counts on the leading edge and trailing edge of a phase A pulse.
2-phase pulse input multiplied by four \qquad Counts on the leading edge and trailing edge of phase A and phase B pulses.

The following diagram outlines how the high-speed counter module operates.

1) Pulses input to the high-speed counter module are counted.
2) The preset or counter function can be selected with an external control signal.
3) The pulse is compared as a coincidence output with the present count value and a signal is issued accordingly.
4) The sequence program can be used to confirm the I/O signals and remote register status of the high-speed counter module and to start, stop and preset the counter.

1.1 Features

The high-speed counter module has the following features.
(1) Pulses can be counted in a wide range from 0 to 16777215. The count value is stored in 24-bit binary.
(2) Count value can be multiplied.

Multiplication by either one or two can be selected for 1-phase pulse inputs, or multiplication by one, two or four for 2-phase pulse inputs.
(3) Maximum counting speed can be switched.

Since the maximum counting speed of either 400 k (200k for the D62) or 10k can be selected, pulses can be counted without errors on gentle leading and trailing edges.
(4) Coincidence output is available.

ON/OFF signals are issued according to the comparison between the preset output status of a selected channel and the present counter value.
One module can accept two inputs and issues two outputs to one input, which can serve as upper and lower limit signals.
The AJ65BT-D62D-S1 accepts one input and provides one coincidence output. Note that it can use two points for counter value (coincidence, greater, less) signals.
(5) Ring counter function is available.

Counting repeats between the preset value and the ring counter value, and this function is effective in controlling fixed-pitch feed.
(6) Four counter functions are available.

Any of the following functions can be selected and used.
(a) Latch counter function Latches the present counter value in
response to an input signal.

1.2 Abbreviations, Generic Names and Terms Used in This Manual

In this manual, the following abbreviations and generic names are used to describe the high-speed counter module.

Abbreviation/ Generic Name	Description
AJ65BT-D62	Abbreviation for the AJ65BT-D62 type high-speed counter module.
AJ65BT-D62D	Abbreviation for the AJ65BT-D62D type high-speed counter module.
AJ65BT-D62D-S1	Abbreviation for the AJ65BT-D62D-S1 type high-speed counter module.
High-speed counter module	Generic name for the AJ65BT-D62, AJ65BT-D62D and AJ65BT-D62D-S1.
CC-Link	Abbreviation for the Control \& Communication Link system.
Master station	Station which controls remote and local stations. 1 station is required for 1 system.
Local station	Station which has a CPU and can communicate with the master and other local stations.
Remote I/O station	Remote station which handles bit information only. (AJ65BTB $\square-\square \square$,AJ65BTC $\square-\square \square$)
Remote device station	Remote station which handles bit information and word information. (AJ65BT-64AD,AJ65BT-64DAV,AJ65BT-64DAI)
Intelligent device station	Station which can make transient transmission. (Including a local station) (AJ65BT-R2)
Master - local module	Generic name for the AJ61BT11, A1SJ61BT11, AJ61QBT11 and A1SJ61QBT11
Master module	Generic name for the AJ61BT11, A1SJ61BT11, AJ61QBT11 and A1SJ61QBT11 when used as the master station
Local module	Generic name for the AJ61BT11, A1SJ61BT11, AJ61QBT11 and A1SJ61QBT11 when used as a local station
Remote module	Generic name for the AJ65BTB $\square-\square \square$, AJ65BTC $\square-\square \square$, AJ65BT-64AD, AJ65BT64DAV and AJ65BT-64DAI.
RX	Remote input
RY	Remote output
RWw	Remote register (write area)
RWr	Remote register (read area)

2. SYSTEM CONFIGURATION

This chapter describes a system configuration using the high-speed counter module.

2.1 Overall Configuration

The overall configuration using the high-speed counter module is shown below.

The maximum overall distance of the system is as follows (which depends on the transmission speed setting).

156kBPS:1200m(366feet) 5MBPS:150m(45.75feet) 625kBPS:600m(183feet) 10MBPS:100m(30.5feet) 2.5MBPS:200m(61feet)

2.2 Applicable System

This section explains the master module of the CC-Link system with which the highspeed counter module can be used and the programmable controller CPU with which the instructions dedicated to CC-Link can be used.
(1) Master module with which the high-speed counter module can be used

The master module with which the high-speed counter module can be used has a rating plate on which the code shown below (9707 B or later) is written in its DATE field.
If "9707 B" is not written in the DATE field, that master module cannot be used with the high-speed counter module.
POINT

The above restriction does not apply to the A series master module.
(AJ61BT11, A1SJ61BT11)
(2) Programmable controller CPU with which the instructions dedicated to CC-Link can be used
(a) Master module condition

The master module with which the instructions dedicated to CC-Link can be used has a rating plate on which the code shown below (9707 B or later) is written in its DATE field.
If "9707 B" is not written in the DATE field, that master module cannot be used.
(b) PC CPU conditions

1) QnACPU

The QnACPU with which the instructions dedicated to CC-Link can be used has a rating plate on which the code shown below (9707 B or later) is written in its DATE field.1)
If " 9707 B " is not written in the DATE field, that QnACPU cannot be used.
2) $A C P U$

Use the A1SJHCPU, A1SHCPU or A2SHCPU(-S1).
Any other ACPU cannot be used.
<Large type>

<Small type>

3. SPECIFICATIONS

3.1 General Specifications

The following table lists the general specifications of the high-speed counter module.(common to the AJ65BT-D62, AJ65BT-D62D and AJ65BT-D62D-S1)

Item	Specifications					
Operating ambient temperature	0 to $55^{\circ} \mathrm{C}$					
Storage ambient temperature	-20 to $75^{\circ} \mathrm{C}$					
Operating ambient humidity	10 to $90 \% \mathrm{RH}$, non-condensing					
Storage ambient humidity	10 to $90 \% \mathrm{RH}$, non-condensing					
Vibration resistance	Conforms to JIS B3501 and IEC 1131-2.		Frequency	Acceleration	Amplitude	Sweep Count
		In case of intermittent	10 to 57 Hz	-	$\begin{aligned} & 0.075 \mathrm{~mm} \\ & (0.003 \mathrm{in} .) \end{aligned}$	10 times in each of X, Y and Z directions (for 80 minutes)
		vibration	57 to 150 Hz	$9.8 \mathrm{~m} / \mathrm{s}^{2}$	-	
		In case of continuous	10 to 57 Hz	-	$\begin{aligned} & 0.035 \mathrm{~mm} \\ & (0.001 \mathrm{in} .) \end{aligned}$	
		vibration	57 to 150 Hz	$4.9 \mathrm{~m} / \mathrm{s}^{2}$	-	
Shock resistance	Conforms to JIS B3501 and IEC 1131-2 (147m/ s^{2}, 3 times in each of three directions).					
Operating atmosphere	No corrosive gas					
Operating altitude	2000m(6557.38feet) or less					
Installation site	Inside control panel					
Overvoltage category*1	II or less					
Contamination level*2	2 or less					

*1: Indicates the element in the distribution system between the public electricity grid and the mechanical equipment inside the premises that the relevant device is assumed to be connected to.
Category II applies to devices such as those that draw their power supply from fixed installations.
The surge voltage withstand capability of devices with ratings up to 300 V is $2,500 \mathrm{~V}$.
*2: This index gives a measure of the incidence of conductive materials in the environment in which the device is used.
A contamination level of 2 indicates an environment in which there is only contamination by nonconducting materials, but due to occasional condensation, conductivity may occur.

3.2 Performance Specifications

The following table gives the performance specifications of the high-speed counter module.
(1) Performance specifications of the AJ65BT-D62

*Counting speed is influenced by pulse rise time and fall time.Countable speeds are as follows.
Note that counting of a pulse having long rise and fall times may result in miscounting.

Counting Speed Setting Switch	HIGH		LOW	
Rise/fall time	1-phase input	2-phase input	1-phase input	2-phase input
$\mathrm{t}=2 \mu \mathrm{~s}$ or less	200 kPPS	200 kPPS	10 kPPS	7 kPPS
$\mathrm{t}=25 \mu \mathrm{~s}$ or less	10 kPPS	10 kPPS	1 kPPS	700 PPS
$\mathrm{t}=500 \mu \mathrm{~s}$	-	-	500 PPS	250 PPS

(2) Performance specifications of the AJ65BT-D62D

Item			Specifications	
Counting speed setting switch			HIGH position	LOW position
Number of channels			2 channels	
Count input signa	Phase		1-phase input, 2-phase input	
	Signal level$(\phi \mathrm{A}, \phi \mathrm{~B})$		EIA Standard RS-422-A differential type line driver level \{equivalent to Am26LS31 (Japan Texas Instruments make)\}	
Counter	Counting speed (max.)*	1-phase input	400kPPS	10kPPS
		2-phase input	300kPPS	7kPPS
	Counting range		24-bit binary, 0 to 16777215	
	Type		UP/DOWN preset counter and ring counter functions	
	Minimum pulse width that can be counted$\left(\begin{array}{l} \text { Adjust rise/fall time of } \\ \text { input to } 0.1 \mu \mathrm{~s} \text { or less. } \\ \text { Duty ratio: } 50 \% \end{array}\right)$			
Coincidence output	Comparison range		24-bit binary	
	Comparison result		Set value < count value, set value = count value, set value > count value	
External input	Preset		5/12/24VDC 2 to 5mA	
	Function start			
	Response time		OFF \rightarrow ON 0.5 ms or less $\mathrm{ON} \rightarrow$ OFF 3 ms or less	
External output	Coincidence output		2A/1common	
	Response time		0.1 ms or less	
CC-Link station type			Remote device station	
Number of stations occupied			4 stations	
Transmission speed/ max. transmission distance			Refer to Section 3.3	
Max. number of modules connected			16 modules	
Connection cable			Shielded twisted cable (refer to Section 3.4)	
Power supply voltage			18 to 28.8VDC	
Current consumption (24VDC)			100 mA	
Noise immunity			Measure using a noise simulator of noise voltage 500 Vp -p, noise width $1 \mu \mathrm{~s}$ and noise frequency 25 to 60 Hz .	
Withstanding voltage			500VAC for 1 minute across all DC external terminals and grounding terminal.	
Insulation resistance			$10 \mathrm{M} \Omega$ or more across all DC external terminals and grounding terminal using a 500VDC insulation resistance tester.	
Terminal block			27-pin terminal block (M3.5×7 screws)	
Applicable cable size			0.75 to $2.00 \mathrm{~mm}^{2}$	
Applicable crimping terminal			RAV1.25-3, RAV2-3.5 (conforming to JIS C2805)	
Permissible instantaneous power failure time			1 ms	
Module mounting screws			Screws of $\mathrm{M} 4 \times 0.7 \mathrm{~mm}(0.03 \mathrm{inch}) \times 16 \mathrm{~mm}(0.63 \mathrm{inch})$ or larger (tightening torque range: 78 to $118 \mathrm{~N} \cdot \mathrm{~cm}$) DIN rail may also be used for mounting.	
Applicable DIN rails			TH35-7.5Fe, TH35-7.5AI, (conforming to JIS-C2B12)	
Weight			$0.42 \mathrm{~kg}(0.93 \mathrm{lb})$	

*Counting speed is influenced by pulse rise time and fall time.Countable speeds are as follows.
Note that counting of a pulse having long rise and fall times may result in miscounting.

