

MELSEC System Q

Programmable Logic Controllers

Programming Manual (Process Control Instructions)

QnPH CPUs

• SAFETY CAUTIONS •

(You must read these cautions before using the product)

In connection with the use of this product, in addition to carefully reading both this manual and the related manuals indicated in this manual, it is also essential to pay due attention to safety and handle the product correctly.

The safety cautions given here apply to this product in isolation. For information on the safety of the PLC system as a whole, refer to the CPU module User's Manual.

Store this manual carefully in a place where it is accessible for reference whenever necessary, and forward a copy of the manual to the end user.

A - 1

REVISIONS

* The manual number is given on the bottom left of the back cover.

Print Date	* Manual Number	Revision
Apr., 2002	* Manual Number SH (NA)-080316E-A	First edition

Japanese Manual Version SH-080265-A

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

© 2002 MITSUBISHI ELECTRIC CORPORATION

A - 2

INTRODUCTION

Thank you for purchasing the Mitsubishi MELSEC-Q Series (Q mode) PLC. Before using the product, please read this manual carefully to develop full familiarity with the functions and performance of the Q Series (Q mode) PLC you have purchased, so as to ensure correct use.

CONTENTS		
SAFETY CAUTIONS	A-	1
REVISIONS	A-	2
CONTENTS	A-	3
About Manuals	A-	7
1. OVERVIEW 1 -	· 1 to 1 -	9
1.1 Features	1 -	1
1.2 PID Control Overview	1 -	4
1.3 Forward Oprration and Reverse Operation	1 -	5
1.4 PID Control	1 -	6
1.4.1 Proportional operation (P operation)	1 -	6
1.4.2 Integral operation (I operation)	1 -	7
1.4.3 Derivative operation (D operation)	1 -	8
1.4.4 PID operation	1 -	9
2. STRUCTURE AND COMBINATIONS OF PROCESS CONTROL INSTRUCTIONS 2 -	· 1 to 2 -	6
2.1 Instruction Configuration	2 -	1
2.2 Method for Specifying the Data in a Device	2 -	2
2.2.1 For bit data	2 -	2
2.2.2 For word (16-bit) data	2 -	2
2.2.3 Double word (32-bit) data	2 -	3
2.2.4 For real number data (floating-point data)		
2.2.5 Process control instruction operation error		
2.2.6 Instruction execution conditions		
2.2.7 Number of steps	2 -	4
2.2.8 Index qualification		
2.3 Basic Loop Types Available by Combinations of Process Control Instructions	2 -	5
3. DATA USED FOR PROCESS CONTROL INSTRUCTIONS AND HOW TO SPECIFY DATA	3 - 1 to 3 -	- 9
3.1 Process Control Instructions and Data Configuration	3 -	1
3.2 Local Work Memory	3 -	3
3.3 Data Used for Process Control Instructions	3 -	4
3.3.1 Loop memory	3 -	4
3.3.2 Input data	3 -	5
3.3.3 Block memory	3 -	6
3.3.4 Operation constant	3 -	6
3.3.5 Loop tag memory allocation contents	3 -	7

4. HOW TO EXECUTE PROCESS CONTROL INSTRUCTIONS	4 - 1 to 4 - 2
4.1 Execution Time and Control Cycle	4 - 1
4.2 Concept of Program	4 - 2
5. EXECUTION CONDITION SWITCHING AND FUNCTIONS	5 - 1 to 5 - 3
5.1 Execution Condition Switching	
5.1.1 Loop RUN/STOP	5 - 1
5.2 Functions	5 - 2
5.2.1 Tracking function	5 - 2
5.2.2 Cascade loop tracking	5 - 2
5.2.3 Loop selector tracking	5 - 3
6. INSTRUCTION LIST	6 - 1 to 6 - 6
6.1 How to Read the Instruction List Table	6 - 1
6.2 Functions	
6.2.1 I/O control instruction	6 - 2
6.2.2 Control operation instruction	6 - 3
6.2.3 Compensation operation instruction	6 - 5
6.2.4 Arithmetic operation instruction	6 - 5
6.2.5 Comparison operation instruction	6 - 6
6.2.6 Auto tuning instruction	6 - 6
7. HOW TO READ INSTRUCTIONS	7 - 1 to 7 - 4
8. I/O CONTROL INSTRUCTIONS	8 - 1 to 8 - 36
8.1 Analog Input Processing (S.IN)	8- 1
8.2 Output Processing with Mode Switching1 (S.OUT1)	
8.3 Output Processing with Mode Switching2 (S.OUT2)	
8.4 Manual Output (S.MOUT)	
8.5 Time Rate Example (S.DUTY)	
8.6 Batch Counter (S.BC)	
8.7 Pulse Retentive (S. PSUM)	8 - 32
9. CONTROL OPERATION INSTRUCTIONS	9 - 1 to 9 -111
9.1 Basics PID (S.PID)	9- 1
9.2 2-degree-of-freedom PID (S.2PID)	
9.3 Position Type PID (S.PIDP)	
9.4 Sample PI (S.SPI)	
9.5 I-PD Control (S.IPD)	
9.6 Blend PI Control (S.BPI)	
9.7 Rate (S.R)	
9.8 Upper/lower Limit alarm (S.PHPL)	
9.9 Lead/lag (S.LLAG)	

9.10 Integration (S.I)	9 - 61
9.11 Differentiation (S.D)	9 - 63
9.12 Dead Time (S.DED)	9 - 65
9.13 High Selector (S.HS)	9 - 68
9.14 Low Selector (S.LS)	9 - 70
9.15 Intermediate Value Selection (S.MID)	9 - 72
9.16 Average Value (S.AVE)	
9.17 Upper /lower Limiter (S.LIMT)	
9.18 Change Rate Limiter 1 (S.VLMT1)	9 - 79
9.19 Change Rate Limiter 2 (S.VLMT2)	9 - 81
9.20 2-position ON/OFF (S.ONF2)	
9.21 3-position ON/OFF (S.ONF3)	9 - 89
9.22 Dead Zone (S.DBND)	9 - 95
9.23 Program Setting Device (S.PGS)	
9.24 Loop Selector (S. SEL)	9 -102
9.25 Bump-less Transfer (S.BUMP)	9 -108
9.26 Analog Memory (S.AMR)	9 -110
10. COMPENSATION OPERATION INSTRUCTIONS	10 - 1 to 10 - 15
10.1 Polygon (S.FG)	10 1
10.2 Inverted Polygon (S.IFG)	
10.3 Standard Filter (S.FLT)	
10.4 Retentive (S.SUM)	
10.5 Temperature/Pressure Compensation (S.TPC)	
10.6 Engineering Value Conversion (S.ENG)	
10.7 Engineering Value Reverse Conversion (S.IENG)	
10.7 Engineering value Reverse Conversion (S.IENG)	10 - 14
11. ARITHMETIC OPERATION INSTRUCTIONS	11- 1 to 11 - 12
11.1 Addition (S.ADD)	11 - 1
11.2 Subtraction (S.SUB)	
11.3 Multiplication (S.MUL)	
11.4 Division (S.DIV)	
11.5 Extraction (S.SQR)	
11.6 Absolute Value (S.ABS)	
12. COMPARISON OPERATION INSTRUCTIONS	12- 1 to 12 - 10
12.1 Comparison (S. >)	
12.2 Comparison (S. <)	
12.3 Comparison (S. =)	
12.4 Comparison (S. > =)	
12.5 Comparison (S. <=)	12 - 9
13. AUTO TUNING	13- 1 to 13 - 12
13.1 Auto Tuning Instruction (S.AT1)	13 - 4

14. ERROR CODE	14- 1 to 14 - 2
14.1 Error Code List	14 - 1
APPENDICES	APP - 1 to APP - 21
APPENDIX1 EXAMPLE PROGRAM	
INDEX	Index- 1 to Index- 3

A - 6

About Manuals

The manuals related to the Q/QnACPU are listed in the table below. Please order those you require.

Related Manuals

Manual Name	Manual Number (Model Code)
Process CPU User's Manual (Hardware Design, Maintenance and Inspections) Describes the specifications of the CPU module, power supply module, base unit, expansion cables, and memory card. (Sold separately)	SH-080314E (13JR55)
Process CPU User's Manual (Function Explanation, Program Fundamentals) This manual explains the functions, programming methods, devices and so on necessary to create programs with the Process CPU. (Sold separately)	SH-080315E (13JR56)
QCPU (Q Mode)/QnACPU Programming Manual (Common Instructions) This manual describes how to use the sequence instructions, basic instruction and application instructions. (Sold separately)	SH-080039 (13JF58)
QCPU (Q mode)/QnACPU Programming Manual (SFC) Describes the system configuration, performance specifications, functions, programming, debugging, and error codes, for MELSAP3. (Sold separately)	SH-080041 (13JF60)
QCPU (Q mode) Programming Manual (MELSAP-L) Describes the system configuration, performance specifications, functions, programming, debugging, error codes and others of MELSAP-L. (Sold separately)	SH-080076 (13JF61)

A - 7

MEMO

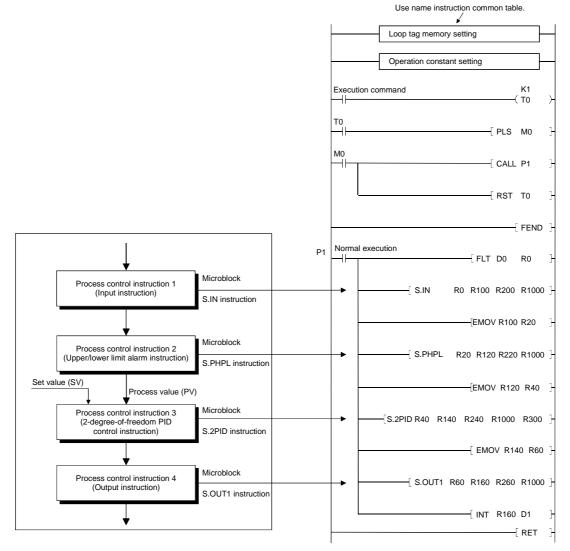
1 OVERVIEW

This manual describes the process control instructions equipped for the QnPHCPU.

1.1 Features

The process control instructions have the following features.

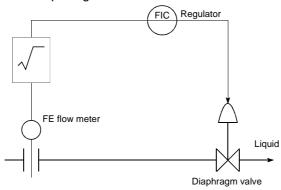
(1) Use of floating-point data

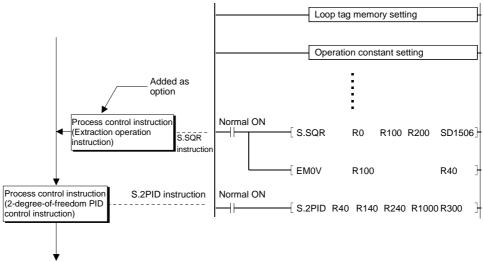

Capable of handling floating-point type real number data, the instructions can perform widerange and accurate operations.

(2) Increased efficiency of system adjustment

Micro-blocked process control instructions are combined to perform PID control.

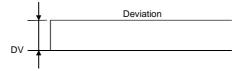
This enables actions to be confirmed on a process control instruction basis, ensuring efficient system adjustment.

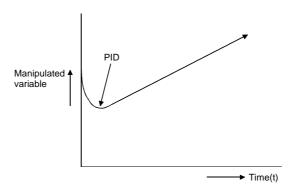

Example) Process control instructions used to carry out 2-degree-of-freedom PID control


(3) Free combination of process control instructions for application to a wide range of control

As an option, a process control instruction can be inserted in a loop that links process control instructions.

Add the extraction operation instruction (S.SQR) to perform the extraction operation of an input signal to provide an output signal as shown below.


[Example of adding extraction operation instruction (S.SQR) to process control instructions]



(4) Automatic detection of various alarms

A system can be configured safely since various alarms are detected automatically in the system.

- (5) PID algorithm using a velocity type incomplete differential format Partial differential has the following advantages over the complete differential format.
 - (a) The differential gain is $1/\eta$ and the limit value can be set.
 - (b) The output contains time amplitude, so the system actually responds to the operation edge so the derivative operation makes the movement valid.

1 OVERVIEW

1.2 PID Control Overview

PID control is applied to the process control of flow rate, speed, air volume, temperature, tension, compounding or like.

In a configuration shown in Fig. 1.1, PID control maintains the object to be controlled at a preset value.

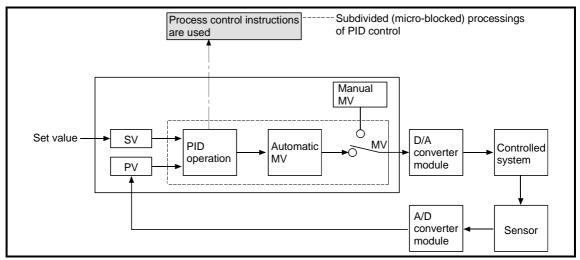


Fig. 1.1 Example of application to process control

PID control compares the value measured in the detection section (process value: PV) with the preset value (set value: SV) and adjust the output value (manipulated value: MV) to eliminate the difference between the process value and set value.

In PID control, proportional operation (P), integral operation (I) and derivative operation (D) are combined to calculate the manipulated value that will make the process value equal to the set value fast and precisely.

- If the difference between the process value and set value is large, the manipulated value is increased to make it close to the set value fast.
- When the difference between the process value and set value has reduced, the manipulated value is decreased to make it equal to the set value slowly and precisely.

1.3 Forward Operation and Reverse Operation

- (1) Forward operation is the action that increases the manipulated value when the process value increases more than the set value.
- (2) Reverse operation is the action that increases the manipulated value when the process value is decreasing more than the set value.
- (3) Forward operation and reverse action make the manipulated value larger as the difference between the set value and the process value becomes larger.
- (4) An example of process control performed by forward and reverse operations is shown in Fig. 1.2.

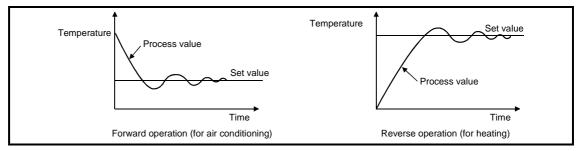


Fig. 1.2 Example of process control performed by forward and reverse operations

1.4 PID Control

This section explains "proportional operation", "integral operation" and "derivative operation" performed for PID control using the process control instructions.

1.4.1 Proportional operation (P operation)

This section explains the control method using proportional operation.

- (1) Proportional operation is the action that compares the deviation (difference between the set value and the process value) to find the manipulated value.
- (2) The change in relationship between deviation (DV) and manipulated value (MV) using proportional operation is shown using the following numeric expression.

$$MV = Kp \cdot DV$$

Kp is called the proportional gain or proportional constant.

(3) The proportional operation when the deviation is a constant stepped response is shown in Fig. 1.3.

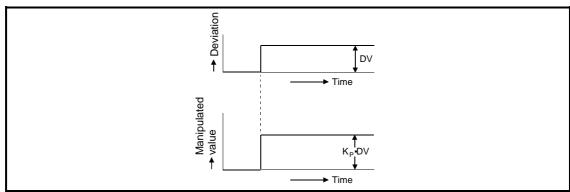


Fig. 1.3 Proportional operation when deviation is constant

- (4) The manipulated value fluctuates between —10 and 110%.
 As Kp becomes larger the manipulated value corresponding to the deviation also becomes larger making the compensation operation stronger.
- (5) Offset occurs in proportional operation.

1.4.2 Integral operation (I operation)

This section explains the control method using integral operation.

- (1) Integral operation is the operation that continuously changes the manipulated value to eliminate deviation when there is deviation.
 - This operation can eliminate the offset that occurs during control performed by a proportional operation.
- (2) The time from when a deviation occurs until the manipulated value of the integral operation reaches the manipulated value of the proportional operation in the integral operation is called integral time (Ti).
 - (a) Increasing the integral time decreases the effect of integration. (It will take time to stabilize.)
 - (b) Decreasing the integral time increases the effect of integration.

 However, since the integral operation will be stronger, hunting may become greater.
- (3) The integral operation when the deviation is a constant value stepped response is shown in Fig. 1.4.

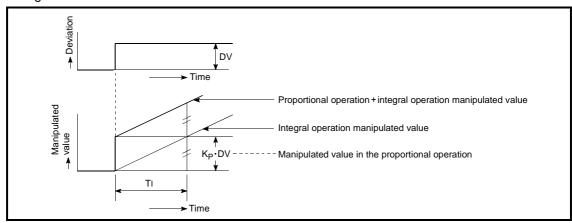


Fig. 1.4 Integral operation when the deviation is a constant

(4) The integral operation is used as the PI operation that is combined with the proportional operation or as the PID operation that is combined with the proportional operation and the derivative operation.

Control cannot be carried out by merely performing the integral operation.

1.4.3 Derivative operation (D operation)

This section explains the control method using the derivative operation.

- (1) The derivative operation is an operation that adds the proportional manipulated value to the change speed to eliminate deviation when a deviation has occurred. The derivative operation can prevent large changes in the object control from disturbances.
- (2) Derivative time (TD) indicates the length of time from when a deviation occurred until the manipulated value of a derivative operation reaches that of a proportional operation. Increasing the derivative time makes the derivative operation stronger.
- (3) The derivative operation when the deviation is a constant value stepped response is shown in Fig. 1.5.

Fig. 1.5 Derivative operation when the deviation is a constant

(4) The derivative operation can be used as PD operation in combination with a proportional operation or as a PID operation in combination with the proportional operation and integral operation.

Control cannot be carried out by merely performing the derivative operation.

1 OVERVIEW

1.4.4 PID operation

This section explains the control operation using combinations of proportional operation (P operation), integral operation (I operation), and derivative operation (D operation).

- (1) The PID operation controls the calculated manipulated value using (P + I + D) operation.
- (2) The PID operation when the deviation is a constant value stepped response is shown in Fig. 1.6.

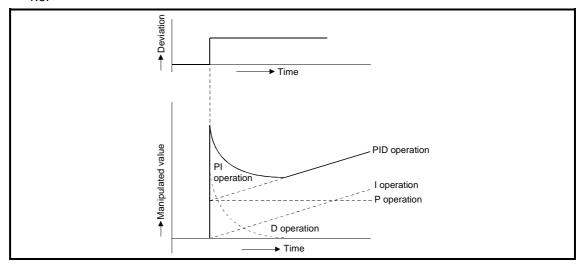


Fig. 1.6 PID operation when deviation is constant

2 STRUCTURE AND COMBINATIONS OF PROCESS CONTROL INSTRUCTIONS

2.1 Instruction Configuration

The instructions that can be used by the process control instructions can be divided into the "instruction part" and "device part".

The instruction part and device part are as follows.

- Instruction part...... This shows the functions for these instructions.
- Device part This shows the data required for operations and the storage destination of the stored operation results.

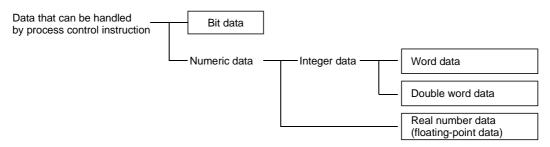
The device part is classified as the source device and destination device.

(1) Source (S)

The source stores the data used for operation.

- (a) In the process control instruction, specify the head device that stores the source data.
- (b) Data must have been stored in the specified device until the process control instruction is executed.
- (c) Changing the source data allows you to change the data used in that instruction.

(2) Destination (D)

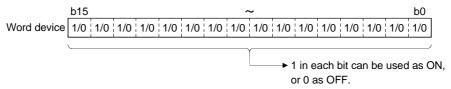

Destination is where the data is stored after operation.

- (a) Sets the device for which the data will be stored in the destination.
- (b) Depending on the instruction used, data used for operation must also be stored in the destination before start of the operation.

2 - 1 2 - 1

2.2 Method for Specifying the Data in a Device

The following 4 types of data can be used by the process control instructions.



2.2.1 For bit data

Bit data is handled on a single bit basis.

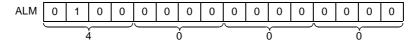
The QnPHCPU uses a word device for alarm condition or selection on a single bit basis.

By specifying the bit number of the word device, you can use the 1/0 of the specified bit number as bit data.

Specify the bit of the word device in the form of "Word device. Bit No. ".

(Specify the bit number in hexadecimal.)

For example, specify the bit 5 (b5) of D0 as D0.5, and the bit 10 (b10) of D0 as D0.A.


However, you cannot specify the bits of the timer (T), retentive timer (ST), counter (C) and index register (Z). (Example: You cannot specify Z0.0.)

2.2.2 For word (16-bit) data

Word data is the 16-bit numeric data that is used for the loop tag memory bit pack contents and operation constants, etc.

- Decimal constant......K-32768 to K32767
- Hexadecimal constant.....H0000 to HFFFF

Example) For the loop tag memory ALM (standard value setting 4000_H)

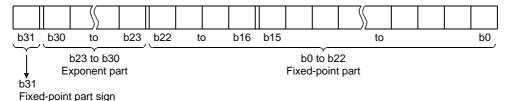
2.2.3 Double word (32-bit) data

Double word data is 32-bit numeric data.

- Decimal constant......K-2147483648 to K2147483647
- Hexadecimal constant......H00000000 to HFFFFFFF

When using double word data, specify the word device to be used in the lower-order 16 bits. The 32-bit data is stored into the (specified word device number) and ((specified word device number) \pm 1).

Example) When D10 is specified for double word data, D10 and D11 are used.


D11	D10
(BW1) H	(BW1) L

2.2.4 For real number data (floating-point data)

The data required for operations and the operation results are 32-bit floating-point data. Floating-point data is displayed as follows using 2 word devices.

1. [Fixed-point part] × 2 [Exponent part]

The bit configuration when the floating-point data is expressed internally and its meaning are as follows.

- Fixed-point part sign This shows the fixed-point part sign in b31.
 - 0: Positive
 - 1: Negative
- Exponent part This shows the 2ⁿ 's n and b23 to b30. The n from b23 to b30's BIN value is as follows.

b23 to b30	FFH	FЕн	FDн	(81н	80н	7FH	7Ен		\int	02н	01н	00н
n	Non-numeric data	127	126	(2	1	0	-1	($\int_{-\infty}^{\infty}$	-125	-126	Non-numeric data

• Fixed-point part This shows the value of XXXXXX... in the 23 bits, b0 to b22, when 1.XXX XXX... is represented in binary.

POINT

- The monitor function of GX Developer allows you to monitor the real number data of the QnPHCPU.
- The real number setting range is 0, $\pm 2^{-126} \le |value| < \pm 2^{128}$.
- To represent 0, set 0 in all of b0 to b31.

2.2.5 Process control instruction operation error

Operation errors from these process control instruction are stored in the following special registers. For information regarding other than operation errors, refer to the error codes listed in the QCPU(Q Mode)/QnACPU Programming Manual (Common Instructions). (The error codes are stored in special register SD0.)

REMARK

The following contents for errors other than operation errors are stored in the special register.

Error code 4100......... When there is data that cannot be handled.

4300...... When the specified instruction is incorrect.

4301...... When the process control instruction number of devices is incorrect.

4302...... When a device that cannot be specified is specified.

(1) For error code 4100, the detailed information is stored in special registers SD1502 to SD1503. At times other than when a process control instruction operation error occurs, SD1502 and SD1503 are set to 0.

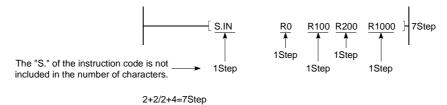
SD1502...... This shows the error code when an error occurs in the process control instruction.

SD1503...... This shows the instruction process No. when an error occurs.

For an explanation of the error contents refer to the Chapter 14.

2.2.6 Instruction execution conditions

The process control instructions are instructions that are executed while the input condition is ON.


2.2.7 Number of steps

The number of process control instruction steps differs depending upon the number of instruction characters, the device used, and whether or not an indirect setting is valid.

The basic number of steps for the extension instruction are as follows.

Number of steps in process control instruction =
$$2 + \frac{\text{number of instruction characters (Note 1)}}{2} + \text{number of devices}$$

Note 1: The number of characters is calculated by adding 1 when the number is odd. (For example when rounding up the results of a division.)

For details refer to QCPU (Q Mode)/QnACPU Programming Manual (Common Instructions).

2.2.8 Index qualification

Index qualification usable with the process control instructions is the same as the one usable with the basic instructions of the QnPHCPU.

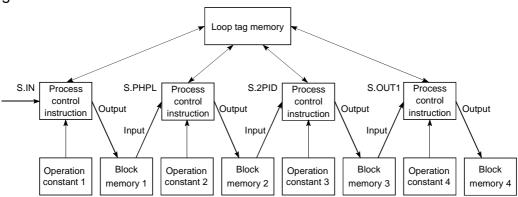
2.3 Basic Loop Types Available by Combinations of Process Control Instructions

Loop type	Structure	Application
	SET SV	
2-degree-of-freedom PID control	PV ↓ INPUT → S.IN → S.PHPL → S.2PID → S.C	ireedom). (velocity type)
(S2PID)	SET SV	Conducts PID operations for each control cycle.
	INPUT - S.IN - S.PHPL - S.2PID - S.D	
	SET SV	
PID control	PV↓ INPUT → S.IN → S.PHPL → S.PID → S.C	type)
(SPID)	SET SV	Conducts PID operations for each control cycle.
	INPUT → S.IN → S.PHPL → S.PID → S.D	
PIDP control	SET SV	Used for general PID control. (Position type)
(SPIDP)	INPUT → S.IN → S.PHPL → S.PIDP	MV Conducts PID operation for each control cycle.
	SET SV	Used for a process that has long dead time.
Sample PI control (SSPI)	INPUT -> S.IN -> S.PHPL -> S.SPI -> S.C	PI control is executed for only the period of control execution time in each control cycle and the output is kept constant after that.
I-PD control	SET SV	Used to make slow response so that the operation end and process are not given
(SIPD)	INPUT → S.IN → S.PHPL → S.IPD → S.C	increase to the end the cost value is conical
Blend PI control	SET SV	Used for a process where the manipulated value may vary in a short period of time
(SBPI)	PV↓ INPUT → S.IN → S.PHPL → S.BPI → S.O	MV and may be constant in a long period of time.
Rate control	SET SV	Control is performed to keep constant the rate of the given manipulated value to the
(SR)	$\begin{array}{c} \text{PV} \downarrow \\ \text{INPUT1} \longrightarrow \begin{array}{c} \text{S.IN} \end{array} \longrightarrow \begin{array}{c} \text{S.PHPL} \longrightarrow \begin{array}{c} \text{S.R} \end{array} \longrightarrow \begin{array}{c} \text{S.O} \end{array}$	other varying value.
2-position ON/OFF control		Depending on the sign (positive/negative) of a deviation, operation to turn the
(SONF2)	INPUT S.IN S.PHPL S.ONF2	manipulated value ON or OFF is performed.
3-position ON/OFF control	SET SV N	of three areas in response to the process
(SONF3)	INPUT - S.IN - S.PHPL - S.ONF3	value to carry out control. This control can suppress the sudden variation of the manipulated value.

2 STRUCTURE AND COMBINATIONS OF PROCESS CONTROL INSTRUCTIONS

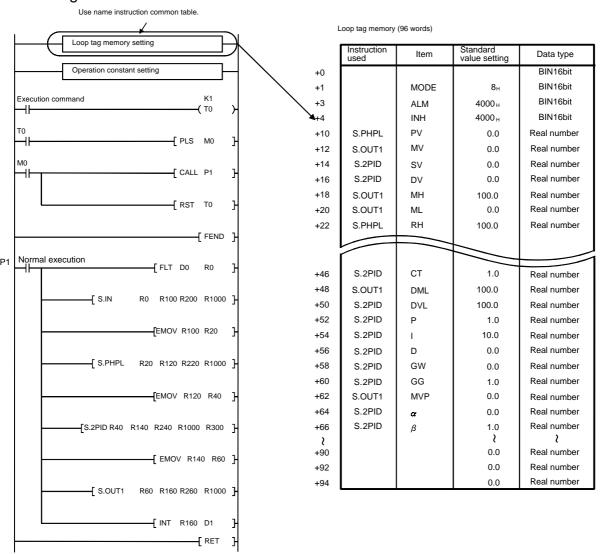
MELSEC-Q

Loop type	Structure	Application			
Batch counter (SBC)	INPUT →S.PSUM → S.BC → OUTPUT	A valve or like is controlled ON/OFF in a process of batch preparation for a tank or like.			
Program setting device (SPGS)	MV S.PGS → OUTPUT	This is output in accordance with the previously set value time change.			
Manual output (SMOUT)	MV ►OUTPUT	This manually operates the operation terminal end.			
Monitor (SMON)	INPUT → S.IN → S.PHPL → OUTPUT	This inputs the process value and detects process errors such as upper/lower limit alarms.			
Manual output with monitor (SMWM)	PV MV INPUT → S.IN → S.PHPL → S.MOUT → OUTPUT	This inputs the process value and conducts manual operation while checking that no errors occur.			
Selector (SSEL)	INPUT1→ S.SEL → OUTPUT	This is used to select signals.			


3 DATA USED FOR PROCESS CONTROL INSTRUCTIONS AND HOW TO SPECIFY DATA

3.1 Process Control Instructions and Data Configuration

This section explains the data structure (data flow) used for process control instructions.


- (a) Configuration when using loop tag
 - The loop units have common storage areas that show the control information. This
 collection of common information is called a loop tag and the storage memory is called
 the loop tag memory.
 - 2) By monitoring the loop tag, you can monitor and tune the loop (control unit).

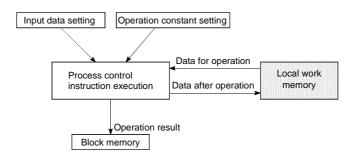
Block diagram

(b) Loop tag memory and operation constant locations in ladder diagram

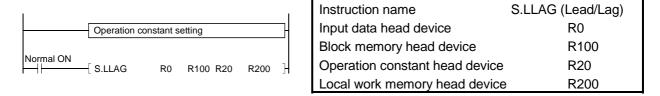
Ladder diagram

The symbols in the ladder diagram mean the following.

Start contact Instruction 1) 2) 3) 4) 5)	ı	Instruction name	S.IN	S.PHPL	S.2PID	S.OUT1
		1) Input data head device	R0	R20	R40	R60
	2) Block memory head device	R100	R120	R140	R160	
	3) Operation constant head device	R200	R220	R240	R260	
	ı ı	4) Loop tag memory head device		R10	000	
		5) Set value head device	_	_	R300	_


3.2 Local Work Memory

The local work memory is used as a temporary storage area in process control instruction operation. (Memory used for micro blocks only)


The following instructions use the local work memory.

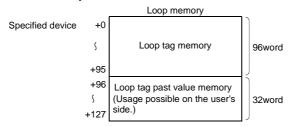
Instruction name	Remarks
S.LLAG (Lead/Lag)	
S.D (Differentiation)	
S.DED (Dead time)	This stores the midway operation results for the OS itself.
S.FLT (Standard filter)	(Cannot be used by the user.)
S.BUMP (Bump-less transfer)	
S.AT1 (Auto tuning)	
S.FG (Polygon)	This stores the polygon coordinate value (Xn, Yn) used by
S.IFG (Inverted polygon)	the user. Operations are conducted based on this.

Block diagram

Ladder diagram

The application of the local work memory changes depending on the used instruction. Refer to the explanation section of the corresponding instruction.

3.3 Data Used for Process Control Instructions


The following data are used for the process control instructions.

Loop tag memory
Input data
Block memory
Operation constant
Local work memory
Section 3.3.1
Section 3.3.3
Section 3.3.4
Section 3.3.2

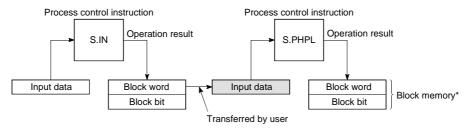
3.3.1 Loop memory

(1) Loop memory

- (a) The loop memory is an area that stores the data used commonly by the process control instructions specified as the loop type.
 - The loop memory also has an area that stores the data used by the QnPHCPU system during process control instruction execution.
- (b) The loop memory has the "loop tag memory" and "loop tag past value memory" areas.
- (c) The loop memory consists of 128 words (word device: 128 points). When setting the loop memory areas, specify the device that can occupy 128 words consecutively.

(2) Loop tag memory

- (a) The loop tag memory is an area that stores the data used commonly by the process control instructions specified as the loop type indicated in Section 2.3.
- (b) The loop tag memory consists of 96 words.
- (c) Refer to Appendix 2 (Loop tag memory list) for the applications of the area used by the process control instructions in the loop tag memory.


- (3) Loop tag past value memory
 - (a) The loop tag past value memory is an area used by the QnPHCPU system at the time of process control instruction execution.

The user cannot write data to this memory during run.

- If the user writes data to the loop tag past value memory during run, normal operation cannot be performed.
- (b) The loop tag past value memory is a 32-word area after the loop tag memory.
- (c) At the start of the process control instruction, write "0" to the loop tag past value memory.

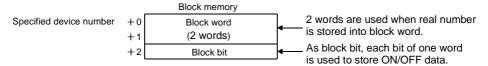
3.3.2 Input data

- (1) Input data is variable data given to each process control instruction.
- (2) The input data uses the block word of the block memory that stores the operation result of the process control instruction executed previously.

(3) The application of the input data changes depending on the used instruction. Refer to the explanation section of the corresponding instruction.

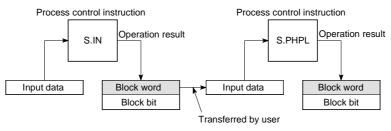
REMARKS

*: Refer to Section 3.3.3 for the block memory.


3.3.3 Block memory

The block memory is an area that stores the output information of the corresponding process control instruction.

The block memory has "block words" and "block bits".


The application of the block memory changes depending on the used instruction.

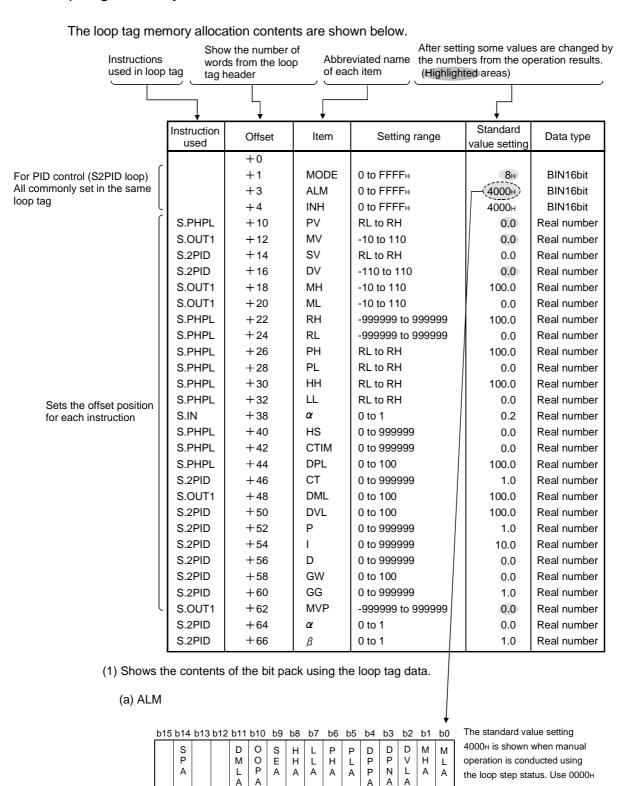
Refer to the explanation section of the corresponding instruction.

(1) Block word (BW)

- (a) The block word is an area that stores the operation result of the process control instruction.
- (b) As the input data of the next process control instruction linked by the loop, the data stored in the block word is used.

(2) Block bit (BB)

The block bit is an area that stores the corresponding alarm data at process control instruction execution.


As the block bits, 16 bits of b0 to b15 are represented as BB1 to BB16.

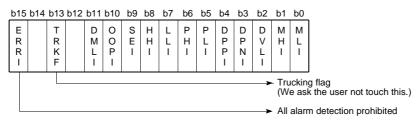
	b15		b12				b8			b4				b0		
Block bit	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
	1	1	1	1	1	1	1	9	8	7	6	5	4	3	2	1
	6	5	4	3	2	1	0									

3.3.4 Operation constant

- (1) The operation constant is an area that stores the data used by only one process control instruction.
- (2) The application of the operation constant changes depending on the used instruction. Refer to the explanation section of the corresponding instruction.