Counting Speed Setting Switch	HIGH		LOW	
Rise/fall time	1-phase input	2-phase input	1-phase input	2-phase input
$\mathrm{t}=0.1 \mu \mathrm{~s}$ or less	400 kPPS	300 kPPS	-	-
$\mathrm{t}=1.25 \mu \mathrm{~s}$ or less	200 kPPS	200 kPPS	10 kPPS	7 kPPS
$\mathrm{t}=12.5 \mu \mathrm{~s}$ or less	20 kPPS	20 kPPS	1 kPPS	700 PPS
$\mathrm{t}=250 \mu \mathrm{~s}$	-	-	500 PPS	250 PPS

(3) Performance specifications of the AJ65BT-D62D-S1

Item			Specifications	
Counting speed setting switch			HIGH position	LOW position
Number of channels			2 channels	
Count input signal	Phase		1-phase input, 2-phase input	
	Signal level$(\phi \mathrm{A}, \phi \mathrm{~B})$		EIA Standard RS-422-A differential type line driver level \{equivalent to Am26LS31 (Japan Texas Instruments make)\}	
Counter	Counting speed (max.)*	1-phase input	400kPPS	10kPPS
		2-phase input	300kPPS	7kPPS
	Counting range		24-bit binary, 0 to 16777215	
	Type		UP/DOWN preset counter and ring counter functions	
	Minimum pulse width that can be counted$\left(\begin{array}{l} \text { Adjust rise/fall time of } \\ \text { input to } 0.1 \mu \mathrm{~s} \text { or less. } \\ \text { Duty ratio: } 50 \% \end{array}\right)$			
Coincidence output	Comparison range		24-bit binary	
	Comparison result		Set value < count value, set value = count value, set value > count value	
External input	Preset		EIA Standard RS-422-A differential type line driver level \{equivalent to Am26LS31 (Japan Texas Instruments make)\}	
	Function start		5/12/24VDC 2 to 5mA	
	Response time		OFF \rightarrow ON 0.5 ms or less $\mathrm{ON} \rightarrow$ OFF 3 ms or less	
External output	Coincidence output		2A/1common	
	Response time		0.1 ms or less	
CC-Link station type			Remote device station	
Number of stations occupied			4 stations	
Transmission speed/ max. transmission distance			Refer to Section 3.3	
Max. number of modules connected			16 modules	
Connection cable			Shielded twisted cable (refer to Section 3.4)	
Power supply voltage			18 to 28.8VDC	
Current consumption (24VDC)			120 mA	
Noise immunity			Measure using a noise simulator of noise voltage $500 \mathrm{Vp}-\mathrm{p}$, noise width $1 \mu \mathrm{~s}$ and noise frequency 25 to 60 Hz .	
Withstanding voltage			500VAC for 1 minute across all DC external terminals and grounding terminal.	
Insulation resistance			$10 \mathrm{M} \Omega$ or more across all DC external terminals and grounding terminal using a 500VDC insulation resistance tester.	
Terminal block			27-pin terminal block (M3.5×7 screws)	
Applicable cable size			0.75 to $2.00 \mathrm{~mm}^{2}$	
Applicable crimping terminal			RAV1.25-3, RAV2-3.5 (conforming to JIS C2805)	
Permissible instantaneous power failure time			1 ms	
Module mounting screws			Screws of $\mathrm{M} 4 \times 0.7 \mathrm{~mm}(0.03 \mathrm{inch}) \times 16 \mathrm{~mm}(0.63 \mathrm{inch})$ or larger (tightening torque range: 78 to $118 \mathrm{~N} \cdot \mathrm{~cm}$) DIN rail may also be used for mounting.	
Applicable DIN rails			TH35-7.5Fe, TH35-7.5AI, (conforming to JIS-C2B12)	
Weight			$0.42 \mathrm{~kg}(0.93 \mathrm{lb})$	

*Counting speed is influenced by pulse rise time and fall time.Countable speeds are as follows.
Note that counting of a pulse having long rise and fall times may result in miscounting.

Counting Speed Setting Switch	HIGH		LOW	
Rise/fall time	1-phase input	2-phase input	1-phase input	2-phase input
$\mathrm{t}=0.1 \mu \mathrm{~s}$ or less	400 kPPS	300 kPPS	-	-
$\mathrm{t}=1.25 \mu \mathrm{~s}$ or less	200 kPPS	200 kPPS	10 kPPS	7 kPPS
$\mathrm{t}=12.5 \mu \mathrm{~s}$ or less	20 kPPS	20 kPPS	1 kPPS	700 PPS
$\mathrm{t}=250 \mu \mathrm{~s}$	-	-	500 PPS	250 PPS

3.3 Maximum Transmission Distance in CC-Link System

The maximum transmission distances in a CC-Link system are as follows.

1) Independently of the transmission speed setting, the interstation cable length of " 2 m (0.61 feet) or more" is required between the master/local/intelligent device station and a station before or after the master•local/intelligent device station.
2) At the transmission speeds of 5 Mbps and 10 Mbps , care must be exercised because the maximum transmission distance changes with the interstation cable length between the remote I/O stations, remote I/O station and remote device station, or remote device stations.

Transmission Speed	1)	2)	Max. Transmission Distance
156kbps	2m(0.61feet) or more	30 cm (11.82inch) or more	1200m(366feet)
625kbps		30 cm (11.82inch) or more	600m(183feet)
2.5 kbps		30 cm (11.82inch) or more	200m(61feet)
		60 cm (23.64inch) or more	150m(45.75feet)
5Mbps		$\begin{gathered} 30(11.82 \mathrm{inch}) \\ \text { to } \\ 59 \mathrm{~cm}(23.25 \mathrm{inch}) \\ \hline \end{gathered}$	110m(33.55feet)
10Mbps		1 m (0.31feet) or more	100m(30.5feet)
		$\begin{gathered} 60(23.64 \mathrm{inch}) \\ \text { to } \\ 99 \mathrm{~cm}(39.01 \mathrm{inch}) \\ \hline \end{gathered}$	80m(24.4feet)
		$\begin{gathered} 30(11.82 \mathrm{inch}) \\ \text { to } \\ 59 \mathrm{~cm}(23.25 \mathrm{inch}) \end{gathered}$	50m(15.25feet)

3.4 CC-Link Dedicated Cable

Use the CC-Link dedicated cable for the CC-Link system. If a cable other than the CC-Link dedicated cable is used, the performance of the CC-Link system cannot be guaranteed.
If you have any questions regarding the CC-Link dedicated cable, or if you wish to see its specifications, see the CC-Link Catalog L (NA) 74108143E.

3.5 Functions

The following table lists the high-speed counter module functions.

	Name	Description	Refer To
Coincidence output function		Outputs an ON/OFF signal in a specified output status, comparing it with the present value.	Section 6.1
Preset function		Counting alternates between the preset value and the ring counter value. The preset operation can be done either by a sequence program or by an external preset input.	Section 7.1
Ring counter function		Counting alternates between the preset value and the ring counter.	Section 8.1
	Count disable function	Stops counting pulses while the count enable command is ON.	$\begin{gathered} \hline \text { Section } \\ 9.2 \end{gathered}$
	Latch counter function	Stores the present value of the counter into the remote registers when the signal of the counter function selection start command is input.	$\begin{gathered} \text { Section } \\ 9.3 \end{gathered}$
	Sampling counter function	After the signal of the counter function selection start command is input, input pulses are counted during a preset sampling period and stored into the remote registers.	$\begin{gathered} \text { Section } \\ 9.4 \end{gathered}$
	Periodic pulse counter function	While the signal of the counter function selection start command is input, input pulses are stored into the remote registers at preset intervals.	$\begin{gathered} \text { Section } \\ 9.5 \end{gathered}$

*These functions may be used together. However, only one function may be selected from among the four counter function selection functions.

3.6 Interfaces with External Devices

The following tables give lists of the interfaces of the high-speed counter module with external devices.
(1) Interfaces of the AJ65BT-D62 with external devices

Input/ Output	Internal Circuit	Terminal Number *1	Signal Name	ON/OFF	Input Voltage (Guaranteed)	Operating Current (Guaranteed)
Input		$\begin{gathered} 8 \\ (15) \end{gathered}$	Phase A pulse input 24 V	ON	21.6 to 26.4 V	2 to 5mA
				OFF	5 V or less	0.1 mA or less
			Phase A pulse input 12V	ON	10.8 to 13.2 V	2 to 5mA
				OFF	4 V or less	0.1 mA or less
			Phase A pulse input 5V	ON	4.5 to 5.5 V	2 to 5 mA
				OFF	2 V or less	0.1 mA or less
		$\begin{gathered} 9 \\ (16) \\ \hline \end{gathered}$	Phase A pulse input COM			
		$\begin{gathered} 10 \\ (17) \end{gathered}$	Phase B pulse input 24V	ON	21.6 to 26.4 V	2 to 5mA
				OFF	5 V or less	0.1 mA or less
			Phase B pulse input 12V	ON	10.8 to 13.2 V	2 to 5mA
				OFF	4 V or less	0.1 mA or less
			Phase B pulse input 5V	ON	4.5 to 5.5 V	2 to 5 mA
				OFF	2 V or less	0.1 mA or less
		$\begin{gathered} 11 \\ (18) \\ \hline \end{gathered}$	Phase B pulse input COM			
Input		$\begin{gathered} 12 \\ (19) \end{gathered}$	Preset input$24 \mathrm{~V}$	ON	21.6 to 26.4 V	2 to 5 mA
				OFF	5 V or less	0.1 mA or less
			Preset input$12 \mathrm{~V}$	ON	10.8 to 13.2 V	2 to 5mA
				OFF	4 V or less	0.1 mA or less
			Preset input 5V	ON	4.5 to 5.5 V	2 to 5mA
				OFF	2 V or less	0.1 mA or less
		$\begin{gathered} 13 \\ (20) \\ \hline \end{gathered}$	COM	Response time	$\mathrm{OFF} \rightarrow \mathrm{ON}$ 0.5 ms or less	$\mathrm{ON} \rightarrow \mathrm{OFF}$ 3 ms or less
Input		$\begin{gathered} 14 \\ (21) \end{gathered}$	Function start input 24 V	ON	21.6 to 26.4 V	2 to 5 mA
				OFF	5 V or less	0.1 mA or less
			Function start input 12V	ON	10.8 to 13.2 V	2 to 5 mA
				OFF	4 V or less	0.1 mA or less
			Function start input 5 V	ON	4.5 to 5.5 V	2 to 5 mA
				OFF	2 V or less	0.1 mA or less
				Response time	$\begin{gathered} \mathrm{OFF} \rightarrow \mathrm{ON} \\ 0.5 \mathrm{~ms} \text { or less } \end{gathered}$	$\mathrm{ON} \rightarrow \mathrm{OFF}$ 3 ms or less
Output		$\begin{gathered} 22 \\ (24) \end{gathered}$	EQU1	Operating voltage Rated current Max. inrush current Max. voltage drop at ON Response time $\mathrm{OFF} \rightarrow \mathrm{ON}$ $\mathrm{ON} \rightarrow \mathrm{OFF}$.2 to 30 V .5A/point 10 ms
		$\begin{gathered} 23 \\ (25) \end{gathered}$	EQU2			ms or less ms or less
		26	12/24V	Input voltage Current consumption		- 30V
		27	OV			TYP 24VDC)

*1...The number within parentheses represents the terminal number of channel 2.
(2) Interfaces of the AJ65BT-D62D with external devices