3.3.5 Loop tag memory allocation contents

S: Stored by the system


Table 3.1 ALM details list

U: Set by the user

Name	Abbreviation	Description	Flag establishment conditions
Stop alarm	SPA	Shows the loop stop status. Changes the loop mode to manual. Conducts stop alarm processing for the output value (BW) and alarm signal.	U
Output change rate limit alarm	DMLA	Conducts the change rate limiter for the input data and outputs the change rate alarm. (For the output change upper limit value/control value).	S
Output open alarm	OOPA	Shows that it has changed to open status when the operation output signal has become disconnected, etc.	S
Sensor alarm	SEA	Sensor error alarm	S
Upper upper limit alarm	ННА	Checks the upper limit value of the process equipment upper limit, and outputs an alarm if the process value is higher than the upper limit value.	S
Lower lower limit alarm	LLA	Checks the lower limit value of the process equipment lower limit, and outputs an alarm if the process value is lower than the lower limit value.	S
Upper limit alarm	PHA	Checks the upper limit value of the process value, and outputs an alarm if the process value is higher than the upper limit value.	S
Lower limit alarm	PLA	Checks the lower limit value of the process value, and outputs an alarm if the process value is lower than the lower limit value.	S
Positive direction change rate alarm	DPPA	Outputs an alarm if the change rate is higher than the upward trend change rate range.	S
Negative direction change rate alarm	DPNA	Outputs an alarm if the change rate is lower than the downward trend change rate range.	S
Deviation large alarm	DVLA	Conducts an error check and then outputs an alarm if over. In addition, if the error check determines that the deviation is completely less than the warning value and the error is reduced by a set value from the warning value then the deviation large alarm will be released.	S
Output upper limit alarm	MHA	Conducts a check using the upper/lower limiter and if the limiter results are larger than the input upper limit value an alarm is output.	S
Output lower limit alarm	MLA	A check is conducted by an upper/lower limiter and if the limiter results are smaller than the input lower limit value an alarm is output.	S

(b) INH

This prohibits alarm detection for each item. In addition, the alarms prohibited by INH are not detected. (The INH bits 0 to 11 correspond to the bits 0 to 11 of ALM.)

(c) MODE

The process control instructions have the following operation modes that satisfy the following operations in a system connected to an operator station, PLC, host computer, machine side operation panel and like.

b15 b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
				C S V	C M V	C C B	C A B	C M B	C A S	A U T	M A N	L C C	L C A	L C M

For MODE make one of them a 1 bit only flag 1.

Operation mode	Description	Application				
MAN (MANUAL)	Manual operation from OPS SV and MV can be set.	Monitoring and control from operator station are performed.				
AUT (AUTOMATIC)	Automatic operation SV can be set. MV cannot be set.					
CAS (CASCADE)	Cascade operation SV and MV cannot be set.					
CMV (COMPUTER MV)	Automatic MV setting from host computer	Loop operation from host computer can be performed and operation mode is controlled				
CSV (COMPUTER SV)	Automatic SV setting from host computer	and monitored at operator station.				
CMB (COMPUTER MANUAL BACK UP)	Manual operation backup when host computer is abnormal	During loop control by host computer, backup is provided by predetermined operator station when computer fails.				
CAB (COMPUTER AUTOMATIC BACK UP)	Automatic operation backup when host computer is abnormal					
CCB (COMPUTER CASCADE BACK UP)	Cascade operation backup when host computer is abnormal					
LCM (LOCAL MANIPULATED)	Local manual operation	At startup of plant, operation and startup are performed by loop display or like from other				
LCA (LOCAL AUTOMATIC)	Local automatic operation	than operator station and operation mode is monitored by operator station.				
LCC (LOCAL CASCADE)	Local cascade operation					

4 HOW TO EXECUTE PROCESS CONTROL INSTRUCTIONS

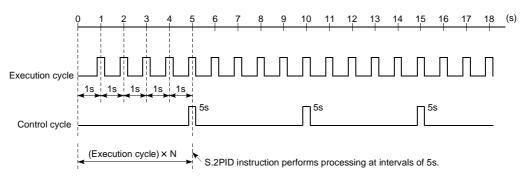
4.1 Execution Cycle and Control Cycle

(1) Execution cycle

- (a) An execution cycle is an interval at which the process control instruction is executed.
- (b) There are the following methods to execute the process control instruction in each execution cycle.
 - 1) Method using timer
 - A timer is used to measure the execution cycle and the process control instruction is executed when the timer times out.
 - Method using interrupt programs
 Any of interrupt programs of I28 to I31 is run in each execution cycle.
 - 3) Method using fixed scan execution type program

 A fixed scan execution type program is run in each execution cycle.
- (c) Specify in the special registers (SD1500, SD1501) the value of the execution cycle used for the process control instruction as a real number.

(2) Control cycle

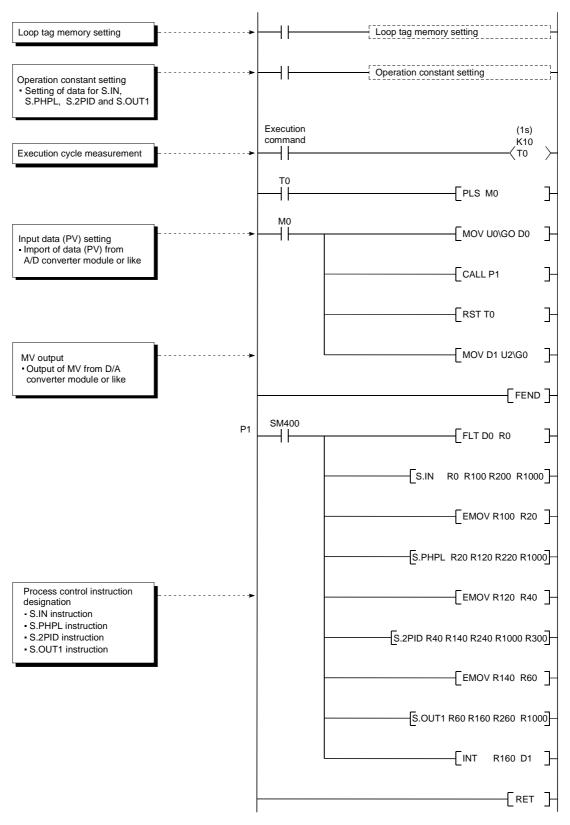

(a) A control cycle is an interval in which PID control is performed for an instruction such as S.2PID (2-degree-of-freedom PID).

As the control cycle, specify an integral multiple of the execution cycle.

- The S.2PID or similar instruction counts the execution cycle in each execution cycle and starts PID operation when the specified control cycle is reached.
- (b) Specify in the loop tag memory (See Section 3.3.1) the control cycle used for the S.2PID or similar instruction.

The S.2PID or similar instruction uses the value of the control cycle specified in the loop tag memory to perform PID control.

Example) When monitoring is performed at intervals of 1s in 2-degree-of-freedom PID control and PID control is carried out at intervals of 5s.



POINT

When the control cycle is set to an integral multiple of the execution cycle, monitoring such as a PV check can be performed in each execution cycle.

4.2 Concept of Program

[Program example using S.2PID instruction at execution cycle of 1s]

5

5 EXECUTION CONDITION SWITCHING AND FUNCTIONS

5.1 Execution Condition Switching

5.1.1 Loop RUN/STOP

If any loop component such as a detector or operation end other than the PLC fails, each loop can be run/stopped to perform the maintenance of the corresponding loop.

The "SPA" bit of the alarm detection (ALM) is used to run/stop the corresponding loop.

- (1) Basic operation during loop STOP
 - (a) Output status hold (The S.2PID instruction is output = 0)
 - (b) Alarm No detection (Process alarm)
 - (c) Make the control mode MAN.

5 - 1 5 - 1

5.2 Functions

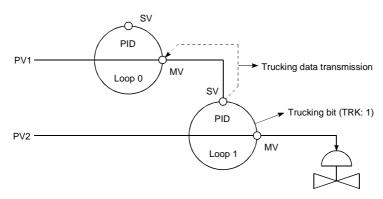
5.2.1 Tracking function

The tracking function includes the "bump-less function" and "output limiter processing".

(1) Bump-less function

The bump-less function prevents manipulated value (MV) output stepping changes when switching from the automatic mode to manual mode and continuously controls MV output.

(2) Output limiter processing function


The output limiter processing function limits the upper limit and lower limit of the manipulated value (MV) output by the PID operation during the automatic mode. This output limiter processing function is only valid in the automatic mode and is not executed for manual data. In addition, when the parameter tracking function execution validity is set to not valid when in the automatic mode the output limiter processing function will not execute.

5.2.2 Cascade loop tracking

The process control loops that comprise a cascade loop use the manipulated value (MV) of a primary loop (Loop 0) as the set value (SV) of a secondary loop (Loop 1).

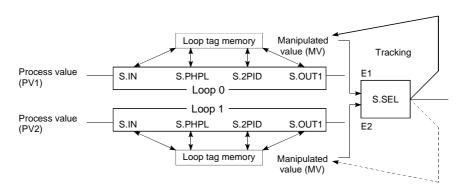
Tracking is performed to prevent the sudden variation of the set value (SV) when the operation mode of the secondary loop (Loop 1) is changed.

(1) The cascade PID loop Tracking processing is shown in the diagram below. [Processing concept diagram]

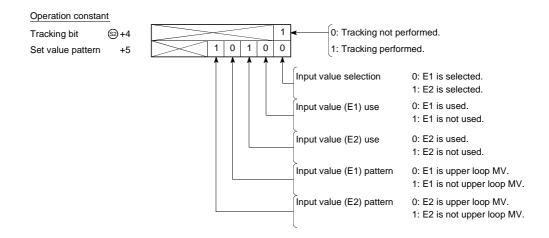
- (a) In cascade operation, the manipulated value (MV) of Loop 0 is transferred to the set value (SV) of Loop 1.
- (b) When cascade operation is not performed, the set value (SV) of Loop 1 is transferred to the manipulated value (MV) of Loop 0.

(Tracking to the source specified as the input terminal of the set value (SV) of Loop 1)

(2) Make the following settings to perform tracking.


(Tracking is performed when the operation mode is switched to other than CAS, CSV or CCB.) For 2-degree-of-freedom PID (S.2PID), set the following operation constant items to specify tracking.

Setting iter	m	Setting
Tracking bit (TRK)		1 (Tracking performed)
Catacalina mattama (C) (DTN)	Set value pattern	0 (Set value is upper loop MV.)
Set value pattern (SVPTN)	Set value Used	0 (E2 is used)


5.2.3 Loop selector tracking

Tracking is performed under the following conditions.

- The operation mode is any of MAN, CMB, CMV and LCM and the tracking bit (TRK) is 1
- When the operation mode is any of AUT, CAS, CAB, CCB, CSV, LCA and LCC
 The tracking bit (TRK) is 1 and BB1 of BB is 1

Example) When the S.SEL instruction uses the input value E1 and E1 uses the upper loop (loop 0) MV, the S.SEL instruction's MV is trucked to loop 0's MV. The setting that conducts Tracking is shown below.

6 INSTRUCTION LIST

6.1 How to Read the Instruction List Table

The process control instruction is largely divided into the I/O control instructions, control operation instructions, compensation operation instructions, arithmetic operation instructions, comparison operation instructions, and auto tuning instructions.

See for Instruction Number of Category Symbol **Processing Details** Descript Symbols Basic Steps ion I/O control Conducts the input data (PV) instruction Upper/lower limit check, input S.IN S.IN S1 D1 S2 D2 -7 8- 1 limiter processing, engineering value conversion, and digital filter processing. Calculates the MV (0 to 100%) from the input data (MV), processes the upper and lower S.OUT1 8 8-6 S.OUT1 S1 D1 S2 D2 limit and Change rate limiter processing, and conducts output

Table 6.1 How to read the instruction list

Explanation

2)

- 1) Classifies the instructions by application.
- 2) Shows the instruction symbols used by the program.

3)

3) Shows the symbol diagram used in the circuit.

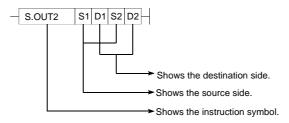


Figure 6.1 Symbols in the circut

4)

5)

6)

Destination: Shows the destination of the data after operation.

Source: Stores the data before the operation.

- 4) Shows the processing content of each instruction.
- 5) Shows the number of steps for each instruction. For information regarding the number of steps refer to Item 2.2.7.
- 6) Shows the explanation page for each instruction.

6

1)

6

6.2 Functions

6.2.1 I/O control instruction

Table 6.2 I/O Control instruction

Category	Instruction Symbols	Symbol	Processing Details	Number of Basic Steps	See for Descript ion
I/O control instruction	S.IN	- S.IN S1 D1 S2 D2 -	Conducts the input data (PV) Upper/lower limit check, input limiter processing, engineering value conversion, and digital filter processing.	7	8- 1
	S.OUT1	- S.OUT1 S1 D1 S2 D2 -	Calculates the MV (0 to 100%) from the input data (MV), processes the upper and lower limit and Change rate limiter processing, and conducts output on time conversion.	8	8- 6
	S.OUT2	- S.OUT2 S1 D1 S2 D2 -	Performs change rate, upper/lower limiter processing and output on time conversion from the input data (MV).	8	8-12
	S.MOUT	- S.MOUT S1 D1 S2 D2 -	Reads the MV of the loop tag memory and performs output conversion and alarm clear processing.	8	8-17
	S.DUTY	- S.DUTY S1 D1 S2 D2-	Changes the ON/OFF rate within a given cycle in proportion to the input data (0 to 100%) and outputs the result.	8	8-21
	S.BC	- S.BC S1 D1 S2 D2 -	Compares the input data with the set value and outputs bit data as soon as the input data reaches the set value.	7	8-28
	S.PSUM	- S.PSUM S1 D1 S2 D2	Integrates the number of input pulses and outputs the result.	8	8-32

6.2.2 Control operation instruction

Table 6.3 Control Operation Instruction

Category	Instruction Symbols	Symbol	Processing Details	Number of Basic Steps	See for Descript ion
Control operation instruction	S.PID	- S.PID S1 D1 S2 D2 S3 -	Conducts process value derivative type PID operations. (Incomplete differentiation) Performs SV setting processing, tracking processing, gain Kp operation processing, PID operation and deviation check.	9	9-1
	S.2PID	- S.2PID S1 D1 S2 D2 S3 -	Performs 2-degree-of-freedom PID operation (incomplete differentiation). Performs SV setting processing, tracking processing, gain Kp operation processing, 2-degree-of-freedom PID operation and deviation check.	9	9-9
	S.PIDP	- S.PIDP S1 D1 S2 D2 S3 -	Performs position type PID operation. Performs SV setting processing, tracking processing, gain Kp operation processing, PID operation, deviation check and operation mode judgment. According to the result, performs change rate, upper/lower limiter and output on time conversion or performs alarm clear processing and output on time conversion.	9	9-17
	S.SPI	- S.SPI S1 D1 S2 D2 S3	Judges between the operating time and hold time, and if it is the operating time, performs SV setting processing, tracking processing, gain Kp operation processing, SPI operation and deviation check.	9	9-26
	S.IPD	- S.IPD S1 D1 S2 D2 S3 -	Performs I-PD operation. Performs SV setting processing, tracking processing, gain Kp operation processing, IPD operation and deviation check.	9	9-33
	S.BPI	- S.BPI S1 D1 S2 D2 S3 -	Performs blend PI operation. Performs SV setting processing, tracking processing, gain Kp operation processing, BPI operation and deviation check.	9	9-41
	S.R	- S.R S1 D1 S2 D2 S3	Performs engineering value conversion, tracking processing, change rate limiter and rate operation on the input data.	8	9-48
	S.PHPL	- S.PHPL S1 D1 S2 D2 -	Conducts an Upper limit value/lower limit value check of the PV output by the S.IN instruction.	8	9-53
	S.LLAG	- S.LLAG S1 D1 S2 D2	Conducts Lead/lag compensation for input data and outputs the operation results.	8	9-59

Table 6.3 Control Operation Instruction

Category	Instruction Symbols	Symbol	Processing Details	Number of Basic Steps	See for Descript ion
Control operation instruction	S.I	- S.I S1 D1 S2 D2	Conducts integral operations on the input data and outputs the operation results.	7	9-61
	S.D	- S.D S1 D1 S2 D2	Conducts Derivative operations on the input data and outputs the operation results.	7	9-63
	S.DED	- S.DED S1 D1 S2 D2 -	Delays the input data by the specified dead time and then outputs it.	8	9-65
	S.HS	S.HS S1 D1 S2 D2	Outputs the maximum value among the input data.	7	9-68
	S.LS	- S.LS S1 D1 S2 D2	Outputs the minimum value among the input data.	7	9-70
	S.MID	- S.MID S1 D1 S2 D2 -	Outputs the intermediate value between the maximum value and minimum value among the input data.	8	9-72
	S.AVE	S.AVE S1 D1 S2 D2	Calculates and outputs the average value of the input data.	8	9-75
	S.LIMT	- S.LIMT S1 D1 S2 D2 -	Limits the output value with hysteresis.	8	9-77
	S.VLMT1	- S.VLMT1 S1 D1 S2 D2 -	Limits the varying speed of the output value.	9	9-79
	S.VLMT2	- S.VLMT2 S1 D1 S2 D2 -	Limits the varying speed of the output value.	9	9-81
	S.ONF2	- S.ONF2 S1 D1 S2 D2 S3	Performs two-position ON/OFF control. Performs SV setting processing, tracking processing, MV compensation, MV output and two-position ON/OFF control.	9	9-83
	S.ONF3	- S.ONF3 S1 D1 S2 D2 S3 -	Performs three-position ON/OFF control. Performs SV setting processing, tracking processing, MV compensation, MV output and three-position ON/OFF control.	9	9-89
	S.DBND	- S.DBND S1 D1 S2 D2	Provides a dead band and performs output processing.	8	9-95
	S.PGS	- S.PGS S1 D1 S2 D2 -	Provides a control output according to the SV and MV pattern.	8	9-97
	S.SEL	- S.SEL S1 D1 S2 D2 S3	Outputs the value selected by the selection signal out of the input data in the automatic mode, or outputs the MV of the loop tag memory in the manual mode.	9	9-102
	S.BUMP	- S.BUMP S1 D1 S2 D2 -	Brings the output value closer to the output set value from the output control value gradually when the mode select signal is switched from manual to automatic.	8	9-108
	S.AMR	- S.AMR S1 D1 S2 D2 -	Increases or decreases the output value at the fixed rate.	8	9-110

6.2.3 Compensation operation instruction

Table 6.4 Compensation Operation Instruction

Category	Instruction Symbols	Symbol	Processing Details	Number of Basic Steps	See for Descript ion
Compensa- tion operation	S.FG	- S.FG S1 D1 S2 D2 -	Outputs the value that follows the polygon pattern whose input data is specified.	7	10- 1
instruction	S.IFG	- S.IFG S1 D1 S2 D2	Outputs the value that follows the inverted polygon pattern whose input data is specified.	8	10- 3
	S.FLT	- S.FLT S1 D1 S2 D2	Outputs the average value of n pieces of data sampled at the specified data collection intervals.	8	10- 5
	S.SUM	- S.SUM S1 D1 S2 D2	Integrates the input data and outputs the result.	8	10- 8
	S.TPC	- S.TPC S1 D1 S2 D2 -	Makes temperature/pressure compensation to the input data and outputs the result.	8	10-10
	S.ENG	- S.ENG S1 D1 S2 D2	Converts the input data into an engineering value.	8	10-12
	S.IENG	- S.IENG S1 D1 S2 D2	Reversely converts the input data from the engineering value and outputs the result.	8	10-14

6.2.4 Arithmetic operation instruction

Table 6.5 Arithmetic Operation Instruction

Category	Instruction Symbols	Symbol	Processing Details	Number of Basic Steps	See for Descript ion
Arithmetic operation	S.ADD	- S.ADD S1 D1 S2 D2 -	Adds the input data with coefficients.	8	11- 1
instruction	S.SUB	- S.SUB S1 D1 S2 D2 -	Subtracts the input data with coefficients.	8	11-3
	S.MUL	- S.MUL S1 D1 S2 D2	Multiplies the input data with coefficients.	8	11- 5
	S.DIV	- S.DIV S1 D1 S2 D2	Divides the input data with coefficients.	8	11-7
	S.SQR	- S.SQR S1 D1 S2 D2 -	Outputs the extraction ($\sqrt{\ }$) of the input data.	8	11-9
	S.ABS	S.ABS S1 D1 S2 D2	Outputs the absolute value of the input data.	8	11-11

6.2.5 Comparison operation instruction

Table 6.6 Comparison Operation Instruction

Category	Instruction Symbols	Symbol	Processing Details	Number of Basic Steps	See for Descript ion
Comparison operation	S. >	- S.> S1 D1 S2 D2	Compares the input data and outputs the result of comparison.	7	12- 1
instruction	S. <	- S. < S1 D1 S2 D2 -	Compares the input data and outputs the result of comparison.	7	12-3
	s. =	- S. = S1 D1 S2 D2	Compares the input data and outputs the result of comparison.	7	12- 5
	s.>=	- S.>= S1 D1 S2 D2 -	Compares the input data and outputs the result of comparison.	7	12- 7
	s. <=	- S. <= S1 D1 S2 D2 -	Compares the input data and outputs the result of comparison.	7	12- 9

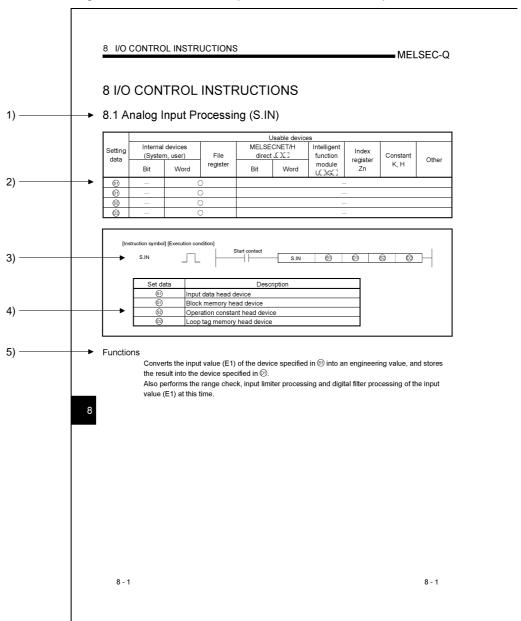

6.2.6 Auto tuning instruction

Table 6.7 Auto Tuning Instruction

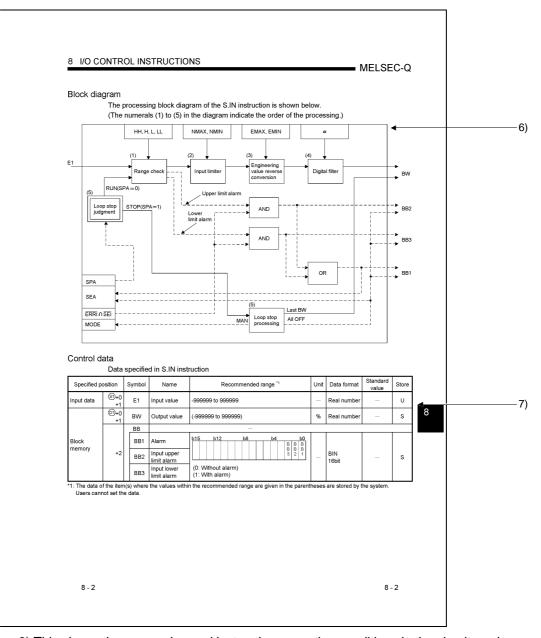
Category	Instruction Symbols	Symbol	Processing Details	Number of Basic Steps	See for Descript ion
Auto Tuning Instruction	S.AT1	- S.AT1 S1 D1 S2 D2 D3 -	Performs auto tuning and makes the initial setting of the PID constants.	9	13-4

7 HOW TO READ INSTRUCTIONS

The following format will be used to explain to read instructions presented hereafter.

- 1) Shows the item No. in the instruction summary.
- 2) \bigcirc is added to devices that can be used the instruction.

The usage classifications for devices that can be used is shown below.


Device		l devices m, user)	File register	direct	CNET/H	Intelligent function	Index register	Constant *1	Other *1
classifications	Bit	Word	r lie register	Bit	Word	module U[]\G[]	Z[]	Constant	Other
Usable devices *3		T, ST, C, D, W, SD, SW, FD, @[]	R, ZR		7[]/SM 7[]/M	U[]\G[]	Z	Hexadecimal constant	P, I, J, U, DX, DY, N, BL, TR, BL\S, V

^{*1:} The devices that can be set are given in the Constant and others field.

^{*2:} FX and FY can be used with only bit data and FD with only word data.

^{*3:} For the explanation of each device, refer to the user's manual (function explanation, program fundamentals) of the used CPU module.

7 - 2

3) This shows the expression and instruction execution conditions in the circuit mode.

Execution conditions	Normal execution	Executed during on	Executed once during on	Executed once during off
Displays the No. of the explanation page	Nothing recorded	7	Nothing recorded	Nothing recorded

- 4) Explains the set data of the instruction.
- 5) Indicates the functions performed by the instruction.
- 6) Indicates the processing sequence of the instruction.
- 7) Lists the data specified for the instruction.

S and U in the Storage field indicate the following.

- S: Stored by the system
- U: Set by the user

8 I/O CONTROL INSTRUCTIONS

MELSEC-Q

Processing contents

(1) Range check

(a) A range check is performed on the input value (E1).

An alarm is output if the input value (E1) exceeds the upper/lower limit value

	Range check	Condition	Range check result (alarm output)				
	Range check	Condition	BB2	BB3	BB1, SEA		
	Honor limit	E1≧HH	1*1	_	1*1		
	Upper limit check	E1≦H	0	_	0		
	CHECK	H < E1 < HH	Last value	_	Last value		
	Lower limit check	E1≦LL	_	1 *1	1 *1		
		E1≧L	_	0	0		
		LL < E1 < L	_	Last value	Last value		

^{*1:} When SEI or ERRI in the alarm detection inhibition (INH) is set to 1, SEA, BB1, BB2, and BB3 show 0 since the alarm is prohibited.

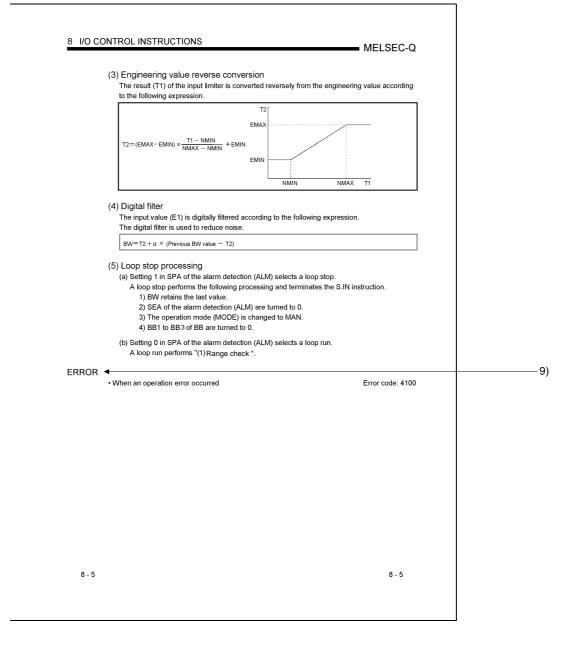
(b) Last value hold processing

When a range excess occurs (BB1 = 1) in the range check, whether operation will be continued unchanged or the S.IN instruction will be terminated is judged depending on whether SM1500 is ON or OFF.

- 1) When SM1500 is OFF (not in the hold mode), "(2) Input limiter processing" is performed
- if a range excess occurs (BB1 = 1).

 2) When SM1500 is ON (in the hold mode), the following processing is performed and the S.IN instruction is terminated if a range excess occurs (BB1 = 1).
 - BW retains the last value.
 - Error information is set in BB.

(2) Input limiter

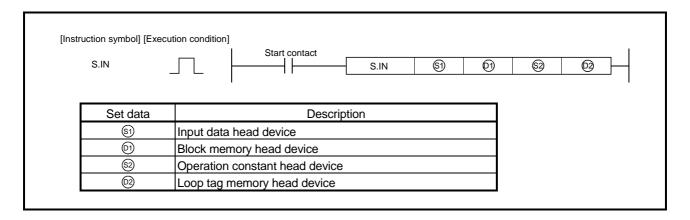

Upper/lower limiter setting is made on the input value (E1).

NMAX
NMIN
E1

8 - 4 8 - 4

8) Explains each processing of the instruction.

7 - 3 7 - 3



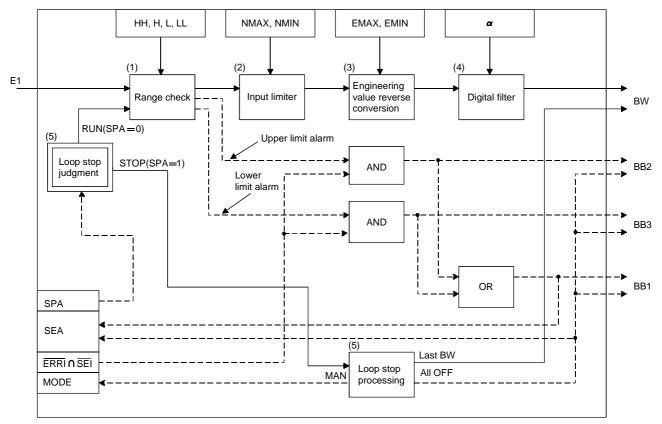
9) Indicates the condition for error occurrence and the error number.
For errors other than the one described, refer to the QCPU (Q Mode)/QnACPU Programming Manual (Common Instructions).

8 I/O CONTROL INSTRUCTIONS

8.1 Analog Input Processing (S.IN)

	Usable devices									
Setting data	Internal devices (System, user)		MELSECNET/H File direct J[]\[]\[]			Intelligent function	Index	Constant	Other	
	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other	
§1)	_			_						
(1)	_			_						
<u>\$2</u>	_	- 0			_					
D2	_)			_	=			

Functions


Converts the input value (E1) of the device specified in 1 into an engineering value, and stores the result into the device specified in 1.

Also performs the range check, input limiter processing and digital filter processing of the input value (E1) at this time.

Q

Block diagram

The processing block diagram of the S.IN instruction is shown below. (The numerals (1) to (5) in the diagram indicate the order of the processing.)

Control data

Data specified in S.IN instruction

Specified po	osition	Symbol	Name	Recommended range ^{*1}		Data format	Standard value	Store
Input data	\$1)+0 +1	E1	Input value	-999999 to 999999	_	Real number		U
	©)+0 +1	BW	Output value	(-999999 to 999999)	%	Real number		S
		BB		-				
Block		BB1	Alarm	b15 b12 b8 b4 b0 B B B B B B B B B B B B B B B B B B				
memory	+2	BB2	Input upper limit alarm		_	BIN 16bit	_	S
		BB3	Input lower limit alarm	(0: Without alarm) (1: With alarm)				

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

Specified p	osition	Symbol	Name	Recommended range ^{*1}	Unit	Data format	Standard value	Store
	©+0 +1	EMAX	Engineering conversion upper limit	-999999 to 999999	%	Real number	100.0	U
	+2 +3	EMIN	Engineering conversion lower limit	-999999 to 999999		Real number	0.0	U
	+4 +5	NMAX	Input upper limit	-999999 to 999999	_	Real number	100.0	U
	+6 +7	NMIN	Input lower limit	-999999 to 999999	_	Real number	0.0	U
Operation constant	+8 +9	НН	Upper limit range error occurrence	-999999 to 999999	_	Real number	110.0	U
	+10 +11	Н	Upper limit range error return	-999999 to 999999		Real number	100.0	U
	+12 +13	L	Lower limit range error return	-999999 to 999999	_	Real number	0.0	C
	+14 +15	LL	Lower limit range error occurrence	-999999 to 999999	_	Real number	-10.0	U
	⊕+1	MODE	Operation mode	0 to FFFFH b15		BIN 16bit	н	S/U
Loop tag memory *2	+3	ALM	Alarm detection	0 to FFFFH b15 b12 b8 b4 b0 S P E A O: Loop RUN 1: Loop STOP (0: Without alarm) (1: With alarm)	_	BIN 16bit	4000н	S/U
	+4	INH	Alarm detection inhibition	O to FFFFH b15 b12 b8 b4 b0 E R E I I I I I I I I I I I I I I I I I	_	BIN 16bit	4000н	S/U
	+38 +39	α	Filter coefficient	0 to 1	_	Real number	0.2	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Processing contents

(1) Range check

(a) A range check is performed on the input value (E1).

An alarm is output if the input value (E1) exceeds the upper/lower limit value.

Danga ahaak	Condition	Range check result (alarm output)					
Range check	Condition	BB2	BB3 BB3 - - 1 *1 0 Last value	BB1, SEA			
Upper limit check	E1≧HH	1 *1	_	1 *1			
	E1≦H	0	_	0			
cneck	H < E1 < HH	Last value	1 *1				
Lauran Basit	E1 ≦ LL	_	1 *1	1 *1			
Lower limit	E1 ≧ L	_	0	0			
check	LL < E1 < L	_	Last value	Last value			

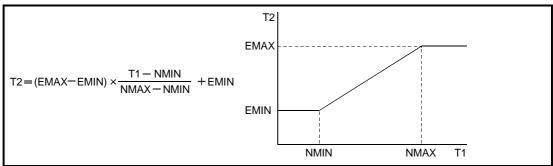
^{*1:} When SEI or ERRI in the alarm detection inhibition (INH) is set to 1, SEA, BB1, BB2 and BB3 show 0 since the alarm is prohibited.

(b) Last value hold processing

When a range excess occurs (BB1 = 1) in the range check, whether operation will be continued unchanged or the S.IN instruction will be terminated is judged depending on whether SM1500 is ON or OFF.

- 1) When SM1500 is OFF (not in the hold mode), "(2) Input limiter processing" is performed if a range excess occurs (BB1 = 1).
- 2) When SM1500 is ON (in the hold mode), the following processing is performed and the S.IN instruction is terminated if a range excess occurs (BB1 = 1).
 - BW retains the last value.
 - Error information is set in BB.

(2) Input limiter processing


Upper/lower limiter setting is made on the input value (E1).

Condition	Result (T1)
E1 ≧ NMAX	NMAX
E1 ≦ NMIN	NMIN
NMIN < E1 < NMAX	E1

Error code: 4100

(3) Engineering value reverse conversion

The result (T1) of the input limiter is converted reversely from the engineering value according to the following expression.

(4) Digital filter

The input value (E1) is digitally filtered according to the following expression.

The digital filter is used to reduce noise.

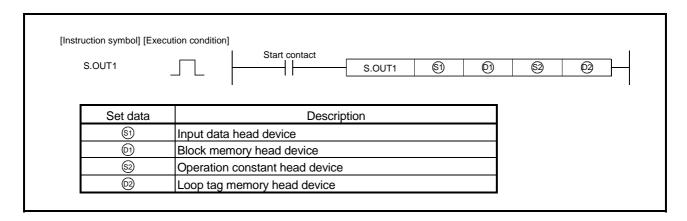
BW =
$$T_2 + \alpha \times (Previous BW value - T_2)$$

(5) Loop stop processing

(a) Setting 1 in SPA of the alarm detection (ALM) selects a loop stop.

A loop stop performs the following processing and terminates the S.IN instruction.

- 1) BW retains the last value.
- 2) SEA of the alarm detection (ALM) are turned to 0.
- 3) The operation mode (MODE) is changed to MAN.
- 4) BB1 to BB3 of BB are turned to 0.
- (b) Setting 0 in SPA of the alarm detection (ALM) selects a loop run.

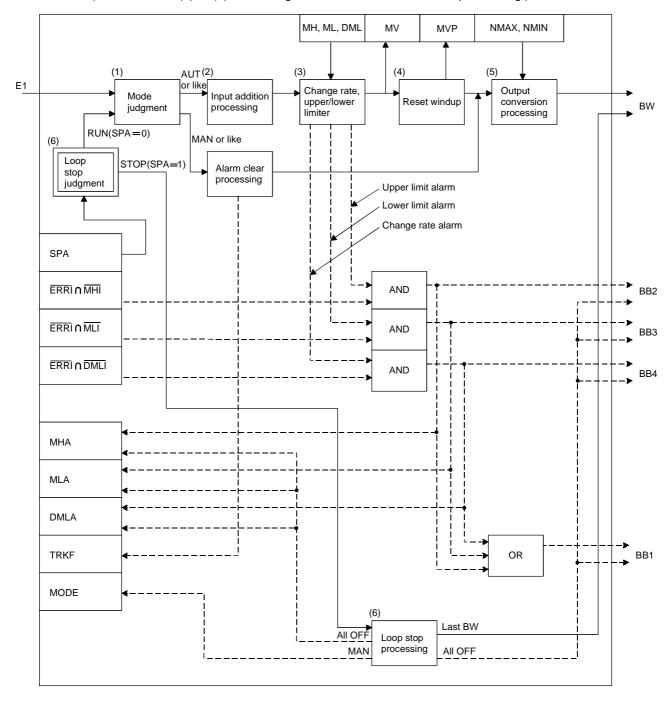

A loop run performs "(1) Range check".

ERROR

• When an operation error occurs

8.2 Output Processing with Mode Switching1 (S.OUT1)

	Usable devices									
Setting data		Internal devices (System, user)			MELSECNET/H direct JE X: 3		Index	Constant	Other	
uala		Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other	
(S1)	_			_						
(D1)	_					_	=			
<u>\$2</u>	_			_						
© 2	_	- 0			_					


Functions

Calculates the manipulated value (MV) by performing input addition processing from the input value (E1 = Δ MV) of the device specified in 5, and stores the result into the device specified in 5.

Also performs the change rate, upper/lower limiter, reset windup and output conversion processings of the calculated manipulated value (MV) at this time.

Block diagram

The processing block diagram of the S.OUT1 instruction is shown below. (The numerals (1) to (6) in the diagram indicate the order of the processing.)

Control data

(1) Data specified in S.OUT1 instruction

Specified p	osition	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
Input data	\$1)+0 +1	E1	Input value (ΔMV)	-999999 to 999999	%	Real number		U
	©1+0 +1	BW	Output value	(-999999 to 999999)	_	Real number	1	S
		BB		<u> </u>				
	+2	BB1	Alarm	b15 b12 b8 b4 b0				
Block memory		BB2	Output upper limit alarm	B B B B B B B B B B B B B B B B B B B		BIN	_	s
		BB3	Output lower limit alarm	(0: Without alarm)		16bit		5
	BB4 Output change rate alarm (1: With alarm)							
Operation	\$2+0 +1	NMAX	Output conversion upper limit	-999999 to 999999	_	Real number	100.0	U
constant	+2 +3	NMIN	Output conversion lower limit	-999999 to 999999	_	Real number	0.0	U
	©+1	MODE	Operation mode	0 to FFFFH b15 b12 b8 b4 b0 C C C C C C A M L L L S M C A M A U A C C C V V B B B S T N C A M	_	BIN 16bit	8н	S/U
Loop tag	+3	ALM	Alarm detection	0 to FFFFH b15	_	BIN 16bit	4000н	S/U
Loop tag memory *2	+4	INH	Alarm detection inhibition	O to FFFFH b15 b12 b8 b4 b0 R R M H L I F I D I I I TRKF (0: Without tracking) (1: With tracking) ERRI, DMLI, MHI, MLI 0: Alarm enable 1: Alarm inhibit		BIN 16bit	4000н	S/U
	+12 +13	MV	Manipulated value	(-10 to 110)	%	Real number	0.0	S

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Specified po	osition	Symbol	Name	Name I Recommended rande I Unit I Data format I		Standard value	Store	
	©+18 +19 MH Output upper limit value -10 to			-10 to 110	%	Real number	100.0	U
	+20 +21	ML	Output lower limit value	-10 to 110	%	Real number	0.0	U
Loop tag memory *2	oop tag	Output change rate limit value	0 to 100	%	Real number	100.0	U	
	+54 +55	I	Integral constant	0 to 999999	s	Real number	10.0	U
	+62 +63 MVP MV inside operation value		operation	(-999999 to 999999)		Real number	0.0	S

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

(2) Execution cycle (△T)

Set the execution cycle in SD1500 and SD1501 as real numbers.

Processing contents

(1) Mode judgment

Either of the following processings is performed depending on the operation mode (MODE).

- (a) When the operation mode (MODE) is any of MAN, CMB, CMV and LCM (alarm clear processing)
 - 1) MHA, MLA and DMLA of the alarm detection (ALM) are turned to 0.
 - 2) BB1 to BB4 of BB are turned to 0.
 - 3) The tracking flag (TRKF) of the alarm detection inhibition (INH) is turned to 1.
 - 4) "(5) Output conversion processing" is performed and the instruction is terminated.
- (b) When the operation mode (MODE) is any of AUT, CAB, CAS, CCB, CSV, LCA and LCC, "(2) Input addition processing" is performed.

However, when SEA of the alarm detection (ALM) is 1 and SM1501 is ON (with hold), BB1 to BB4 are turned to 0 and the S.OUT1 instruction is terminated.

(2) Input addition processing

The temporary MV (T) is calculated on the basis of the input value (E1 = Δ MV).

- (a) When the tracking flag (TRKF) of the alarm detection inhibition (INH) is 1, the following processing is performed.
 - 1) The manipulated value (MV) is stored into the MV internal operation value (MVP).
 - 2) The input value (E1) is changed to 0. ($\Delta MV = 0$)
 - 3) The tracking flag (TRKF) of the alarm detection inhibition (INH) is turned to 0.
 - 4) The temporary MV (T) is calculated with the following expression.

T = E1 + MVPMVP = T

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

(b) When the tracking flag (TRKF) of the alarm detection inhibition (INH) is 0, the temporary MV (T) is calculated with the following expression.

$$T = E1 + MVP$$

$$MVP = T$$

(3) Change rate, upper/lower limiter

Change rate and upper/lower limit checks are performed on a difference between the temporary MV (T) and manipulated value (MV), and the data and alarm are output after the limiter processings.

(a) The change rate limiter performs the following operation and outputs the result of the operation to BB4 and DMLA.

Condition	BB4, DMLA	Result (T1)
$ T - MV \le DML$	0	Т
(T - MV) > DML	1 *1	MV + DML
(T - MV) < - DML	1 *1	MV — DML

^{*1:} When DMLI or ERRI in the alarm detection inhibition (INH) is set to 1, DMLA and BB4 show 0 since the alarm is prohibited.

(b) The upper/lower limiter performs the following operation and outputs the result of the operation to BB2, BB3, MHA and MLA.

Condition	BB3, MLA	BB2, MHA	MV
T1 > MH	0	1 *2	MH
T1 < ML	1 *3	0	ML
$ML \le T1 \le MH$	0	0	T1

^{*2:} When MHI or ERRI in the alarm detection inhibition (INH) is set to 1, MHA and BB2 show 0 since the alarm is prohibited.

(4) Reset windup

If the manipulated value (MV) exceeds the upper/lower limit value, the following operation is performed to return it to the upper/lower limit value and enable immediate response when the deviation is inverted.

However, when the integral constant (T1) is 0, the reset windup processing is not performed.

Condition	Operation expression
When MHA = 1, $\frac{\Delta T}{T_1} \le 1$	$MVP = \frac{\Delta T}{T_1} (MH - T) + T$
When MLA = 1, $\frac{\Delta T}{T_1} \le 1$	$MVP = \frac{\Delta T}{T_1}(ML - T) + T$

^{*3:} When MLI or ERRI in the alarm detection inhibition (INH) is set to 1, MLA and BB3 show 0 since the alarm is prohibited.

Error code: 4100

(5) Output conversion

In the output conversion, the output value is calculated from the following formula.

$$BW = \frac{NMAX - NMIN}{100} \times MV + NMIN$$

(6) Loop stop processing

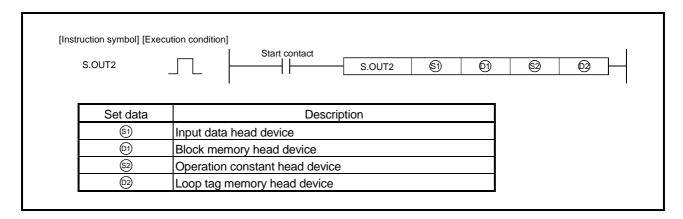
- (a) Setting 1 in SPA of the alarm detection (ALM) selects a loop stop.
 - A loop stop performs the following processing and terminates the S.OUT1 instruction.
 - 1) BW retains the last value.
 - 2) DMLA, MHA and MLA of the alarm detection (ALM) are turned to 0.
 - 3) The operation mode (MODE) is changed to MAN.
 - 4) BB1 to BB4 of BB are turned to 0.
- (b) Setting 0 in SPA of the alarm detection (ALM) selects a loop run. A loop run performs "(1) Mode judgment".

(7) Hold processing

Used to specify whether the output value will be held or not by the S.OUT1 instruction is specified at sensor error occurrence (detected by the S.IN instruction) in the loop stop processing.

Use SM1501 to select whether the manipulated value (MV) will be held or not at sensor alarm occurrence.

- SM1501 = OFF: Manipulated value (MV) will not be held.
- SM1501 = ON: Manipulated value (MV) will be held.


ERROR

• When an operation error occurs

8 - 11 8 - 11

8.3 Output Processing with Mode Switching2 (S.OUT2)

		Usable devices								
Setting data	/ SVetam		File		CNET/H J[][]	Intelligent function	Index	Constant	Other	
uala		Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other	
(S1)	-	(-						
©1	_	(_						
<u>\$2</u>	_			_						
62	_	- 0				=	=			

Functions

Converts the input value (E1 = MV) of the device specified in 9 into an output, and stores the result into the device specified in 9.

Also performs the change rate, upper/lower limiter processing and output conversion processing of the input value at this time.

Block diagram

The processing block diagram of the S.OUT2 instruction is shown below. (The numerals (1) to (4) in the diagram indicate the order of the processing.)

Control data

(1) Data specified in S.OUT2 instruction

Specified p	osition	Symbol	Name	Recommended range ^{*1}	Unit	Data format	Standard value	Store
Input data	§1)+0 +1	E1	Input value(MV)	-999999 to 999999		Real number		U
	©1+0 +1	BW	Output value	(-999999 to 999999)	_	Real number	-	S
		BB BB1	Alarm	L45 L40 L0 L4 L0				
Block memory	+2	BB2	Output upper limit alarm Output lower	b15 b12 b8 b4 b0 B B B B B B B B B B B B B B B B B B	_	BIN 16bit	_	S
		BB4	limit alarm Output change rate alarm	(0: Without alarm) (1: With alarm)		TODIL		
Operation	©+0 +1	NMAX	Output conversion upper limit	-999999 to 999999	_	Real number	100.0	U
constant	+2 +3	NMIN	Output conversion lower limit	-999999 to 999999	_	Real number	0.0	U
	©2+1	MODE	Operation mode	0 to FFFFH b15 b12 b8 b4 b0 S M C A M A U A C C C V V B B B S T N C A M		BIN 16bit	8н	S/U
	+3	ALM	Alarm detection	0 to FFFFH b15 b12 b8 b4 b0 S N N N N N N N N N N N N N N N N N N N	_	BIN 16bit	4000н	S/U
Loop tag memory *2	+4	INH	Alarm detection inhibition	0 to FFFFH b15 b12 b8 b4 b0 E	_	BIN 16bit	4000н	S/U
	+12 +13	MV	Manipulated value	(-10 to 110)	%	Real number	0.0	S
	+18 +19	МН	Output upper limit value	-10 to 110	%	Real number	100.0	U
-	+20 +21	ML	Output lower limit value	-10 to 110	%	Real number	0.0	U
	+48 +49	DML	Output change rate limit value	0 to 100	%	Real number	100.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

Processing contents

(1) Mode judgment

Either of the following processings is performed depending on the operation mode (MODE).

- (a) When the operation mode (MODE) is any of MAN, CMB, CMV and LCM (alarm clear processing)
 - 1) MHA, MLA and DMLA of the alarm detection (ALM) are turned to 0.
 - 2) BB1 to BB4 of BB are turned to 0.
 - 3) "(3) Output conversion processing" is performed and the S.OUT2 instruction is terminated.
- (b) When the operation mode (MODE) is any of AUT, CAB, CAS, CCB, CSV, LCA and LCC, "(2) Change rate, upper/lower limiter" is performed.
 However, when SEA of the alarm detection (ALM) is 1 and SM1501 is ON (with hold), BB1 to BB4 are turned to 0 and the S.OUT2 instruction is terminated.

(2) Change rate, upper/lower limiter

Change rate and upper/lower limit checks are performed on a difference between the temporary MV (T) and manipulated value (MV), and the data and alarm are output after the limiter processings.

(a) The change rate limiter performs the following operation and outputs the result of the operation to BB4 and DMLA.

Condition	BB4. DMLA	Result (T1)
E1 − MV ≦ DML	0	F1
(E1 - MV) > DML	1 *1	MV + DML
(E1 - MV) < - DML	1 *1	MV - DML

^{*1:} When DMLI or ERRI in the alarm detection inhibition (INH) is set to 1, DMLA and BB4 show 0 since the alarm is prohibited.

(b) The upper/lower limiter performs the following operation and outputs the result of the operation to BB2, BB3, MHA and MLA.

Condition	BB3, MLA	BB2, MHA	MV
T1 > MH	0	1 *2	MH
T1 < ML	1 ^{*3}	0	ML
ML≦T1≦MH	0	0	T1

^{*2:} When MHI or ERRI in the alarm detection inhibition (INH) is set to 1, MHA and BB2 show 0 since the alarm is prohibited.

(3) Output conversion

In the output conversion, the output value is calculated from the following formula.

$$BW = \frac{NMAX - NMIN}{100} \times MV + NMIN$$

^{*3:} When MLI or ERRI in the alarm detection inhibition (INH) is set to 1, MLA and BB3 show 0 since the alarm is prohibited.

Error code: 4100

(4) Loop stop processing

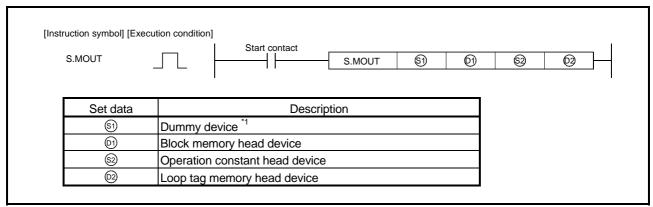
- (a) Setting 1 in SPA of the alarm detection (ALM) selects a loop stop.
 - A loop stop performs the following processing and terminates the S.OUT2 instruction.
 - 1) BW retains the last value.
 - 2) DMLA, MHA and MLA of the alarm detection (ALM) are turned to 0.
 - 3) The operation mode (MODE) is changed to MAN.
 - 4) BB1 to BB4 of BB are turned to 0.
- (b) Setting 0 in SPA of the alarm detection (ALM) selects a loop run. A loop run performs "(1) Mode judgment".

(5) Hold processing

Used to specify whether the output value will be held or not by the S.OUT2 instruction is specified at sensor error occurrence (detected by the S.IN instruction) in the loop stop processing.

Use SM1501 to select whether the manipulated value (MV) will be held or not at sensor alarm occurrence.

- SM1501 = OFF: Manipulated value (MV) will not be held.
- SM1501 = ON: Manipulated value (MV) will be held.

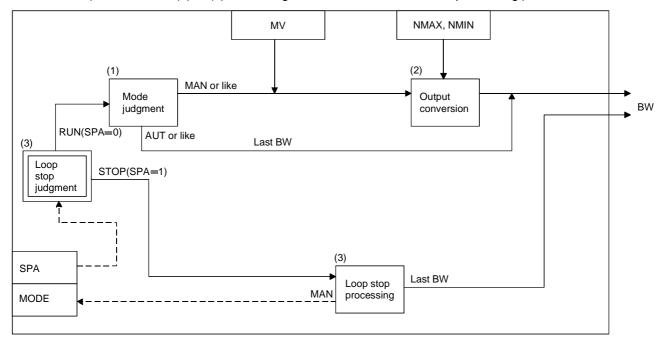

ERROR

• When an operation error occurs

8 - 16 8 - 16

8.4 Manual Output (S.MOUT)

	Usable devices									
Setting data		devices n, user)	File	MELSECNET/H ile direct J[][][Intelligent function	Index	Constant	Other	
uala	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other	
S 1	-			_						
© 1	=	0		_						
<u>\$2</u>	=	0		_						
© 2	_	0				_	=			


^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Converts the manipulated value (MV) specified in ⁽¹⁾ into an output, and stores the result into the device specified in ⁽¹⁾.

Block diagram

The processing block diagram of the S.MOUT instruction is shown below. (The numerals (1) to (3) in the diagram indicate the order of the processing.)

Control data

(1) Data specified in S.MOUT instruction

Specified p	osition	Symbol	Name	Recommended range 1	Unit	Data format	Standard value	Store
Block memory	©1+0 +1	BW	Output value	(-99999 to 999999)	_	Real number	_	S
Operation	©+0 +1	NMAX	Output conversion upper limit	-999999 to 999999	1	Real number	100.0	U
constant	+2 +3	NMIN	Output conversion lower limit	-999999 to 999999	l	Real number	0.0	U
	©+1	MODE	Operation mode	0 to FFFFH b15		BIN 16bit	н	S/U
Loop tag memory * ²	+3	ALM	Alarm detection	0 to FFFFH b15 b12 b8 b4 b0 SPA 0: Loop RUN 1: Loop STOP	_	BIN 16bit	4000н	S/U
	+12 +13	MV	Manipulated value	-10 to 110	%	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

Processing contents

(1) Mode judgment

Either of the following processings is performed depending on the operation mode (MODE).

- (a) When the operation mode (MODE) is any of MAN, CMB, CMV and LCM
 - 1) The manipulated value (MV) is used as the output value (BW).
 - 2) "(2) Output conversion processing" is performed.
- (b) When the operation mode (MODE) is any of AUT, CAB, CAS, CCB, CSV, LCA and LCC, BW retains the last value.

(2) Output conversion

In the output conversion, the output value is calculated from the following formula.

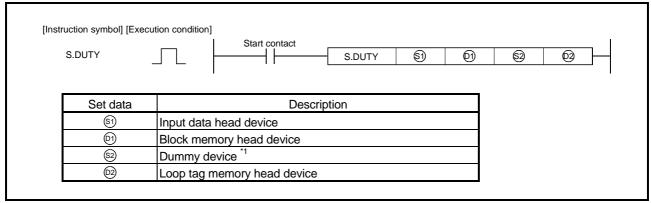
$$BW = \frac{NMAX - NMIN}{100} \times MV + NMIN$$

8 - 19 8 - 19

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Error code: 4100

(3) Loop stop processing


- (a) Setting 1 in SPA of the alarm detection (ALM) selects a loop stop.
 - A loop stop performs the following processing and terminates the S.MOUT instruction.
 - 1) BW retains the last value.
 - 2) The operation mode (MODE) is changed to MAN.
- (b) Setting 0 in SPA of the alarm detection (ALM) selects a loop run. A loop run performs "(1) Mode judgment".

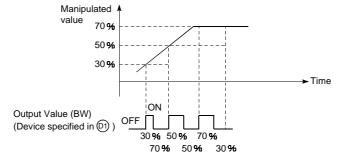
ERROR

• When an operation error occurs

8.5 Time Rate Example (S.DUTY)

		Usable devices									
Setting data		devices n, user)	File	MELSECNET/H direct J[]\[]		Intelligent function	Index	Constant	Other		
uala	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other		
(S1)	_			_							
© 1	_	0		_							
<u>\$2</u>	_	0		_							
© 2	_	0				_	-				

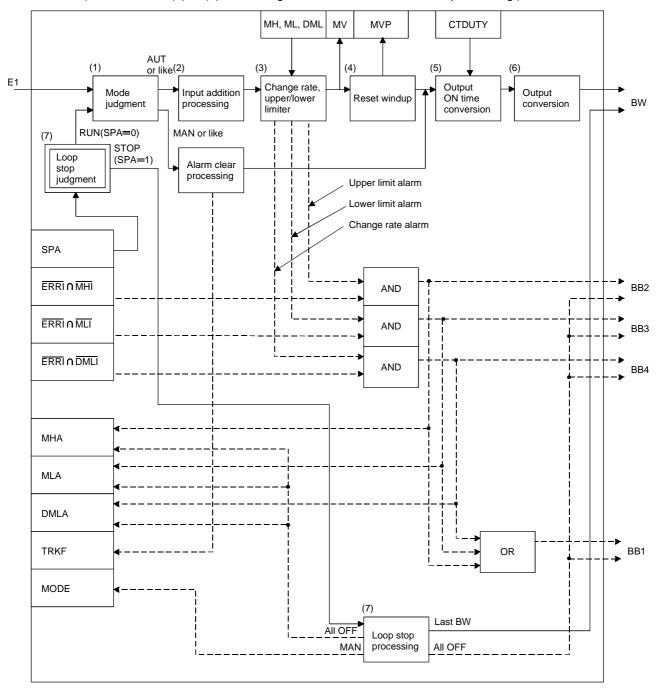
^{*1:} Special register SD1506 can be specified as a dummy device.


Functions

Calculates the manipulated value (MV) by performing input addition processing from the input value (E1 = Δ MV) of the device specified in 9. Turns ON/OFF the device specified in 9 in proportion to the manipulated value (MV).

The ON/OFF time is a value on the assumption that the time specified as the control output cycle (CTDUTY) is 100%.

The ON/OFF time is changed in each execution cycle.


Also performs the change rate, upper/lower limiter and reset windup of the calculated manipulated value (MV) at this time.

8 - 21 8 - 21

Block diagram

The processing block diagram of the S.DUTY instruction is shown below. (The numerals (1) to (7) in the diagram indicate the order of the processing.)

Control data

(1) Data specified in S.DUTY instruction

Specified p	Specified position Symbol Name Recommended range *1		Recommended range ¹	Unit	Data format	Standard value	Store	
Input data	\$1+0 +1	E1	Input value (ΔMV)	-999999 to 999999		Real number	_	U
		BW		_				
	ᠪ1+0	BW1	Output bit	b15 b12 b8 b4 b0 B W 1 (0: OFF) (1: ON)	_	BIN 16Bit	_	S
Block		BB					•	
memory		BB1	Alarm					
		BB2	Output upper limit alarm	b15 b12 b8 b4 b0 BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB				
	+1	BB3	Output lower limit alarm	(0: Without alarm)	_	BIN 16Bit	_	S
		BB4	Output change rate alarm	(1: With alarm)				
	©2+1	MODE	Operation mode	0 to FFFFH b15	_	BIN 16Bit	8н	S/U
Loop tag	+3	ALM	Alarm detection	0 to FFFFH b15 b12 b8 b4 b0 S P M M L A L A M H L A A SPA DMLA, MHA, MLA 0: Loop RUN (0: Without alarm) 1: Loop STOP (1: With alarm)	_	BIN 16Bit	4000н	S/U
Loop tag memory ²	p tag mory *2 Alarm +4 INH detection inhibition	detection	O to FFFFH b15	_	BIN 16Bit	4000н	S/U	
	+12 +13	MV	Manipulated value	(-10 to 110)	%	Real number	0.0	S

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Specified p	osition	Symbol	Name	Recommended range ^{*1}	Unit	Data format	Standard value	Store
	©+18 +19	МН	Output upper limit value	-10 to 110	%	Real number	100.0	U
	+20 +21	ML	Output lower limit value	-10 to 110	%	Real number	0.0	U
Loop tag memory *2	+48 +49	DML	Output change rate limit value	0 to 100	%	Real number	100.0	C
memory	+54 +55	ı	Integral constant	0 to 999999	s	Real number	10.0	C
	+62 +63	MVP	MV inside operation value	(-999999 to 999999)	%	Real number	0.0	S
	+68 +69	CTDUTY	Control output cycle	0 to 999999 Note that $\frac{\text{CTDUTY}}{\Delta T} \le 32767$	s	Real number	1.0	U
Loop tag past value memory *2 *3	¹	_	_	Used by the system as a work area.	_	_	_	8
	+121							

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

^{*3:} The applications of the loop tag past value memory are indicated below.

Specified position	Description
<u>®</u> +118	Control output cycle counter initial preset flag
+119	Control output cycle counter
+120	Output counter
+121	Output ON counter

When control is to be started from the initial status, the data must be cleared with the sequence program.

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Processing contents

(1) Mode judgment

Either of the following processings is performed depending on the operation mode (MODE).

- (a) When the operation mode (MODE) is any of MAN, CMB, CMV and LCM (alarm clear processing)
 - 1) MHA, MLA and DMLA of the alarm detection (ALM) are turned to 0.
 - 2) BB1 to BB4 of BB are turned to 0.
 - 3) The tracking flag (TRKF) of the alarm detection inhibition (INH) is turned to 1.
 - 4) "(5) Output ON time conversion processing" is performed.
- (b) When the operation mode (MODE) is any of AUT, CAB, CAS, CCB, CSV, LCA and LCC, "(2) Input addition processing" is performed.

However, when SEA of the alarm detection (ALM) is 1 and SM1501 is ON (with hold), BB1 to BB4 are turned to 0 and the S.DUTY instruction is terminated.

(2) Input addition processing

The temporary MV (T) is calculated on the basis of the input value (E1 = Δ MV).

- (a) When the tracking flag (TRKF) of the alarm detection inhibition (INH) is 1, the following processing is performed.
 - 1) The manipulated value (MV) is stored into the MV internal operation value (MVP).
 - 2) The input value (E1) is changed to 0. ($\Delta MV = 0$)
 - 3) The tracking flag (TRKF) of the alarm detection inhibition (INH) is turned to 0.
 - 4) The temporary MV (T) is calculated with the following expression.

```
T = E1 + MVP
MVP = T
```

(b) When the tracking flag (TRKF) of the alarm detection inhibition (INH) is 0, the temporary MV (T) is calculated with the following expression.

```
T = E1 + MVP
MVP = T
```

(3) Change rate, upper/lower limiter

Change rate and upper/lower limit checks are performed on a difference between the temporary MV (T) and manipulated value (MV), and the data and alarm are output after the limiter processings.

(a) The change rate limiter performs the following operation and outputs the result of the operation to BB4 and DMLA.

Condition	BB4, DMLA	Result (T1)
$ T - MV \leq DML$	0	Т
(T - MV) > DML	1 *1	MV + DML
(T - MV) < - DML	1 *1	MV — DML

^{*1:} When DMLI or ERRI in the alarm detection inhibition (INH) is set to 1, DMLA and BB4 show 0 since the alarm is prohibited.

(b) The upper/lower limiter performs the following operation and outputs the result of the operation to BB2, BB3, MHA and MLA.

Condition	BB3, MLA	BB2, MHA	MV
T1 > MH	0	1 *2	MH
T1 < ML	1 *3	0	ML
$ML \le T1 \le MH$	0	0	T1

^{*2:} When MHI or ERRI in the alarm detection inhibition (INH) is set to 1, MHA and BB2 show 0 since the alarm is prohibited.

(4) Reset windup

If the manipulated value (MV) exceeds the upper/lower limit value, the following operation is performed to return it to the upper/lower limit value and enable immediate response when the deviation is inverted.

However, when the integral constant (T1) is 0, the reset windup processing is not performed.

Condition	Operation expression
When MHA = 1, $\frac{\Delta T}{T_1} \le 1$	$MVP = \frac{\Delta T}{T_{i}}(MH - T) + T$
When MLA = 1, $\frac{\Delta T}{T_1} \le 1$	$MVP = \frac{\Delta T}{T_{i}} (ML - T) + T$

^{*3:} When MLI or ERRI in the alarm detection inhibition (INH) is set to 1, MLA and BB3 show 0 since the alarm is prohibited.

Error code: 4100

(5) Output ON time conversion processing

(a) When the control output cycle (CTDUTY) is reached, the output ON counter is calculated with the following expression. At this time, the output counter is cleared (to 0).

OutputON Counter =
$$\frac{\text{CTDUTY}}{\Delta T} \times \text{MV} \times \frac{1}{100}$$

The output ON counter rounds off a fraction to no decimal places.

(b) When the control output cycle (CTDUTY) is not reached, the output counter is incremented by 1 and "(6) Output conversion processing" is performed.

(6) Output conversion processing

In the output conversion processing, the following processing is performed.

Condition	BW
Output counter < output ON counter	1 (ON)
Output counter ≧output ON counter	0 (OFF)

(7) Loop stop processing

(a) Setting 1 in SPA of the alarm detection (ALM) selects a loop stop.

A loop stop performs the following processing and terminates the S.DUTY instruction.

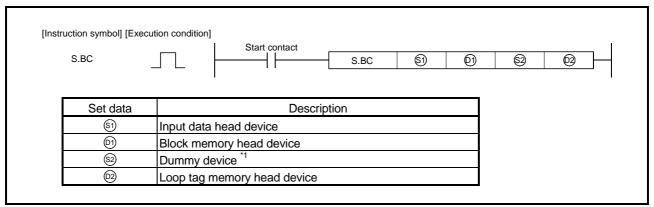
- 1) BW is output at the last ON/OFF rate.
- 2) DMLA, MHA and MLA of the alarm detection (ALM) are turned to 0.
- 3) The operation mode (MODE) is changed to MAN.
- 4) BB1 to BB4 of BB are turned to 0.
- (b) Setting 0 in SPA of the alarm detection (ALM) selects a loop run.

A loop run performs "(1) Mode judgment".

(8) Hold processing

Used to specify whether the output value will be held or not by the S. DUTY instruction is specified at sensor error occurrence (detected by the S.IN instruction) in the loop stop processing.

Use SM1501 to select whether the manipulated value (MV) will be held or not at sensor alarm occurrence.


- SM1501 = OFF: Manipulated value (MV) will not be held.
- SM1501 = ON: Manipulated value (MV) will be held.

ERROR

• When an operation error occurs

8.6 Batch Counter (S.BC)

	Usable devices								
Setting		Internal devices (System, user)		MELSECNET/H direct J[]\[]		Intelligent function	Index	Constant	Other
data -	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other
(S1)	-					_	-		
© 1	_			-					
<u>\$2</u>	=			_					
© 2	_					_	=		

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Compares the input value (E1) with the set value 1 (SV1)/set value 2 (SV2), and outputs bit data as soon as the input value (E1) reaches the set value 1 (SV1)/set value 2 (SV2).

Also performs the upper limit check processing, change rate check processing and output conversion processing of the input value (E1) at this time.

Control data

(1) Data specified in S.BC instruction

Specified p	osition	Symbol	Name	Recommended range ¹	Unit	Data format	Standard value	Store
Input data	\$1)+0 +1	E1	Input value	0 to 2147483647	_	BIN 32Bit	-	U
		BW		_				
	©1)+0	BW1	Output1	b15 b12 b8 b4 b0 B B B W W W 2 1		BIN		0
Block		BW2	Output2	(0: OFF) (1: ON)	_	16Bit	_	S
memory		BB		_			•	
		BB1	Alarm	b15 b12 b8 b4 b0				
	+1	BB2	Upper limit alarm	B B B B B 3 2 1		BIN	_	s
		BB3	Change rate alarm	(0: Without alarm) (1: With alarm)		16Bit		5
	ᡚ+3	ALM	Alarm detection	0 to FFFFH b15 b12 b8 b4 b0 P D D D D D D D D D D D D D D D D D D D	_	BIN 16Bit	4000н	S/U
Loop tag memory *2	+4	INH	Alarm detection inhibition	0 to FFFFH b15 b12 b8 b4 b0 E R H P D H P D C C C C C C C C C C C C C C C C C C	_	BIN 16Bit	4000н	S/U
	+14 +15	SV1	Set value1	0 to 2147483647	_	BIN 32Bit	0	U
	+16 +17	SV2	Set value2	0 to 2147483647	_	BIN 32Bit	0	U
	+26 +27	PH	Upper limit alarm set value	0 to 2147483647	_	BIN 32Bit	0	U
	+42 +43	СТІМ	Change rate alarm check time	0 to 999999 Note that $\frac{\text{CTIM}}{\Delta T} \le 32767$	s	Real number	0.0	U
	+44 +45	DPL	Change rate alarm value	0 to 2147483647	_	BIN 32Bit	0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Specified p	Specified position Symbol Name Recommended range "1		Unit	Data format	Standard value	Store		
Loop tag	©+124							
past value memory	•••	_	_	Used by the system as a work area.	_	_	_	S
2 3	+127							

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*3:} The applications of the loop tag past value memory are indicated below.

Specified position	Description
©2+124	Change rate monitor counter initial preset flag
+125	Change rate monitor counter
+126 +127	Хл-т

When control is to be started from the initial status, the data must be cleared with the sequence program.

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

Processing contents

(1) Upper limit check processing

In the upper limit check processing, the following operation is performed and the result of the operation is output to BB2 and PHA.

Condition	BB2, PHA			
E1 > PH	1 *1			
Others	0			

^{*1:} When PHI or ERRI in the alarm detection inhibition (INH) is set to 1, PHA and BB2 show 0 since the alarm is prohibited.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

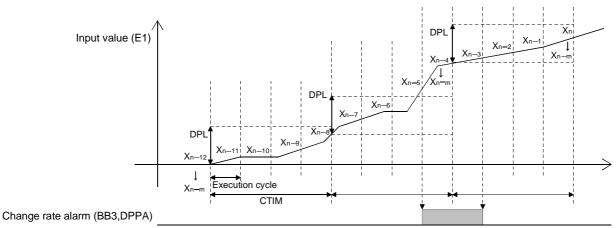
Error code: 4100

(2) Change rate check processing

Performs a change rate alarm check during the change rate alarm check time (CTIM) specified in the loop tag memory. The change rate alarm check compares the change of the input value (E1) with the change rate alarm value (DPL) in each execution cycle (Δ T).

Condition	BB3, DPPA			
$(X_n - X_{n-m}) \ge DPL$	1 *2			
Others	0			

^{*2:} When DPPI or ERRI of the alarm detection inhibition (INH) is 1, DPPA and BB3 turn to 0 since the alarm is prohibited.


The change rate alarm counter (m) is calculated with the following expression.

Change rate alarm counter (m) =
$$\frac{\text{CTIM}}{\Delta T}$$

The change rate alarm counter (m) varies from 1 to m.

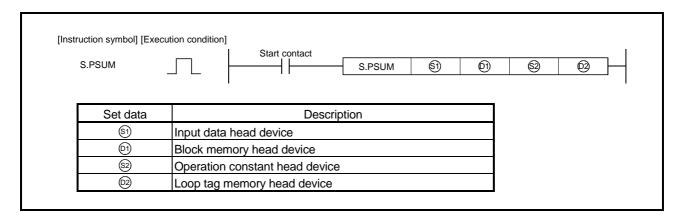
However, when the change rate alarm counter (m) = 0, no processing is performed.

Example) When the change rate alarm counter (m) = 4, processing is perform as shown below.

(3) Output conversion processing

In the output conversion processing, the following operation is performed and the result of the operation is stored into BW1 and BW2.

Condition	BW1	BW2		
E1 < 0	0	0		
0 ≦ E1 < SV1	0	_		
E1 ≧ SV1	1	_		
0 ≦ E1 < SV2	_	0		
E1≧SV2	_	1		

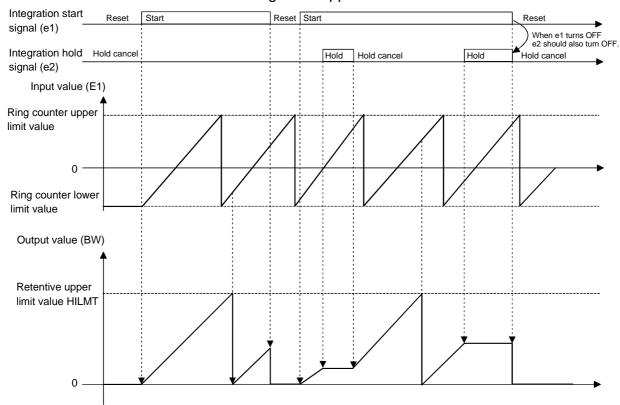

ERROR

· When an operation error occurs

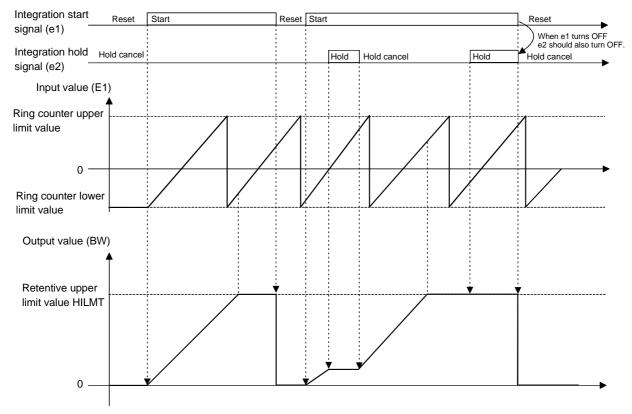
8 - 31 8 - 31

8.7 Pulse Retentive (S.PSUM)

				Į	Jsable device	es			
Setting data		devices n, user)	File	MELSECNET/H direct J[]{]		Intelligent function	Index	Constant	Othor
uala	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other
§1)	_					_	=		
(1)	_	(_	=		
<u>\$2</u>	_			-					
© 2	_	(_	=		


Functions

Integrates the input value (E1) of the device specified in (S1), and stores the result into the device specified in (D2).


The integration upper limit value and integration pattern can be used to select whether the integrated value will be returned to 0 or retained at the upper limit value if the output value exceeds the integration upper limit value.

The integration start signal and integration hold signal can be used to start and suspend the integration of the input value.

(1) Operation performed when the integration pattern is set to "integrated value returns to 0 when the integration upper limit value is exceeded"

(2) Operation performed when the integration pattern is set to "integrated value is retained at the integration upper limit value when the upper limit value is exceeded"

Control data

(1) Data specified in S.PSUM instruction

Specified p	osition	Symbol	Name	Recommended range *1		Data format	Standard value	Store
	⑤1)+0 +1	E1	Input value	Use the ring counter of 16 bits or more. • 16-bit ring counter 00000000H→0000FFFFH→0000000H • 24-bit ring counter 0000000H→00FFFFFH→0000000H • 32-bit ring counter 0000000H→FFFFFFFH→0000000H Set 32767 (7FFFH) or less as a pulse increment at each instruction execution.	pulse	BIN 32Bit	-	U
Innut data		e		<u>–</u>	1	T	T	
Input data	+2	e1	Integration start signal	b15 b12 b8 b4 b0 lntegration start signal 0: Integration stop/reset 1: Integration start Integration hold signal	_	BIN 16Bit	_	U
		e2	Integration hold signal	0: Integration hold cancel 1: Integration hold				
Block	©)+0 +1	BW1	Output value (Integer part)	(0 to 2147483647)	_	BIN 32Bit	_	S
memory	+2 +3	BW2	Output value (Fraction part)	(0 to 2147483647)	_	BIN 32Bit	_	S
	§2+0	W	Weight per pulse	1 to 999	_	BIN 16Bit	1	U
	+1	U	Unit conversion constant	1, 10, 100, 1000	_	BIN 16Bit	1	U
Operation constant	+2 +3	HILMT	Retentive upper limit value	1 to 2147483647	_	BIN 32Bit	21474836 47	U
	+4	Integration		O: Returns to 0 when the integration upper limit value (HILMT) is exceeded. 1: Retains the integration upper limit value when the integration upper limit value (HILMT) is exceeded.		BIN 16Bit	0	U
Loop tag	+10 +11	SUM1	Retentive value (Integer part)	(0 to 2147483647)	_	BIN 32Bit	0	S
memory *2	memory 2 +12 Retentive value		Retentive	(0 to 2147483647)	_	BIN 32Bit	0	S

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Specified	position	Symbo	Name	Recommended range ¹	Unit	Data format	Standard value	Store
Loop tag past value memory *2 *3	©+116 +117		-	Used by the system as a work area.	_	_	_	S

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

^{*3:} The applications of the loop tag past value memory are indicated below.