Input/ Output	Internal Circuit	Terminal Number *	Signal Name	ON/OFF	Input Voltage (Guaranteed)	Operating Current (Guaranteed)
Input		$\begin{gathered} 8 \\ (15) \end{gathered}$	Phase A pulse input	EIA Standard RS-422-A line driver level \{Am26LS31 (Japan TexasInstruments make or equivalent)\}		
		$\begin{gathered} 9 \\ (16) \end{gathered}$	Phase \bar{A} pulse input			
	Receiver(Am26LS32)	$\begin{gathered} 10 \\ (17) \end{gathered}$	Phase B pulse input			
		$\begin{gathered} 11 \\ (18) \end{gathered}$	Phase \bar{B} pulse input			
Input		$\begin{gathered} 12 \\ (19) \end{gathered}$	$\begin{gathered} \hline \text { Preset input } \\ 24 \mathrm{~V} \\ \hline \end{gathered}$	ON	21.6 to 26.4 V	2 to 5mA
				OFF	5 Vor less	0.1 mA or less
			$\begin{gathered} \hline \text { Preset input } \\ 12 \mathrm{~V} \\ \hline \end{gathered}$	ON	10.8 to 13.2 V	2 to 5 mA
				OFF	4 V or less	0.1 mA or less
			Preset input 5V	ON	4.5 to 5.5 V	2 to 5mA
				OFF	2 V or less	0.1 mA or less
		$\begin{gathered} \hline 13 \\ (20) \\ \hline \end{gathered}$	COM	Response time	$\begin{gathered} \mathrm{OFF} \rightarrow \mathrm{ON} \\ 0.5 \mathrm{~ms} \text { or less } \end{gathered}$	$\mathrm{ON} \rightarrow \mathrm{OFF}$ 3 ms or less
Input		$\begin{gathered} 14 \\ (21) \end{gathered}$	Function start input 24 V	ON	21.6 to 26.4 V	2 to 5 mA
				OFF	5 V or less	0.1 mA or less
			Function start input 12 V	ON	10.8 to 13.2 V	2 to 5 mA
				OFF	4 V or less	0.1 mA or less
			Function start input 5 V	ON	4.5 to 5.5 V	2 to 5 mA
				OFF	2 V or less	0.1 mA or less
				Respon- se time	$\begin{gathered} \mathrm{OFF} \rightarrow \mathrm{ON} \\ 0.5 \mathrm{~ms} \text { or less } \end{gathered}$	$\begin{gathered} \mathrm{ON} \rightarrow \mathrm{OFF} \\ 3 \mathrm{~ms} \text { or less } \end{gathered}$
Output		$\begin{gathered} 22 \\ (24) \end{gathered}$	EQU1	Operating voltage Rated current Max. inrush current Max. voltage drop at ON Response time $\mathrm{OFF} \rightarrow \mathrm{ON}$ $\mathrm{ON} \rightarrow \mathrm{OFF}$		10.2 to 30 V 0.5A/point 4A 10 ms 1.5 V 0.1 ms or less 0.1 ms or less
		$\begin{gathered} 23 \\ (25) \end{gathered}$	EQU2			
		26	12/24V	Input voltage Current consumption		$\begin{aligned} & 10.2 \text { to } 30 \mathrm{~V} \\ & 8 \mathrm{~mA} \text { (TYP 24VDC) } \end{aligned}$
		27	OV			

*1...The number within parentheses represents the terminal number of channel 2.
(3) Interfaces of the AJ65BT-D62D-S1 with external devices

Input/ Output	Internal Circuit	Terminal Number *1	Signal Name	ON/OFF	Input Voltage (Guaranteed)	Operating Current (Guaranteed)
Input		$\begin{gathered} 8 \\ (16) \end{gathered}$	Phase A pulse input	EIA Standard RS-422-A line driver level \{Am26LS31 (Japan Texas Instruments make or equivalent)\}		
		$\begin{gathered} 9 \\ (17) \end{gathered}$	Phase \bar{A} pulse input			
	Receiver(Am26LS32)	$\begin{gathered} 10 \\ (18) \end{gathered}$	Phase B pulse input			
		$\begin{gathered} 11 \\ (19) \end{gathered}$	Phase \bar{B} pulse input			
Input		$\begin{gathered} 12 \\ (20) \end{gathered}$	Preset input			
		$\begin{gathered} 13 \\ (21) \end{gathered}$	$\overline{\text { Preset input }}$			
Input		$\begin{gathered} 14 \\ (22) \end{gathered}$	Function start input 24 V	ON	21.6 to 26.4 V	2 to 5 mA
				OFF	5 V or less	0.1 mA or less
			Function start input 12 V	ON	10.8 to 13.2 V	2 to 5 mA
				OFF	4 V or less	0.1 mA or less
			$\begin{aligned} & \text { Function } \\ & \text { start input } \\ & 5 \mathrm{~V} \\ & \hline \end{aligned}$	ON	4.5 to 5.5 V	2 to 5 mA
				OFF	2 V or less	0.1 mA or less
		$\begin{gathered} 15 \\ (23) \end{gathered}$	Function start input COM	Response time	$\begin{gathered} \mathrm{OFF} \rightarrow \mathrm{ON} \\ 0.5 \mathrm{~ms} \text { or less } \end{gathered}$	$\mathrm{ON} \rightarrow \mathrm{OFF}$ 3ms or less
Output		$\begin{gathered} 24 \\ (25) \end{gathered}$	EQU1	Operating Rated curr Max. inrush Max. voltag Response OFF- $\mathrm{ON} \rightarrow$	Itage current drop at ON me FF	2 to 30 V A/point 10 ms V ms or less ms or less
		26	12/24V	Input voltag		30 V
		27	OV	Current co	sumption 8m	TYP 24VDC)

*1...The number within parentheses represents the terminal number of channel 2.

3.7 I/O Signals Transferred to/from the Master Module

This section explains the input/output signals (RX, RY) of the high-speed counter module transferred to/from the master module.
(1) Input signals

The following table lists the input signals of the high-speed counter module transmitted to the master module.

Input Signals		Signal Name High-speed counter module \rightarrow master module	Description	Refer To
CH 1	CH 2			
RXn0	RXn4	Counter value greater (point No. 1)	Turned on if the counter value is greater than the set value No. 1.	Section 6.1
RXn1	RXn5	Counter value coincidence (point No. 1)	Latched on if the counter value is equal to the set value No. 1 turned off by the coincidence signal reset command.	Section 6.1 Section 8.1
RXn2	RXn6	Counter value less (point No. 1)	Turned on when the counter value is less than the set value No. 1.	Section 6.1
RXn3	RXn7	External preset command detection	Latched on when the preset request is given from external input.Turned off by the external preset detection reset command.	Section 7.3
RXn8	RXnB	Counter value greater (point No. 2)	Turned on if the counter value is greater than the set value No. 2.	
RXn9	RXnC	Counter value coincidence (point No. 2)	Latched on if the counter value is equal to the set value No. 2 turned off by the coincidence signal reset command.	Section 6.1
RXnA	RXnD	Counter value less (point No. 2)	Turned on when the counter value is less than the set value No. 2.	
RXnE	RXnF	-	Unusable	-
$R X(n+1) 0$	$R X(n+1) 2$	Preset completion	Turned on on completion of the preset function executed when the preset command (RY($\mathrm{n}+1$) $1 / \mathrm{RY}$ $(n+1) 8)$ turns on. Turned off when the preset command switches from ON to OFF.	Section 7.2
$R X(n+1) 1$	$R X(n+1) 3$	Counter function detection	Turned on at counter function start (execution) when the counter function selection start command (RY $(n+1) 6 / R Y(n+1) D)$ turns on. Turned off when the counter function selection start command switches from ON to OFF.	Section 9.2 Section 9.3 Section 9.4 Section 9.5
$\mathrm{RX}(\mathrm{n}+1) 4$ to $\mathrm{RX}(\mathrm{n}+7) 7$		-	Unusable	
$R X(\mathrm{n}+7) 8$		Initial data processing request flag	Turned on by the high-speed counter module to request initial data setting after power-on or hardware reset. Turned off on initial data processing completion (when initial data processing completion flag $(\mathrm{RY}(\mathrm{N}+7) 8)$ turns on).	
$\mathrm{RX}(\mathrm{n}+7) 9$	RX($\mathrm{n}+7) \mathrm{A}$	-	Unusable	
$R X(n+7) B$		Remote ready	Turned on when the high-speed counter module is in the ready state on completion of initial data setting after power-on or hardware reset.	
$R X(n+7) C$ to $R X(n+7) F$		-	Unusable	

n : Address assigned to the master station by station number setting.

POINT

The unusable devices are used in the system and should not be used by the user.
If any of them is used by the user, normal operation cannot be guaranteed.
(2) Output signals

The following table lists the output signals transmitted by the master module to the high-speed counter module.

n : Address assigned to the master station by station number setting.
*For the output signal whose operation timing is " \uparrow L", use the corresponding input signal as an interlock for turning off that output signal.
(Example) Preset command operation

POINT

The unusable devices are used in the system and should not be used by the user.

If any of them is used by the user, normal operation cannot be guaranteed.

3.8 Remote Register Allocation

The following table gives the assignment of the remote registers in the high-speed counter module.
The initial values of the remote registers are set when power is switched on or the PC CPU is reset.

Transmission Direction	Addresses		Description	Initial Value	Read/Write	Refer To
	CH1	CH2				
Write area of master station High-speed counter module	RWwm	RWwm+8		0	Write only	Section 7.2
	RWwm+1	RWwm+9	(H)			Section 7.3
	RWwm+2	RWwm+A	Pulse input mode/function selection register/ external output hold or clear setting area*1			Chapter 5 Chapter 9
	RWwm+3	RWwm+B	- - - Coincidence output point No. $1 \quad$ (L)setting area (H)			
	RWwm+4	RWwm+C				
	RWwm+5	RWwm+D	Sampling/cycle time setting area			Section 9.4 Section 9.5
	RWwm+6	RWwm+E	Coincidence output point No. 2 _ (L)			
	RWwm+7	RWwm+F	setting area *2 (H)			hapter 6
High-speed counter module Read area of master station	RWrn	RWrn+8	(L)		Read only	ation 5.3
	RWrn+1	RWrn+9	(H)			Section 5.3
	RWrn+2	RWrn+A	Latch count value/sampling count value/periodic pulse count previous			Section 9.3 Section 9.4
	RWrn+3	RWrn+B	value storage area			Section 9.5
	RWrn+4	RWrn+C	Periodic pulse count present value . (L)			Section 95
	RWrn+5	RWrn+D	storage area (H)			ection
	RWrn+6		Sampling/periodic counter flag storage area (for both CH 1 and CH 2)			Section 9.4 Section 9.5
	$\begin{aligned} & \text { RWrn+7 } \\ & \text { RWrn }+E \\ & \text { RWrn+F } \end{aligned}$		Unusable			-

m, n : Addresses assigned to the master station by station number setting.
*1 External output hold or clear setting is used for both CH 1 and CH 2 . The value set to the remote register of CH 1 is valid.
*2 In the AJ65BT-D62D-S1, external output (coincidence output) does not switch on-off if coincidence output No. 2 is set. However, the counter value magnitude comparison (coincidence, greater, less) output signals (X signals) switch on-off as ordinarily.

POINT

The unusable remote registers are used in the system and should not be used by the user.
If any of them is used by the user, normal operation cannot be guaranteed.

3.9 Applicable Encoders

The following encoders may be connected to the high-speed counter module.
(1) Encoders connectable to the AJ65BT-D62
(a) Open collector type encoder
(b) CMOS output type encoder (Make sure that the output voltage of the encoder complies with the specifications of the module.)
(2) Encoder connectable to the AJ65BT-D62D and AJ65BT-D62D-S1
(a) Line driver output type encoder
(Make sure that the output voltage of the encoder complies with the specifications of the module.)

POINT

The following type of encoder cannot be used.

- TTL output type encoder

3.10 Data Link Processing Times

In the high-speed counter module, the following data link processing times are required to execute the corresponding function. The following example shows processing times *1 to *4 in coincidence output operation.

*1 Master station (RY) \rightarrow remote device station (RY) processing time The following processing time is required until the remote device station starts pulse input when the count enable signal $\{R Y(n+1) 4(R Y(n+1) B)\}$ turns on.