Specified position	Description
©+116 +117	E1 _{n-1} (Last input value)

When control is to be started from the initial status, the data must be cleared with the sequence program.

Processing contents

(1) Upper limit check processing

In the upper limit check processing, the following operation is performed and the result of the operation is output to BB2 and PHA.

e1	e2	Input value increment (T1)
0	0	_
0	1	_
1	0	E1 — E1 _{n-1}
1	1	_

(2) Integrated value operation processing

In the integrated value operation processing, the following processing is performed for the input value increment (T1).

e1	e2	Retentive value (Integer part) (T2), Retentive value (Fraction part) (T3)
0	0	T2 = 0
U	O	T3 = 0
0	4	T2 = 0
0	1	$T3 = 0^{11}$
		$T4 = \text{quotient of } \{(T1 \times W) / U\} < \text{integer part} >$
4	0	T5 = remainder of {(T1 × W) / U} <fraction part=""></fraction>
1	0	$T2 = SUM1 + T4 + [quotient of {(SUM2 + T5) / U}] < integer part>$
		T3 = remainder of {(SUM2 + T5) / U} < fraction part>
4	4	T2 = SUM1
1	1	T3 = SUM2

^{*1:} At an integration stop/reset (e1 = 0), processing is performed on the assumption that integration hold is canceled (e2 = 0).

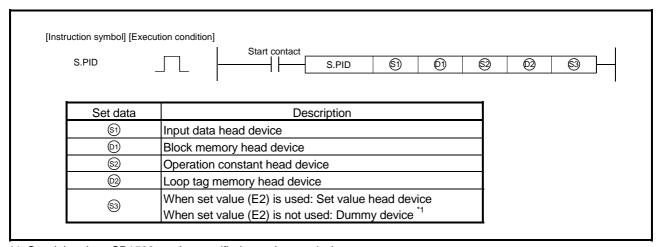
^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Error code: 4100

(3) Output conversion

In the output conversion, the following processing is performed for the integrated value (T2, T3).

SUMPTN	Condition	Condition BW1, SUM1	
	T2 ≧ HILMT	BW1 = remainder of T2 / HILMT	BW2 = T3
0		SUM1 = remainder of T2 / HILMT	SUM2 = T3
	Others	BW1 = T2	BW2 = T3
	Otrioro	SUM1 = T2	SUM2 = T3
	T2 ≧ HILMT	BW1 = HILMT	BW2 = 0
	12 S I IILIVII	SUM1 = HILMT	SUM2 = 0
1	Oth a ra	BW1 = T2	BW2 = T3
	Others	SUM1 = T2	SUM2 = T3


ERROR

• When an operation error occurs

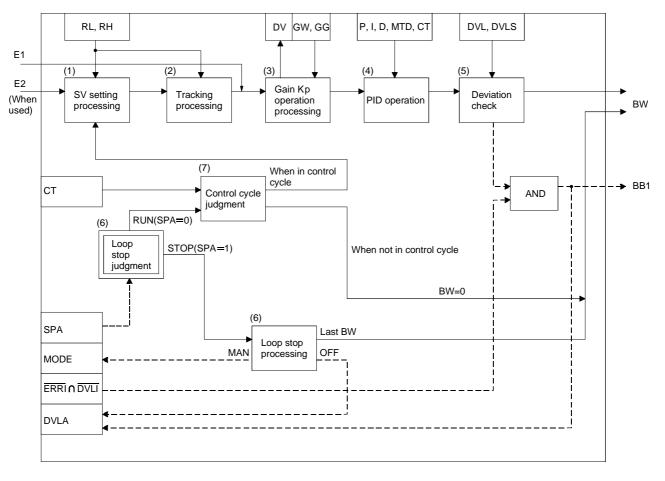
9 CONTROL OPERATION INSTRUCTIONS

9.1 Basics PID (S.PID)

				l	Isable device	es					
Setting data		devices n, user)	File		Index	Constant	Other				
uala	Bit Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other			
S 1	_	(0		_						
© 1	_					-	=				
<u>\$2</u>	=	(0		_						
(D2)	_	0		-							
§ 3	_		0		_						

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions


Performs PID operation when the specified control cycle is reached. (PID operation is of velocity type/process value derivative type (incomplete differentiation type).)

Also performs SV setting processing, tracking processing, gain (Kp) operation processing and deviation check processing at this time.

C

Block diagram

The processing block diagram of the S.PID instruction is shown below. (The numerals (1) to (7) in the diagram indicate the order of the processing.)

Control data

(1) Data specified in S.PID instruction

Specified position		Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
Input data	\$1+0 +1	E1	Input value	-999999 to 999999	I	Real number	_	U
	©1+0 +1	BW	Output value (ΔMV)	(-999999 to 999999)	1	Real number	_	S
		BB		<u> </u>				
Block memory	+2	BB1	Deviation large alarm	b15 b12 b8 b4 b0 B B B 1 (0: Without alarm) (1: With alarm)	_	BIN 16bit	_	S
	©+0 +1	MTD	Derivative gain	0 to 999999	_	Real number	8.0	U
	+2 +3	DVLS	Deviation large alarm hysteresis	0 to 100	%	Real number	2.0	U
	+4	PN	Operation mode	Reverse operation Forward operation	_	BIN 16bit	0	U
	+5	TRK	Tracking bit	0: Not trucked 1: Trucked	_	BIN 16bit	0	U
Operation constant	+6	SVPTN	Set value pattern	0 to 3 b15 b12 b8 b4 b0 Set value pattern *3 0: E2 is upper loop MV 1: E2 is not upper loop MV 1: E2 is not used	_	BIN 16bit	3	C

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*2:} Specify whether the set value (E2) is to be used or not.

^{*3:} Specify whether the MV of the upper loop is to be used or not as the set value (E2).

Specified position		Symbol	Name	Recommended range ^{*1}	Unit	Data format	Standard value	Store
	@+1	MODE	Operation mode	0 to FFFFH b15	1	BIN 16bit	8⊦	S/U
Loop tag memory ¹²	+3	ALM	Alarm detection	0 to FFFFH b15 b12 b8 b4 b0 S PA D M M V H L A A A SPA DVLA, MHA, MLA 0: Loop RUN (0: Without alarm) 1: Loop STOP (1: With alarm)	_	BIN 16bit	4000н	S/U
	+4	INH	Alarm detection inhibition	O to FFFFH b15 b12 b8 b4 b0 E T D M M R R R R V H L I F V H L I V H L I V I I I TRKF (0: Without tracking) (1: With tracking) ERRI, DVLI, MHI, MLI O: Alarm enable 1: Alarm inhibit		BIN 16bit	4000н	S/U
	+14 +15	SV	Set value	RL to RH	ı	Real number	0.0	U
	+16 +17	DV	Deviation	(-110 to 110)	%	Real number	0.0	S
	+22 +23	RH	Engineering value upper limit	-999999 to 999999	ĺ	Real number	100.0	J
	+24 +25	RL	Engineering value lower limit	-999999 to 999999	_	Real number	0.0	C
	+46 +47	СТ	Control cycle	0 to 999999 Note that $\frac{CT}{\Delta T} \le 32767$	s	Real number	1.0	U
	+50 +51	DVL	Change rate limit value	0 to 100	%	Real number	100.0	U
	+52 +53	Р	Gain	0 to 999999	_	Real number	1.0	U
	+54 +55	I	Integral constant	0 to 999999	s	Real number	10.0	U
	+56 +57	D	Derivative constant	0 to 999999	s	Real number	0.0	U
	+58 +59	GW	Gap width	0 to 100	%	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Specified po		Symbol	Name	Recommended range 11	Unit	Data format	Standard value	Store
Loop tog	©+60 +61	GG	Gap gain	0 to 999999	I	Real number	1.0	U
Loop tag memory *2	+62 +63	MVP	MV Inside operation value	(-99999 to 999999)	%	Real number	0.0	S
Loop tag past value memory *2 *3	©+96 : +111		ı	Used by the system as a work area.	ı		_	S
Set value *4	®+0 +1	E2	Set value	-10 to 110	%	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*3:} The applications of the loop tag past value memory are indicated below.

Specified position	Description
©+96	Control cycle counter initial preset flag
+97	Control cycle counter
+102	B _{n-1} (Last value)
+103	Dn-1 (Last value)
+104	PVn (Process value)
+105	r vn(r locess value)
+106	PV _{n-1} (Last process value)
+107	1 VIFI (Last process value)
+108	PVn-2 (Process value before last)
+109	r vii-2 (r 100ess value belole last)
+110	DV _{n-1} (Last deviation value)
+111	DVn-1 (Last deviation value)

When control is to be started from the initial status, the data must be cleared with the sequence program.

When using the MV of the upper loop as the set value (E2), specify the device where the manipulated value (MV) of the upper loop is set (offset + 12: MV).

When not using E2 as the set value, make sure to specify a dummy device.

(Special register SD1506 can be specified as a dummy device.)

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

^{*4:} The set value (E2) becomes valid when the set value pattern (SVPTN) is set to "E2 is used".

9 - 6

Processing contents

(1) SV setting processing

Either of the following processings is performed depending on the operation mode (MODE) setting.

- (a) When the operation mode (MODE) is any of CAS, CCB and CSV
 - 1) When the set value (E2) is specified, engineering value conversion is performed with the following expression and then "(2) Tracking processing" is performed.

$$SV_n = \frac{RH - RL}{100} \times E2 + RL$$

- 2) When the set value (E2) is not specified, "(2) Tracking processing" is performed without the engineering value conversion being performed.
- (b) When the operation mode (MODE) is any of MAN, AUT, CMV, CMB, CAB, LCM, LCA and LCC, "(2) Tracking processing" is performed.

(2) Tracking processing

(a) The set value (SV) is converted reversely from the engineering value with the following operation expression to calculate SVn'.

$$SV_n' = \frac{100}{RH - RL} \times (SV_n - RL)$$

- (b) When all of the following conditions hold, tracking processing is performed.
 - 1) The tracking bit (TRK) of the operation constant is 1.
 - 2) The set value (E2) is used.
 - 3) The operation mode (MODE) is any of MAN, AUT, CMV, CMB, CAB, LCM, LCA and

(c) When the set value (E2) is the manipulated value (MV) of the upper loop, the tracking flag (TRKF) of the alarm detection inhibition (INH) in the upper loop turns to 1.

(3) Gain (Kp) operation processing

(a) The deviation (DV) is calculated under the following condition.

Condition	Operation expression
Forward operation(PN=1)	DV=E1-SVn'
Reverse operation(PN=0)	DV=SVn'-E1

(b) The output gain (K) is calculated under the following condition.

Condition	Operation expression
When DV ≦ GW	K=GG
When DV > GW	$K = 1 - \frac{(1 - GG) \times GW}{ DV }$

(4) PID operation

PID operation is performed with the following operation expression.

	Item	Operation expression
D	When forward operation (PN=1)	$B_{n-1} + \frac{M_D \times T_D}{M_D \times CT + T_D} \times \{ (PV_n - 2PV_{n-1} + PV_{n-2}) - \frac{CT \times B_{n-1}}{T_D} \}$
Bn	When reverse operation (PN=0)	$B_{n-1} + \frac{M_D \times T_D}{M_D \times CT + T_D} \times \{ -(PV_n - 2PV_{n-1} + PV_{n-2}) - \frac{CT \times B_{n-1}}{T_D} \}$
BW (\(\Delta \) MV)		$K_P \times \{(DV_n - DV_{n-1}) + \frac{CT}{T_1} \times DV_n + B_n\}$

Kp: K × Gain (P), Mp: Derivative gain (MTD)

Ti: Integral constant (I), Tp: Derivative constant (D)

In the following case, however, note that special processing will be performed.

Condition	Processing
In either of the following cases 1, 2	Bn = 0
1. Derivative constant (D) = 0 ($T_D = 0$)	(However, the loop tag past
2. Operation mode (MODE) is any of MAN, LCM and CMV	value memory is set.)
In any of the following cases 1, 2, 3	
1. Integral constant (I) = 0 (T _I = 0)	
2. When MH or ML error occurred	CT
$(MVP > MH)$ and $(\frac{CT}{T_1} \times DV_n > 0)$	$\frac{CT}{T_1} \times DV_n = 0$
3. When MH or ML error occurred	
$(MVP < ML)$ and $(\frac{CT}{T_I} \times DV_n < 0)$	

(5) Deviation check

A deviation check is made under the following condition and the result of the check is output to DVLA of the alarm detection (ALM) and the deviation large alarm (BB1) of the block memory.

Condition	Result
DVL < DV	DVLA = BB1 =1 *1
$(DVL - DVLS) < DV \le DVL$	DVLA =BB1 = Last value status hold *1
DV ≤ (DVL-DVLS)	DVLA = BB1 = 0

^{*1:} When DVLI or ERRI in the alarm detection inhibition (INH) is set to 1, DVLA and BB1 show 0 since the alarm is prohibited.

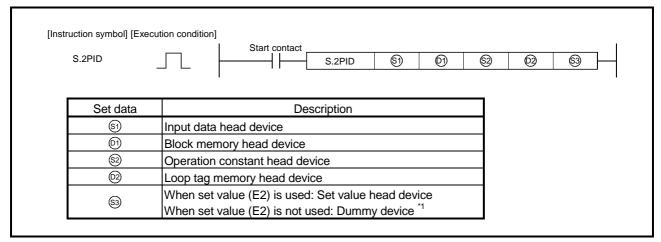
(6) Loop stop processing

(a) Setting 1 in SPA of the alarm detection (ALM) selects a loop stop.

A loop stop performs the following processing and terminates the S.PID instruction.

- 1) BW is turned to 0.
- 2) DVLA of the alarm detection (ALM) is turned to 0.
- 3) The operation mode (MODE) is changed to MAN.
- 4) BB1 of BB are turned to 0.
- (b) Setting 0 in SPA of the alarm detection (ALM) selects a loop run. A loop run performs "(7) Control cycle judgment".

Error code: 4100


- (7) Control cycle judgment
 - (a) If the specified control cycle is not reached, BW (Δ MV) is turned to 0 and the S.PID instruction is terminated.
 - (b) When the specified control cycle is reached, "(1) SV setting processing" is performed.

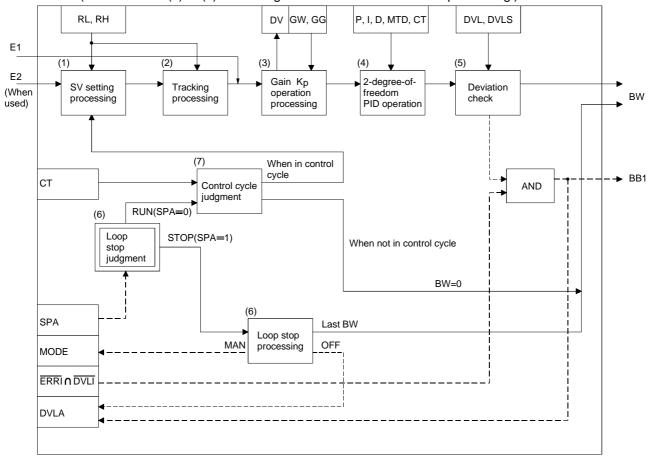
Error

• When an operation error occurs

9.2 2-degree-of-freedom PID (S.2PID)

				U	sable device	es					
Setting data				l devices m, user) File		MELSECNET/H direct J[]{]		Intelligent Index function		Constant	Other
uala	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other		
(S1)	_	0		_							
(1)	_	(0			-	-				
<u>\$2</u>	_	0				-	=				
(D2)	_	0		_							
<u>\$3</u>	_					_	=				

^{*1:} Special register SD1506 can be specified as a dummy device.


Functions

Performs 2-degree-of-freedom PID operation when the specified control cycle is reached. Also performs SV setting processing, tracking processing, gain (Kp) operation processing and deviation check processing at this time.

Block diagram

The processing block diagram of the S.2PID instruction is shown below.

(The numerals (1) to (7) in the diagram indicate the order of the processing.)

Control data

(1) Data specified in S.2PID instruction

Specified p	Specified position Symbol Name Recommended range		Recommended range ^{*1}	Unit	Data format	Standard value	Store	
Input data	©1+0 +1	E1	Input value	-999999 to 999999		Real number		U
	©+0 +1	BW	Output value (ΔMV)	(-999999 to 999999)	%	Real number	1	S
		BB		<u> </u>				
Block memory	+2	BB1	Deviation large alarm	b15 b12 b8 b4 b0 B B B I I I I I I I I I I I I I I I I	-	BIN 16Bit	_	S
	©+0 +1	MTD	Derivative gain	Derivative gain 0 to 999999		Real number	8.0	U
	+2 +3	DVLS	Deviation large alarm hysteresis	0 to 100	%	Real number	2.0	U
	+4	PN	Operation mode	Reverse operation Forward operation	l	BIN 16bit	0	U
	+5	TRK	Tracking bit	0: Not tracked 1: Tracked	1	BIN 16bit	0	U
Operation constant	+6	SVPTN	Set value pattern	0 to 3 b15 b12 b8 b4 b0 Set value pattern *3 Set value used *2 0: E2 is upper loop MV 0: E2 is used 1: E2 is not upper loop MV 1: E2 is not used	_	BIN 16bit	3	C

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

9 - 11 9 - 11

^{*2:} Specify whether the set value (E2) is to be used or not.
*3: Specify whether the MV of the upper loop is to be used or not as the set value (E2).

Specified p	osition	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
	@+1	MODE	Operation mode	0 to FFFFH b15 b12 b8 b4 b0	_	BIN 16bit	8н	S/U
	+3	ALM	Alarm detection	0 to FFFFH b15 b12 b8 b4 b0 S PA D M M LA V H LA A A A SPA DVLA, MHA, MLA (0: Without alarm) 1: Loop STOP (1: With alarm)		BIN 16bit	4000н	S/U
Loop tag memory ²	+4	INH	Alarm detection inhibition	O to FFFFH b15 b12 b8 b4 b0 E T D M M R R R R L L I I I TRKF (0: Without tracking) (1: With tracking) ERRI, DVLI, MHI, MLI O: Alarm enable 1: Alarm inhibit	_	BIN 16bit	4000н	S/U
	+14 +15	SV	Set value	RL to RH		Real number	0.0	U
	+16 +17	DV	Deviation	(-110 to 110)		Real number	0.0	S
	+22 +23	RH	Engineering value upper limit	-999999 to 999999		Real number	100.0	U
	+24 +25	RL	Engineering value lower limit	-999999 to 999999	_	Real number	0.0	U
	+46 +47	СТ	Control cycle	0 to 999999 Note that $\frac{CT}{\Delta T} \le 32767$		Real number	1.0	U
	+50 +51	DVL	Change rate limit value	0 to 100		Real number	100.0	U
	+52 +53	Р	Gain	0 to 999999		Real number	1.0	U
	+54 +55	I	Integral constant	0 to 999999		Real number	10.0	U
	+56 +57	D	Derivative constant	0 to 999999	s	Real number	0.0	U
	+58 +59	GW	Gap width	0 to 100	%	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Specified	position	Symbol	Name	Recommended range ¹		Data format	Standard value	Store
	[©] +60 +61	GG	Gap gain	0 to 999999	ı	Real number	1.0	U
Loop to	+62 +63	MVP	MV inside operation value	(-999999 to 999999)	%	Real number	0.0	8
Loop tag memory *2	+64 +65	α	2 degree-of- freedom parameter α^{*5}	0 to 1	_	Real number	0.0	U
	+66 +67	В	2 degree-of- freedom parameter β *6	0 to 1	ı	Real number	1.0	U
Loop tag past value memory *2 *3	+96 +115	_	_	Used by the system as a work area.	ı	_		S
Set value *4	\$3+0 +1	E2	Set value	-10 to 110	%	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*3:} The applications of the loop tag past value memory are indicated below.

Specified position	Description	
©2+96	Control cycle counter initial preset flag	
+97	Control cycle counter	
+102	B _{n-1} (Last value)	
+103	Dn-1 (Last value)	
+104	PVn(Process value)	
+105	F vn(Flocess value)	
+106	PV _{n-1} (Last process value)	
+107	1 VIFT (Last process value)	
+108	PV _{n-2} (Process value before last)	
+109	1 VIP2 (1 100033 Value before last)	
+110	DV _{n-1} (Last deviation value)	
+111	DVIFT (Last deviation value)	
+112	DV _{n-2} (Deviation value before last)	
+113	DVII-2 (Deviation value before last)	
+114	D _{n-1} (Last value)	
+115	DIFT (Last value)	

When control is to be started from the initial status, the data must be cleared with the sequence program.

When using the MV of the upper loop as the set value (E2), specify the device where the manipulated value (MV) of the upper loop is set (offset + 12: MV).

When not using E2 as the set value, make sure to specify a dummy device.

(Special register SD1506 can be specified as a dummy device.)

*5: Increasing α decreases the manipulated value variation relative to the set value change.

(It will take time to stabilize.)

Decreasing α increases the manipulated value variation relative to the set value change.

However, since a compensation operation will be stronger, hunting may become greater.

*6: Increasing β decreases the effect of differentiation on the set value change.

Decreasing β increases the effect of differentiation on the set value change.

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

^{*4:} The set value (E2) becomes valid when the set value pattern (SVPTN) is set to "E2 is used".

Processing contents

(1) SV setting processing

Either of the following processings is performed depending on the operation mode (MODE) setting.

- (a) When the operation mode (MODE) is any of CAS, CCB and CSV
 - 1) When the set value (E2) is specified, engineering value conversion is performed with the following expression and then "(2) Tracking processing" is performed.

$$SV_n = \frac{RH - RL}{100} \times E2 + RL$$

- 2) When the set value (E2) is not specified, "(2) Tracking processing" is performed without the engineering value conversion being performed.
- (b) When the operation mode (MODE) is any of MAN, AUT, CMV, CMB, CAB, LCM, LCA and LCC, "(2) Tracking processing" is performed.

(2) Tracking processing

(a) The set value (SV) is converted reversely from the engineering value with the following operation expression to calculate SVn'.

$$SV_n' = \frac{100}{RH - RL} \times (SV_n - RL)$$

- (b) When all of the following conditions hold, tracking processing is performed.
 - 1) The tracking bit (TRK) of the operation constant is 1.
 - 2) The set value (E2) is used.
 - 3) The operation mode (MODE) is any of MAN, AUT, CMV, CMB, CAB, LCM, LCA and LCC.

(c) When the set value (E2) is the manipulated value (MV) of the upper loop, the tracking flag (TRKF) of the alarm detection inhibition (INH) in the upper loop turns to 1.

(3) Gain (Kp) operation processing

(a) The deviation (DV) is calculated under the following condition.

Condition	Operation expression
Forward operation (PN=1)	DV=E1-SVn'
Reverse operation (PN=0)	DV=SVn'-E1

(b) The output gain (K) is calculated under the following condition.

Condition	Operation expression
When DV ≦ GW	K=GG
When DV > GW	$K = 1 - \frac{(1 - GG) \times GW}{ DV }$

(4) 2-degree-of-freedom PID operation

2-degree-of-freedom PID operation is performed with the following operation expression.

	Item	Operation expression
Bn		$B_{n\text{-}1} + \frac{M_D \times T_D}{M_D \times CT + T_D} \times \{ (DV_n - 2DV_{n\text{-}1} + DV_{n\text{-}2}) - \frac{CT \times B_{n\text{-}1}}{T_D} \}$
	When forward operation (PN=1)	$PV_n - PV_{n-1}$
Cn	When reverse operation (PN=0)	$-(PV_n-PV_{n-1})$
	When forward operation (PN=1)	$D_{n\text{-}1} + \frac{M_D \times T_D}{M_D \times CT + T_D} \times \{ (PV_n - 2PV_{n\text{-}1} + PV_{n\text{-}2}) - \frac{CT \times D_{n\text{-}1}}{T_D} \}$
Dn	When reverse operation (PN=0)	$D_{n-1} + \frac{M_D \times T_D}{M_D \times CT + T_D} \times \{ -(PV_n - 2PV_{n-1} + PV_{n-2}) - \frac{CT \times D_{n-1}}{T_D} \}$
BW (ΔMV)		$K_{P} \times \{(1-\alpha) \times (DV_{n} - DV_{n-1}) + \frac{CT}{T_{1}} \times DV_{n} + (1-\beta) \times B_{n} + \alpha \times C_{n} + \beta \times D_{n}\}$

K_P: K × Gain (P), M_D: Derivative gain (MTD)

Ti: Integral constant (I), To: Derivative constant (D)

In the following case, however, note that special processing will be performed.

Condition	Processing
In either of the following cases 1, 2	$B_n = 0, D_n = 0$
1. Derivative constant (D) = 0 ($T_D = 0$)	(However, the loop tag past
2. Operation mode (MODE) is any of MAN, LCM and CMV	value memory is set.)
In any of the following cases 1, 2, 3	
1. Integral constant (I) = 0 (T _I = 0)	
2. When MH or ML error occurred	O.T.
(MVP > MH) and $(\frac{CT}{T_1} \times DV_n > 0)$	$\frac{CT}{T_1} \times DV_n = 0$
3. When MH or ML error occurred	
$(MVP \le ML)$ and $(\frac{CT}{T_1} \times DV_n \le 0)$	

(5) Deviation check

A deviation check is made under the following condition and the result of the check is output to DVLA of the alarm detection (ALM) and the deviation large alarm (BB1) of the block memory.

Condition	Result
DVL < DV	DVLA = BB1 =1 *1
$(DVL - DVLS) < DV \le DVL$	DVLA = BB1 = Last value status hold *1
DV ≦ (DVL-DVLS)	DVLA = BB1 = 0

^{*1:} When DVLI or ERRI in the alarm detection inhibition (INH) is set to 1, DVLA and BB1 show 0 since the alarm is prohibited.

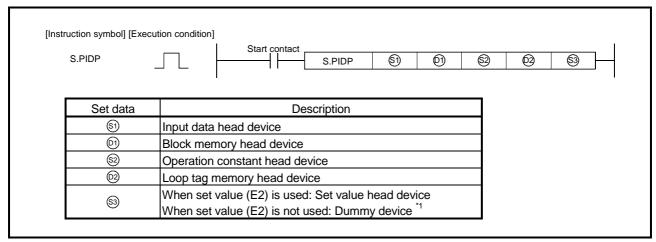
Error code: 4100

(6) Loop stop processing

- (a) Setting 1 in SPA of the alarm detection (ALM) selects a loop stop.
 - A loop stop performs the following processing and terminates the S.2PID instruction.
 - 1) BW is turned to 0.
 - 2) DVLA of the alarm detection (ALM) is turned to 0.
 - 3) The operation mode (MODE) is changed to MAN.
 - 4) BB1 of BB are turned to 0.
- (b) Setting 0 in SPA of the alarm detection (ALM) selects a loop run. A loop run performs "(7) Control cycle judgment".

(7) Control cycle judgment

- (a) If the specified control cycle is not reached, BW (Δ MV) is turned to 0 and the S.2PID instruction is terminated.
- (b) When the specified control cycle is reached, "(1) SV setting processing" is performed.


ERROR

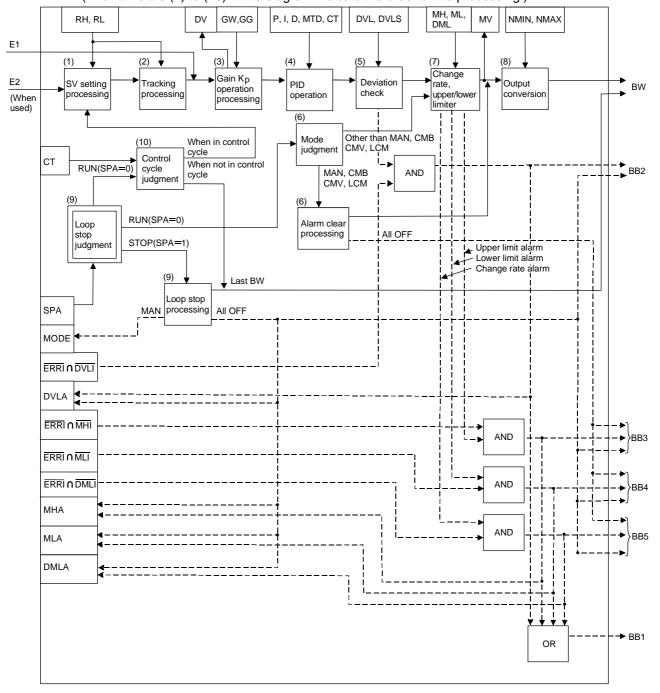
• When an operation error occurs

9 - 16 9 - 16

9.3 Position type PID (S.PIDP)

		Usable devices							
Setting data		devices n, user)	File		CNET/H J[][]	Intelligent function	Index register	Constant	Other
uala	Bit	Word	register	Bit	Word	module U[]\G[]	Zn	K, H	Other
(S1)	_	0				-	=		
(D1)	-	(0			-	=		
<u>\$2</u>	=	0				=	=		
© 2	-	0				-	=		
<u>\$3</u>	=	(0			=	=		

^{*1:} Special register SD1506 can be specified as a dummy device.


Functions

Performs position type PID operation when the specified control cycle is reached. Also performs SV setting processing, tracking processing, gain (Kp) operation processing, deviation check processing and operation mode (MODE) judgment at this time. Performs change rate, upper/lower limiter and output processings or alarm clear processing and output conversion according to the result of the judgment.

Block diagram

The processing block diagram of the S.PIDP instruction is shown below.

(The numerals (1) to (10) in the diagram indicate the order of the processing.)

9 - 18 9 - 18

Control data

(1) Data specified in S.PIDP instruction

Specified po	osition	Symbol	Name	Recommended range ^{⁴1}	Unit	Data format	Standard value	Store
Input data	⑤1+0 +1	E1	Input value	-999999 to 999999		Real number	_	U
	©)+0 +1	BW	Output value	(-999999 to 999999)		Real number		S
		BB						
		BB1	Alarm					
Block		BB2	Deviation large alarm	b15 b12 b8 b4 b0				
memory	+2	BB3	Output upper limit alarm	B B B B B B B B B B B B B B B B B B B		BIN	_	S
		BB4	Output lower limit alarm	(0: Without alarm)		16bit		5
		BB5	Output change rate alarm	(1: With alarm)				
	©+0 +1	MTD	Derivative gain	0 to 999999	_	Real number	8.0	U
	+2 +3	DVLS	Deviation large alarm hysteresis	0 to 100	%	Real number	2.0	U
	+4	PN	Operation mode	Reverse operation Forward operation	_	BIN 16bit	0	U
	+5	TRK	Tracking bit	0: Not trucked 1: Trucked	_	BIN 16bit	0	C
Operation constant	+6	SVPTN	Set value pattern	O to 3 b15 b12 b8 b4 b0 Set value pattern *3 O: E2 is upper loop MV 1: E2 is not upper loop MV 1: E2 is not used		BIN 16bit	3	U
	+7 +8	NMAX	Output conversion upper limit	-999999 to 999999	_	Real number	100.0	U
	+9 +10	NMIN	Output conversion lower limit	-999999 to 999999	_	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

^{*2:} Specify whether the set value (E2) is to be used or not.

^{*3:} Specify whether the MV of the upper loop is to be used or not as the set value (E2).

Specified p	osition	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
	©+1	MODE	Operation mode	0 to FFFFH b15 b12 b8 b4 b0	_	BIN 16bit	8н	S/U
	+3	ALM	Alarm detection	0 to FFFFH b15 b12 b8 b4 b0 S D M M V H L A A A A A A A A A A A A A A A A A A	_	BIN 16bit	4000н	S/U
Loop tag memory *2	+4	INH	Alarm detection inhibition	O to FFFFH b15 b12 b8 b4 b0 E T D M M R K M L L I I F L I I TRKF (0: Without tracking) (1: With tracking) ERRI, DMLI, DVLI, MHI, MLI 0: Alarm enable 1: Alarm inhibit	_	BIN 16bit	4000н	S/U
	+12 +13	MV	Manipulated value	(-10 to 110)	%	Real number	0.0	S
	+14 +15	SV	Set value	RL to RH	_	Real number	0.0	U
	+16 +17	DV	Deviation	(-110 to 110)	%	Real number	0.0	S
	+18 +19	MH	Output upper limit value	-10 to 110	%	Real number	100.0	U
	+20 +21	ML	Output lower limit value	-10 to 110	%	Real number	0.0	U
	+22 +23	RH	Engineering value upper limit	-999999 to 999999	_	Real number	100.0	U
	+24 +25	RL	Engineering value lower limit	-999999 to 999999		Real number	0.0	U
	+46 +47	СТ	Control cycle	0 to 999999 Note that $\frac{CT}{\Delta T} \le 32767$	s	Real number	1.0	U
	+48 +49	DML	Output change rate limit value	0 to 100	%	Real number	100.0	U
	+50 +51	DVL	Change rate limit value	0 to 100	%	Real number	100.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Specified p	osition	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
	©2+52 +53	Р	Gain	0 to 999999	=	Real number	1.0	U
	+54 +55	ı	Integral constant	0 to 999999	s	Real number	10.0	U
Loop tag memory *2	+56 +57	D	Derivative constant	0 to 999999	s	Real number	0.0	U
	+58 +59	GW	Gap width	0 to 100	%	Real number	0.0	C
	+60 +61	GG	Gap gain	0 to 999999	_	Real number	1.0	C
Loop tag past value	©+96 :							
memory *2	+107	_	_	Used by the system as a work area.	_	_	_	S
Set value	\$3+0 +1	E2	Set value	-10 to 110	%	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*3:} The applications of the loop tag past value memory are indicated below.

Specified position	Description
©2+96	Control cycle counter initial preset flag
+97	Control cycle counter
+100	In-1 (Last value)
+101	In-1 (Last value)
+102	B _{n-1} (Last value)
+103	Dh-1 (Last value)
+104	PV₁ (Process value)
+105	r vn (r 100ess value)
+106	PV _{n-1} (Last process value)
+107	r vn-1 (Last process value)

When control is to be started from the initial status, the data must be cleared with the sequence program.

When using the MV of the upper loop as the set value (E2), specify the device where the manipulated value (MV) of the upper loop is set (offset + 12: MV).

When not using E2 as the set value, make sure to specify a dummy device.

(Special register SD1506 can be specified as a dummy device.)

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

^{*4:} The set value (E2) becomes valid when the set value pattern (SVPTN) is set to "E2 is used".

Processing contents

(1) SV setting processing

Either of the following processings is performed depending on the operation mode (MODE) setting.

- (a) When the operation mode (MODE) is any of CAS, CCB and CSV
 - 1) When the set value (E2) is specified, engineering value conversion is performed with the following expression and then "(2) Tracking processing" is performed.

$$SV_n = \frac{RH - RL}{100} \times E2 + RL$$

- 2) When the set value (E2) is not specified, "(2) Tracking processing" is performed without the engineering value conversion being performed.
- (b) When the operation mode (MODE) is any of MAN, AUT, CMV, CMB, CAB, LCM, LCA and LCC, "(2) Tracking processing" is performed.

(2) Tracking processing

(a) The set value (SV) is converted reversely from the engineering value with the following operation expression to calculate SVn'.

$$SV_n' = \frac{100}{RH - RL} \times (SV_n - RL)$$

- (b) When all of the following conditions hold, tracking processing is performed.
 - 1) The tracking bit (TRK) of the operation constant is 1.
 - 2) The set value (E2) is used.
 - 3) The operation mode (MODE) is any of MAN, AUT, CMV, CMB, CAB, LCM, LCA and LCC.

(c) When the set value (E2) is the manipulated value (MV) of the upper loop, the tracking flag (TRKF) of the alarm detection inhibition (INH) in the upper loop turns to 1.

(3) Gain (Kp) operation processing

(a) The deviation (DV) is calculated under the following condition.

Condition	Operation expression
Forward operation (PN=1)	DV=E1-SVn'
Reverse operation (PN=0)	DV=SVn'-E1

(b) The output gain (K) is calculated under the following condition.

Condition	Operation expression
When DV ≦ GW	K=GG
When DV > GW	$K = 1 - \frac{(1 - GG) \times GW}{ DV }$

(4) PID operation

PID operation is performed with the following operation expression.

	Item	Operation expression
D	When forward operation (PN = 1)	$B_{n-1} + \frac{M_D \times T_D}{M_D \times CT + T_D} \times \{ (PV_n - PV_{n-1}) - \frac{CT \times B_{n-1}}{T_D} \}$
Bn	When reverse operation (PN = 0)	$B_{n\text{-}1} + \frac{M_D \times T_D}{M_D \times CT + T_D} \times \{ -(PV_n - PV_{n\text{-}1}) - \frac{CT \times B_{n\text{-}1}}{T_D} \}$
In		$I_{n-1} + \frac{CT}{T_1} \times DV_n$
Т		$Kp \times (DVn + In + Bn)$

Kp: K × Gain (P), Mp: Derivative gain (MTD)

Ti: Integral constant (I), To: Derivative constant (D)

In the following case, however, note that special processing will be performed.