[Formula]

SM+LS $\times 3+$ remote device station processing_time $(1 \mathrm{~ms})$. ms]
 high-speed counter module

SM:Scantime of master station sequence program
LS :Link scantime

The link scan time of CC-Link is found by the following formula.
$\mathrm{LS}=\mathrm{BT}\{29.4+(\mathrm{NI} \times 4.8)+(\mathrm{NW} \times 9.6)+(\mathrm{N} \times 32.4)+(\mathrm{NI} \times 4.8)+(\mathrm{NW} \times 9.6)\}+\mathrm{ST}[\mu \mathrm{s}]$
$+\left\{\right.$ number of stations in communication error $\times 48 \times B T \times$ number of retries ${ }^{*}$

BT:Constant (transmission speed)

Transmission speed	156 kbps	625 kbps	2.5 Mbps	5 Mbps	10 Mbps
BT	51.2	12.8	3.2	1.6	0.8

NI :Last station number in $\mathrm{a}, \mathrm{b}, \mathrm{c}$ (including the number of stations occupied)
NW:Last station number in b, c (including the number of stations occupied) \int The number should be a multiple of 8 .

Last station No.	1 to 8	9 to 16	17 to 24	25 to 32	33 to 40	41 to 48	49 to 56	57 to 64
NI,NW	8	16	24	32	40	48	56	64

$\mathrm{N}:$ Number of modules connected
$\mathrm{N}: \mathrm{a}+\mathrm{b}+\mathrm{c}$ (except reserved stations)
NW:b+c (except reserved stations)
ST:Constant (the greatest value among 1) to 3))

1) $800+(a \times 15)$
2) $900+(b \times 50)$
3) If $\mathrm{c} \leq 26,1200+(\mathrm{c} \times 100)$

If $c>26,3700+\{(c-26) \times 25\}$
a:Total number of remote I/O stations occupied
b:Total number of remote device stations occupied
c:Total number of intelligent device stations (including local stations) occupied
*:Only when there is a station in communication error
*2 Master station $(R W r) \leftarrow$ remote device station (RWr) processing time The following processing time is required by the master station to read the counter value counted by the remote device station.

[Formula]

```
SM+LS\times2+remote device station_processing_time(1ms) [ms]
                    high-speed counter module
    SM:Scantime of master station sequence program
    LS :Link scantime
```

*3 Master station $(R X) \leftarrow$ remote device station (RX) processing time
The following processing time is required from when the remote device station
receives the coincidence signal reset command until when the coincidence signal
$\{R X n 1(R X n 5)\}$ turned off at the remote device station is transmitted to the master
station.

* The processing time required to transmit the coincidence signal reset command to the remote device station is not included.

[Formula]

SM+LS×2+remote device station processing_time(1ms). [ms]
 high-speed counter module

SM:Scantime of master station sequence program
LS :Link scantime
*4 Master station (RWw) \rightarrow remote device station (RWw) processing time The following is the transmission time in which the coincidence output point No. 1 set value written by the TO instruction is set to the remote device station.
[Formula]
$\mathrm{SM}+\mathrm{LS} \times 3+$ remote device station processing_time $(1 \mathrm{~ms})$ _[ms$]$ high-speed counter module

SM:Scantime of master station sequence program
LS :Link scantime

4. INSTALLATION AND PRE-OPERATION SETTING PROCEDURE

This chapter describes the pre-operation procedure of the high-speed counter module, the names and settings of each part, and the wiring method.

4.1 Pre-Operation Setting Procedure

Use the following procedure to make pre-operation setting for the high-speed counter module.

4.2 Installation

This section gives the handling instructions to be followed from unpacking to installation of the high-speed counter module and its installation environment.

4.2.1 Handling instructions

This section gives the handling instructions of the high-speed counter module.

- Do not touch the terminals and connectors while power is on.
- This can cause an electric shock or misoperation.
- Securely fix the module using the DIN rail or mounting screws and fully tighten the mounting screws within the specified torque range. Undertightening can cause a drop or misoperation. Overtightening can cause a drop or misoperation due to damaged screws or module.
- Do not touch the conductive areas of the module directly. Otherwise, the module can misoperate or fail.
- Tighten the terminal screws within the specified torque range.

Undertightening can cause a short circuit or misoperation.
Overtightening can cause a short circuit or misoperation due to damaged screws or module.

- Ensure that foreign matters such as chips and wire off-cuts do not enter the module.
They can cause a fire, failure or misoperation.
- Do not disassemble or modify the module.

This can cause a failure, misoperation, injury or fire.

- The module case is made of resin. Do not drop it or give it hard impact. This can damage the module.
- Before mounting or dismounting the module to or from an enclosure, always switch power off externally in all phases. Otherwise, the module can fail or misoperate.
- When disposing of the product, handle it as industrial waste.
(1) Tighten the terminal screws and fixing screws of the module within the following ranges

Screw Location	Tightening Torque Range
Module mounting screw (M4 screw)	78 to $118 \mathrm{~N} \cdot \mathrm{~cm}$
Terminal block terminal screw (M3.5 screw)	59 to $88 \mathrm{~N} \cdot \mathrm{~cm}$
Terminal block mounting screw (M3.5 screw)	98 to $137 \mathrm{~N} \cdot \mathrm{~cm}$

(2) When using the DIN rail adapter, note the following in mounting the DIN rail.
(a) Applicable DIN rail type (conforming to JIS-C2B12)

TH35-7.5Fe
TH35-7.5AI
(b) DIN rail mounting screw pitch

When mounting the DIN rail, tighten screws in 200 mm (7.88inch) or less pitch.

4.2.2 Installation environment

When installing the module, avoid the following environment. If the environment of the module used is outside the range of general specifications, an electric shock, fire, misoperation or product damage or deterioration can occur

- Ambient temperature outside the range 0 to $55^{\circ} \mathrm{C}$
- Ambient humidity outside the range 10 to 90% RH
- Condensation due to sudden temperature changes
- Corrosive or combustible gasses
- Dust, conductive powder (e.g. metal filings), oil mist, salt and organic solvent
- Direct sunlight
- Strong power and magnetic fields
- Vibration and impact

4.3 Part Names and Settings

This section gives the names and settings of the high-speed counter module controls.

Number	Name	Description
9)	Pulse/external input voltage setting pins	The also applies to CH 2 . (Jumper connected to 5 V) AJ65BT-D62D CH. 1 (Jumper connected to 24 V)

4.4 Wiring

4.4.1 Twisted cable handling instructions

If twisted cables are handled roughly, they will be damaged. Therefore.
(1) Do not compress the cable with a sharp edge.
(2) Do not twist the cable roughly.
(3) Do not pull the cable roughly (more than allowable tension).
(4) Do not stamp on the cable.
(5) Do not put anything on the cable.
(6) Do not scratch the cable sheath.

4.4.2 Connection of cables with the modules

The following diagram shows the wiring of the master module, remote module and high-speed counter module with twisted cables.

[Sketch]

POINT

The "terminal resistors" supplied with the master module must be connected to the modules at both ends of data link. (Connect them across DA-DB.)

4.4.3 Instructions for wiring pulse generator

When connecting a pulse generator to the high-speed counter module, take the following precautions.
(1) When using high speed pulse inputs, take the following precautions against noise
(a) Always use shielded twisted cables. Also provide Class 3 grounding.
(b) Do not run a twisted pair cable in parallel with any power line, I/O line, etc. which may generate noise. It is necessary to run the twisted pair cable at least 150 mm (5.91 inch) away from the above lines and over the shortest possible distance
(2) For a 1-phase input, always connect the count input pulse to phase A.
(3) If the high-speed counter module picks up noise, it will count incorrectly.
(4) The diagram below indicates the type of precautions required to prevent the wiring from picking up noise.

The distance between the encoder and joint box should be as short as possible.
If the distance from the high-speed counter module to the encoder is too long, an excessive voltage drop will occur. Therefore, measure voltages with a tester or the like during operation and stop of the encoder, and check that the voltages are within the rated voltage of the encoder. If the voltage drop is large, increase the size of wiring or use an encoder of 24VDC with less current consumption.

- Ground the twisted shield cable on the encoder side (joint box). (This is a connection example for 24 V sink load.)

Connect the encoder shield wire to the shield wire of the twisted cable inside the joint box. If the shield wire of the encoder is not grounded in the encoder, ground it inside the joint box as indicated by the dotted line.

4.4.4 Wiring examples of pulse generators

(1) Pulse generator is open collector output type (24VDC)

AJ65BT-D62

REMARKS
*.............Set the pulse input voltage setting pins in the
(2) Pulse generator is voltage output type (5VDC)

REMARKS

*.............Set the pulse input voltage setting pins in the \mathbf{Q} position.
(3) Pulse generator is line driver (equivalent to Am26LS31)

AJ65BT-D62D

4.4.5 Wiring examples of controller and external input (PRESET, F.START) terminals

(1) Controller (sink load type) is 12 V

E Internal circuit is set to PRESET.
E AJ65BT-D62D-S1 has F.START only.
(2) Controller (source load type) is 5 V

AJ65BT-D62,AJ65BT-D62D,AJ65BT-D62D-S1

E Internal circuit is set to PRESET.
e AJ65BT-D62D-S1 has F.START only.

REMARKS

\qquad Set the external input voltage setting pins in theposition.

- Set the pulse/external input voltage setting pins correctly after confirming the rated voltage of the external power supply. Miss-wiring (wrong setting) can cause a fire or failure.
- The pulse/external input voltage setting pins must be set after switching power off externally in all phases.
Otherwise, the module can fail or misoperate.
- Set the jumper to the pulse/external input voltage setting pins in the correct inserting orientation.
Otherwise, a failure can occur.

4.4.6 Wiring examples of external output (EQU1, EQU2) terminals

When using the EQU terminals, a 10.2 VDC to 30 VDC external power supply is required to activate the internal photocoupler. Connection methods are as follows.
(1) AJ65BT-D62, AJ65BT-D62D

AJ65BT-D62,AJ65BT-D62D

(2) AJ65BT-D62D-S1

AJ65BT-D62D-S1

5. PULSE INPUT AND COUNTING METHOD

This chapter describes the pulse input and counting modes of the high-speed counter module.
(1) The pulse input mode is classified into 1-phase pulse input and 2-phase pulse input. 1-phase pulse input is subdivided into multiplication by one and multiplication by two, whereas 2-phase pulse input covers multiplication by one, two and four.
The following table indicates the pulse input modes and count timing.

Pulse Input Mode	Count Timing		
1-phase, multiplied by one	Up counting		Counts a pulse on leading edge of phase $\phi \mathrm{A}$. Phase ϕB and $R Y(n+1) 3(R Y(n+1) A)$ are off.
	Down counting		Counts a pulse on trailing edge of phase $\phi \mathrm{A}$. Phase ϕB or $R Y(n+1) 3(R Y(n+1) A)$ is on.
1-phase, multiplied by two	Up counting		Counts a pulse on leading and trailing edges of phase $\phi \mathrm{A}$. Phase ϕB and $R Y(n+1) 3(R Y(n+1) A)$ are off.
	Down counting		Counts a pulse on leading and trailing edges of phase $\phi \mathrm{A}$. Phase ϕB or $R Y(n+1) 3(R Y(n+1) A)$ is on.
2-phase, multiplied by one	Up counting	$$	Counts a pulse on leading edge of phase $\phi \mathrm{A}$. Count increases in response to phase difference between phases $\phi \mathrm{A}$ and $\phi \mathrm{B}$.
	Down counting		Counts a pulse on trailing edge of phase $\phi \mathrm{A}$. Count decreases in response to phase difference between phases $\phi \mathrm{A}$ and $\phi \mathrm{B}$.
2-phase, multiplied by two	Up counting		Counts a pulse on leading and trailing edges of phase $\phi \mathrm{A}$. Count increases in response to phase difference between phases $\phi \mathrm{A}$ and $\phi \mathrm{B}$.
	Down counting	$\phi \mathrm{A}$	Counts a pulse on leading and trailing edges of phase ϕ A. Count decreases in response to phase difference between phases $\phi \mathrm{A}$ and $\phi \mathrm{B}$.
2-phase, multiplied by four	Up counting	$\begin{array}{ll} \phi \mathrm{A} & \leftarrow \\ \phi \mathrm{~B} \end{array}$	Counts a pulse on leading and trailing edges of phases $\phi \mathrm{A}$ and $\phi \mathrm{B}$. Count increases in response to phase difference between phases ϕ A and ϕ B.
	Down counting		Counts a pulse on leading and trailing edges of phases $\phi \mathrm{A}$ and $\phi \mathrm{B}$. Count decreases in response to phase difference between phases $\phi \mathrm{A}$ and $\phi \mathrm{B}$.