Condition	Processing
In either of the following cases 1, 2	$B_n = 0$
1. Derivative constant (D) = 0 ($T_D = 0$)	(However, the loop tag past
2. Operation mode (MODE) is any of MAN, LCM and CMV	value memory is set.)
In any of the following cases 1, 2, 3 1. Integral constant (I) = 0 (T _I = 0) 2. When MH error occurred CT/T _I × DV _n > 0 3. When ML error occurred	$\frac{CT}{T_1} \times DV_n = 0$
3. When ML error occurred $\frac{CT}{T_1} \times DV_n < 0$	

(5) Deviation check

A deviation check is made under the following condition and the result of the check is output to DVLA of the alarm detection (ALM) and the deviation large alarm (BB2) of the block memory.

Condition	Result
DVL < DV	DVLA=BB2=1 *1
$(DVL-DVLS) < DV \le DVL$	DVLA=BB2=Last value status hold *1
$ DV \le (DVL - DVLS)$	DVLA=BB2=0

^{*1:} When DVLI or ERRI in the alarm detection inhibition (INH) is set to 1, DVLA and BB2 show 0 since the alarm is prohibited

(6) Mode judgment

Either of the following processings is performed depending on the operation mode (MODE) setting.

- (a) When the operation mode (MODE) is any of MAN, CMB, CMV and LCM (alarm clear processing)
 - 1) MHA, MLA and DMLA of the alarm detection (ALM) are turned to 0.
 - 2) BB3 to BB5 of BB are turned to 0.
 - 3) Data of BB2 is transferred to BB1 of BB. (BB1 = BB2)
 - 4) "(8) Output conversion processing" is performed and the S.PIDP instruction is terminated.
- (b) When the operation mode (MODE) is any of AUT, CAB, CAS, CCB, CSV, LCA and LCC, "(7) Change rate, upper/lower limiter" is executed.

(7) Change rate, upper/lower limiter

Change rate and upper/lower limit checks are performed on a difference between the temporary MV (T) and manipulated value (MV), and the data and alarm are output after the limiter processings.

(a) The change rate limiter performs the following operation and outputs the result of the operation to BB5 and DMLA.

Condition	BB5, DMLA	T1
$ T - MV \leq DML$	0	Т
(T - MV) > DML	1 *1	MV + DML
(T - MV) < - DML	1 *1	MV — DML

^{*1:} When DMLI or ERRI in the alarm detection inhibition (INH) is set to 1, DMLA and BB5 show 0 since the alarm is prohibited.

(b) The upper/lower limiter performs the following operation and outputs the result of the operation to BB3, BB4, MHA and MLA.

Condition	BB4, MLA	BB3, MHA	MV
T1 > MH	0	1 *2	MH
T1 < ML	1 *3	0	ML
$ML \le T1 \le MH$	0	0	T1

^{*2:} When MHI or ERRI in the alarm detection inhibition (INH) is set to 1, MHA and BB3 show 0 since the alarm is prohibited.

(8) Output conversion

In the output conversion, the output value is calculated from the following formula.

$$BW = \frac{NMAX - NMIN}{100} \times MV + NMIN$$

(9) Loop stop processing

(a) Setting 1 in SPA of the alarm detection (ALM) selects a loop stop.

A loop stop performs the following processing and terminates the S.PIDP instruction.

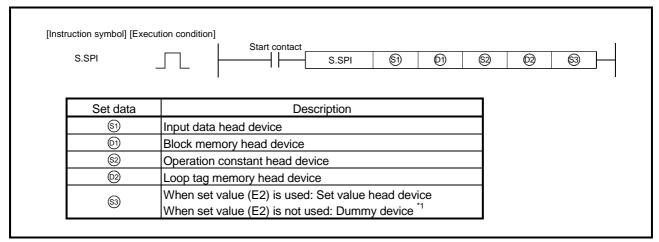
- 1) BW retains the last value.
- 2) DVLA, MHA, MLA and DMLA of the alarm detection (ALM) are turned to 0.
- 3) The operation mode (MODE) is changed to MAN.
- 4) BB1 to BB5 of BB are turned to 0.
- (b) Setting 0 in SPA of the alarm detection (ALM) selects a loop run.

A loop run performs "(10) Control cycle judgment".

(10) Control cycle judgment

- (a) When the specified control cycle is not reached, BW is retained and the S.PIDP instruction is terminated.
- (b) When the specified control cycle is reached, "(1) SV setting processing" is performed.

^{*3:} When MLI or ERRI in the alarm detection inhibition (INH) is set to 1, MLA and BB4 show 0 since the alarm is prohibited.

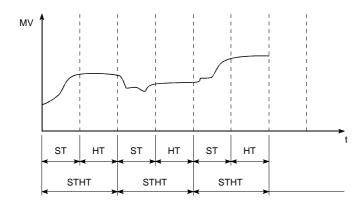

Error code: 4100

ERROR

• When an operation error occurs

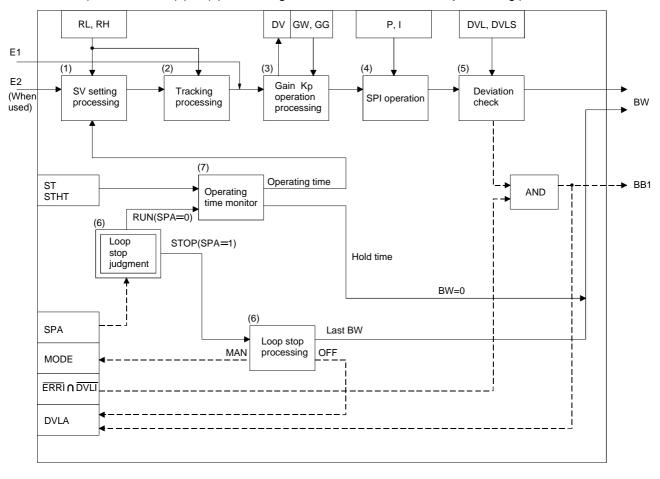
9.4 Sample PI (S.SPI)

	Usable devices										
Setting data	Internal devices (System, user)		File	MELSECNET/H direct JE XE 3		Intelligent function register		Constant	Other		
	Bit	Word	register	Bit	Word	module U[]\G[]	Zn	K, H	Other		
(S1)	_	0		_							
(1)	_			_							
<u>\$2</u>	_	0		_							
(D2)	_	0		_							
<u>\$3</u>	_	(_							



^{*1:} Special register SD1506 can be specified as a dummy device.

Functions


Performs normal PI operation during operating time (ST).

Judges between operating time (ST) or hold time (HT), and if it is the operating time, performs SV setting processing, tracking processing, gain (Kp) operation processing, SPI operation and deviation check.

Block diagram

The processing block diagram of the S.SPI instruction is shown below. (The numerals (1) to (7) in the diagram indicate the order of the processing.)

Control data

(1) Data specified in S.SPI instruction

Specified po	Specified position		Name	Recommended range *1	Unit	Data format	Standard value	Store
Input data	\$1)+0 +1	E1	Input value	-999999 to 999999	%	Real number	_	U
	©)+0 +1	BW	Output value (ΔMV)	(-999999 to 999999)	%	Real number	1	S
		BB		-				
Block memory	+2	BB1	Deviation large alarm	b15 b12 b8 b4 b0 B B B I I I I I I I I I I I I I I I I	-	BIN 16bit	_	S
	©+0 +1	DVLS	Deviation large LS alarm 0 to 100 hysteresis			Real number	2.0	U
	+2	PN	Operation mode 0: Reverse operation 1: Forward operation			BIN 16bit	0	U
	+3	TRK	Tracking bit	0: Not trucked 1: Trucked	1	BIN 16bit	0	U
Operation constant	+4	SVPTN	Set value pattern	O to 3 b15 b12 b8 b4 b0 Set value pattern *3 Set value used *2 O: E2 is upper loop MV O: E2 is used 1: E2 is not upper loop MV 1: E2 is not used	_	BIN 16bit	3	J

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*2:} Specify whether the set value (E2) is to be used or not.

^{*3:} Specify whether the MV of the upper loop is to be used or not as the set value (E2).

Specified po	osition	Symbol	Name	Recommended range *1		Data format	Standard value	Store
	©+1	MODE	Operation mode	0 to FFFFH b15 b12 b8 b4 b0	_	BIN 16Bit	8н	S/U
Loop tag memory ^{*2}	+3			b15 b12 b8 b4 b0 S D M M M W H L A<	_	BIN 16Bit	4000н	S/U
	+4	INH	Alarm detection inhibition	O to FFFFH b15 b12 b8 b4 b0 E		BIN 16Bit	4000н	S/U
	+14 +15	SV	Set value	value RL to RH		Real number	0.0	U
	+16 +17	DV	Deviation	(-110 to 110)	%	Real number	0.0	S
	+22 +23	RH	Engineering value upper limit	-999999 to 999999	_	Real number	100.0	U
	+24 +25	RL	Engineering value lower limit	-999999 to 999999	_	Real number	0.0	U
	+46 +47	ST	Operating time	0 to 999999 Note that $\frac{ST}{\Delta T} \le 32767$	s	Real number	0.0	U
	+50 +51	DVL	Change rate limit value	0 to 100	%	Real number	100.0	U
	+52 +53	Р	Gain	0 to 999999		Real number	1.0	U
	+54 +55	I	Integral constant	0 to 999999	s	Real number	10.0	U
	+56 +57	STHT	Sample cycle	0 to 999999 Note that $\frac{\text{STHT}}{\Delta T} \le 32767$	S	Real number	0.0	U
	+58 +59	GW	Gap width	0 to 100	%	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

		Symbol	Name	Recommended range ^{*1}	Unit	Data format	Standard value	Store
Loop tag	©+60 +61	GG	Gap gain	0 to 999999		Real number	1.0	U
memory *2	+62 +63	MVP	MV inside operation value	(-999999 to 999999)	%	Real number	0.0	S
Loop tag past value memory *2 *3	101 (D)		_	Used by the system as a work area.	_	_	1	_
Set value *4	[®] +0 +1	E2	Set value	-10 to 110	%	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

^{*3:} The applications of the loop tag past value memory are indicated below.

Specified position	Description		
№+96	Control cycle counter initial preset flag		
+97	Sample counter		
+98	Operation definition		
+99	Hold counter		
+100	DV . (Lost deviation value)		
+101	DV _{n-1} (Last deviation value)		

When control is to be started from the initial status, the data must be cleared with the sequence program.

When using the MV of the upper loop as the set value (E2), specify the device where the manipulated value (MV) of the upper loop is set (offset + 12: MV).

When not using E2 as the set value, make sure to specify a dummy device.

(Special register SD1506 can be specified as a dummy device.)

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

Processing contents

(1) SV setting processing

Either of the following processings is performed depending on the operation mode (MODE) setting.

- (a) When the operation mode (MODE) is any of CAS, CCB and CSV
 - 1) When the set value (E2) is specified, engineering value conversion is performed with the following expression and then "(2) Tracking processing" is performed.

$$SV_n = \frac{RH - RL}{100} \times E2 + RL$$

- 2) When the set value (E2) is not specified, "(2) Tracking processing" is performed without the engineering value conversion being performed.
- (b) When the operation mode (MODE) is any of MAN, AUT, CMV, CMB, CAB, LCM, LCA and LCC, "(2) Tracking processing" is performed.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

^{*4:} The set value (E2) becomes valid when the set value pattern (SVPTN) is set to "E2 is used".

(2) Tracking processing

(a) The set value (SV) is converted reversely from the engineering value with the following operation expression to calculate SVn'.

$$SV_n' = \frac{100}{RH - RL} \times (SV_n - RL)$$

- (b) When all of the following conditions hold, tracking processing is performed.
 - 1) The tracking bit (TRK) of the operation constant is 1.
 - 2) The set value (E2) is used.
 - 3) The operation mode (MODE) is any of MAN, AUT, CMV, CMB, CAB, LCM, LCA and LCC.

(c) When the set value (E2) is the manipulated value (MV) of the upper loop, the tracking flag (TRKF) of the alarm detection inhibition (INH) in the upper loop turns to 1.

(3) Gain (Kp) operation processing

(a) The deviation (DV) is calculated under the following condition.

Condition	Operation expression				
Forward operation($PN = 1$)	DV = E1 - SVn'				
Reverse operation($PN = 0$)	$DV = SV_{n'} - E1$				

(b) The output gain (K) is calculated under the following condition.

Condition	Operation expression
When DV ≦ GW	K = GG
When DV > GW	$K = 1 - \frac{(1 - GG) \times GW}{ DV }$

(4) SPI operation

SPI operation is performed with the following operation expression.

Condition	Operation expression			
During operating time (ST)	$BW = K_P \times \{(DV_n - DV_{n-1}) + \frac{BT}{T_1} \times DV_n\}$			
During hold time (STHT—ST)	BW = 0 (loop tag past value memory is not set.)			

K_P: K × Gain (P), T_I: Integral constant (I), BT: Execution cycle (ΔT)

In the following case, however, note that special processing will be performed.

Condition	Operation expression		
In any of the following cases 1, 2, 3 1. Integral constant (I) = 0 (T_1 = 0) 2. When MH or ML error occurred (MVP > MH) and ($\frac{BT}{T_1} \times DV_n > 0$) 3. When MH or ML error occurred (MVP < ML) and ($\frac{BT}{T_1} \times DV_n < 0$)	$\frac{BT}{T_1} \times DV_n = 0$		

9 - 31 9 - 31

Error code: 4100

(5) Deviation check

A deviation check is made under the following condition and the result of the check is output to DVLA of the alarm detection (ALM) and the deviation large alarm (BB1) of the block memory.

Condition	Result				
DVL < DV	$DVLA = BB1 = 1^{1}$				
$(DVL - DVLS) < DV \le DVL$	DVLA = BB1 = Last value status hold *1				
$ DV \le (DVL - DVLS)$	DVLA = BB1 = 0				

^{*1:} When DVLI or ERRI of the alarm detection inhibition (INH) is 1, DVLA and BB1 turn to 0 since the alarm is inhibited.

(6) Loop stop processing

(a) Setting 1 in SPA of the alarm detection (ALM) selects a loop stop.

A loop stop performs the following processing and terminates the S.SPI instruction.

- 1) BW is turned to 0.
- 2) DVLA of the alarm detection (ALM) is turned to 0.
- 3) The operation mode (MODE) is changed to MAN.
- 4) BB1 of BB are turned to 0.
- (b) Setting 0 in SPA of the alarm detection (ALM) selects a loop run.

 A loop run performs "(7) Operating time/hold time check judgment ".

(7) Operating time/hold time check judgment

Whether it is the operating time (ST) or hold time (HT = STHT - ST) is judged and the following processing is performed.

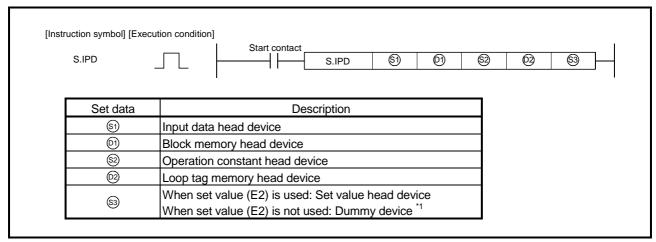
(a) Operating time (ST)

SV setting processing, tracking processing, gain (Kp) operation processing, PI operation (operating time) and deviation check are performed.

(b) Hold time (HT = STHT - ST)

Tracking processing, SPI operation (hold time) and deviation check are performed. Under the following condition, however, the hold time is set to 0 and continuous PI control is carried out.

$$\frac{\mathsf{STHT}}{\Delta\mathsf{T}} \leqq \frac{\mathsf{ST}}{\Delta\mathsf{T}}$$


When the integer part of $\frac{STHT}{\Delta T}$ is 0, no processing is performed. (Δ MV also remains unchanged.)

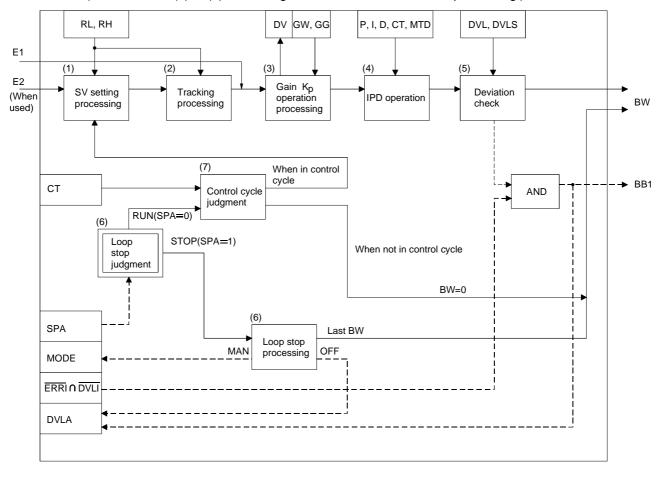
Error

When an operation error occurs

9.5 I-PD Control (S.IPD)

	Usable devices										
Setting data	Internal devices (System, user)		File	MELSECNET/H direct J[][]		Intelligent function	Index	Constant	Other		
	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Otriei		
(S1)	_	0		_							
(D1)	_	(_							
<u>\$2</u>	=	0		_							
© 2	=	0		_							
(S3)	_			_							

^{*1:} Special register SD1506 can be specified as a dummy device.


Functions

Performs I-PD control when the specified control cycle is reached.

Also performs SV setting processing, tracking processing, gain (Kp) operation processing and deviation check at this time.

Block diagram

The processing block diagram of the S.IPD instruction is shown below. (The numerals (1) to (7) in the diagram indicate the order of the processing.)

Control data

(1) Data specified in S.IPD instruction

Specified po	osition	Symbol	Name	Recommended range ^{*1}	Unit	Data format	Standard value	Store
Input data	©1+0 +1	E1	Input value	-999999 to 999999	%	Real number	_	U
	©1+0 +1	BW	Output value (Δ MV)	(-999999 to 999999)	%	Real number	_	S
		BB		<u> </u>				
Block memory	+2	BB1	Deviation large alarm	b15 b12 b8 b4 b0 B B B 1 1 (0: Without alarm) (1: With alarm)		BIN 16bit	_	S
	\$2+0 +1	MTD	Derivative gain	0 to 999999	_	Real number	8.0	U
	+2 +3	DVLS	Deviation large alarm hysteresis	0 to 100	%	Real number	2.0	U
	+4	PN	Operation mode	Reverse operation Forward operation	_	BIN 16bit	0	U
	+5	TRK	Tracking bit	0: Not trucked 1: Trucked	_	BIN 16bit	0	U
Operation constant	+6	SVPTN	Set value pattern	O to 3 b15 b12 b8 b4 b0 Set value pattern *3 Set value used *2 O: E2 is upper loop MV 0: E2 is used 1: E2 is not upper loop MV 1: E2 is not used	_	BIN 16bit	3	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*2:} Specify whether the set value (E2) is to be used or not.

^{*3:} Specify whether the MV of the upper loop is to be used or not as the set value (E2).

Specified position		Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
Loop tag memory *2	©2+1	MODE	Operation mode	0 to FFFFH b15 b12 b8 b4 b0	_	BIN 16bit	8н	S/U
	+3	ALM	Alarm detection	0 to FFFFH b15 b12 b8 b4 b0 S P D M M V H L A A A A SPA DVLA, MHA, MLA 0: Loop RUN 1: Loop STOP (1: With alarm)	_	BIN 16bit	4000н	S/U
	+4	INH	Alarm detection inhibition	O to FFFFH b15 b12 b8 b4 b0 E T D M M R K K L I I I TRKF (0: Without tracking) (1: With tracking) ERRI, DVLI, MHI, MLI 0: Alarm enable 1: Alarm inhibit	_	BIN 16bit	4000н	S/U
	+14 +15	SV	Set value	RL to RH	ı	Real number	0.0	U
	+16 +17	DV	Deviation	(-110 to 110)	%	Real number	0.0	S
	+22 +23	RH	Engineering value upper limit	-999999 to 999999	_	Real number	100.0	U
	+24 +25	RL	Engineering value lower limit	-999999 to 999999	_	Real number	0.0	U
	+46 +47	СТ	Control cycle	0 to 999999 Note that $\frac{CT}{\Delta T} \le 32767$	s	Real number	1.0	U
	+50 +51	DVL	Change rate limit value	0 to 100	%	Real number	100.0	J
	+52 +53	Р	Gain	0 to 999999		Real number	1.0	U
	+54 +55	I	Integral constant	0 to 999999	s	Real number	10.0	U
	+56 +57	D	Derivative constant	0 to 999999	s	Real number	0.0	U
	+58 +59	GW	Gap width	0 to 100	%	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Specified position		Symbol	Name	Recommended range ^{*1}	Unit	Data format	Standard value	Store
Loop tag	©+60 +61	GG	Gap gain	0 to 999999		Real number	1.0	U
memory*2	+62 +63	MVP	MV inside operation value	(-999999 to 999999)	%	Real number	0.0	8
Loop tag past value memory *2 *3	©+96 +109	_	_	Used by the system as a work area.		_	-	S
Set value *4	[®] +0 +1	E2	Set value	-10 to 110	%	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

^{*3:} The applications of the loop tag past value memory are indicated below.

Specified position	Description		
@+96	Control cycle counter initial preset flag		
+97	Control cycle counter		
+102	P. (Lost volue)		
+103	B _{n-1} (Last value)		
+104	PV₁ (Process value)		
+105	F vn (Flocess value)		
+106	PV _{n-1} (Last process value)		
+107	F VII-1 (Last process value)		
+108	DV. a (Process value before last)		
+109	PV _{n-2} (Process value before last)		

When control is to be started from the initial status, the data must be cleared with the sequence program.

When using the MV of the upper loop as the set value (E2), specify the device where the manipulated value (MV) of the upper loop is set (offset + 12: MV).

When not using E2 as the set value, make sure to specify a dummy device.

(Special register SD1506 can be specified as a dummy device.)

(2) Execution cycle (△T)

Set the execution cycle in SD1500 and SD1501 as real numbers.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

^{*4:} The set value (E2) becomes valid when the set value pattern (SVPTN) is set to "E2 is used".

Processing contents

(1) SV setting processing

Either of the following processings is performed depending on the operation mode (MODE) setting.

- (a) When the operation mode (MODE) is any of CAS, CCB and CSV
 - 1) When the set value (E2) is specified, engineering value conversion is performed with the following expression and then "(2) Tracking processing" is performed.

$$SV_n = \frac{RH - RL}{100} \times E2 + RL$$

- 2) When the set value (E2) is not specified, "(2) Tracking processing" is performed without the engineering value conversion being performed.
- (b) When the operation mode (MODE) is any of MAN, AUT, CMV, CMB, CAB, LCM, LCA and LCC, "(2) Tracking processing" is performed.

(2) Tracking processing

(a) The set value (SV) is converted reversely from the engineering value with the following operation expression to calculate SVn'.

$$SV_n' = \frac{100}{RH - RL} \times (SV_n - RL)$$

- (b) When all of the following conditions hold, tracking processing is performed.
 - 1) The tracking bit (TRK) of the operation constant is 1.
 - 2) The set value (E2) is used.
 - 3) The operation mode (MODE) is any of MAN, AUT, CMV, CMB, CAB, LCM, LCA and LCC.

(c) When the set value (E2) is the manipulated value (MV) of the upper loop, the tracking flag (TRKF) of the alarm detection inhibition (INH) in the upper loop turns to 1.

(3) Gain (Kp) operation processing

(a) The deviation (DV) is calculated under the following condition.

Condition	Operation expression			
Forward operation (PN $= 1$)	DV = E1 - SVn'			
Reverse operation (PN $= 0$)	DV = SVn' - E1			

(b) The output gain (K) is calculated under the following condition.

Condition	Operation expression				
When DV ≦ GW	K = GG				
When DV > GW	$K = 1 - \frac{(1 - GG) \times GW}{ DV }$				

9 - 38 9 - 38

(4) I-PD operation

I-PD operation is performed with the following operation expression.

	Item	Operation expression			
Bn	When forward operation (PN = 1)	$B_{n-1} + \frac{M_D \times T_D}{M_D \times CT + T_D} \times \{ (PV_n - 2PV_{n-1} + PV_{n-2}) - \frac{CT \times B_{n-1}}{T_D} \}$			
	When reverse operation (PN = 0)	$B_{n-1} + \frac{M_D \times T_D}{M_D \times CT + T_D} \times \{ -(PV_n - 2PV_{n-1} + PV_{n-2}) - \frac{CT \times B_{n-1}}{T_D} \}$			
	When forward operation (PN = 1)	$K_P \times \{\frac{CT}{T_i} \times DV_n + (PV_n - PV_{n-1}) + B_n\}$			
BW (AMV)	When reverse operation (PN = 0)	$K_P \times \{\frac{CT}{T_1} \times DV_n - (PV_n - PV_{n-1}) + B_n\}$			

 $K_P: K \times Gain (P), M_D: Derivative gain (MTD)$

Ti: Integral constant (I), T_D: Derivative constant (D)

In the following case, however, note that special processing will be performed.

Condition	Processing
In either of the following cases 1, 2	$B_n = 0$
1. Derivative constant (D) = 0 ($T_D = 0$)	(However, the loop tag past
2. Operation mode (MODE) is any of MAN, LCM and CMV	value memory is set.)
In any of the following cases 1, 2, 3	
1. Integral constant (I) = 0 (T _I = 0)	
2. When MH or ML error occurred	CT
$(MVP > MH)$ and $(\frac{CT}{T_1} \times DV_n > 0)$	$\frac{CT}{T_1} \times DV_n = 0$
3. When MH or ML error occurred	
$(MVP < ML)$ and $(\frac{CT}{T_1} \times DV_n < 0)$	

(5) Deviation check

A deviation check is made under the following condition and the result of the check is output to DVLA of the alarm detection (ALM) and the deviation large alarm (BB1) of the block memory.

Condition	Result
DVL < DV	$DVLA = BB1 = 1^{1}$
$(DVL - DVLS) < DV \le DVL$	DVLA = BB1 = Last value status hold *1
$ DV \le (DVL - DVLS)$	DVLA = BB1 = 0

^{*1:} When DVLI or ERRI in the alarm detection inhibition (INH) is set to 1, DVLA and BB1 show 0 since the alarm is prohibited.

(6) Loop stop processing

(a) Setting 1 in SPA of the alarm detection (ALM) selects a loop stop.

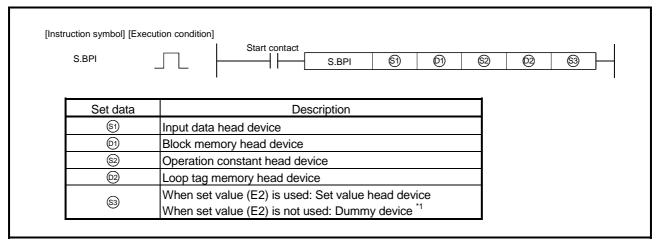
A loop stop performs the following processing and terminates the S.IPD instruction.

- 1) BW is turned to 0.
- 2) DVLA of the alarm detection (ALM) is turned to 0.
- 3) The operation mode (MODE) is changed to MAN.
- 4) BB1 of BB are turned to 0.
- (b) Setting 0 in SPA of the alarm detection (ALM) selects a loop run.

A loop run performs "(7) Control cycle judgment".

Error code: 4100

(7) Control cycle judgment


- (a) If the specified control cycle is not reached, BW (ΔMV) is turned to 0 and the S.IPD instruction is terminated.
- (b) When the specified control cycle is reached, "(1) SV setting processing" is performed.

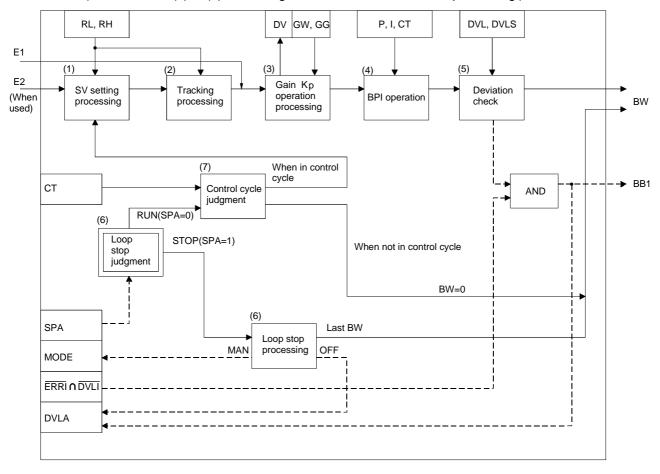
Error

• When an operation error occurs

9.6 Blend PI control (S.BPI)

Setting data	Usable devices										
		devices n, user)	File	MELSECNET/H direct J[]\[]		Intelligent function	Index register	Constant	Other		
	Bit	Word	register	Bit	Word	module U[]\G[]	Zn	K, H	Other		
(S1)	_	(-							
(D1)	-	(_							
<u>\$2</u>	=	(0		_						
(D2)	-	0		_							
<u>\$3</u>	=	(0			=	=				

^{*1:} Special register SD1506 can be specified as a dummy device.


Functions

Performs BPI operation when the specified control cycle is reached.

Also performs SV setting processing, tracking processing, gain (Kp) operation processing and deviation check at this time.

Block diagram

The processing block diagram of the S.BPI instruction is shown below. (The numerals (1) to (7) in the diagram indicate the order of the processing.)

Control data

(1) Data specified in S.BPI instruction

Specified position		Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
Input data	\$1+0 +1	E1	Input value	-999999 to 999999	%	Real number		U
	©)+0 +1	BW	Output value (ΔMV)	(-999999 to 999999)	%	Real number		S
		BB		=				
Block memory	+2	+2 BB1 Deviation large alarm		b15 b12 b8 b4 b0	_	BIN 16bit	I	S
	[©] +0 +1	DVLS	Deviation large alarm hysteresis	0 to 100	%	Real number	2.0	U
	+2	PN	Operation mode	Reverse operation Forward operation	_	BIN 16bit	0	U
	+3	TRK	Tracking bit	0: Not trucked 1: Trucked	_	BIN 16bit	0	U
Operation constant	+4	SNPTN	Set value pattern	O to 3 b15 b12 b8 b4 b0 Set value pattern *3 Set value used *2 O: E2 is upper loop MV 0: E2 is used 1: E2 is not upper loop MV 1: E2 is not used	_	BIN 16bit	3	J

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

^{*2:} Specify whether the set value (E2) is to be used or not.

^{*3:} Specify whether the MV of the upper loop is to be used or not as the set value (E2).

Specified position		Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
	©+1	MODE	Operation mode	0 to FFFFH b15 b12 b8 b4 b0 C C C C C C A M L L L C C C C C C C C C C C C C C C C	_	BIN 16bit	8н	S/U
Loop tag memory *2	+3	ALM	Alarm detection	0 to FFFFH b15 b12 b8 b4 b0 SPA DVLA, MHA, MLA 0: Loop RUN 1: Loop STOP (1: With alarm)	_	BIN 16bit	4000н	S/U
	+4	INH	Alarm detection inhibition	O to FFFFH b15 b12 b8 b4 b0 E T D M M R K K L I I I TRKF (0: Without tracking) (1: With tracking) ERRI, DVLI, MHI, MLI 0: Alarm enable 1: Alarm inhibit	_	BIN 16bit	4000н	S/U
	+14 +15	SV	Set value	RL to RH	_	Real number	0.0	U
	+16 +17	DV	Deviation	(-110 to 110)	%	Real number	0.0	S
	+22 +23	RH	Engineering value upper limit	-999999 to 999999	_	Real number	100.0	U
	+24 +25	RL	Engineering value lower limit	-999999 to 999999	_	Real number	0.0	U
	+46 +47	СТ	Control cycle	0 to 999999 Note that $\frac{CT}{\Delta T} \le 32767$	s	Real number	1.0	U
	+50 +51	DVL	Change rate limit value	0 to 100	%	Real number	100.0	U
	+52 +53	Р	Gain	0 to 999999	_	Real number	1.0	U
	+54 +55	I	Integral constant	0 to 999999	s	Real number	10.0	U
	+56 +57	SDV	DV cumulative value (Σ DV)	-999999 to 999999	%	Real number	0.0	S

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Specified position		Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
Loop tag	©+58 +59	(7//	Gap width	0 to 100	%	Real number	0.0	U
Memory *2	+60 +61	GG	Gap gain	0 to 999999	ı	Real number	1.0	U
Loop tag past value Memory *2 *3	©2+96 +99	ı	_	Used by the system as a work area.	l		ı	S
Set value *4	③+0 +1	E2	Set value	-10 to 110	%	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

^{*3:} The applications of the loop tag past value memory are indicated below.

Specified position	Description
@+96	Control cycle counter initial preset flag
+97	Control cycle counter
+98	$CT \times \Sigma DV_1$
+99	Ti ~ ZBVI

When control is to be started from the initial status, the data must be cleared with the sequence program.

When using the MV of the upper loop as the set value (E2), specify the device where the manipulated value (MV) of the upper loop is set (offset + 12: MV).

When not using E2 as the set value, make sure to specify a dummy device.

(Special register SD1506 can be specified as a dummy device.)

(2) Execution cycle (△T)

Set the execution cycle in SD1500 and SD1501 as real numbers.

Processing contents

(1) SV setting processing

Either of the following processings is performed depending on the operation mode (MODE) setting.

- (a) When the operation mode (MODE) is any of CAS, CCB and CSV
 - 1) When the set value (E2) is specified, engineering value conversion is performed with the following expression and then "(2) Tracking processing" is performed.

$$SV_n = \frac{RH - RL}{100} \times E2 + RL$$

- 2) When the set value (E2) is not specified, "(2) Tracking processing" is performed without the engineering value conversion being performed.
- (b) When the operation mode (MODE) is any of MAN, AUT, CMV, CMB, CAB, LCM, LCA and LCC, "(2) Tracking processing" is performed.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

^{*4:} The set value (E2) becomes valid when the set value pattern (SVPTN) is set to "E2 is used".

(2) Tracking processing

(a) The set value (SV) is converted reversely from the engineering value with the following operation expression to calculate SVn'.

$$SV_n' = \frac{100}{RH - RL} \times (SV_n - RL)$$

- (b) When all of the following conditions hold, tracking processing is performed.
 - 1) The tracking bit (TRK) of the operation constant is 1.
 - 2) The set value (E2) is used.
 - 3) The operation mode (MODE) is any of MAN, AUT, CMV, CMB, CAB, LCM, LCA and LCC.

(c) When the set value (E2) is the manipulated value (MV) of the upper loop, the tracking flag (TRKF) of the alarm detection inhibition (INH) in the upper loop turns to 1.

(3) Gain (Kp) operation processing

(a) The deviation (DV) is calculated under the following condition.

Condition	Operation expression			
Forward operation (PN $= 1$)	DV = E1 - SVn'			
Reverse operation (PN $= 0$)	DV = SVn' - E1			

(b) The output gain (K) is calculated under the following condition.

Condition	Operation expression
When DV ≦ GW	K = GG
When DV > GW	$K = 1 - \frac{(1 - GG) \times GW}{ DV }$

(4) BPI operation

BPI operation is performed with the following operation expression.

Condition	Operation expression
BW (Δ MV)	$K_P \times BT \times (DV_n + \frac{CT}{T_1} \times \Sigma DV_1)$

Kp: K × Gain (P), BT: Execution cycle, Ti: Integral constant (I),

Σ DV_I: Cumulative value of DVn, DVn: Deviation

In the following case, however, note that special processing will be performed.

Condition	
In either of the following cases 1, 2 1. Integral constant (I) = 0 (T _I = 0) 2. Either MLA or MHA of alarm detection (ALM) is 1	$\frac{CT}{T_i} \times \Sigma DV_i = \text{last value unchanged}$
1. Integral constant (I) ≠ 0 (Tı ≠ 0)	$\frac{CT}{T_{i}} \times \Sigma DV_{i} = \frac{CT}{T_{i}} \times (\Sigma DV_{i} + DV_{n})$

Error code: 4100

(5) Deviation check

A deviation check is made under the following condition and the result of the check is output to DVLA of the alarm detection (ALM) and the deviation large alarm (BB1) of the block memory.

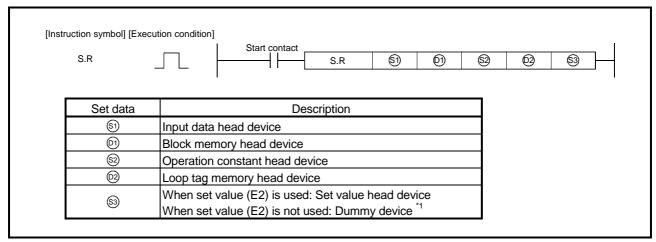
Condition	Result				
DVL < DV	$DVLA = BB1 = 1^{1}$				
$(DVL - DVLS) < DV \le DVL$	DVLA = BB1 = Last value status hold *1				
$ DV \le (DVL - DVLS)$	DVLA = BB1 = 0				

^{*1:} When DVLI or ERRI in the alarm detection inhibition (INH) is set to 1, DVLA and BB1 show 0 since the alarm is prohibited.