(2) Even if the pulse input mode is changed, counting will start from the value at the time the mode is changed.

5.1 1-phase pulse input

In 1-phase pulse input, multiplication by one or two can be selected for counting.
(1) Relationship between phase A pulse input and down count command

The following diagram shows the relationship between phase A pulse input and down count command.

(2) Counting mode setting

To use this counting mode, set the following value to the lower 8 bits of the remote register $\{R W w m+2(R W w m+A)\}$ using the sequence program.
When the value set is not the following set value, the initial value (1-phase multiplication by one) is set.

Counting Mode	Set Value
1-phase multiplication by one	00 H
1-phase multiplication by two	01 H

[Sequence program example]
-Counting in 1-phase, multiplied-by-two mode

~ : First I/O number of master module
: Corresponding station register address of master module buffer memory

POINT

Exercise care when setting the pulse input mode, since the upper 8 bits are used for the counter function selection register and external output hold/clear setting.

5.2 2-phase pulse input

In 2-phase pulse input, the counting mode can be selected from multiplication by one, two and four.
(1) Relationship between phase A pulse input and phase B pulse input

The following diagram shows the relationship between phase A pulse input and phase B pulse input.

(2) Counting mode setting

To use this counting mode, set the following value to the lower 8 bits of the remote register $\{R W w m+2$ (RWwm $+A$) \} using the sequence program.
When the value set is not the following set value, the initial value (1-phase multiplication by one) is set.

Counting Mode	Setting
2-phase multiplication by one	02 H
2-phase multiplication by two	03 H
2-phase multiplication by four	04 H

[Sequence program example]
.Counting in 1-phase, multiplied-by-two mode

~ : First l/O number of master module
: Corresponding station register address of master module buffer memory

POINT

Exercise care when setting the pulse input mode, since the upper 8 bits are used for the counter function selection register and external output hold/clear setting.

5.3 Reading the Present Value

This section gives details on the present value stored in the present value storage area \{addresses $\mathrm{RWrn}+0$ to 1 ($\mathrm{RWrn}+8$ to 9) \} and how to read it.
(1) The present value storage area stores the count value at a time when the following are in effect: pulse input, preset, ring counter function execution or count disable (counter function selection).
However, the count value at a time when the latch counter, sampling counter or periodic pulse counter function is executed will be stored in the remote registers indicated below.

Description		Latch Count Value/ Sampling Count Value/Periodic Pulse Count Previous Value	Periodic Pulse Count Present Value
Remote register addresses	CH 1	RWrn+2 to 3	RWrn+4 to 5
	CH 2	RWrn+A to B	RWrn+C to D

(2) The present value (0 to 16777215) is stored in 24 -bit binary in the present value storage area.
(3) In up counting, the present value storage area returns to 0 when the count value exceeds 16777215 .
In down counting, the present value storage area returns to 16777215 when the count value exceeds 0 .

6. EXECUTING THE COINCIDENCE OUTPUT FUNCTION

This chapter describes the coincidence output function.

6.1 Coincidence Output Function

The coincidence output function issues a signal when a preset count value is compared with and matches the present counter value.
You can set two coincidence output points.
To use the coincidence output function, set the coincidence signal enable command $\{R Y(n+1) 2(R Y n+1) 9)\}$ to $O N$.
[Remote registers used]

Address	Description	
RWwm+3	--- CH1 coincidence output point No. 1 setting	(L)
RWwm+4		(H)
RWwm+6	CH 1 coincidence output point No. 2 setting	(L)
RWwm+7		(H)
RWwm+B	CH 2 coincidence output point No. 1 setting	(L)
RWwm+C		(H)
RWwm+E	CH 2 coincidence output point No. 2 setting	(L)
RWwm+F		(H)

*In the AJ65BT-D62D-S1, its external output (coincidence output) does not switch on-off if the coincidence output No. 2 is set. However, the counter value comparison (coincidence, greater, less) output signals (X signals) switch on-off as ordinarily.
[Example of using the coincidence output function]
In a machining line system, machining operations are performed in response to the corresponding coincidence outputs to turn out products.

1) Materials are carried on a belt conveyor.
2) Material positions are identified as the present count values determined by the pulses sent to the high-speed module.
3) As soon as the materials reach the specified positions, the relevant machining operations are performed in response to the coincidence outputs (EQU1, EQU2) from the high-speed counter module.

6-1

6.1.1 Coincidence output function operation

1).......Write a value in advance in 24 -bit binary to the coincidence output point No. 1 setting area \{addresses RWwm+3 to 4 (RWwm+B to C)\}.
2).......When the counter value reaches the set coincidence output point value, the counter value less signal switches off and the counter value coincidence signal switches on.
3)....... The coincidence signal reset command is switched on to reset the counter value coincidence signal.
If the counter value coincidence signal remains on, the next coincident signal cannot be issued.
4)....... When the counter value becomes greater than the set coincidence signal output point value, the counter value greater signal switches on.

POINT

-For the coincidence output function, preset the coincidence output point and reset the coincidence output before switching on the coincidence signal enable. If the coincidence signal enable is switched on without the above operation being performed, the coincidence output is provided since the coincidence output point and count value matches in the initial state.
-If the following time is not satisfied for the execution of the point No. 2 coincidence output reset command, the point No. 2 coincidence output reset command will not switch on-off.

*1..... 10 link scans+2 sequence scans

As the point No. 2 coincidence output reset command is only valid on the leading edge (OFF \rightarrow ON) of the signal, always make sure that the point No. 2 signal is off before executing the command.

7. EXECUTING THE PRESET FUNCTION

This chapter explains the preset function.

7.1 Preset Function

The preset function is used to rewrite the counter's present value into any value. This new value is called the preset value.
The preset function can be used when a pulse count is started from the set value. The preset function is available in two modes: "preset by the sequence program (preset command $\{R Y(n+1) 1(R Y(n+1) 8)\}$ " and "preset from the external control signal (by applying a voltage to the external terminal)".
[Remote registers used]

Address	Description		
$R W w m+0$	$-\ldots$	CH 1 preset value setting	(L) (H)
$R W w m+1$		CH 2 preset value setting	(L) (L) RW$)$

[Example of using the preset function]
By using the preset function, the production count can be continued from the previous day.

1) Production amount of the previous day is preset from the PC CPU to the highspeed counter module.
2) Products are carried on a conveyor.
3) Production amount is counted using the pulse input from the photoelectric switch.
4) At the end of daily production, the counter value in the present value storage area is stored to the word device (D, W, etc.) in the PC CPU latch range.

7.2 Preset Using the Sequence Program

Turn on the preset command $\{\mathrm{RY}(\mathrm{n}+1) 1(\mathrm{RY}(\mathrm{n}+1) 8\}$ in the sequence program to execute the preset function.

1).......Write any value in advance in 24 -bit binary to the preset value setting area \{addresses $\mathrm{RWwm}+0$ to 1 (RWwm +8 to 9)\}.
2).......On the leading edge ($\mathrm{OFF} \rightarrow \mathrm{ON}$) of the preset command $\{\mathrm{RY}(\mathrm{n}+1) 1$ $(R Y(n+1) 8\}$, the value in the preset value setting area is preset to the present value storage area. Preset can be executed independently of whether the count enable command $\{\operatorname{RY}(\mathrm{n}+1) 1(\mathrm{RY}(\mathrm{n}+1) 8)\}$ is on or off.
3).......When the preset function is executed by the preset command $\{\mathrm{RY}(\mathrm{n}+1) 1$ $(R Y(n+1) 8\}$ switched on, the preset completion signal $\{R Y(n+1) 1(R Y(n+1) 8)\}$ switches on. When the preset command switches off, the preset completion signal also switches off.

7.3 Preset by External Control Signal

A voltage is applied to the external input PRESET terminal to execute preset.

Count enable command $\{R Y(n+1) 4(R Y(n+1) B)\}$

Input pulse for counter

Preset value setting area
\{Addresses RWwm+0 to 1 (RWwm8 to 9)\}

Preset command (PRESET terminal)

External preset command detection flag \{RXn3(RXn7)\}

External preset detection reset command $\{R Y(n+2) 0(R Y(n+2) 2)\}$

Present value storage area
\{Addresses RWrn+0 to 1 (RWrn8 to 9)\}

1).......Write any value in advance in 24-bit binary to the preset value setting area \{addresses RWwm+0 to 1 (RWwm+8 to 9)\}.
2).......When the preset command switches on (voltage is applied to the PRESET terminal), the value in the preset value setting area is preset to the present value storage area.
3).......Preset can be executed independently of whether the count enable command $\{R Y(n+1) 4(R Y(n+1) B)\}$ is on or off.

POINT

-For externally input preset, make an external preset detection reset after every preset is completed. Resetting enables the next external input to be provided. .If the external preset request detection $\{R X n 3(R X n 7)\}$ is $O N$, the preset by the next external input and the next external input by the sequence program are not enabled.
.If the following time is not satisfied for the execution of the external preset detection reset command, the external preset detection reset command will not switch on-off.

[^1]
8. EXECUTING THE RING COUNTER FUNCTION

This chapter describes the ring counter function.

8.1 Ring Counter Function

The ring counter function repeats counting between the preset value set by the ring counter command and the ring counter value.
The ring counter function can be used for control such as fixed-pitch feed. When using the ring counter, preset the ring counter setting switch of the high-speed counter module to ON. Also, set the preset value and ring counter value to the remote registers.
[Remote registers used]

Address	Description	
RWwm+0	CH1 preset value setting	(L)
RWwm+1	CHi preset value setting	(H)
RWwm+3	CH1 coincidence output pointer No. 1 setting	(L)
RWwm+4		(H)
RWwm+8	CH 2 preset value setting	(L)
RWwm+9		(H)
RWwm+B	CH 2 coincidence output pointer No. 1 setting	(L)
RWwm+C		(H)

[Example of using the ring counter function]
In a system where a sheet is cut to the specified size, set the ring counter value to roller-feed a sheet in fixed pitch and cut it to the given length.

1) Set the preset and ring counter values to execute the ring counter function.
2) The motor is run to rotate the rollers.
3) The motor is stopped as soon as the given length of the sheet is fed by the rollers.
4) The sheet is cut.
5) The operations in steps 2) to 4) are repeated.

8.1.1 Ring counter function operation

When using the ring counter function, preset the ring counter setting switch of the high-speed counter module to ON.
Also set the preset value and ring count value to the remote registers.

1).......Write a preset value in advance in 24-bit binary to the preset value setting area \{addresses RWwm+0 to 1 (RWwm8 to 9)\}.
2).......Write a ring counter value in advance in 24-bit binary to the coincidence output point No. 1 setting area \{addresses RWwm+3 to 4 (RWwm+B to C)\}.
$3) \ldots . .$. On the leading edge $(O F F \rightarrow O N)$ of the preset command $\{R Y(n+1) 1$ $(R Y(n+1) 8\}$, the value in the preset value setting area is preset to the present value storage area. Preset can be executed independently of whether the count enable command $\{R Y(n+1) 4(R Y(n+1) B)\}$ is on or off.
4).......When the counter value reaches the ring counter value, the counter value coincidence signal switches on to execute presetting. When the present value is read at the execution of presetting, the ring counter value or preset value is read.
5)....... The coincidence signal reset command is switched on to reset the counter value coincidence signal.If the counter value coincidence signal remains on, the next presetting cannot be performed.

8.1.2 Count range

As shown below, the count range of the ring counter function differs depending on the relationship between the preset value, ring counter value, present value and counting mode (up/down count).
(1) If preset value \leq present value \leq ring counter value

The following operation is performed if the ring counter function is executed at the preset value of 0 , ring counter value of 2000, and present value of 500 .