(6) Loop stop processing

- (a) Setting 1 in SPA of the alarm detection (ALM) selects a loop stop.
 - A loop stop performs the following processing and terminates the S.BPI instruction.
 - 1) BW is turned to 0.
 - 2) DVLA of the alarm detection (ALM) is turned to 0.
 - 3) The operation mode (MODE) is changed to MAN.
 - 4) BB1 of BB are turned to 0.
- (b) Setting 0 in SPA of the alarm detection (ALM) selects a loop run. A loop run performs "(7) Control cycle judgment".

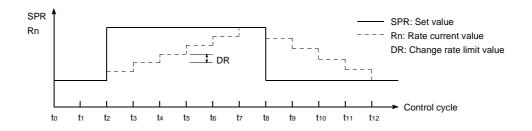
(7) Control cycle judgment


- (a) If the specified control cycle is not reached, BW is turned to 0 and the S.BPI instruction is terminated.
- (b) When the specified control cycle is reached, "(1) SV setting processing" is performed.

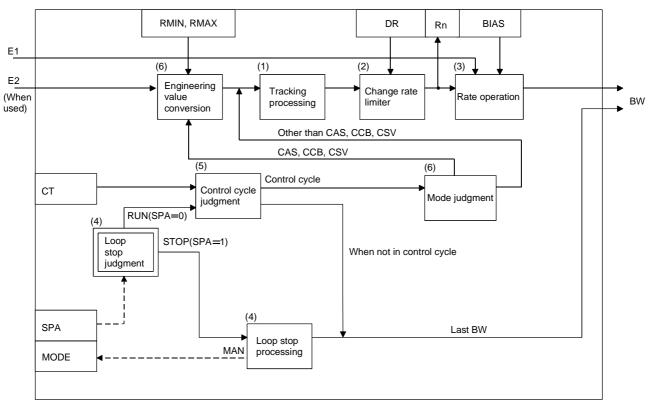
Error

• When an operation error occurs

9.7 Rate (S.R)


	Usable devices								
Setting data	Internal devices (System, user)		File	MELSECNET/H direct J[]\[]		Intelligent function	Index register	(`onetant	Other
uala	Bit	Word	register	Bit	Word	module U[]\G[]	Zn	K, H	Other
(S1)	-	(
©1	_	(=	=		
S 2	-	(_					
© 2	_	(_					
<u>\$3</u>	_	(=	=		

^{*1:} Special register SD1506 can be specified as a dummy device.


Functions

Performs rate operation when the specified control cycle is reached. Also performs operation mode (MODE) judgment, engineering value conversion, tracking processing and change rate limiter processing at this time.

Block diagram

The processing block diagram of the S.R instruction is shown below. (The numerals (1) to (6) in the diagram indicate the order of the processing.)

Control data

(1) Data specified in S.R instruction

Specified po	sition	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
Input data	\$1)+0 +1	E1	Input value	-999999 to 999999	%	Real number	_	U
Block memory	©1+0 +1	BW	Output value	(-999999 to 999999)	%	Real number	_	S
	©+0	TRK	Tracking bit	0: Not trucked 1: Trucked		BIN 16bit	0	U
Operation constant	+1	SVPTN	Set value pattern	0 to 3 b15 b12 b8 b4 b0 Set value pattern*3 0: E2 is upper loop MV 1: E2 is not upper loop MV 1: E2 is not used	l	BIN 16bit	3	U
	©2+1	MODE	Operation mode	0 to FFFFH b15	_	BIN 16bit	8н	S/U
Loop tag memory *4	+3	ALM	Alarm detection	0 to FFFFH b15 b12 b8 b4 b0 SPA 0: Loop RUN 1: Loop STOP	ı	BIN 16bit	4000н	S/U
	+14 +15	SPR	Set value	-999999 to 999999	ı	Real number	0.0	U
	+16 +17	BIAS	Bias	-999999 to 999999	%	Real number	0.0	U
	+46 +47	СТ	Control cycle	0 to 999999 Note that $\frac{CT}{\Delta T} \le 32767$	s	Real number	1.0	U
	+50 +51	DR	Change rate limit value	0 to 999999	_	Real number	100.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*2:} Specify whether the set value (E2) is to be used or not.

^{*3:} Specify whether the MV of the upper loop is to be used or not as the set value (E2).

^{*4.} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Specified position Sym		Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
	©2+52 +53 RMAX Rate upper limit value			-999999 to 999999		Real number	100.0	U
Loop tag memory *2	+54 +55	RMIN	Rate lower limit value	-999999 to 999999	l	Real number	0.0	U
	+56 +57	R _n	Rate current value	(-999999 to 999999)	I	Real number	0.0	S
Loop tag past value memory *2*3	©+96 : +99		_	Used by the system as a work area.			I	Ø
Set value *4	③+0 +1	E2	Set value	-10 to 110	%	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

^{*3:} The applications of the loop tag past value memory are indicated below.

Specified position	Description
©+96	Control cycle counter initial preset flag
+97	Control cycle counter
+98	R _{n-1} (Last value)
+99	Rn-1 (Last Value)

When control is to be started from the initial status, the data must be cleared with the sequence program.

When using the MV of the upper loop as the set value (E2), specify the device where the manipulated value (MV) of the upper loop is set (offset + 12: MV).

When not using E2 as the set value, make sure to specify a dummy device.

(Special register SD1506 can be specified as a dummy device.)

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

Processing contents

(1) Tracking processing

- (a) When all of the following conditions hold, tracking processing is performed.
 - 1) The tracking bit (TRK) of the operation constant is 1.
 - 2) The set value (E2) is used.
 - 3) The operation mode (MODE) is any of MAN, AUT, CMV, CMB, CAB, LCM, LCA and LCC.

$$E2 = \frac{100}{\text{RMAX} - \text{RMIN}} \times (\text{SPR} - \text{RMIN})$$

(b) When the set value (E2) is the manipulated value (MV) of the upper loop, the tracking flag (TRKF) of the alarm detection inhibition (INH) in the upper loop turns to 1.

9 - 51 9 - 51

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

^{*4:} The set value (E2) becomes valid when the set value pattern (SVPTN) is set to "E2 is used".

Error code: 4100

(2) Change rate limiter

In the change rate limiter, the following operation is performed and the result of the operation is stored into the current rate value (Rn).

Condition	Operation expression
$(SPR - R_n) \ge DR$	$R_n = R_{n-1} + DR$
$(SPR - R_n) \leq -DR$	$R_{n} = R_{n-1} - DR$
$ SPR - R_n < DR$	$R_n = SPR$

(3) Rate operation

Rate operation is performed with the following operation expression.

$$BW = \frac{R_n - RMIN}{RMAX - RMIN} \times E1 + BIAS$$

(4) Loop stop processing

(a) Setting 1 in SPA of the alarm detection (ALM) selects a loop stop.

A loop stop performs the following processing and terminates the S.R instruction.

- 1) BW retains the last value.
- 2) The operation mode (MODE) is changed to MAN.
- (b) Setting 0 in SPA of the alarm detection (ALM) selects a loop run.

A loop run performs "(5) Control cycle judgment".

(5) Control cycle judgment

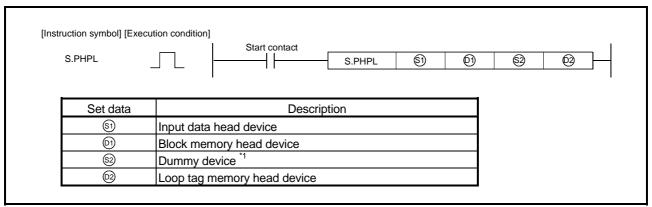
- (a) When the specified control cycle is not reached, BW is retained and the S.R instruction is terminated.
- (b) When the specified control cycle is reached, "(6) Mode judgment" is performed.

(6) Mode judgment

Either of the following processings is performed depending on the operation mode (MODE) setting.

- (a) When the operation mode (MODE) is any of CAS, CCB and CSV
 - 1) When the set value (E2) is specified, engineering value conversion is made with the following expression and then "(2) Change rate limiter" is performed.

$$SPR = \frac{RMAX - RMIN}{100} \times E2 + RMIN$$

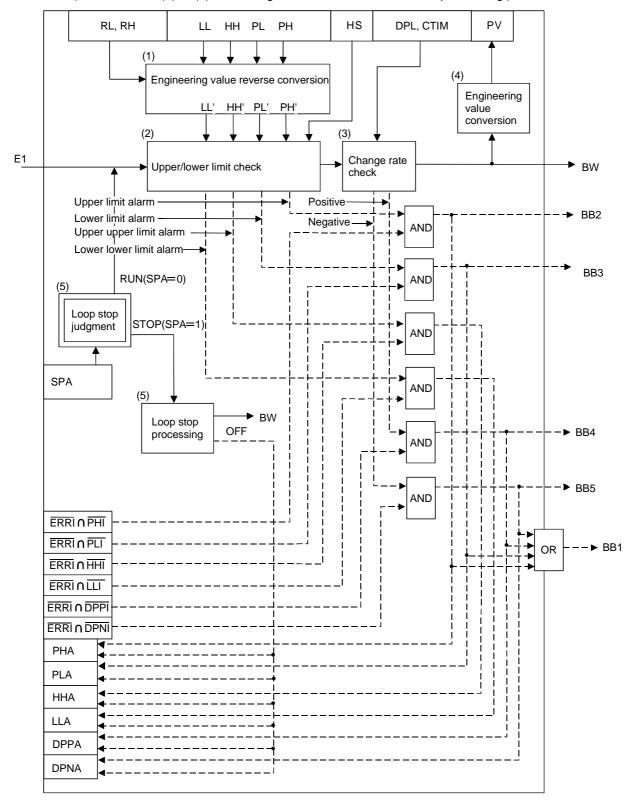

- 2) When the set value (E2) is not specified, "(2) Change rate limiter" is performed without engineering value conversion being made.
- (b) When the operation mode (MODE) is any of MAN, AUT, CMV, CMB, CAB, LCM, LCA and LCC, "(1) Tracking processing" is executed.

ERROR

When an operation error occurs

9.8 Upper/lower limit alarm (S.PHPL)

	Usable devices								
Setting	Internal devices (System, user)		File	MELSECNET/H direct J[]\[]		Intelligent function	Index	Constant	Other
data -	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other
(S1)	-					_	-		
© 1	_								
<u>\$2</u>	=			=					
© 2	_					_	=		


^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Performs a upper/lower limit check on the input value (E1) and provides an alarm output.

Block diagram

The processing block diagram of the S.PHPL instruction is shown below. (The numerals (1) to (5) in the diagram indicate the order of the processing.)

Control data

(1) Data specified in S.PHPL instruction

Specified position		Symbol	Name	Recommended range ^{*1}		Data format	Standard value	Store
Input data	\$1)+0 +1	E1	Input value	-999999 to 999999	%	Real number		U
	©1+0 +1	BW	Output value	(-999999 to 999999)	%	Real number	ı	S
		BB BB1 BB2	Alarm Upper limit alarm					
Block memory	+2	BB3	Lower limit alarm	b15 b12 b8 b4 b0 B B B B B B B B B B B B B B B B B B		BIN 16bit	_	S
	+2	BB4	Positive direction change rate alarm		_			
		BB5	Negative direction change rate alarm					
	©2+1	MODE	Operation mode	0 to FFFFH b15	_	BIN 16bit	8н	S/U
Loop	+3	ALM	Alarm detection	0 to FFFFH b15		BIN 16bit	4000н	S/U
tag memory *2	+4	INH	Alarm detection inhibition	0 to FFFFH b15 b12 b8 b4 b0 E	_	BIN 16bit	4000н	S/U
	+10 +11			(RL to RH)	_	Real number	0.0	S
	+22 +23	RH	Engineering value upper limit	-999999 to 999999		Real number	100.0	U
	+24 _{PI} E		Engineering value lower limit	-999999 to 999999		Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Specified position		Symbol	Name	Recommended range ^{*1}	Unit	Data format	Standard value	Store
	©+26 +27	PH	Upper limit alarm set value	RL to RH	_	Real number	100.0	U
	+28 +29	PL	Lower limit alarm value	RL to RH	I	Real number	0.0	U
	+30 +31	H	Upper upper limit alarm value	RL to RH	I	Real number	100.0	U
Loop tag memory *2	+32 +33	Ы	Lower lower limit alarm value	RL to RH	l	Real number	0.0	U
	+40 +41	HS	Upper/lower limit alarm hysteresis	0 to 999999	%	Real number	0.0	U
	+42 +43	CTIM	Change rate alarm Check time	0 to 999999 Note that $\frac{\text{CTIM}}{\Delta T} \le 32767$	ø	Real number	0.0	U
	+44 +45	DPL	Change rate alarm value	0 to 100	%	Real number	100.0	U
Loop tag past value memory *2 *3	©+96 +127		_	Used by the system as a work area.		_	_	S

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

^{*3:} The applications of the loop tag past value memory are indicated below.

Specified position	Description
№+96	Change rate monitor counter initial preset flag
+97	Change rate monitor counter
+126	E1n-m
+127	□ In-m

When control is to be started from the initial status, the data must be cleared with the sequence program.

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

Processing contents

(1) Engineering value reverse conversion

The following operations are performed to match the upper limit alarm value (PH), lower limit alarm value (PL), upper upper limit alarm value (HH) and lower lower limit alarm value (LL) ranges with the input value (E1).

$$PH' = \frac{100}{RH - RL} \times (PH - RL), \qquad PL' = \frac{100}{RH - RL} \times (PL - RL)$$

$$HH' = \frac{100}{RH - RL} \times (HH - RL), \qquad LL' = \frac{100}{RH - RL} \times (LL - RL)$$

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

(2) Upper/lower limit check

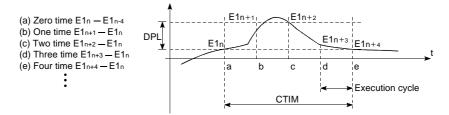
The upper/lower limit checks of the input value (E1) are made under the following conditions.

Check item	Condition	ALM	BB2	BB3
	E1 > PH'	PHA = 1 *1	1 ^{*1}	_
Upper limit check	E1≦PH'-HS	PHA = 0	0	_
	Others	PHA: Last value is status hold *1	Hold *1	_
	E1 < PL'	PLA = 1 *2	1	1 *2
Lower limit check	$E1 \ge PL' + HS PLA = 0$		-	0
	Others	PLA: Last value is status hold *2		Hold *2
l la a sa l la a sa Basit	E1 > HH'	HHA = 1 *3	-	_
Upper Upper limit check	E1≦HH' −HS	HHA = 0	_	_
CHECK	Others	HHA: Last value is status hold *3		_
	E1 < LL'	$LLA = 1^{4}$	-	_
Lower lower limit check	E1≧LL'+HS	LLA = 0	_	=
	Others	LLA: Last value is status hold *4		_

^{*1:} When PHI or ERRI in the alarm detection inhibition (INH) is set to 1, PHA and BB2 show 0 since the alarm is prohibited.

(3) Change rate check

(a) A change rate check is performed for the time specified in CTIM.


The number of change rate checks to be made is found by the following expression.

$$m = \frac{CTIM}{\Delta T}$$

m varies from 1 to m.

However, when m = 0 (integer part), no processing is performed.

For example, when m = 4, the processing is performed as shown below.

^{*2:} When PLI or ERRI in the alarm detection inhibition (INH) is set to 1, PLA and BB3 show 0 since the alarm is prohibited.

^{*3:} When HHI or ERRI in the alarm detection inhibition (INH) is set to 1, HHA show 0 since the alarm is prohibited.

^{*4:} When LLI or ERRI in the alarm detection inhibition (INH) is set to 1, LLA show 0 since the alarm is prohibited.

Error code: 4100

(b) The change of the input data is compared with the change rate alarm value (DPL) in each execution cycle (ΔT).

Check item	Condition	ALM	BB4	BB5
	E1n+m — E1n ≧ DPL	DPPA = 1 *1	1 ^{*1}	_
Ohamana mata ahaada	Others	DPPA = 0	0	_
Change rate check	$E1_{n+m}-E1_n \leq -DPL$	DPNA = 1 *2	_	1 *2
	Others	DPNA = 0	_	0

^{*1:} When DPPI or ERRI in the alarm detection inhibition (INH) is set to 1, DPPA and BB4 show 0 since the alarm is prohibited.

(4) Engineering value conversion

Engineering value conversion is made with the following expression.

$$PV = \frac{RH - RL}{100} \times E1 + RL$$

(5) Loop stop processing

(a) Setting 1 in SPA of the alarm detection (ALM) selects a loop stop.

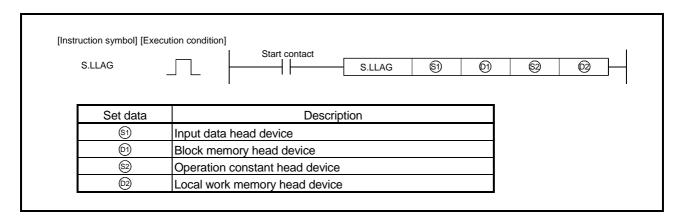
A loop stop performs the following processing and terminates the S.PHPL instruction.

1) Engineering value reverse conversion is performed with the following expression.

$$BW = \frac{100}{RH - RL} \times (PV - RL)$$

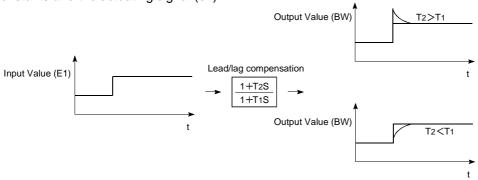
- 2) BB1 to BB5 of BB are turned to 0.
- 3) DPNA, DPPA, LLA, HHA, PLA and PHA of the alarm detection (ALM) are turned to 0.
- (b) Setting 0 in SPA of the alarm detection (ALM) selects a loop run.

A loop run performs "(1) Engineering value reverse conversion".


Error

• When an operation error occurs

^{*2:} When DPNI or ERRI in the alarm detection inhibition (INH) is set to 1, DPNA and BB5 show 0 since the alarm is prohibited.


9.9 Lead/lag (S.LLAG)

	Usable devices									
Setting data	Internal devices (System, user)		File	MELSECNET/H direct J[]\[]		Intelligent function	Index	Constant	Othor	
uala	Bit Word		register	Bit	Word	module U[]\G[]	register Zn	K, H	Other	
§1)	_		0			_	=			
(1)	_	(_	=			
<u>\$2</u>	_			_						
© 2	_	(_	=			

Functions

Performs lead/lag operation according to the lag time and lead time settings of the operation constants and the actuating signal (e1).

Error code: 4100

Control data

(1) Data specified in S.LLAG instruction

Specified position		Symbol	Name	Recommended range *1		Data format	Standard value	Store
	⑤+0 +1 E1 Input value -999999 to 999999				%	Real number	_	U
Input data	+2	e1	Actuating signal	0: With lead/lag compensation 1: Without lead/lag compensation		BIN 16bit		U
Block memory	®+0 +1	BW	Output value	(-999999 to 999999)		Real number	_	S
Operation	©+0 +1	T ₁	Delay time	0 to 999999	s	Real number	1.0	U
constant	+2 +3	T2	Lead time	0 to 999999	s	Real number	1.0	U
Local work memory *2	◎+0 +1	E1n-1	Last Input value	Used by the system as a work area.	_	Real number	_	S

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

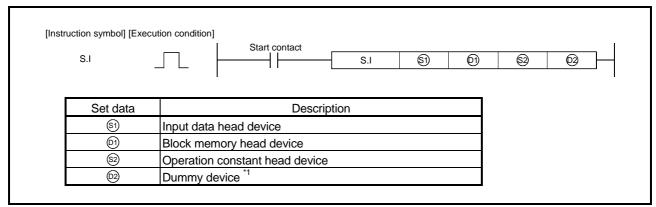
(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

Processing contents

The S.LLAG instruction instructs the following operation.

Condition	BW (Output value)
e1 = 0	$BW = \frac{1}{T_1 + \Delta T} \times \{T_2 \times (E1 - E1_{n-1}) + T_1 \times (BW \text{ Last value}) + \Delta T \times E1\}$ However, when $T_1 + \Delta T = 0$, $BW = 0$
e1 = 1	BW = E1 (Input value is output unchanged)


Error

• When an operation error occurs

^{*2:} When control is to be started from the initial status, the data must be cleared with the sequence program.

9.10 Integration (S.I)

		Usable devices										
Setting	Internal devices (System, user)		File	MELSECNET/H direct J[]\]		Intelligent function	Index	Constant	Other			
data	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other			
(S1)	-		Ö		-							
© 1	_		0		_							
<u>\$2</u>	=	0		_								
© 2	_			_								

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Performs integral operation according to the operation control signal (e1).

Control data

(1) Data specified in S.I instruction

Specified po	sition	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
	\$1)+0 +1	E1	Input value	-999999 to 999999		Real number	_	U
Input data		Operation control signal	b15 b12 b8 b4 b0 © With integral operation 1: Without derivative operation		BIN 16bit		U	
Block memory	©+0 +1	BW	Output value	(-999999 to 999999)		Real number	_	S
Operation	©2+0 +1	Т	Integral time	0 to 999999	ø	Real number	1.0	U
constant	+2 +3	Ys	Output initial value	-999999 to 999999		Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

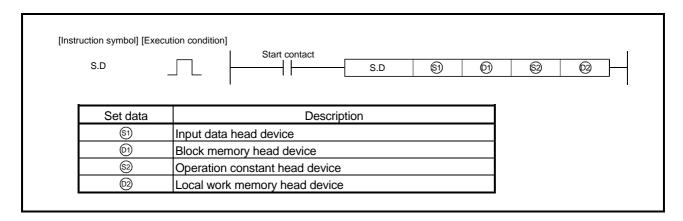
(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

Processing contents

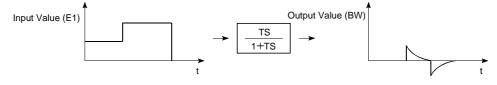
The S.I instruction performs the following operation.

e1	Т	BW
0	≠ 0	$BW = Y_n = \frac{\Delta T}{T} \times E1 + Y_{n-1}$
0	0	$BW = Y_{n-1}$
1	_	$BW = Y_s$


E1: Current input value, ΔT: Execution cycle, Yn: Current output value, Yn-1: Last output value

Error

When an operation error occurs


9.11 Differentiation (S.D)

		Usable devices										
Setting	Internal devices (System, user)		File	MELSECNET/H direct J[]\]		Intelligent function	Index	Constant	Other			
data	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other			
(S1)	-		Ö		-							
© 1	_		0		_							
<u>\$2</u>	=	0		_								
© 2	_			_								

Functions

Executes derivative operation according to the operation control signal (e1).

Control data

(1) Data specified in S.D instruction

Specified po	osition	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
	\$1+0 +1	E1	Input value	-999999 to 999999	_	Real number	_	U
Input data	+2	e1	Operation control signal	0: With derivative operation 1: Without derivative operation	_	BIN 16bit		C
Block memory	©1+0 +1	BW	Output value	(-999999 to 999999)	_	Real number	_	S
Operation	\$2+0 +1	Т	Derivative time	0 to 999999	S	Real number	1.0	U
constant	+2 +3	Ys	Output initial value	-999999 to 999999	_	Real number	0.0	U
Local work memory *2	©+0 +1	E1n-1	Last input value	Used by the system as a work area.	_	Real number	_	S

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

(2) Execution cycle (△T)

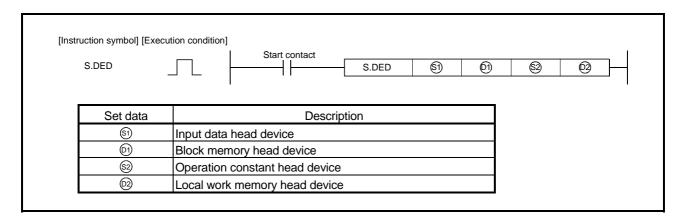
Set the execution cycle in SD1500 and SD1501 as real numbers.

Processing contents

The S.D instruction performs the following operation.

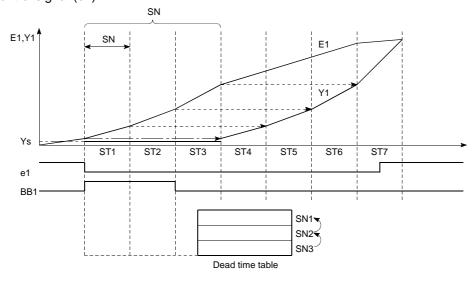
e1	BW						
0	$BW = \frac{T}{T + \Delta T} \times (Y_{n-1} - E1_{n-1} + E1)$ Note that $T + \Delta T = 0$, $BW = 0$.						
	Note that $1 \pm \Delta 1 = 0$, by $= 0$.						
1	$BW = Y_s$						

E1: Current input value, ΔT: Execution cycle, Yn: Last output value, Yn-1: Last output value


Error

• When an operation error occurs

^{*2:} When control is to be started from the initial status, the data must be cleared with the sequence program.


9.12 Dead Time (S.DED)

	Usable devices											
Setting data	Internal devices (System, user)		File	MELSECNET/H direct J[]\[]		Intelligent function	Index	Constant	Othor			
	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other			
§1)	_		Ö		-							
(1)	_	(0		_							
<u>\$2</u>	_	0		_								
© 2	_	(_								

Functions

Outputs the input value (E1) with a delay of dead time according to the setting of the operation control signal (e1).

SN: Sampling count E1: Input value
ST: Data collection interval Ys: Output initial valuel

Control data

(1) Data specified in S.DED instruction

Specified po	sition	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
	\$1)+0 +1	E1	Input value	-999999 to 999999 Differential Differen		Real number	_	U
Input data	+2	e1	Operation control signal	0: With dead time	_	BIN 16bit	_	U
	⊚+0 +1	BW	Output value	(-99999 to 999999)	_	Real number	_	S
		BB		_	ı	l	l l	
Block memory	+2	BB1	Data sufficiency bit	Part				S
	≌+0 +1	ST	Data collection Interval	0 to 999999 Note that $\frac{ST}{\Delta T} \le 32767$	s		1.0	U
data	+2	SN	Sampling count	0 to 48	_		0	U
	+3 +4	Ys	Output initial value	-999999 to 999999	_		0.0	U
	+5	OCHG	output switching	0: E1 when e1 turned from 1 to 0 is output up to SN times.	_		0	U
	©+0		Last value input (e1')					
	+1		Cycle counter					
	+2		Dead time table number of stored data					
	+3		Dead time	Hood by the gratem on a suitable area				
memory *2	+4 +5	_	table 1 Dead time	Used by the system as a work area.		_	_	S
	+6		table 2					
	:		:					
	+2SN +1 +2SN +2		Dead time table SN					

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

^{*2:} When control is to be started from the initial status, the data must be cleared with the sequence program.

Error code: 4100

Processing contents

(1) The S.DED instruction performs the following operation.

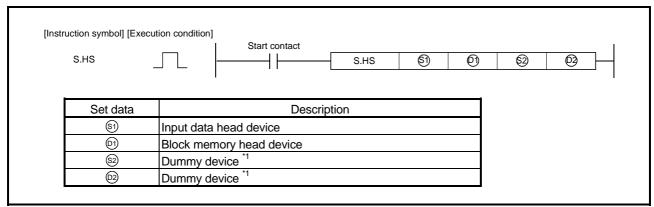
e1	OCHG	Dead time	BW
1	0/1	None	E1
	0		Up to SN times E1 when e1 turns from 1 to 0
4.0	0	OT W ON	Later than SN times Oldest data *1
1→0	4	ST × SN	Up to SN times Ys
	1	·	Later than SN times Oldest data *1
0→0	0/1	ST × SN	Oldest data *1

^{*1:} The oldest date is the E1 after the SNth time.

Error

9 - 67

• When an operation error occurs


• When the sampling count is other than 0 to 48

[•] When the dead time table date is not filled, BB1 is turned 1.

[•] When SN = 0, BB1 = 0 and BW = E1.

9.13 High Selector (S.HS)

				l	Jsable device	es						
Setting data	Internal devices (System, user)		File	MELSECNET/H direct J[]\[]		Intelligent function	Index	Constant	Other			
	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other			
(S1)	-	(Ö		-							
©1	_	(0		_							
\$2	_	0		_								
62	=					=	=					

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Outputs the maximum value of the input values 1 (E1) to n (En).

Error code: 4100

9 - 69

Control data

(1) Data specified in S.HS instruction

Specified po	sition	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
	§1)+0	n	Input count	1 to 16	I	BIN 16bit	_	U
	+1 +2	E1	Input value 1					
Input data	+3 +4	E2	Input value 2	-999999 to 999999		Real	_	U
		;	<u> </u>			number		
	+2n-1 +2n	En	Input value n					
Block memory	⑨+0 +1	BW	Output value	(Maximum value of E1 to En)	_	Real number	_	S
	+2	BB						
		BB1 to BB16	Output selection	b15	_	BIN 16bit	_	S

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

Processing contents

(1) High selector processing

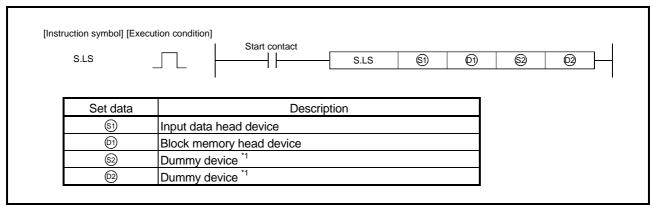
The maximum value of the input values 1 (E1) to n (En) is stored into BW.

Also, any of BB1 to BB16 of BB corresponding to the maximum value is turned to 1.

Input value	E16	E15	E14	to	E2	E1
Bit turned to 1 at maximum value	BB16	BB15	BB14	to	BB2	BB1

- (a) If there are two or more maximum values, the bits corresponding to the maximum values are all turned to 1.
- (b) If there is only one input
 - 1) When only E1 is used as the input value
 - E1 is stored into BW.
 - BB1 of BB is turned to 1.
 - BB2 to BB16 of BB are turned to 0.
 - 2) Only one of E2 to E16 is used as the input value
 - The input values of E2 to E16 and the data of E1 are used to perform processing.

Error


9 - 69

• When an operation error occurs

When not 1 ≤ number of inputs (n) ≤ 16

9.14 Low Selector (S.LS)

				l	Jsable device	es			
Setting data		devices n, user)	File		CNET/H J[][]	Intelligent function	Index	Constant	Other
uala	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other
(S1)	-					_	-		
© 1	_					-	=		
<u>\$2</u>	=					=	=		
© 2	_					_	=		

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Outputs the minimum value of the input values 1 (E1) to n (En).

Control data

(1) Data specified in S.LS instruction

Specified po	sition	Symbol	Name	Recommended range ^{*1}	Unit	Data format	Standard value	Store
	§1)+0	n	Input count	1 to 16		BIN 16bit	_	U
	+1 +2	E1	Input value 1					
Input data	+3 +4	E2	Input value 2	-999999 to 999999	_	Real	_	U
	;	į	:			number		
	+2n-1 +2n	En	Input value n					
	©)+0 +1	BW	Output value	(Minimum value of E1 to En)	=	Real number	_	S
	+2	BB						
Block memory		BB1 to BB16	Output selection	b15		BIN 16bit	_	S

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

Processing contents

(1) Low selector processing

The minimum value of the input values 1 (E1) to n (En) is stored into BW.

Also, any of BB1 to BB16 of BB corresponding to the minimum value is turned to 1.

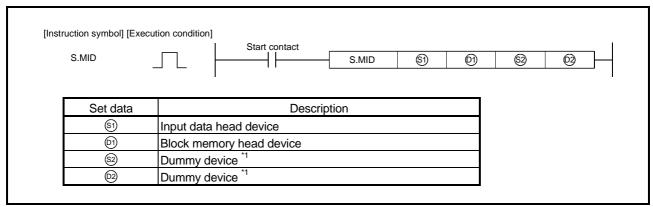
Input value	E16	E15	E14	to	E2	E1
Bit turned to 1 at minimum value	BB16	BB15	BB14	to	BB2	BB1

- (a) If there are two or more minimum values, the bits corresponding to the minimum values are all turned to 1.
- (b) If there is only one input
 - 1) When only E1 is used as the input value
 - E1 is stored into BW.
 - BB1 of BB is turned to 1.
 - BB2 to BB16 of BB are turned to 0.
 - 2) Only one of E2 to E16 is used as the input value
 - The input values of E2 to E16 and the data of E1 are used to perform processing.

Error

• When an operation error occurs

• When not $1 \le \text{number of inputs (n)} \le 16$


Error code: 4100

Error code: 4100

9 - 71 9 - 71

9.15. Intermediate Value Selection (S.MID)

		Usable devices											
Setting data		devices n, user)	File	MELSE direct	CNET/H J[]{[]	Intelligent function	Index	Constant	Other				
uala	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other				
§ 1	-					_	-						
©1	=					-	=						
S 2	_					=	=						
(D2)	_					_	=						

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Outputs the intermediate value between the maximum value and minimum value among the input value 1 (E1) to input value n (En).

Control data

(1) Data specified in S.MID instruction

Specified p	osition	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
	§1)+0	n	Input count	1 to 16		BIN 16bit	_	U
	+1 +2	E1	Input value 1					
Input data	+3 +4	E2	Input value 2	-999999 to 999999	_	Real	_	U
		;	:			number		
	+2 _{n-1} +2 _n	En	Input value n					
Block memory	©+0 +1	BW	Output value	(Intermediate value between maximum value and minimum value)	=	Real number	_	S
	+2	BB		_				
		BB1 to BB16	Output selection	b15	-	BIN 16bit	_	S

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

Processing contents

(1) Intermediate value selector processing

The intermediate value of the input values 1 (E1) to n (En) is stored into BW. Also, any of BB1 to BB16 of BB corresponding to the intermediate value is turned to 1.

Input value	E16	E15	E14	to	E2	E1
Bit turned to 1 at intermediate value	BB16	BB15	BB14	to	BB2	BB1

- (a) If there are an even number of inputs, the smaller value of the intermediate values is stored.
- (b) If there are two or more intermediate values, the bits corresponding to the intermediate values are all turned to 1.

Error code: 4100

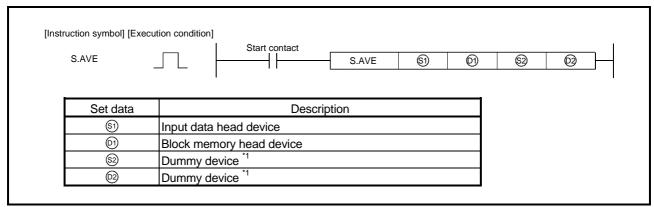
Remark

The intermediate value is selected as described below.

- 1) The input value 1 (E1) to input value n (En) are rearranged in order of increasing value. (If there are the same input values, they are arranged in order of increasing input number.)
- 2) The intermediate value among the rearranged values is selected.

Example) When the input data are 2, 5, 1, 4 and 3, the intermediate value is selected as described below.

	Inp	out da	ta				Rearr	ange	d data	
E1	E2	E3	E4	E5	Rearrangement	E3	E1	E5	E4	E2
2	5	1	4	3		1	2	3	4	5


In the above case, the intermediate value is "3" and BB5 turns to 1.

Error

- When an operation error occurs
- When not $1 \le \text{number of inputs (n)} \le 16$

9.16 Average Value (S.AVE)

		Usable devices											
Setting data		devices n, user)	File		CNET/H J[][]	Intelligent function	Index	Constant	Other				
uala	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other				
S 1	_					_	-						
© 1	_			_									
<u>\$2</u>	_					=	=						
© 2	_				·	-	=		·				

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Calculates and outputs the average value of the input value 1 (E1) to n (En).

Control data

(1) Data specified in S.AVE instruction

Specified po	osition	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
	§1)+0	n	Input count	1 to 16	l	BIN 16bit	_	U
	+1 +2	E1	Input value 1					
Input data	+3 +4	E2	Input value 2	-999999 to 999999	_	Real	_	U
	:	:	:			number		-
	+2 _{n-1} +2 _n	En	Input value n					
Block memory	®+0 +1	BW	Output value	(Average value of E1 to En)	_	Real number	_	S

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

Processing contents

(1) Calculation of average value

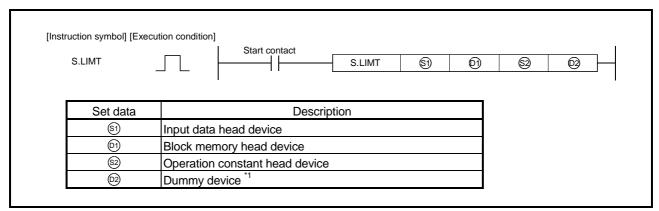
The average value of the input value 1 (E1) to n (En) is calculated.

As the denominator (N), the value specified as the number of inputs (n) is used.

$$BW = \frac{E1 + E2 + E3 + \cdots E_n}{N}$$

Error

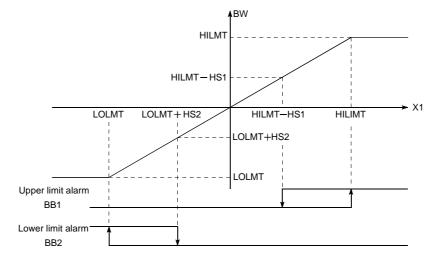
• When an operation error occurs


• When not $1 \le (\text{number of inputs (n)}) \le 16$

Error code: 4100

Error code: 4100

9.17 Upper/lower Limiter (S.LIMT)


				l	Jsable device	es			
Setting data		devices n, user)	File		CNET/H J[]{[]	Intelligent function	Index	Constant	Other
uala	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other
§ 1	-	(_	-		
©1	-	(_					
<u>\$2</u>	_			-					
62	=	()			=	=		

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

The upper and lower limit limiter is applied to the output value by adding a hysteresis.