1) In up count, the present value returns to the preset value (0) as soon as it is counted up to the ring counter value (2000)

2) In down count, the present value returns to the maximum value (16777215) when it is counted down to the preset value (0).
Then, when the present value is counted down to the ring counter value (2000), it returns to the preset value(0).

(2) If preset valuesring counter value \leq present value

The following operation is performed if the ring counter function is executed at the preset value of 0 , ring counter value of 2000 , and present value of 3000 .

1) In up count, the present value returns to the minimum value (0) when it is counted up to the maximum value (16777215).
Then, when the present value is counted up to the ring counter value (2000), it returns to the preset value(0).

2) In down count, the present value returns to the preset value (0) as soon as it is counted down to the ring counter value (2000).

POINT

Do not write the preset and ring counter values during execution of the ring counter function. If they are written, the ring counter operation may not be performed properly.
-Note that the ring counter function is not activated when the following expression is satisfied.
Ring counter cycle ≤ 10-link scantime+2-sequence scantime

9. SELECTING AND EXECUTING THE COUNTER FUNCTION

9.1 Selecting the Counter Function

Select and execute one of the following four counter functions.
Execute the selected function by switching on the counter function selection start command or by applying a voltage to the external F.START terminal.

1) Count disable function. \qquad Refer to Section 9.2 Inputs the signal while the count enable command is ON to stop pulse counting.

Present value storage area
\{Addresses RWrn+0 to 1 (RWrn+8 to 9)\}
2) Latch counter function. \qquad Refer to Section 9.3
Latches the present value of the counter at the input of the signal.

3) Sampling counter function. \qquad Refer to Section 9.4
Counts pulses entered during a preset time (T) which begins with the input of the signal.

4) Periodic pulse counter function \qquad Refer to Section 9.5
Stores the present and previous counter values at preset intervals (T) while the signal is entered.

Periodic pulse count previous,
present value storage areas
\{Addresses RWrn+2 to 3 (RWrn+A to B)\}
\{Addresses RWrn+4 to 5 (RWrn+C to D)\}

(1) Select any of the counter functions by writing a value to the lower 4 bits in the upper bits of the remote register \{address RWwm+2 (RWwm+A)\}.
When the value set is other than the following set value, the initial value (count disable function selection) is set.
However, when changing the counter function, make sure that the counter function selection start command $\{R Y(n+1) 6(R Y(n+1) D)\}$ and F.START terminal are off.

Counter Function Selection	Set Value
Count disable function	0 H
Latch counter function	1 H
Sampling counter function	2 H
Periodic pulse counter function	3 H

(2) Either of the counter function selection start command $\{R Y(n+1) 6(R Y(n+1) D)\}$ and F.START terminal (external input) may be used to make a counter function selection. The earlier one of the above input signals overrides the latter.
(3) Set the time for the sampling counter function and periodic counter function between 1 and 65535 in 10 ms increments.

Example:When 420 is set to the sampling/interval time setting area $\{R W w m+5$ (RWwm+D)\}
$420 \times 10=4200[\mathrm{~ms}]$

POINT
The sampling and interval time values are set to the same address of the remote register, but the value set is that of the function selected.

9.1.1 Reading the counter function selection count value

The counter function selection count value is the count value at a time when a counter function selection is made.
This section describes how to read the counter function selection count value.
(1) The counter function selection count values are stored in the following remote registers.

Description Latch Count Value/ Sampling Count Value/Periodic Pulse Count Previous Value		Periodic Pulse Count Present Value	
Remote register	CH 1	$\mathrm{RWrn}+2$ to 3	RWrn+4 to 5
	CH 2	$\mathrm{RWrn}+\mathrm{A}$ to B	RWrn+C to D

(2) The counter function selection count value (0 to 16777215) is stored in 24-bit binary.
(3) In up count, the counter function selection count value returns to 0 when it exceeds 1677715.
In down count, the counter function selection count value returns to 1677715 when it exceeds 0 .

POINT

The latch count value, sampling count value and periodic pulse count previous value are stored in the same address but the value stored is the count value selected.

9.1.2 Counting errors

An error is produced in counting when a counter function selection is made by the external input (by applying a voltage to the F.START terminal) or by the sequence program (by turning on the counter function selection start command).
(1) For external input, there is the following count delay range.
[Maximum count delay]
1 [ms]×pulse input speed [PPS]×multiplication number [count]
[Minimum count delay]
$0.1[\mathrm{~ms}] \times$ pulse input speed [PPS]×multiplication number [count]
(2) When a counter function selection is made by the sequence program, the number of pulses counted during one sequence scan plus three link scans is added to the counting delay in above (1).
(3) The internal clock error is calculated as follows.
$\frac{\text { Set time }}{10000} \times$ pulse input speed [PPS] \times multiplication number [count]

POINT

It is recommended to use the external input to make a counter function selection.

9.2 Count Disable Function

This function stops the counting operation while the count enable command is on. The following chart shows the relationships between the count enable command, the counter function selection start command and the counter's present value

1).......Count operation starts when the count enable command $\{R Y(n+1) 4$ $(R Y(n+1) B\}$ switches on.
2).......Count operation stops when the counter function selection start command $\{R Y(n+1) 6(R Y(n+1) D)$, F.START terminal\} switches on.
Also, the counter function detection $\{R X(n+1) 1(R X(n+1) 3)\}$ switches on when the counter function selection start command $\{R Y(n+1) 6(R Y(n+1) D)\}$ switches on.
3)....... Count operation resumes when the counter function selection start command $\{R Y(n+1) 6(R Y(n+1) D)$, F.START terminal\} switches off.
Also, the counter function detection $\{R X(n+1) 1(R X(n+1) 3)\}$ switches off when the counter function selection start command $\{R Y(n+1) 6(R Y(n+1) D)\}$ switches off.
4).......Count operation stops when the count enable command $\{R Y(n+1) 4$ ($R Y(n+1) B\}$ switches off.
5)....... Since the count enable command $\{R Y(n+1) 4(R Y(n+1) B\}$ is off, count operation stops independently of whether the counter function selection start command $\{R Y(n+1) 6(R Y(n+1) D, F$.START terminal $\}$.
6).......If the count enable command $\{R Y(n+1) 4(R Y(n+1) B\}$ is switched on, count operation remains stopped since the counter function selection start command $\{R Y(n+1) 6(R Y(n+1) D)$, F.START terminal\} is on.
7)....... Count operation resumes when the counter function selection start command $\{R Y(n+1) 6(R Y(n+1) D)$, F.START terminal\} switches off.

9.3 Latch Counter Function

This function latches the counter's present value at a time when the signal is input. The following chart shows the relationships between the counter's present value, counter function selection start command and latch count value storage area.

On the leading edges 1) to 4) of the counter function selection start command $\{R Y(n+1) 6(R Y(n+1) D)$, F.START terminal\}, the counter's present value is stored into the latch count value storage area \{addresses RWrn2 to 3 (RWrnA to B)\}.
The latch counter function is executed independently of whether the count enable command $\{R Y(n+1) 4(R Y(n+1) B)\}$ is on or off. Also, the counter function detection signal $\{R X(n+1) 1(R X(n+1) 3)\}$ switches on when the counter function selection start command $\{R Y(n+1) 6(R Y(n+1) D)\}$ switches on, and the count function detection signal $\{R X(n+1) 1(R X(n+1) 3)\}$ switches off when the counter function selection start command $\{R Y(n+1) 6(R Y(n+1) D)\}$ switches off.

9.4 Sampling Counter Function

This function counts pulses input during a preset sampling period.
The following chart shows the relationships between the signals of the sampling counter function, remote registers and others.

1).......On the leading edge of the counter function selection start command $\{R Y(n+1) 6(R Y(n+1) D)$, F.START terminal\}, pulses input are counted from 0. Also, the counter detection function signal $\{R X(n+1) 1(R X(n+1) 3)\}$ switches on when the counter function selection start command $\{R Y(n+1) 6(R Y(n+1) D)\}$ switches on, and the counter detection signal $\{R X(n+1) 1(R X(n+1) 3)\}$ switches off when the counter function selection start command $\{R Y(n+1) 6(R Y(n+1) D)\}$ switches off.
2)....... Counting stops when the preset sampling time elapses.
3).......While the sampling counter function is being executed, the following value is stored into the sampling/periodic counter flag storage area.

Operating Status	During Execution at CH1 Only	During Execution at CH2 Only	During Execution at CH1 and CH2
Remote register address (RWrn+6)	K1	K2	K3

4).......If the sampling counter function ends, the value in the sampling count value storage area is held.
5).......The sampling counter function is executed independently of whether the count enable command $\{R Y(n+1) 4(R Y(n+1) B)\}$ is on or off.

9.5 Periodic Pulse Counter Function

This function stores the present and previous counter values in the corresponding periodic pulse count present and previous value storage areas at preset intervals (T). The following chart shows the relationships between the signals, remote registers and others.

1)....... The counter's present value 0 is stored into the periodic pulse count present value storage area \{addresses $R W r n+4$ to 5 ($R W r n+C$ to $D)\}$ (hereinafter called the present value storage area).
2)....... The counter's present value 200 is stored into the present value storage area. The count value 0 stored until then is stored into the periodic pulse count previous value storage area \{addresses RWrn+2 to 3 (RWrn+A to B)\} (hereinafter called the previous value storage area).
$3)$. . The counter's present value 20 is stored into the present value storage area. The count value 200 stored until then is stored into the previous value storage area.
4)....... The counter's present value 100 is stored into the present value storage area. The count value 20 stored until then is stored into the previous value storage area.
5)....... The counter's present value 50 is stored into the present value remote register. The count value 100 stored until then is stored into the previous value storage area.
$6)$. The periodic pulse counter function is executed independently of whether the count enable command $\{R Y(n+1) 4(R Y(n+1) B)\}$ is on or off.
7).......While the periodic pulse counter function is being executed, the following value is stored into the sampling/periodic counter flag storage area.

Operating Status	During Execution at CH1 Only	During Execution at CH 2 Only	During Execution at CH 1 and CH2
Remote register address (RWrn+6)	K1	K2	K3

10. SEQUENCE PROGRAM EXAMPLES

10.1 System Used in This Chapter

The sequence program examples explained in this chapter assume that the following system is used.For the sequence program of the whole CC-Link system, refer to the CC-Link Master Module User's Manual.
(1) System configuration for program examples

(2) Relationships between PC CPU, master station buffer memory and remote device station

		aster station		-speed counter mo emote device stati
	Address	Remote input(RX)		Remote input(RX)
M0 to M15	EOH	RX00 to RX0F		RX00 to RX0F
M16 to M31	E1H	RX10 to RX1F		RX10 to RX1F
M32 to M47	E2H	RX20 to RX2F		RX20 to RX2F
M48 to M63	E3H	RX30 to RX3F		RX30 to RX3F
M64 to M79	E4H	RX40 to RX4F		RX40 to RX4F
M80 to M95	$\begin{aligned} & \mathrm{E} 5 \mathrm{H} \\ & \mathrm{E} 6 \mathrm{H} \end{aligned}$	RX50 to RX5F		RX50 to RX5F
M96 to M111		RX60 to RX6F		RX60 to RX6F
M112 to M127	$\begin{aligned} & \mathrm{E} 6 \mathrm{H} \\ & \mathrm{E} 7 \mathrm{H} \end{aligned}$	RX70 to RX7F		RX70 to RX7F
	Address R	Remote output(RY)	Remote output(RY)	
M128 to M143	160H	RY00 to RYOF		RY00 to RYOF
M144 to M159	161H	RY10 to RY1F		RY10 to RY1F
M160 to M175	162 H	RY20 to RY2F		RY20 to RY2F
M176 to M191	163 H	RY30 to RY3F		RY30 to RY3F
M192 to M207		RY40 to RY4F		RY40 to RY4F
M208 to M223		RY50 to RY5F		RY50 to RY5F
M224 to M239	166 H	RY60 to RY6F		RY60 to RY6F
M240 to M255		167H RY70 to RY7F		RY70 to RY7F
	Remote register(RWw)		Remote register(RWw)	
	Address	(Write area)		(Write area)
D100	1 EOH	RWw0		RWw0
D101	1E1H	RWW1		RWw1
D102		RWw2		RWw2
D103	$\begin{aligned} & 1 \mathrm{E} 2 \mathrm{H} \\ & 1 \mathrm{E} 3 \mathrm{H} \end{aligned}$	RWW3		RWW3
D104	1 E 3 H	RWw4		RWw4
D105	1 E 5 H	RWw5		RWw5
D106	1E6H	RWw6		RWw6
D107		1E7H RWw7		RWw7
	Remote register(RWr) (Read area)		Remote register(RWr) (Read area)	
D200	2 EOH	RWro		RWr0
D201	2E1H	RWr1		RWr1
D202	2 E 2 H	RWr2		RWr2
D203	2 E 3 H	RWr3		RWr3
D204	2 E 4 H	RWr4		RWr4
D205	2 E 5 H	RWr5		RWr5
D206	2E6H	RWr6		RWr6
D207	2 E 7 H	RWr7		RWr7

10-1

10.2 Sequence Programs for QnA Series

The sequence programs used in this chapter are those for use with the A series. To use them as the sequence programs for QnA, note the following.
(1) Reading of contacts

Replace the following contacts designed for A series with those for QnA series.

A Series		QnA Series	Description
M9036	\rightarrow	SM400	Always ON.
M9037	\rightarrow	SM401	Always OFF.
M9038		SM402	ON during only one scan after RUN
M9039		SM403	OFF during only one scan after RUN

(2) Deletion of sequence program blocks for $R X$ and $R Y$ refreshing If the automatic refresh parameter setting is made in the QnACPU and master module's version " 9707 B" or later indicated in Section 2.2, the contents of RX and RY are automatically refreshed. Therefore, the following blocks at the beginning and end of the sequence program are not needed and should be deleted.

POINT
Note that automatic refresh parameter setting must be made to perform automatic refresh. For details, refer to "Automatic refresh parameter setting" in the CC-Link system master/local user's manual (details). (Automatic refresh setting can be made to RX, RY, RWr, RWw, SB and SW.)

10.3 Sequence Program Example for Execution of the Coincidence Output Function

The following sequence program uses channel 1 to count pulses in the 2-phase pulse input multiplied-by-2 mode.

10.4 Sequence Program Example for Execution of the Preset Function

The following sequence program uses channel 1 to count pulses in the 2-phase pulse input multiplied-by-2 mode.

10.4.1 When preset is made by sequence program

${ }^{\text {U }}$ User 5		[RST			M148 Count enable		Stops counting of pulses when count enable command is RST.
$219 \begin{aligned} & \text { Count } \\ & \begin{array}{l} \text { coperation } \\ \text { stop } \end{array} \\ & \hline \end{aligned}$							
	[T0	$\begin{aligned} & \mathrm{H} \\ & 0000 \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & 0160 \end{aligned}$	$\begin{aligned} & \text { K4 } \\ & \text { M128 } \end{aligned}$	K 8	H	Writes to remote output (RY).

10.4.2 When preset is made by external control signal

157	$\mid \underbrace{\text { M9036 }}_{\substack{\text { Always } \\ \text { ON }}}$	$[\mathrm{FROM}$	$\begin{aligned} & \mathrm{H} \\ & 0000 \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \text { OOEO } \end{aligned}$	$\begin{aligned} & \text { K4 } \\ & \text { M0 } \end{aligned}$	$\begin{array}{ll} K & \\ 8 & H \end{array}$	Reads from remote input (RX).
167	$\left\lvert\, \begin{array}{\|l\|} \hline \text { M120 } \\ \hline \begin{array}{l} \text { linitial } \\ \text { data } \\ \text { request } \end{array} \end{array}\right.$			[MOV	$\begin{aligned} & \mathrm{H} \\ & 0003 \\ & \\ & \\ & \text { Pul } \\ & \text { mol } \end{aligned}$	$\begin{array}{cc} \text { D102 } & \\ \text { Pulse input } \\ \text { mode setting } \end{array}$	Sets pulse input mode set value (2-phase multiplied by 2).
		[T0	$\begin{aligned} & \mathrm{H} \\ & 0000 \end{aligned}$	H 01 E 2	D102 Pulse input mode setting		Writes initial data.
					[SET	M248 H	Switches on initial data processing completion flag.
183	M120 Initial data request				-RST	M248 \quad -	Switches off initial data processing completion flag.
185	User 1 Count operation start				[SET	$\begin{aligned} & \text { M148 } \\ & \text { Count } \\ & \text { enable } \end{aligned}$	Starts counting of pulses when count enable command is SET.
187	User $2:+123$	[FROM	$\begin{aligned} & \mathrm{H} \\ & 0000 \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & 02 \mathrm{E} 0 \end{aligned}$	D200 Present value	$\begin{array}{ll}K & \\ 2 & \\ \end{array}$	Reads present value and stores it into D200,D201.
198	User 3 Preset value setting		-DMOV	$\begin{aligned} & K^{\prime} \\ & 100 \end{aligned}$		$\left.\begin{array}{l}\text { D100 } \\ \begin{array}{l}\text { Preset } \\ \text { value } \\ \text { setting }\end{array}\end{array}\right\}$	Sets preset value into remote registers.
		- $\mathrm{TO}^{\text {P }}$	$\begin{aligned} & \text { P H } \\ & 0000 \end{aligned}$	H 01E0	D100 Preset value setting	$\begin{array}{ll} \mathrm{K} & \jmath \end{array}$	
215	$\underbrace{\text { M3 }}_{$ External preset request $}$				-SET	M160 H	Resets external preset command detection.
217	M3 External preset request				- RST	M160 H	Resets external preset command detection reset signal.
219	$$				$[\mathrm{RST}$	$\left.\begin{array}{l} \text { M148 } \\ \text { Count } \\ \text { enable } \end{array}\right\}$	Stops counting of pulses when count enable command is RST.
221	$\underbrace{\text { M9036 }}_{\substack{\text { Always } \\ \text { ON }}}$	[T0	$\begin{aligned} & \mathrm{H} \\ & 0000 \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & 0160 \end{aligned}$	$\begin{aligned} & \text { K4 } \\ & \text { M128 } \end{aligned}$	$\begin{array}{ll} K & \\ 8 \end{array} \quad \text { H }$	Writes to remote output (RY).

10.5 Program Example for Execution of the Ring Counter Function

The following sequence program uses channel 1 to count pulses in the 2 -phase pulse input multiplied-by-2 mode.

10.6 Program Example for Selection and Execution of the Counter Function

The following sequence program uses channel 1 to count pulses in the 2-phase pulse input multiplied-by-2 mode.

10.6.1 When using the count disable function

10.6.2 When using the latch counter function

10.6.3 When using the sampling counter function

10.6.4 When using the periodic pulse counter function

11. TROUBLESHOOTING

11.1 Count Value Is Incorrect

The following table lists check items for use when the count value is incorrect.

Check Item	Corrective Action
Is the pulse input mode consistent with the pulse input setting in the remote register?	Make the pulse input mode consistent with the pulse input setting in the remote register.
Is the sequence program data processed in 24-bit binary?	lorrect the sequence program so that the data is processed in 24-bit binary.
Is a twisted shielded cable used for pulse input wiring?	Use a twisted cable for wiring. Does noise enter through the ground of the high- speed counter module? Have adequate measures been taken against - If the high-speed counter module is in contact with the ground, separate it from the ground. noise in the panel or noise resulting from the other equipment?
Is sufficient distance provided between heavy current equipment and counter input line?	Wire the pulse input line independently, and separate in-panel wiring 150mm(5.91inch)or more from power line.
Is the count value the same at CH1 and CH2 after the same count value was entered?	If the count values are different, hardware is faulty. Check the cause of the fault and contact your sales representative.
Does the input pulse waveform match the performance specifications?	Monitor and confirm the pulse waveform using a synchroscope. If the waveform does not match the

11.2 Count Operation Is Not Performed

The following table lists check items for use when count operation is not performed.

Check Item	Corrective Action
Is the external wiring of phases $\phi \mathrm{A}$ and $\phi \mathrm{B}$ correct?	Check the external wiring and make correction.
When a voltage is applied directly to the pulse input terminals of phases $\phi \mathrm{A}$ and $\phi \mathrm{B}$, are the LEDs of phases $\phi \mathrm{A}$ and $\phi \mathrm{B}$ lit?	If they are lit, check the external wiring and pulse generator and make correction. - If they are not lit, hardware is faulty. Check the cause of the fault and contact your sales representative.
Is the count enable command $\{R Y(n+1) 4$ ($\mathrm{RY}(\mathrm{n}+1) \mathrm{B}\}$ on?	Switch on the count enable command $\{R Y(n+1) 4(R Y(n+1) B\}$ using the sequence program.
Does the master module indicate an error?	If the master module is in error, refer to the troubleshooting procedure of the manual of the master module used and make operation normal.
Is the counter function selection start command $\{R Y(n+1) 6(R Y(n+1) D)\}$ on or a voltage applied to the F.START terminal?	When the count disable function has been set by the counter function selection, switch off $\{R Y(n+1) 6(R Y(n+1) D)\}$ or F.START terminal.

11.3 How to Check an Error with the LED Lamps

This section describes how to check an error using the LED lamps of the high-speed counter module.
For errors related to the PC CPU and master module, refer to the PC CPU and master module user's manuals.
(1) If the RUN LED of the high-speed counter module goes off

Cause	Corrective Action
Watchdog timer error occurred.	Switch on power of the high-speed counter module again*1. If the RUN LED is not lit after power is switched on again, the hardware may be faulty. Consult your sales representative.

(2) If the L RUN LED of the high-speed counter module goes off

Cause	Corrective Action
Watchdog timer error occurred.	Switch on power of the high-speed counter module again*1. If the L RUN LED is not lit after power is switched on again, the hardware may be faulty. Consult your sales representative.
Cable is broken or shorted.	Check for a broken or shorted cable among transmission cables and repair it.
Master station stopped link.	Check for an error at master station.
24 V power is not supplied to the high-speed counter module or voltage is insufficient.	Check the 24V power voltage. Station number was repeated. Switch setting is outside the permissible range (station number 0 or not less than 62, transmis- sion speed 5 to 9).Correct the switching setting and switch power on again*1. setting of the module of which station number was repeated.

(3) If the L ERR. LED of the high-speed counter module flickers

Cause	Corrective Action
Station number or transmission speed switch setting was changed during normal operation.	Return the station number or transmission speed switch setting to the old value and switch power on again*1. If the L RUN LED is not lit after power is switched on again, the hardware may be faulty. Consult your sales representative.
Station number or transmission speed switch is faulty	If the L ERR. LED begins to flicker though switch setting was not changed during operation, the hardware may be faulty. Consult your sales representative.

(4) If the L ERR. LED of the high-speed counter module is lit

Cause	Corrective Action
Switch setting is outside the permissible range (station number 0 or not less than 62, transmission speed 5 to 9).	Correct the switching setting and switch power on again*1.
Terminal resistor is not connected.	Confirm that terminal resistor is connected. If not connected, connect it and switch power on again*1.
Module or transmission cable is affected by noise.	Connect both ends of the shielded wire of the twisted cable to ground (class D grounding) via SLD and FG of each module.
Securely connect the FG terminal of the module to ground. Securely ground the piping when running cables in piping.	

*1: Switch power on again: Switch power on again or turn on the reset switch.

11.4 If Communication Error Occurs between Master Station and This Module

If any repeated station number bit in any of the link special registers SW0098 to SW009B (repeated station number status) switches on, check the high-speed counter module of the corresponding station number in the following flowchart.