Error code: 4100

Control data

(1) Data specified in S.LIMT instruction

Specified po	osition	5	Symbol	Name	Recommended range ^{⁴1}	Unit	Data format	Standard value	Store	
Input data	§1)+0 +1	E	1	Input value	-999999 to 999999	%	Real number	_	U	
	©+0 +1	В	3W	Output value	(-999999 to 999999)	%	Real number	_	S	
			BB		_					
Block memory	+2		BB1	Upper limit alarm	b15 b12 b8 b4 b0 B B B B B 2 1	-	BIN		S	
				BB2	Lower limit alarm	(0: Without alarm) (1: With alarm)		16bit		
	©+0 +1		HILMT	Upper limit value*2	-999999 to 999999	%	Real number	100.0	U	
Operation	+2 +3	L	OLMT	Lower limit value*2	-999999 to 999999	%	Real number	0.0	U	
constant	+4 +5		HS1	Upper limit hysteresis	0 to 999999	%	Real number	0.0	U	
	+6 +7		HS2	Lower limit hysteresis	0 to 999999	%	Real number	0.0	U	

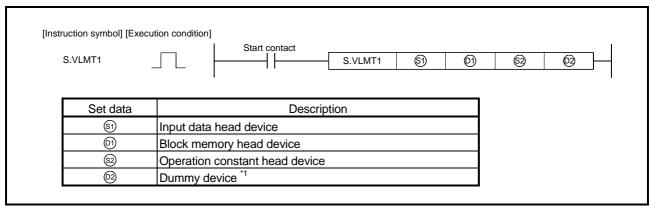
^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

Processing contents

(1) The S.LIMT instruction performs the following operation.

Condition	BW	BB1	BB2
E1 ≧ HILMT	HILMT	1	0
(LOLMT + HS2) < E1 < (HILMT - HS1)	E1	0	0
E1 ≦ LOLMT	LOLMT	0	1
Other than above (hysteresis section)	E1	Last value	Last value

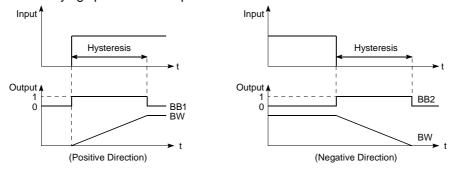
Error


• When an operation error occurs

• When HS1 < 0 or HS2 < 0

^{*2:} Make setting to satisfy HILMT ≧ LOLMT.

9.18 Change rate limiter 1 (S.VLMT1)


		Usable devices								
Setting data		devices n, user)	File	MELSECNET/H ile direct J[]\[]		Intelligent function	Index	Constant	Other	
uala	Bit	Word	register Dit Ward module		module U[]\G[]	register Zn	K, H	Other		
S 1	-	(_						
(D1)	=	(-						
<u>\$2</u>	=	0		_						
© 2	_		0			-	=			

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Limits the varying speed of the output value.

Control data

(1) Data specified in S.VLMT1 instruction

Specified po	sition	3	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
Input data	⑤1+0 +1	Е	1	Input value	-999999 to 999999	%	Real number	_	U
	©1+0 +1	Е	3W	Output value	(-999999 to 999999)	%	Real number	_	S
		Е	3B		<u> </u>				
Block memory	+2		BB1	Positive direction restriction alarm	b15 b12 b8 b4 b0 B B B B B C D D D D D D D D D D D D D D	-	BIN 16bit	_	S
		BB2	Negative direction restriction alarm						
	◎2+0 +1	V	/1	Positive direction limit value	0 to 999999	%/s	Real number	100.0	U
Operation	+2 +3	V	/2	Negative direction limit value	0 to 999999	%/s	Real number	100.0	U
constant	+4 +5	F	HS1	Positive direction hysteresis	0 to 999999	%	Real number	0.0	U
	+6 +7	H	IS2	Negative direction hysteresis	0 to 999999	%	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

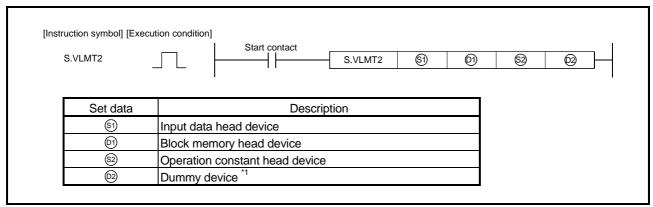
Processing contents

(1) The S.VLMT1 instruction performs the following operation.

	Input (E1 — BW)	BW	BB1	BB2
Positive	$(E1 - BW) \ge (V1 \times \Delta T)$	$BW = BW + V1 \times \Delta T$	1	0
direction	$(E1 - BW) < (V1 \times \Delta T - HS1)$	BW = E1	0	0
When E1 ≧ BW	Others	BW = E1	Last value	Last value
Negative	$(BW - E1) \ge (V2 \times \Delta T)$	$BW = BW - V2 \times \Delta T$	0	1
direction	$(BW - E1) < (V2 \times \Delta T - HS2)$	BW = E1	0	0
When E1 < BW	Others	BW = E1	Last value	Last value

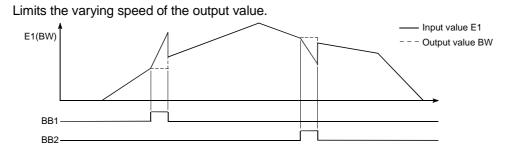
Error

• When an operation error occurs


• When HS1 < 0 or HS2 < 0

Error code: 4100

Error code: 4100


9.19 Change rate limiter 2 (S.VLMT2)

		Usable devices								
Setting data		devices n, user) File				Intelligent function	Index	Constant K, H	Other	
uala	Bit	Word	register Bit Word module		module U[]\G[]	register Zn	Other			
(S1)	-			_						
(D1)	-	(-						
<u>\$2</u>	=	0		_						
© 2	=	0				-	=			

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Error code: 4100

9 - 82

Control data

(1) Data specified in S.VLMT2 instruction

Specified po	sition	Symbol	Name	Recommended range ^{*1}	Unit	Data format	Standard value	Store
Input data	\$1)+0 +1	E1	Input value	-999999 to 999999	%	Real number		U
	©+0 +1	BW	Output value	(-999999 to 999999)	%	Real number		S
		BB		_				
Block memory	+2	BB1	Positive direction restriction alarm	b15 b12 b8 b4 b0 BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	1	BIN		S
		BB2	Negative direction restriction alarm	(0: Without alarm) (1: With alarm)		16Bit		
	\$2+0 +1	V1	Positive direction limit value	0 to 999999	%/s	Real number	100.0	U
Operation	+2 +3	V2	Negative direction limit value	0 to 999999	%/s	Real number	100.0	U
constant	+4 +5	HS1	Positive direction hysteresis	0 to 999999	%	Real number	0.0	U
	+6 +7	HS2	Negative direction hysteresis	0 to 999999	%	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

(2) Execution cycle (ΔT)

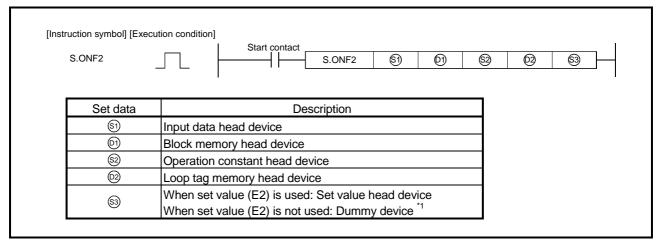
Set the execution cycle in SD1500 and SD1501 as real numbers.

Processing contents

(1) The S.VLMT2 instruction performs the following operation.

	Condition	BW	BB1	BB2
Desition discretion	(E1 − BW) ≧ (V1 × ΔT)	BW = BW	1	0
Positive direction When E1 ≧ BW	$(E1 - BW) < (V1 \times \Delta T - HS1)$	BW = E1	0	0
vvnen E i ≦ bvv	Others	BW = BW	Last value	Last value
N	(BW - E1) ≧ (V2 × ΔT)	BW = BW	0	1
Negative direction When E1 < BW	$(BW - E1) < (V2 \times \Delta T - HS2)$	BW = E1	0	0
vvnen ET < Bvv	Others	BW = BW	Last value	Last value

Error


9 - 82

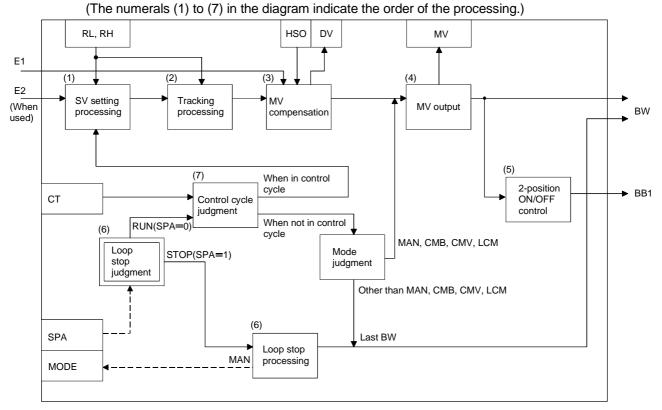
• When an operation error occurs

• When HS1 < 0 or HS2 < 0

9.20 2-position ON/OFF (S.ONF2)

		Usable devices									
Setting		devices n, user)	File			Intelligent function	Index	Constant	Other		
uala	data (Systematical Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other		
(S1)	_		0								
(1)	_	(_							
<u>\$2</u>	_	(0		_						
(D2)	_	0		_							
<u>\$3</u>	_	0				_	=				

^{*1:} Special register SD1506 can be specified as a dummy device.


Functions

Performs 2-position ON/OFF control (ON/OFF of one contact) when the specified control cycle is reached.

Also performs SV setting processing, tracking processing, MV compensation and MV output processing at this time.

Block diagram

The processing block diagram of the S.ONF2 instruction is shown below.

Control data

(1) Data specified in S.ONF2 instruction

Specified po	sition	Symbol	Name	Recommended range ^{⁴1}	Unit	Data format	Standard value	Store
Input data	\$1+0 +1	E1	Input value	-999999 to 999999	%	Real number	_	U
	©+0 +1	BW	Output value	(-999999 to 999999)	%	Real number		S
		BB						
Block memory	+2	BB1	Operation result	b15 b12 b8 b4 b0 BB B B Co: BW < 50 %) Co: BW ≥ 50 %)	_	BIN 16bit	_	S
	\$2+0	PN	Operation mode	Reverse operation Forward operation	1	BIN 16bit	0	U
	+1	TRK	Tracking bit	Without tracking With tracking	ı	BIN 16bit	0	U
Operation constant	+2	SVPTN	Set value pattern	0 to 3 b15 b12 b8 b4 b0 Set value pattern*3 0: E2 is upper loop MV 1: E2 is not upper loop MV 1: E2 is not used	_	BIN 16bit	3	υ
	©2+1	MODE	Operation mode	0 to FFFFH b15	_	BIN 16bit	8н	S/U
Loop tag memory *4	+3	ALM	Alarm detection	0 to FFFFH b15 b12 b8 b4 b0 S A B B B B B B B B B B B B B B B B B B		BIN 16bit	4000н	S/U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*2:} Specify whether the set value (E2) is to be used or not.

^{*3:} Specify whether the MV of the upper loop is to be used or not as the set value (E2).

^{*4:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Specified po	sition	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
	©2+4	INH	Alarm detection inhibit	0 to FFFFH b15 b12 b8 b4 b0 T	l	BIN 16Bit	4000н	S/U
	+12 +13	MV	Manipulated value	(-10 to 110)	%	Real number	0.0	S
Loop tag	+14 +15	SV	Set value	RL to RH		Real number	0.0	U
memory ²	+16 +17	DV	Deviation	(-110 to 110)	%	Real number	0.0	S
	+18 +19	HS0	Hysteresis	0 to 999999		Real number	0.0	U
	+22 +23	RH	Engineering value upper limit	-999999 to 999999	ĺ	Real number	100.0	U
	+24 +25	RL	Engineering value lower limit	-999999 to 999999	ĺ	Real number	0.0	U
	+46 +47	СТ	Control cycle	0 to 999999 Note that $\frac{\text{CT}}{\Delta \text{T}} \leq 32767$	s	Real number	1.0	U
Loop tag past value	+96		_	Used by the system as a work area.	_		_	S
memory *2 *3	+97							
Set value *4	\$3+0 +1	E2	Set value	-10 to 110	%	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*3:} The applications of the loop tag past value memory are indicated below.

Specified position	Description			
№+96	Control cycle counter initial preset flag			
+97	Control cycle counter			

When control is to be started from the initial status, the data must be cleared with the sequence program.

When using the MV of the upper loop as the set value (E2), specify the device where the manipulated value (MV) of the upper loop is set (offset + 12: MV).

When not using E2 as the set value, make sure to specify a dummy device.

(Special register SD1506 can be specified as a dummy device.)

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

^{*4:} The set value (E2) becomes valid when the set value pattern (SVPTN) is set to "E2 is used".

Processing contents

(1) SV setting processing

Either of the following processings is performed depending on the operation mode (MODE) setting.

- (a) When the operation mode (MODE) is any of CAS, CCB and CSV
 - 1) When the set value (E2) is specified, engineering value conversion is performed with the following expression and then "(2) Tracking processing" is performed.

$$SV_n = \frac{RH - RL}{100} \times E2 + RL$$

- 2) When the set value (E2) is not specified, "(2) Tracking processing" is performed without the engineering value conversion being performed.
- (b) When the operation mode (MODE) is any of MAN, AUT, CMV, CMB, CAB, LCM, LCA and LCC, "(2) Tracking processing" is performed.

(2) Tracking processing

(a) The set value (SV) is converted reversely from the engineering value with the following operation expression to calculate SVn'.

$$SV_n' = \frac{100}{RH - RL} \times (SV_n - RL)$$

- (b) When all of the following conditions hold, tracking processing is performed.
 - 1) The tracking bit (TRK) of the operation constant is 1.
 - 2) The set value (E2) is used.
 - 3) The operation mode (MODE) is any of MAN, AUT, CMV, CMB, CAB, LCM, LCA and LCC.

(c) When the set value (E2) is the manipulated value (MV) of the upper loop, the tracking flag (TRKF) of the alarm detection inhibition (INH) in the upper loop turns to 1.

(3) MV compensation

After the deviation (DV) is calculated from the input value (E1) and the set value after tracking processing (SVn'), the MV compensation value (MV') is calculated.

(a) Calculation of deviation (DV)

The deviation (DV) is calculated under the following condition.

Condition	DV
Forward operation (PN = 1)	E1 — SVn'
Reverse operation (PN = 0)	SVn' — E1

(b) Calculation of MV compensation value (MV')

The MV compensation value (MV')is calculated under the following condition.

Condition	N 4) //				
Condition	MV'				
DV ≧ HS0	100%				
DV ≦ - HS0	0%				
- HS0 < DV < HS0	Last value (BW value)				

(4) MV output

The manipulated value (MV(BW)) is calculated under the following condition.

Condition	BW
CMV, MAN, CMB, LCM	BW = MVn
CSV CCD CAD CAS ALIT LCC LCA	BW = MV'
CSV, CCB, CAB, CAS, AUT, LCC, LCA	MVn = BW

(5) 2-position ON/OFF control

BB1 of BB is output under the following condition.

Condition	BB1
BW ≥ 50%	1
BW < 50%	0

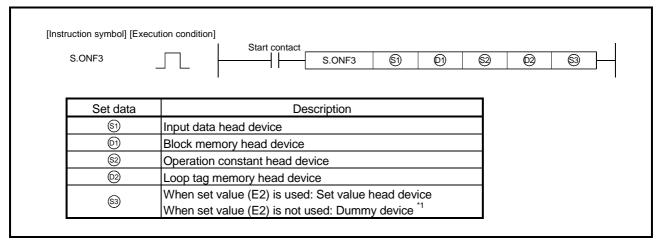
(6) Loop stop processing

(a) Setting 1 in SPA of the alarm detection (ALM) selects a loop stop.

A loop stop performs the following processing and terminates the S.ONF2 instruction.

- 1) BW and BB1 retain the last values.
- 2) The operation mode (MODE) is changed to MAN.
- (b) Setting 0 in SPA of the alarm detection (ALM) selects a loop run. A loop run performs "(7) Control cycle judgment".

(7) Control cycle judgment


- (a) If the specified control cycle is not reached
 - 1) When the operation mode (MODE) is any of CSV, CCB, CAB, CAS, AUT, LCC and LCA, BW is retained and the S.ONF2 instruction is terminated.
 - 2) When the operation mode (MODE) is any of MAN, CMB, CMV and LCM, BW is made equal to MV and the processing of "(5) 2-position ON/OFF control" is performed.
- (b) If the specified control cycle is reached, "(1) SV setting processing" is performed.

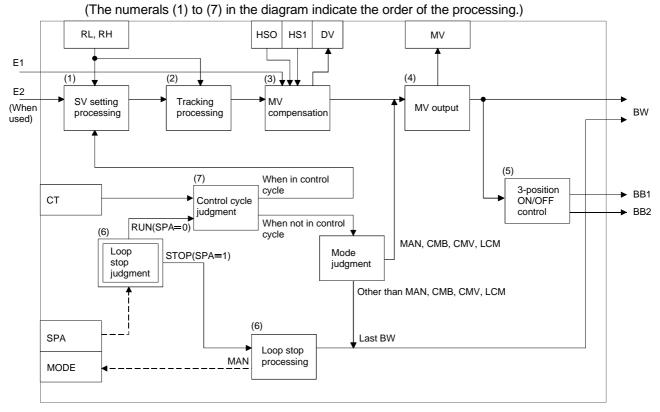
Error

When an operation error occurs

9.21 3-position ON/OFF (S.ONF3)

		Usable devices								
Setting data	Internal devices (System, user)		File	MELSECNET/H direct J[]X]		Intelligent Index		Constant	Other	
	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other	
(S1)	_	0		-						
(D1)	-	(-	=			
<u>\$2</u>	=	(0		_					
© 2	-	0		_						
<u>\$3</u>	=	(=	=			

^{*1:} Special register SD1506 can be specified as a dummy device.


Functions

Performs 3-position ON/OFF control (ON/OFF of two contact) when the specified control cycle is reached.

Also performs SV setting processing, tracking processing, MV compensation and MV output processing at this time.

Block diagram

The processing block diagram of the S.ONF3 instruction is shown below.

Control data

(1) Data specified in S.ONF3 instruction

Specified po	sition	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
Input data	\$1)+0 +1	E1	Input value	-999999 to 999999	%	Real number	_	U
	©)+0 +1	BW	Output value	(-999999 to 999999)	%	Real number		S
		BB		-				
Block memory	+2	BB1	Operation result	b15 b12 b8 b4 b0 BBBBB2 1		BIN 16bit	_	,
		BB2	Operation result	(0, 0: 25%≦BW<75%) (0, 1: BW<25%) (1, 0: BW≧75%)				S
	\$2+0	PN	Operation mode	Reverse operation Forward operation		BIN 16bit	0	U
Operation constant	+1	TRK	Tracking bit	Without tracking With tracking	_	BIN 16bit	0	U
	+2	SVPTN	Set value pattern	0 to 3 b15 b12 b8 b4 b0 Set value pattern *3 0: E2 is upper loop MV 1: E2 is not upper loop MV 1: E2 is not used	l	BIN 16bit	3	U
	©+1	MODE	Operation mode	0 to FFFFH b15 b12 b8 b4 b0 C C C C C C A M L L L L S M C A M A U A C C C C V V B B B S T N C A M		BIN 16bit	8н	S/U
Loop tag memory ^{*4}	+3	ALM	Alarm detection	0 to FFFFH b15 b12 b8 b4 b0 S PA 0: Loop RUN 1: Loop STOP	_	BIN 16bit	4000н	S/U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

9 - 91 9 - 91

^{*2:} Specify whether the set value (E2) is to be used or not.

^{*3:} Specify whether the MV of the upper loop is to be used or not as the set value (E2).

^{*4:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Specified po	sition	Symbol	Name	Recommended range ^{*1}	Unit	Data format	Standard value	Store
	©2+4	INH	Alarm detection inhibit	0 to FFFFH b15 b12 b8 b4 b0 T		BIN 16bit	4000н	S/U
	+12 +13	MV	Manipulated value	(-10 to 110)	%	Real number	0.0	S
Loop tag	+14 +15	SV	Set value	RL to RH	-	Real number	0.0	U
Loop tag memory *2	+16 +17	DV	Deviation	(-110 to 110)	%	Real number	0.0	S
	+18 +19	HS0	Hysteresis 0	0 to 999999	_	Real number	0.0	U
	+20 +21	HS1	Hysteresis 1	0 to 999999	-	Real number	0.0	U
	+22 +23	RH	Engineering value upper limit	-999999 to 999999	_	Real number	100.0	C
	+24 +25	RL	Engineering value lower limit	-999999 to 999999	_	Real number	0.0	C
	+46 +47	СТ	Control cycle	0 to 999999 Note that $\frac{\text{CT}}{\Delta \text{T}} \leq 32767$	s	Real number	1.0	U
Loop tag past value memory *2*3	©+9 6 +97	_	_	Used by the system as a work area.	_	_	_	S
Set value *4	\$3+0 +1	E2	Set value	-10 to 110	%	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

^{*3:} The applications of the loop tag past value memory are indicated below.

Specified position	Description		
©2+96	Control cycle counter initial preset flag		
+97	Control cycle counter		

When control is to be started from the initial status, the data must be cleared with the sequence program.

When using the MV of the upper loop as the set value (E2), specify the device where the manipulated value (MV) of the upper loop is set (offset + 12: MV).

When not using E2 as the set value, make sure to specify a dummy device.

(Special register SD1506 can be specified as a dummy device.)

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

^{*4:} The set value (E2) becomes valid when the set value pattern (SVPTN) is set to "E2 is used".

Processing contents

(1) SV setting processing

Either of the following processings is performed depending on the operation mode (MODE) setting.

- (a) When the operation mode (MODE) is any of CAS, CCB and CSV
 - 1) When the set value (E2) is specified, engineering value conversion is performed with the following expression and then "(2) Tracking processing" is performed.

$$SV_n = \frac{RH - RL}{100} \times E2 + RL$$

- 2) When the set value (E2) is not specified, "(2) Tracking processing" is performed without the engineering value conversion being performed.
- (b) When the operation mode (MODE) is any of MAN, AUT, CMV, CMB, CAB, LCM, LCA and LCC, "(2) Tracking processing" is performed.

(2) Tracking processing

(a) The set value (SV) is converted reversely from the engineering value with the following operation expression to calculate SVn'.

$$SV_n' = \frac{100}{RH - RL} \times (SV_n - RL)$$

- (b) When all of the following conditions hold, tracking processing is performed.
 - 1) The tracking bit (TRK) of the operation constant is 1.
 - 2) The set value (E2) is used.
 - 3) The operation mode (MODE) is any of MAN, AUT, CMV, CMB, CAB, LCM, LCA and

(c) When the set value (E2) is the manipulated value (MV) of the upper loop, the tracking flag (TRKF) of the alarm detection inhibition (INH) in the upper loop turns to 1.

(3) MV compensation

After the deviation (DV) is calculated from the input value (E1) and the set value after tracking processing (SVn'), the MV compensation value (MV') is calculated.

(a) Calculation of deviation (DV)

The deviation (DV) is calculated under the following condition.

Condition	DV		
Forward operation	E1 — SVn'		
(PN = 1)			
Reverse operation	SVn' — E1		
(PN = 0)			

(b) Calculation of MV compensation value (MV')

The MV compensation value (MV')is calculated under the following condition.

Condition	MV ′
DV ≧ (HS1 + HS0)	100%
$DV \le - (HS1 + HS0)$	0%
(-HS1 + HS0) < DV < (HS1 - HS0)	50%
Other than above	Last value (BW value)

(4) MV output

The manipulated value (MV(BW)) is calculated under the following condition.

Condition	BW
CMV, MAN, CMB, LCM	BW = MVn
CSV, CCB, CAB, CAS, AUT, LCC, LCA	BW = MV'
007, 000, 070, 070, 701, 200, 207	MVn = BW

(5) 3-position ON/OFF control

BB1 and BB2 of BB are output under the following condition.

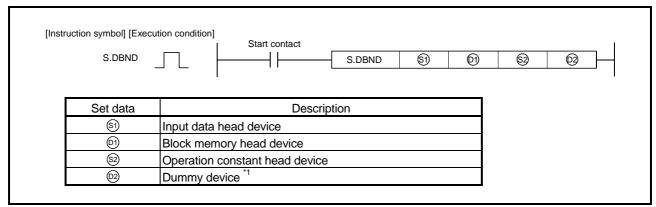
Condition	BB1	BB2
BW ≧ 75%	1	0
25% ≦ BW < 75%	0	0
BW < 25%	0	1

(6) Loop stop processing

- (a) Setting 1 in SPA of the alarm detection (ALM) selects a loop stop.
 - A loop stop performs the following processing and terminates the S.ONF3 instruction.
 - 1) BW, BB1 and BB2 retain the last values.
 - 2) The operation mode (MODE) is changed to MAN.
- (b) Setting 0 in SPA of the alarm detection (ALM) selects a loop run.

A loop run performs "(7) Control cycle judgment".

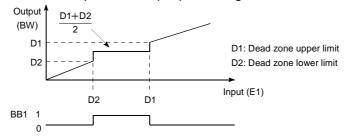
(7) Control cycle judgment


- (a) If the specified control cycle is not reached
 - 1) When the operation mode (MODE) is any of CSV, CCB, CAB, CAS, AUT, LCC and LCA, BW is retained and the S.ONF3 instruction is terminated.
 - 2) When the operation mode (MODE) is any of MAN, CMB, CMV and LCM, BW is made equal to MV and the processing of "(5) 3-position ON/OFF control" is performed.
- (b) If the specified control cycle is reached, "(1) SV setting processing" is performed.

Error

• When an operation error occurs

9.22 Dead zone (S.DBND)


	Usable devices									
Setting data	Internal devices (System, user)		File	MELSECNET/H direct J[][]		Intelligent function	Index	Constant	Othor	
	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other	
(S1)	-	Ö		-						
© 1	_	0		-						
<u>\$2</u>	=			-						
© 2	_			_						

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Provides a dead zone and performs output processing.

Control data

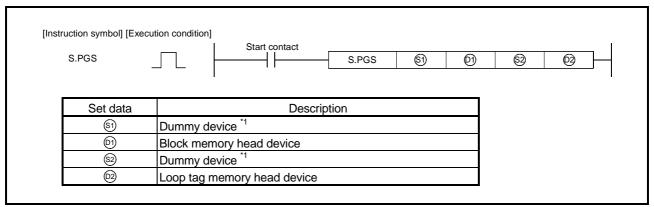
(1) Data specified in S.DBND instruction

Specified po	Specified position Symbol Name Recommended range 11 U		Unit	Data format	Standard value	Store		
Input data	\$1)+0 +1	E1	Input value	-999999 to 999999		Real number		U
	©1+0		(-999999 to 999999)	%	Real number		S	
		BB		—				
Block memory	+2	BB1	Dead zone action	b15 b12 b8 b4 b0 B B B I (0: Outside the dead zone range) (1: Within the dead zone range)	_	BIN 16bit	I	S
Operation	[©] +0 +1	D1	Dead zone upper limit	-999999 to 999999	_	Real number	100.0	U
constant	+2 +3	D2	Dead zone lower limit	-999999 to 999999	_	Real number	0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

Processing contents

(1) The S.DBND instruction performs the following processing.


Condition	BW	BB1
D2 ≦ E1 ≦ D1	<u>D2+D1</u> 2	1
(E1 < D2) or (E1 > D1)	E1	0

Error

• When an operation error occurs

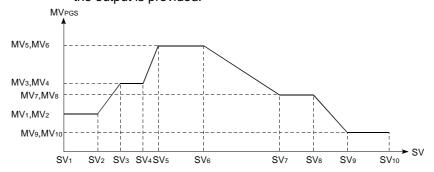
9.23 Program Setting Device (S.PGS)

				L	Isable device	es				
Setting data	Internal devices (System, user)		File	MELSECNET/H direct JE XE 3		Intelligent function	Index register	Constant	Other	
	Bit	Word	register	Bit	Word	module U[]\G[]	Zn	K, H	Other	
S 1	-			-						
©1	-	(-						
<u>\$2</u>	_		0		_					
<u>©2</u>	_				·	-	=			

^{*1:} Special register SD1506 can be specified as a dummy device.

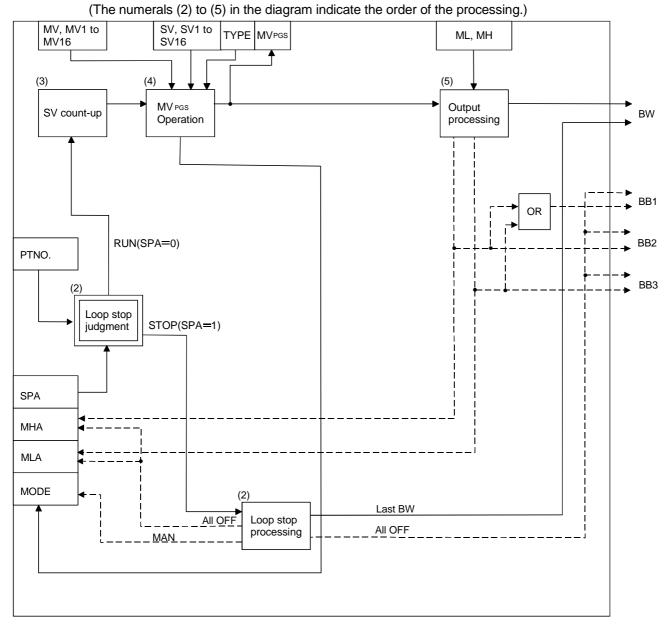
Functions

Provides a control output according to the SV and MV pattern.


As the output types of the S.PGS instruction, there are three types of the "hold type", "return type" and "cyclic type".

• Hold type : Output is provided with the SV10 value held.

• Return type : The set value (SV) is set to 0 and the last value is output as the manipulated


value (MV).

• Cyclic type : After SV1 to SV10 have been processed, processing is restarted from SV1 and the output is provided.

Block diagram

The processing block diagram of the S.PGS instruction is shown below.

Control data

(1) Data specified in S.PGS instruction

Specified po	sition	Symbol	Name	Recommended range ¹	Unit	Data format	Standard value	Store
	⊕+0 +1	BW	Output value	(-99999 to 999999)	%	Real number	-	S
		BB		-	•	•		
Block		BB1	Alarm	b15 b12 b8 b4 b0 B B B B				
memory	+2	BB2	Output upper limit alarm	(0: Without alarm)	_	BIN 16bit	_	S
		BB3	Output lower limit alarm	(1: With alarm)				
	©2+1	MODE	Operation mode	0 to FFFFH b15 b12 b8 b4 b0 C C C C C C C A M L L L S M C A M A U A C C C C C C A M A U A C C C C C C A M A U A C C C C C C C C C A M A U A C C C C C C C C C C A M A U A C C C C C C C C C C C C C C C C C	-	BIN 16bit	8н	S/U
	+3	+3 ALM Alarm detection O to FFFFH b15 b12 b8 b4 b0 SPA MHA, MLA 0: Loop RUN (0: Without alarm) 1: Loop STOP (1: With alarm)				BIN 16bit	4000н	S/U
Loop tag memory *2	+4	INH	Alarm detection inhibition	O to FFFFH b15 b12 b8 b4 b0 E R R R I I I I O: Alarm enable 1: Alarm inhibit	_	BIN 16bit	4000н	S/U
	+10	PTNO	Number of operation constant polygon points	0 to 16		BIN 16bit	0	U
	+12 +13	MV	Manipulated value	(-10 to 110)	%	Real number	0.0	S
	+14 +15	SV	Set value 0 to 999999		S	Real number	0.0	U
	+16	TYPE	Operation type	O: Hold type operation (When operation mode is AUT or CAB) 1: Return type operation (When operation mode is AUT or CAB)	_	BIN 16bit	0	U
	+18 +19	МН	Output upper limit value	-10 to 110	%	Real number	100.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Specified po	sition	Symbol	Name	Recommended range *1		Data format	Standard value	Store
	+20 +21	ML	Output lower limit value	-10 to 110	%	Real number	0.0	U
	+22 +23	SV1	Setting time 1				0.0	C
	:	:	:	0 to 999999	l s	Real number		
Loop tag memory *2	+52 +53	SV16	Setting time 16					
	+54 +55	MV1	Setting output 1					
1		•••	:	-10 to 110	%	Real number	0.0	U
	+84 +85	MV16	Setting output 16			Tidili bol		

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

Processing contents

(1) Output type

The output type is determined by the combination of the operation mode (MODE) and operation type (TYPE) as indicated below.

Operation mode (MODE)	Operation type (TYPE)	Operation
MAN, CMB, CMV, LCM, LCA, LCC	_	Operation stopped at current SV and MV
ALIT CAR	0	Hold type operation
AUT, CAB	1	Return type operation
CAS, CCB, CSV	_	Cyclic type operation

(2) Loop stop processing

(a) Setting 1 in SPA of the alarm detection (ALM) selects a loop stop.

A loop stop performs the following processing and terminates the S.PGS instruction.

- 1) BW retains the last value.
- 2) MHA and MLA of the alarm detection (ALM) are turned to 0.
- 3) The operation mode (MODE) is changed to MAN.
- 4) BB1 to BB3 of BB are turned to 0.
- (b) Setting 0 in SPA of the alarm detection (ALM) selects a loop run.

A loop run performs "(3) SV count-up processing".

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

(3) SV count-up processing

SV count-up is performed with the following expression in each execution cycle.

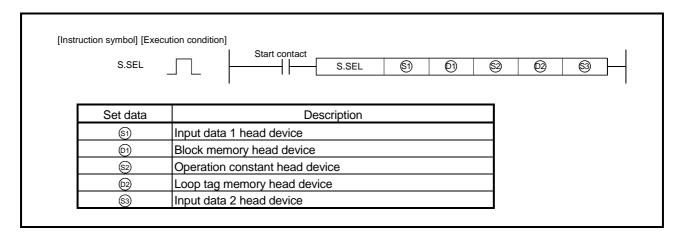
$$SV' = SV + \Delta T$$

(4) MV_{PGS} operation

Т	уре	Hold	Return	Cyclic		
M	1ode	AUT,	CAB	CAS, CCB, CSV		
NA) /	SV < SV1	MV1				
MVPGS operation	SVn-1≦SV < SVn	$\frac{MV_{n} - MV_{n-1}}{SV_{n} - SV_{n-1}} \times (SV - SV_{n-1}) + MV_{n-1}$				
	Mode change	MAN	MAN	Not moved		
	SV	Last value	0	0		
Processing when	MV	Last value	Last value	MV1		
SV' > SVn	Restart method	After SV is set, mode is changed from MAN to AUT.	Mode is changed from MAN to AUT.	Automatic restart		

(5) Output processing

		Manual		Automatic				
Condition	MAN, CMB	, CMV, LCM	, LCA, LCC	AUT, CAB, CAS, CCB, CSV				
Condition	BW	BB2, MHA	BB3, MLA	BW	BB2, MHA	BB3, MLA		
$MV_{PGS} > MH$	MV_n	0	0	$MV_n = MH$	1 ^{*1}	0		
$MV_{PGS} < ML$	MV_n	0	0	$MV_n = ML$	0	1 *2		
Others	MV_n	0	0	$MV_n = MV_{PGS}$	0	0		

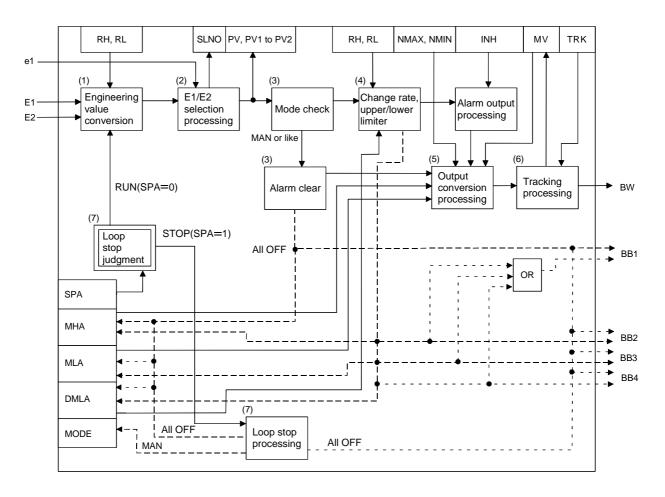

^{*1:} When MHI or ERRI in the alarm detection inhibition (INH) is set to 1, MHA and BB2 show 0 since the alarm is prohibited.

9 - 101 9 - 101

^{*2:} When MLI or ERRI in the alarm detection inhibition (INH) is set to 1, MLA and BB3 show 0 since the alarm is prohibited.