Troubleshooting flowchart used when the "ERR." LED of the master station flickers

*1: Check for short circuit, reverse connection, wire breakage, no terminal resistor, improper FG connection, improper overall distance and improper interstation distance.

APPENDIX

Appendix 1 Directions for Use

(1) For the master station, you can select whether data is cleared or held when a communication error or WDT error occurs or when remote device power switches off, using the condition setting switch.
Make setting according to the system.
*The above error can be confirmed by monitoring the link special registers for other station communication status in the master station.
When the error has occurred, the status of the corresponding station is stored into the following area in bit pattern.

SW0080 to SW0083: Data link status (0: normal, 1: data link error occurrence) SW0084 to SW0087: WDT error status (0: normal, 1: WDT error occurrence)
(2) For the remote device station, you can select whether the external output (coincidence) status is held or cleared when a communication error, PC CPU stop or master station reset is detected, using the external output hold/clear setting area of the remote register \{most significant bit of address RWwn+2\}.
As the external output hold/clear setting is used for both CH 1 and CH 2 , set it to the remote register of CH 1 .

(3) When a hardware reset or WDT error occurs, the external output (coincidence output) is forcibly switched off.
(4) If the fuse of the high-speed counter module is blown, it can be confirmed by monitoring the link special registers for other station fuse blown status in the master station.

SW0088 to SW008B: Fuse blown status (0: normal, 1: fuse blown)
If the "fuse blown" bit is set, check the following once.

Cause	Corrective Action
External power supply is not wired	When using the external output (EQU1 to EQU2) terminals, wire an 10.2VDC to 30VDC external power supply as it is needed. (Refer to 4.4.6)
Fuse is blown	The coincidence output function signal is not output. (Fuse for external power supply which operates the internal photocoupler when the EQU terminals are used) Since the fuse cannot be changed by the user, give details of the fault and consult our branch or sales representative.

Appendix 2 Outline Drawing

The following is the outline drawing of the AJ65BT-D62.
(This applies also to the AJ65BT-D62D and AJ65BT-D62D-S1.)

Unit: mm(inch)

HEADQUARTERS

MITSUBISHI ELECTRIC EUROPE EUROPE B.V.
Gothaer Straße 8
D-40880 Ratingen
Phone: +49 (0) 2102 / 486-0
Fax: +49 (0) 2102 / 4 86-11 20 e mail: megfamail@meg.mee.com
MITSUBISHI ELECTRIC FRANCE
EUROPE B.V.
25, Boulevard des Bouvets
F-92741 Nanterre Cedex
Phone: +33155685568
Fax: +33 155685685
e mail: factory.automation@fra.mee.com
MITSUBISHI ELECTRIC
UK
EUROPE B.V.
Travellers Lane
GB-Hatfield Herts. AL10 8 XB
Phone: +44 (0) 1707 / 276100
Fax: +44 (0) 1707 / 278695
MITSUBISHI ELECTRIC ITALY
EUROPE B.V.
Via Paracelso 12
I-20041 Agrate Brianza (MI)
Phone: +39 03960531
Fax: +39 0396053312
e mail: factory.automation@it.mee.com
MITSUBISHI ELECTRIC SPAIN
EUROPE B.V.
Carretera de Rubí 76-80
E-08190 Sant Cugat del Vallés
Phone: +34 93 / 5653131
Fax: +3493/5892948
e mail: industrial@sp.mee.com
MITSUBISHI ELECTRIC
JAPAN
CORPORATION
Office Tower "Z" 14 F
8-12,1 chome, Harumi Chuo-Ku
Tokyo 104-6212
Phone: +81 362216060
Fax: +81 362216075
MITSUBISHI ELECTRIC
500 Corporate Woods Parkway
Vernon Hills, IL 60061
Phone: +1 847 / 4782100
Fax: +1 847 / 4782283

EUROPEAN REPRESENTATIVES

GEVA AUSTRIA
Wiener Straße 89
A-2500 Baden
Phone: +43 (0) 2252 / 855520
Fax: +43 (0) 2252 / 48860
e mail: office@geva.at
TEHNIKON BELARUS
Oktjabrskaya 16/5, Ap 704
BY-220030 Minsk
Phone: +375 (0) 17 / 2275704
Fax: +375 (0) 17 / 2276669
e mail: tehnikon@belsonet.net
Getronics b.v. BELGIUM
Control Systems
Pontbeeklaan 43
B-1731 Asse-Zellik
Phone: +32 (0) 2 / 4671751
Fax: +32 (0) 2 / 4671745
e mail: infoautomation@getronics.com
TELECON CO. BULGARIA
4, A. Ljapchev Blvd.
BG-1756 Sofia
Phone: +359 (0) 2 / 9744058
Fax: +359 (0) $2 / 9744061$
e mail: -
INEA CR d.o.o.
CROATIA

Drvinje 63

HR-10000 Zagreb

Phone: +385 (0) $1 / 3667140$
Fax: +385 (0) 1 / 3667140
e mail: -
AutoCont
Control Systems s.r.o.
Nemocnicni 12
CZ-702 00 Ostrava 2
Phone: +42059 / 6152111
Fax: +420 59 / 6152562
e mail: consys@autocont.cz
louis poulsen DENMARK
industri \& automation
Geminivej 32

DK-2670 Greve

Phone: +45 (0) 43 / 959595 Fax: +45 (0) 43 / 959591 e mail: Ipia@lpmail.com
UTU Elektrotehnika AS ESTONIA Pärnu mnt.160i
EE-11317 Tallinn
Phone: +372 (0) 6/517280
Fax: +372 (0) $6 / 517288$
e mail: utu@utu.ee
Beijer Electronics OY FINLAND

Ansatie 6a

FIN-01740 Vantaa

Phone: +358 (0) 9 / 88677500
Fax: +358 (0) 9 / 88677555
e mail: info@beijer.fi
PROVENDOR OY FINLAND
Teljänkatu 8 A 3
FIN-28130 Pori
Phone: +358 (0) $2 / 5223300$
Fax: +358 (0) $2 / 5223322$
e mail: -

UTECO A.B.E.E.

GREECE
5, Mavrogenous Str
GR-18542 Piraeus
Phone: +302 (0) 10 / 4210050
Fax: +302 (0) 10 / 4212033
e mail: uteco@uteco.gr
Meltrade Automatika Kft. HUNGARY 55, Harmat St.
H-1105 Budapest
Phone: +36 (0)1 / 2605602
Fax: +36 (0) $1 / 2605602$
e mail: office@meltrade.hu

EUROPEAN REPRESENTATIVES

MITSUBISHI ELECTRIC IRELAND
EUROPE B.V. - Irish Branch
Westgate Business Park
RL-Dublin 24
Phone: +353 (0) $1 / 4198800$
Fax: +353 (0) 1 / 4198890
e mail: sales.info@meir.mee.com
SIA POWEL
Lienes iela 28
LV-1009 Riga
Phone: +371 784 / 2280
Fax: +371784 / 2281
e mail: utu@utu.lv
UAB UTU POWEL LITHUANIA
Savanoriu pr. 187
LT-2053 Vilnius
Phone: +370 (0) 52323-101
Fax: +370 (0) 52322-980
e mail:powel@utu.lt
INTEHSIS SRL MOLDOVA, REPUBLIC OF
Cuza-Voda 36/1-81
MD-2061 Chisinau
Phone: +373 (0)2 / 562263
Fax: +373 (0)2 / 562263
e mail: intehsis@mdl.net
Getronics b.v. NETHERLANDS
Control Systems
Donauweg 2 B
NL-1043 AJ Amsterdam
Phone: +31 (0) $20 / 5876700$
Fax: +31 (0) $20 / 5876839$
e mail: info.gia@getronics.com
Beijer Electronics AS NORWAY
Teglverksveien 1
N-3002 Drammen
Phone: +47 (0) 32 / 243000
Fax: +47 (0) 32 / 848577
e mail: info@beijer.no
MPL Technology Sp.zo.o. POLAND ul. Sliczna 36
PL-31-444 Kraków
Phone: +48 (0) 12 / 6322885
Fax: +48 (0) 12 / 6324782
e mail: krakow@mpl.pl
Sirius Trading \& Services srl ROMANIA
Bd. Lacul Tei nr. 1 B
RO-72301 Bucuresti 2
Phone: +40 (0) $21 / 2017147$
Fax: +40 (0) $21 / 2017148$
e mail: sirius_t_s@fx.ro
ACP Autocomp a.s. SLOVAKIA
Chalupkova 7
SK-81109 Bratislava
Phone: +421 (02) / 5292-22 54, 55
Fax: +421 (02) / 5292-22 48
e mail: info@acp-autocomp.sk
INEA d.o.o.
Stegne 11
SI-1000 Ljubljana
Phone: +386 (0) 1-513 8100
Fax: +386 (0) 1-513 8170
e mail: inea@inea.si
Beijer Electronics AB SWEDEN

Box 426

S-20124 Malmö
Phone: +46 (0) 40 / 358600
Fax: +46 (0) 40 / 358602
e mail: info@beijer.se
ECONOTEC AG SWITZERLAND
Postfach 282
CH-8309 Nürensdorf
Phone: +41 (0) 1 / 8384811
Fax: +41 (0) 1 / 8384812
e mail: info@econotec.ch

EUROPEAN REPRESENTATIVES

GTS TURKEY
Darülaceze Cad. No. 43 KAT: 2
TR-80270 Okmeydani-Istanbul
Phone: +90 (0) 212 / 3201640
Fax: +90 (0) 212 / 3201649
e mail: gts@turk.net
CSC Automation Ltd. UKRAINE
15, M. Raskova St., Fl. 10, Office 1010 UA-02002 Kiev
Phone: +380 (0) 44 / 238-83-16
Fax: +380 (0) 44 / 238-83-17
e mail: csc-a@csc-a.kiev.ua

AFRICAN REPRESENTATIVE

CBI Ltd
Private Bag 2016
ZA-1600 Isando
Phone: +27 (0) 11/928 2000
Fax: +27 (0) 11/ 3922354
e mail: cbi@cbi.co.za

MIDDLE EAST REPRESENTATIVE

TEXEL Electronics LTD.

Box 6272

IL-42160 Netanya

Phone: +972 (0) 9/863 0891
Fax: +972 (0) 9 / 8852430 e mail: texel_me@netvision.net.il

EURASIAN REPRESENTATIVE

AVTOMATIKA SEVER RUSSIA
Krapivnij Per. 5, Of. 402

RU-194044 St Petersburg

Phone: +7 812/1183 238
Fax: +7 812/3039648
e mail: pav@avtsev.spb.ru

CONSYS

Promyshlennaya St. 42
RU-198099 St Petersburg
Phone: +7 812 / 3253653
Fax: +7 812 / 3253653
e mail: consys@consys.spb.ru
ELEKTROSTYLE RUSSIA

Ul Garschina 11
RU-140070 Moscowskaja Oblast
Phone: +7 095/ 2613808
Fax: +7 095/ 2613808
e mail: -
ICOS RUSSIA
Industrial Computer Systems Zao
Ryazanskij Prospekt 8a, Office 100
RU-109428 Moscow
Phone: +7 095 / 232-0207
Fax: +7 095 / 232-0327
e mail: mail@icos.ru
NPP Uralelektra
RUSSIA
Sverdlova 11a
RU-620027 Ekaterinburg
Phone: +7 3432 / 532745
Fax: +7 $3432 / 532745$
e mail: elektra@etel.ru
STC Drive Technique
Poslannikov Per. 9, str. 1
RU-107005 Moscow
Phone: +7095 / 7862100
Fax: +7 095 / 7862101
e mail: info@privod.ru

[^0]: - Do not bundle control lines or communication cables with main circuit or power lines or lay them near these lines.
 As a guideline, separate the cables at least 100 mm (3.94inch).

[^1]: *1.... 10 link scans+2 sequence scans