9.24 Loop Selector (S. SEL)

				U	Isable device	es					
Setting data	Internal devices (System, user)		File	MELSECNET/H direct J[]\[]		Intelligent function	Index register	Constant	Other		
	Bit	Word	register	Bit	Word	module U[]\G[]	Zn	K, H	Otriei		
(S1)	_	(0								
© 1	_	(\circ	_							
S 2	_	(_							
© 2	_		0		_						
<u>\$3</u>	_	(=	=				


Functions

Provides an output in the specified mode (automatic mode/manual mode).

- In the automatic mode, the input value 1 (E1) or input value 2 (E2) selected by the selection signal (e1) is output.
- In the manual mode, the manipulated value (MV) is output.

Block Diagram

The processing block diagram of the S. SEL instruction is shown below. (The numerals (1) to (7) in the diagram indicate the order of the processing.)

Control data

(1) Data specified in S. SEL instruction

Specified po	osition	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
Input data 1	\$1+0 +1	E1	Input value 1	-999999 to 9999999	%	Real number		U
	©1+0 +1	BW	Output value	(-999999 to 9999999)	=	Real number		S
		BB		-				
		BB1	Alarm	b15 b12 b8 b4 b0				
Block memory	+2	BB2	Output upper limit alarm	B B B B B B B B B B B B B B B B B B B	_	BIN 16bit	_	S
		BB3	Output lower limit alarm	(0: Without alarm) (1: With alarm)				
		BB4	Output change rate alarm					
	©+0 +1	NMAX	Output conversion upper limit	Output -999999 to 9999999			100.0	U
	+2 +3	NMIN	Output conversion -9999999 to 99999999 lower limit			Real number	0.0	U
	+4	TRK	Tracking bit	0: Without tracking 1: With tracking			0	U
Operation constant	+5	SVPTN	Set value pattern	Input value selection *2 0: E1 1: E2 Input value 1 (E1) used *3 0: Used 1: Not used Input value 2 (E2) used *4 0: Used 1: Not used Input value 1 (E1) pattern *5 0: E1 is upper loop MV 1: E1 is not upper loop MV Input value 2 (E2) pattern *6 0: E2 is upper loop MV 1: E2 is not upper loop MV	_	BIN 16bit	1Ен	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*2:} Select E1 or E2 for the input value.

^{*3:} Specify whether the input value 1 (E1) is to be used or not.

^{*4:} Specify whether the input value 2 (E2) is to be used or not.

^{*5:} Specify whether the MV of the upper loop is to be used or not as the input value 1 (E1).

^{*6:} Specify whether the MV of the upper loop is to be used or not as the input value 2 (E2).

Specified po	sition	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
	@ + 1	MODE	Operation mode	0 to FFFFH b15 b12 b8 b4 b0 S M C A M A U A C C C V V B B B S T N C A M	_	BIN 16bit	8н	S/U
	+3	ALM	Alarm detection	0 to FFFFH b15 b12 b8 b4 b0 S D M M M H L A M M M H L A A A SPA DMLA, MHA, MLA (0: Without alarm) 1: Loop STOP (1: With alarm)	_	BIN 16bit	4000н	S/U
	+4	INH	Alarm detection inhibition 0 to FFFFH b15 b12 b8 b4 b0 M M M H L M M M H L M M M H L M M M H L M M M H L M M M H L M M M M H L M M M M H L M M M M H L M M M M H L M M M M M M M M M M M M M M M M M M		_	BIN 16bit	4000н	S/U
	+10 +11	PV	Selection value	RL to RH	_	Real number	0.0	S
	+12 +13	MV	Manipulated value	(-10 to 110)	%	Real number	0.0	S
Loop tag memory *2	+14 +15	PV1	Process value 1	RL to RH	_	Real number	0.0	S
	+16 +17	PV2	Process value 2	RL to RH	_	Real number	0.0	S
	+18 +19	МН	Output upper limit value	-10 to 110	%	Real number	100.0	U
	+20 +21	ML	Output lower limit value	-10 to 110	%	Real number	0.0	U
	+22 +23	RH	Engineering value upper limit	-999999 to 999999	_	Real number	100.0	U
	+24 +25	RL	Engineering value lower limit	-999999 to 999999	_	Real number	0.0	U
	+26	SLNO	Selection No.	Input value 1 (E1) selection 0: Not selected 1: Selected Input value 2 (E2) used 0: Not selected 1: Selected	_	BIN 16bit	0	S
Loop tag memory *2	+48 +49	DML	Output change rate limit value	0 to 100	%	Real number	100.0	U
Input data 2	\$\text{\$\sigma\$+0} +1	E2	Input value 2	-999999 to 999999	%	Real number	0.0	U

^{*1:} The data of the item where the recommended range values are indicated within the parentheses is stored by the system. The user

cannot set the data.
*2: The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Processing contents

(1) Engineering value conversion

Engineering value conversion is performed with the following expression.

$$PV_n = \frac{RH - RL}{100} \times E_n + RL$$

(2) Input value 1 (E1) or input value 2 (E2) selection processing

Whether the input value 1 (E1) or input value 2 (E2) will be used is selected depending on the e1 setting of the set value pattern (SVPTN).

- e1 = 0: Input value 1 (E1) is used $PV = PV_1$
- e1 = 1: Input value 2 (E2) is used $PV = PV_2$

SLN0: The bit corresponding to the input value 1 (E1) or input value 2 (E2) is turned to 1.

(3) Mode check

The following processing is performed depending on the operation mode (MODE) setting.

- (a) When the operation mode (MODE) is any of MAN, CMB, CMV and LCM
 - 1) "(5) Output conversion processing" is performed.
 - 2) MHA, MLA and DMLA of the alarm detection (ALM) are turned to 0.
 - 3) BB1 to BB4 of BB are turned to 0.
- (b) When the operation mode (MODE) is any of AUT, CAB, CAS, CCB, CSV, LCA and LCC
 - 1) Engineering value reverse conversion is performed with the following expression.

$$T = \frac{100}{RH - RL} \times (PV - RL)$$

2) "(4) Change rate, upper/lower limiter" is performed.

(4) Change rate, upper/lower limiter

Change rate and upper/lower limit value checks are performed on the input value 1 (E1) or input value 2 (E2).

(a) Change rate limiter

Condition	T'	BB4, DMLA
$ T - MV_n \leq DML$	T' = T	0
$(T - MV_n) > DML$	$T' = MV_n + DML$	1 *1
$(T - MV_n) < -DML$	$T' = MV_n - DML$	1 *1

^{*1:} When DMLI or ERRI in the alarm detection inhibition (INH) is set to 1, DMLA and BB4 show 0 since the alarm is inhibited.

(b) Upper/lower limiter

Condition	MV	BB2, MHA	BB3, MLA
T' > MH	$MV_n = MH$	1 *2	0
T' < ML	$MV_n = ML$	0	1 *3
$ML \leq T' \leq MH$	$MV_n = T'$	0	0

^{*2:} When MHI or ERRI in the alarm detection inhibition (INH) is set to 1, MHA and BB2 show 0 since the alarm is inhibited.

^{*3:} When MLI or ERRI in the alarm detection inhibition (INH) is set to 1, MLA and BB3 show 0 since the alarm is inhibited.

(5) Output conversion processing

Engineering value conversion is performed with the following expression.

$$BW = \frac{NMAX - NMIN}{100} \times MV_n + NMIN$$

(6) Tracking processing

- (a) When all of the following conditions hold, the BW value is output to the input value 1 (E1) or input value 2 (E2).
 - 1) The operation mode (MODE) is any of MAN, CMB, CMV and LCM.
 - 2) The tracking bit (TRK) is 1.

$$E_n = MV_n$$

- (b) When all of the following conditions hold, the BW value is output to the input value 1 (E1) or input value 2 (E2).
 - 1) The operation mode (MODE) is any of AUT, CAS, CAB, CCB, CSV, LCA and LCC.
 - 2) The tracking bit (TRK) is 1.
 - 3) BB1 of BB is 1

$$E_n = MV_n$$

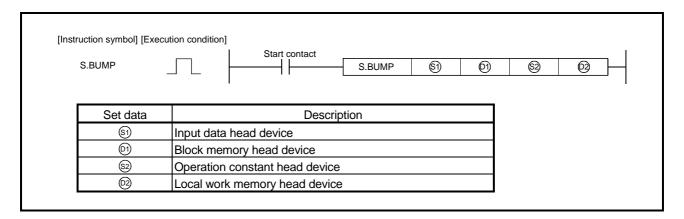
(7) Loop stop processing

(a) Setting 1 in SPA of the alarm detection (ALM) selects a loop stop.

A loop stop performs the following processing and terminates the S.SEL instruction.

- 1) BW retains the last value.
- 2) DMLA, MHA and MLA of the alarm detection (ALM) are turned to 0.
- 3) The operation mode (MODE) is changed to MAN.
- 4) BB1 to BB4 of BB are turned to 0.
- (b) Setting 0 in SPA of the alarm detection (ALM) selects a loop run.

A loop run performs "(1) Engineering value conversion ".


ERROR

• When an operation error occurs

Error code: 4100

9.25 Bump-less transfer (S.BUMP)

		Usable devices											
Setting data	Internal devices (System, user)		File	MELSECNET/H direct J[]∑]		Intelligent function	Index register	Constant	Other				
	Bit	Word	register	Bit	Word	module U[]\G[]	Zn	K, H	Other				
§1)	_												
(1)	_	(
<u>\$2</u>	_	0				_	=						
© 2	_	(_	=						

Functions

Brings the output value (BW) closer to the output set value (E1) from the output control value (E2) at the fixed rate when the operation mode is switched from the manual mode to the automatic mode.

Brings the output value (BW) closer to the output set value (E1) with a primary delay when the output value (BW) falls within the range specified as the delay zone (a) relative to the output set value (E1).

Error code: 4100

Control data

(1) Data specified in S. BUMP instruction

Specified po	osition	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
	\$1+0 +1	E1	Output set value	-999999 to 999999	%	Real number		U
Input data	+2 +3	E2	Output control value	-999999 to 999999	%	Real number		U
	+4	e1	Mode switching signal	0: Manual mode 1: Automatic mode	_	BIN 16Bit	_	U
Block memory	©+0 +1	BW	Output value	(-999999 to 999999)	%	Real number	_	S
Operation	©+0 +1	Т	Delay time	0 to 9999999	s	Real number	1.0	U
constant	+2 +3	а	Delay zone	0 to 9999999	%	Real number	1.0	U
Local	©+0 +1	Χq	Initial deviation value	Lload by the avetem on a work area		Real	1.0	c
work memory *2	+2 +3	Хр	Deviation	Used by the system as a work area.		number	1.0	S

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

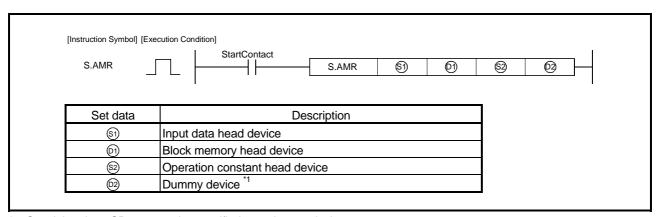
Processing contents

- (1) Either of the following processings is performed depending on the mode select signal (e1) setting of the input data.
 - (a) In the manual mode (e1 = 0), the output value (BW), initial deviation value (Xg) and deviation (Xp) are calculated with the following expressions.
 - BW = output control value (E2)
 - Xq = output control value (E2) output set value (E1)
 - Xp = output control value (E2) output set value (E1)
 - (b) In the automatic mode (e1 = 1), the output value is calculated with the following expression.

Condition	Xp > a	Xp ≦ a
Хр	$X_p = X_{p'} - \frac{\Delta T}{T} X_q$	$X_p = \frac{T}{T + \Delta T} X_{p'}$
BW	BW = E1 + Xp On the assumption that $ Xp \le \frac{\Delta T}{T} Xq $ • BW = E1 • Xp = Xp'	BW = E1 + Xp On the assumption that $ Xp \le 10^{-4}$ • BW = E1 • Xp = Xp'

However, when $T \leq \Delta T$ in the automatic mode, BW = E1, Xp = Xp'

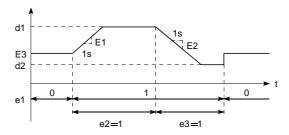
Error


• When an operation error occurs

9 - 109 9 - 109

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

9.26 Analog memory (S.AMR)


	Usable devices										
Setting		devices n, user)	File	MELSECNET/H direct J[]\[]		Intelligent function	Index register	Constant	Other		
data -	Bit	Word	register	Bit	Word	module U[]\G[]	Zn	K, H	Other		
(S1)	-			_							
© 1	_		0		-						
<u>\$2</u>	=		0		_						
© 2	_			-							

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Increases or decreases the output value at the fixed rate.

Error code: 4100

9 - 111

Control Data

(1) Data specified in S.AMR instruction

Specified p	osition	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
	§1)+0 +1	E1	Output addition value	-999999 to 9999999	ı	Real number		U
	+2 +3	E2	Output subtraction value	-999999 to 9999999	ĺ	Real number	I	U
Input	+4 +5	E3	Output set value	-999999 to 9999999	I	Real number		U
data		Operation select signal	b15 b12 b8 b4 b0					
	+6	e2	Output addition signal	3 2 1	_	BIN 16Bit	_	U
		e3	Output subtraction signal	e1 e2 e3 0: Manual mode 0: Not added 0: Not subtracted 1: Automatic mode 1: Added 1: Subtracted	TOBIT			
Block memory	©+0 +1	BW	Output value	(-999999 to 9999999)	_	Real number		s
Operation	[©] +0 +1	d1	Output upper limit value	0 to 9999999		Real number	1.0	U
constant	+2 +3	d2	Output lower limit value	0 to 9999999		Real number	1.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

(2) Execution cycle (ΔT)

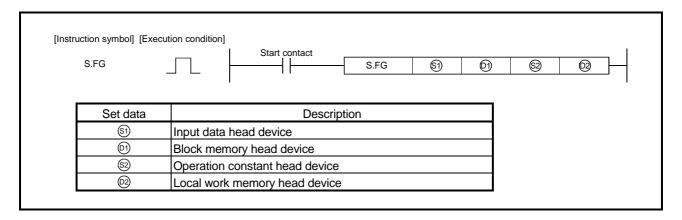
Set the execution cycle in SD1500 and SD1501 as real numbers.

Processing contents

- (1) Either of the following processings is performed depending on the settings of the operation select signal (e1), output addition signal (e2) and output subtraction signal (e3).
 - (a) In the manual mode (e1 = 0), BW = E3.
 - (b) In the automatic mode (e1 = 1), any of the operations in the following table is performed depending on the settings of the output addition signal (e2) and output subtraction signal (e3).

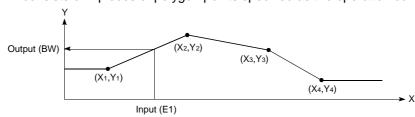
e2	e3	BW
1	0	BW = BW + $ E1 \times \Delta T$ On the assumption that d1 \leq BW: BW = d1
0	1	BW = BW - $ E2 \times \Delta T$ On the assumption that BW \leq d2: BW = d2
1	1	DIA - DIA
0	0	BW = BW

Error


9 - 111

• When an operation error occurs

10 COMPENSATION OPERATION INSTRUCTIONS


10.1 Polygon (S.FG)

		Usable devices										
Setting data		devices n, user)	File	MELSECNET/H direct J[]\[]		Intelligent function	- I INCEX		Other			
	Bit	Word	register	Bit	Word	module U[]\G[]	Zn	K, H	Other			
(S1)	-			-								
© 1	=		0		_							
<u>\$2</u>	-		0		_							
© 2	_					_	=					

Functions

In response to the input value (E1), outputs the value following the polygon pattern that consists of n pieces of polygon points specified as the operation constants.

10 - 1

10

Error code: 4100

Error code: 4100

Control data

(1) Data specified in S.FG instruction

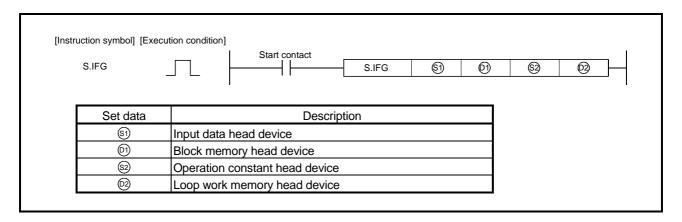
Specified p	oosition	Symbol	Name	Recommended range ^{⁴1}	Unit	Data format	Standard value	Store
Input data	\$1+0 +1	E1	Input value	-999999 to 999999		Real number		U
Block memory	⑩+0 +1	BW	Output value	(-999999 to 999999)		Real number	I	s
Operation constant	\$2+0	SN	Number of polygon points	0 to 48		BIN 16Bit	0	U
	©+0 +1	X1	Polygon point coordinates					
	+2 +3	Y1	Polygon point coordinates		_	Real number	_	
Local	+4 +5	X2	Polygon point coordinates					
work memory	+6 +7	Y2	Polygon point coordinates	-999999 to 999999				U
		1	1					
<u>.</u>	+4SN-4 +4SN-3	Xn	Polygon point coordinates					
	+4SN-2 +4SN-1	Yn	Polygon point coordinates					

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

Processing contents

(1) The S.FG instruction performs the following operation.

Condition	Output value (BW)				
E1 ≦ X1	BW = Y1				
$X_{i-1} < E1 \le X_i \ (i = 2 \text{ to n})$	$BW = \frac{Y_i - Y_{i-1}}{X_i - X_{i-1}} \times (E1 - X_{i-1}) + Y_{i-1}$				
Xn < E1	BW = Yn				


- (2) When n = 0 there is no processing.
- (3) When $X_{i-1} > X_i$, the value is cut off to n = i-1 (Data after that is ignored.) When there are multiple Y_i for the same X_i , the lowest i is selected.

ERROR

- When an operation error occurs
- When (n < 0) or (n > 48)

10.2 Inverted Polygon (S.IFG)

	Usable devices										
Setting		devices n, user)	File	MELSECNET/H direct J[]\[]		Intelligent function	Index register	Constant	Other		
data -	Bit	Word	register	Bit	Word	module U[]\G[]	Zn	K, H	Other		
(S1)	-			_							
© 1	_		0		-						
<u>\$2</u>	=		0		_						
© 2	_			-							

Functions

In response to the input value (E1), outputs the value following the polygon pattern that consists of n pieces of polygon points specified as the operation constants.

Error code: 4100

Error code: 4100

Control data

(1) Data specified in S.IFG instruction

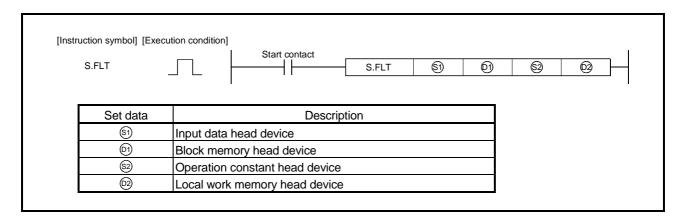
Specified p	oosition	Symbol	Name	Recommended range ¹	Unit	Data format	Standard value	Store
Input data	\$1+0 +1	E1	Input value	-999999 to 999999	_	Real number		U
Block memory	⊕+0 +1	BW	Output value	(-999999 to 999999)		Real number	_	S
Operation constant	\$2+0	SN	Number of polygon points	0 to 48	_	BIN 16Bit	0	U
	⑫+0 +1	X1	Polygon point coordinates				_	
	+2 +3	Y1	Polygon point coordinates			Real number		
Local	+4 +5	X2	Polygon point coordinates		_			
work memory	+6 +7	Y2	Polygon point coordinates	-999999 to 999999				U
memory	:	:	:					
	+4SN-4 +4SN-3	Xn	Polygon point coordinates					
-	+4SN-2 +4SN-1	Yn	Polygon point coordinates					

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

Processing contents

(1) The S.IFG instruction performs the following operation.

Condition	Output value (BW)
E1 ≦ Y1	BW=X1
$Y_{i-1} < E1 \le Y_i \ (i = 2 \text{ to n})$	$BW = \frac{X_i - X_{i-1}}{Y_i - Y_{i-1}} \times (E1 - Y_{i-1}) + X_{i-1}$
Yn < E1	BW=Xn


- (2) When n = 0 there is no processing.
- (3) When $Y_{i-1} > Y_i$, the value is cut off to n = i-1 (Data after that is ignored.) When there are multiple X_i for the same Y_i , the lowest i is selected.

ERROR

- When an operation error occurs
- When (n < 0) or (n > 48)

10.3 Standard Filter (S.FLT)

		Usable devices										
Setting data		devices n, user)	File	MELSECNET/H direct J[]\[]		Intelligent function	Index register	Constant	Othor			
	Bit	Word	register	Bit	Word	module U[]\G[]	Zn	K, H	Other			
§1)	_											
(1)	_	(0		-							
<u>\$2</u>	_		0		_							
© 2	_	(_								

Functions

Stores SN pieces of input values (E1) sampled at the data collection intervals (ST) into the dead time table, and outputs the average of those SN pieces of data.

Control data

(1) Data specified in S.FLT instruction

Specified	position	Symbol	Name	Recommended range ¹	Unit	Data format	Standard value	Store
Input data	\$1+0 +1	E1	Input value	-999999 to 999999		Real number	_	U
	⑨+0 +1	BW	Output value	(-999999 to 999999)	-	Real number	_	S
		BB		<u>–</u>			T	T
Block memory	+2	BB1	Data sufficiency bit	b15 b12 b8 b4 b0 B B B I 1 I I I I I I I I I I I I I I I	_	BIN 16Bit	_	S
Operation	©+0 +1	ST	Data collection interval	0 to 999999	s	Real number	1.0	U
constant	+2	SN	Sampling count	0 to 48	_	BIN 16Bit	0	U
	◎+0 +1		Last data collection interval		_	Real number	_	S
	+2	SN	Last sampling count		_	BIN 16Bit	_	S
	+3	i	Cycle counter	Used by the system as a work area.	_	BIN 16Bit	_	S
	+4	n1	Number of stored data		_	BIN 16Bit	_	S
Local work *2	+5	n2	Store		_	BIN 16Bit	_	S
memory 2	+6 +7	_	_	_	_	_	_	_
	+8 +9	1	Dead time table 1					
	+10 +11	2	Dead time table 2	Used by the system as a work area.	_	Real	_	S
	:	:	1	occo by the system as a work area.		number		
	+2SN+6 +2SN+7 SN Dead time table SN							

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as real numbers.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Error code: 4100 Error code: 4100

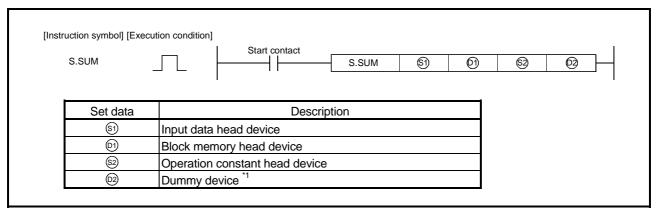
Processing contents

- (1) The data update cycle is $\frac{ST}{\Delta T}$. (The decimal is rounded down.)
- (2) The data sufficiency bit (BB1) turns to 0 when the dead time table is filled with SN pieces of data.

It turns to 1 when the dead time table is not filled.

POINT

- When the sampling count (SN) is 0, BW and BB are cleared and the instruction is terminated.
- Until the dead time table is filled with data, the average of the data provided until then is output.
- Processed using $ST = n \times \Delta T$. (n is an integral)


ERROR

• When an operation error occurs

• When (SN < 0) or (SN > 48)

10.4 Retentive (S.SUM)

		Usable devices										
Setting data	Internal devices (System, user)		File	MELSECNET/H direct J[]\[]		Intelligent function	Index	Constant	Other			
uala	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other			
(S1)	-		0			_	-					
© 1	_					-	=					
<u>\$2</u>	=			_								
© 2	_					_	=					

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Integrates and outputs the input value (E1) when the integration start signal (e1) turns from 0 to 1.

Control data

(1) Data specified in S.SUM instruction

Specified po	sition	Symbol	Name	Recommended range ¹	Unit	Data format	Standard value	Store
	⑤1+0 +1	E1	Input value	-999999 to 999999	_	Real number		U
		е		=				
Input data	+2	e1	Integration start signal	0: Integration not executed 1: Integration executed		BIN 16Bit	ı	U
Block memory	⑩+0 +1	BW	Output value	(-99999 to 999999)	_	Real number	_	S
	[©] 2+0 +1	ILC	Input low cut value	-999999 to 999999	_	Real number	0.0	U
Operation constant	+2 +3	Α	Initial value	-999999 to 999999	_	Real number	0.0	U
Constant	+4	RANGE	Input range	1: /Second 2: /Minute 3: /Hour	_	BIN 16Bit	1	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

(2) Execution cycle (ΔT)

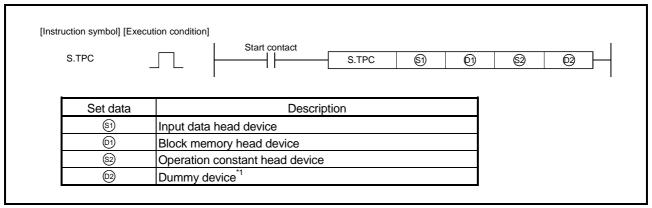
Set the execution cycle in SD1500 and SD1501 as real numbers.

Processing contents

(1) The S.SUM instruction performs the following processing.

e1	E1	Output (BW)
0	_	The initial value (A) of the operation constant is output.
	E1 ≦ ILC	The last value is output unchanged.
1	E1 > ILC	$BW = E1 \times \frac{\Delta T}{T} + Last value$

- (2) The T value used for the operation changes depending on the input range (RANGE) setting.
 - When RANGE = 1, T = 1
 - When RANGE = 2, T = 60
 - When RANGE = 3, T = 3600


ERROR

- When an operation error occurs
- When the RANGE setting is other than 1 to 3

Error code: 4100 Error code: 4100

10.5 Temperature/Pressure Compensation (S.TPC)

				Į	Jsable device	es				
Setting data		Internal devices (System, user)		MELSECNET/H direct J[]{]		Intelligent function	Index	Constant	Othor	
uala	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other	
§1)	_					_	=			
(1)	_	(-					
<u>\$2</u>	_					_	=			
© 2	_	(_	=			

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

The input value (E1) is subject to temperature pressure compensation (temperature or pressure) and output.

Error code: 4100

Control data

(1) Data specified in S.TPC instruction

Specified p	osition	Symbol	Name	Recommended range ^{⁴1}	Unit	Data format	Standard value	Store
	\$1+0 +1	E1	Differential pressure	-999999 to 999999	_	Real number		U
	+2 +3	E2	Measurement temperature	-999999 to 999999		Real number		U
	+4 +5	E3	Measured pressure	-999999 to 999999	_	Real number	I	U
Innut data		е		_				
Input data	+6	e1	E2 use flag	b15 b12 b8 b4 b0 e e e 2 1		BIN		U
		e2	E3 use flag	0: Unused 1: Used		16Bit		J
Block memory	©+0 +1	BW	Output value	(-999999 to 999999)	_	Real number	1	S
	©+0 +1	TEMP	Design temperatureT' (Engineering value)	-999999 to 999999	ొ	Real number	0.0	U
Operation	+2 +3	B1	Bias (Temperature)	-999999 to 999999	°C	Real number	273.15	U
constant	+4 +5	PRES	Design pressureP' (Engineering value)	-999999 to 999999	_	Real number	0.0	U
	+6 +7	B2	Bias (Pressure)	-999999 to 999999	_	Real number	10332.0	U

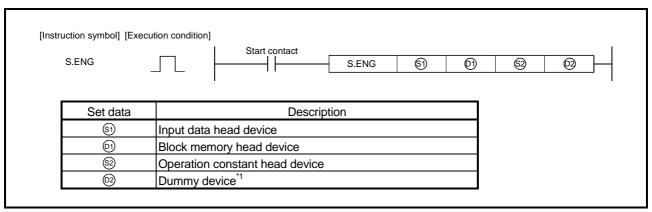
^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

Processing contents

(1) The S.TPC instruction calculates the temperature/pressure compensation value with the following expression.

$$BW = E1 \times A1 \times A2$$

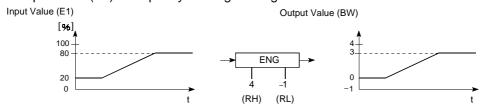
(2) A1 and A2 use the values calculated with the following expressions.


Inp	out	A 4	40
E2	E3	A1	A2
Used	Used Used		<u>E3 + B2</u> P' + B2
Not used	Used	1.0	<u>E3 + B2</u> P' + B2
Used	Not used	<u>T' + B1</u> E2 + B1	1.0

ERROR

• When an operation error occurs

10.6 Engineering Value Conversion (S.ENG)


				Į	Jsable device	es				
Setting data		Internal devices (System, user)		MELSECNET/H direct J[]{]		Intelligent function	Index	Constant	Othor	
uala	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other	
§1)	_					_	=			
(1)	_	(-					
<u>\$2</u>	_					_	=			
© 2	_	(_	=			

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

The input value (E1) is output by the engineering conversion.

Error code: 4100

Control data

(1) Data specified in S.ENG instruction

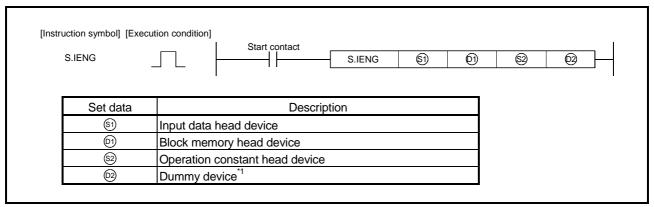
Specified po	osition	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
Input data	⑤1+0 +1	E1	Input value	-999999 to 999999	%	Real number		U
Block memory	⑩+0 +1	BW	Output value	(-999999 to 999999)		Real number	1	S
Operation	\$2+0 +1	RH	Engineering value upper limit	-999999 to 999999	ĺ	Real number	100.0	U
constant	+2 +3	RL	Engineering value lower limit	-999999 to 999999		Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

Processing contents

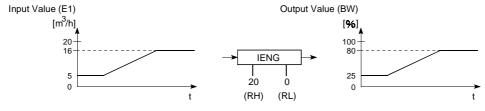
(1) The S.ENG instruction performs the following operation.


$$BW = \frac{RH - RL}{100} \times E1 + RL \quad (E1 = 0 \text{ to } 100\%)$$

ERROR

• When an operation error occurs

10.7 Engineering Value Reverse Conversion (S.IENG)


		Usable devices										
Setting data		Internal devices (System, user)		MELSECNET/H direct J[][]		Intelligent function	Index	Constant	Other			
uala	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Oriei			
S 1	-		0			_	-					
©1	-	(-	=					
<u>\$2</u>	_					=	=					
<u>©2</u>	_				·	-	=					

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

The input value (E1) is converted to % value and output.

Error code: 4100

Control data

(1) Data specified in S.IENG instruction

Specifie Position		Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store
Input data	§1)+0 +1	E1	Input value	-999999 to 999999	_	Real number	-	U
Block memory	©)+0 +1	BW	Output value	(-999999 to 999999)	%	Real number	l	S
Operation	©+0 +1	RH	Engineering value upper limit	-999999 to 999999		Real number	100.0	U
constant	+2 +3	RL	Engineering value lower limit	-999999 to 999999	_	Real number	0.0	U

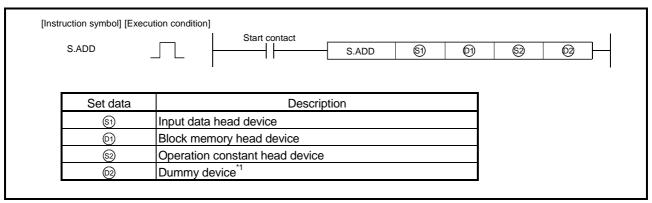
^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

Processing contents

(1) The S.IENG instruction performs the following operation.

$$BW = \frac{100}{RH - RL} \times (E1 - RL) \quad (\%)$$

- (2) Make setting to satisfy RH > RL.
- (3) If RH ≤ RL, the processing is executed unchanged but engineering value reverse conversion is not performed.
- (4) If RH = RL, BW = 0.


ERROR

• When an operation error occurs

11 ARITHMETIC OPERATION INSTRUCTIONS

11.1 Addition (S.ADD)

		Usable devices										
Setting data	Internal devices (System, user)		File	MELSECNET/H direct J[]∑]		Intelligent function	Index	Constant	Other			
	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other			
§ 1	_	(0			_	_					
©1	_	(_								
<u>\$2</u>	_	(_	_		•			
© 2	_					_						

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

The input value (El to En) data is added by attaching a coefficient.

Control Data

(1) Data specified in S.ADD instruction

Specification position		Symbol	Name	Recommended range ^{*1}	Unit	Data format	Standard value	Store
Input data	§1)+0	n	Input count	0 to 5	_	BIN 16Bit	_	U
	+1 +2	E1	Input value 1	-999999 to 999999		Real number		
	+3 +4	E2	Input value 2					U
		1	;					
	+2n-1 +2n	En	Input value n					
Block memory	®+0 +1	BW	Output value	(-999999 to 999999)	1	Real number	_	S
	\$2+0	n	Number of coefficients	0 to 5	l	BIN 16Bit	0	U
	+1 +2	K1	Coefficient 1	-999999 to 999999		Real number	1.0	
Operation constant	+3 +4	K2	Coefficient 2					U
	:	:	:					
	+2n-1 +2n	Kn	Coefficient n					
	+2n+1 +2n+2	В	Bias	-999999 to 999999	1	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

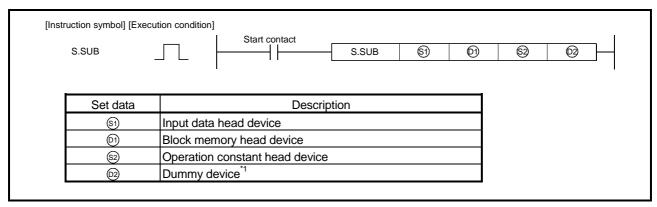
Processing contents

(1) The S.ADD instruction performs the following operation.

$$BW = (K1 \times E1) + (K2 \times E2) \cdots + (Kn \times En) + B$$

(2) When n is 0, BW = B.

Error


• When an operation error occurs

• When not n = 0 to 5.

Error code: 4100 Error code: 4100

11.2 Subtraction (S.SUB)

Setting data	Usable devices									
	Internal devices (System, user)		File	MELSECNET/H direct J[][]		Intelligent function	Index	Constant	Other	
	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other	
(S1)	_	0		_						
©1	_	0		-						
S 2	=	0		=						
© 2	_	0			·	_	-	·		

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

The input value (E1 to En) data is subtracted by attaching a coefficient.

Control Data

(1) Data specified in S.SUB instruction

Specification position		Symbol	Name	Recommended range*1	Unit	Data format	Standard value	Store
Input data	§1)+0	n	Input count	0 to 5	_	BIN 16Bit	_	U
	+1 +2	E1	Input value 1	-999999 to 999999		Real number	_	C
	+3 +4	E2	Input value 2					
	:	:	:					
	+2n-1 +2n	En	Input value n					
Block memory	®+0 +1	BW	Output value	(-99999 to 999999)	_	Real number	_	S
Operation constant	\$2+0	n	Number of coefficients	0 to 5	_	BIN 16Bit	0	U
	+1 +2	K1	Coefficient 1	-999999 to 999999		Real number	1.0	U
	+3 +4	K2	Coefficient 2					
	:	;						
	+2n-1 +2n	Kn	Coefficient n					
	+2n+1 +2n+2	В	Bias	-999999 to 999999	_	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

Processing contents

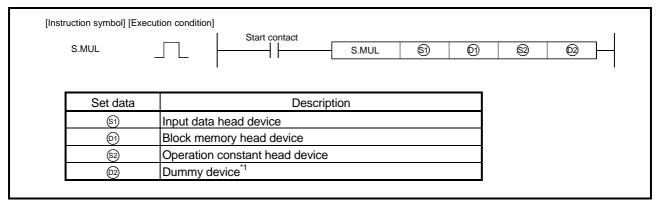
(1) The S.SUB instruction instructs the following operation.

$$BW = (K1 \times E1) - (K2 \times E2) \dots - (Kn \times En) + B$$

(2) When n is 0, BW = B.

Error

• When an operation error occurs


• When not n = 0 to 5.

Error code: 4100

Error code: 4100

11.3 Multiplication (S.MUL)

Setting data	Usable devices									
	Internal devices (System, user)		File	MELSECNET/H direct J[]\[]		Intelligent function	Index	Constant	Other	
	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other	
S 1	_					_	-			
(D1)	_	0		_						
<u>\$2</u>	=	0		-						
© 2	_	0				_	=			

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

The input value (E1 to En) data is multiplied by attaching a coefficient.

Control Data

(1) Data specified in S.MUL instruction

Specification position		Symbol	Name	Recommended range ^{*1}	Unit	Data format	Standard Value	Store
Input data	§1)+0	n	Input count	0 to 5		BIN 16Bit	_	U
	+1 +2	E1	Input value 1	-999999 to 999999	_	Real number	_	O
	+3 +4	E2	Input value 2					
	:	:	:	000000				
	+2n-1 +2n	En	Input value n					
Block memory	^{©1} +0 +1	BW	Output value	(-999999 to 999999)		Real number	_	S
	§2+0	n	Number of coefficients	0 to 5	_	BIN 16Bit	0	U
Operation constant	+1 +2	K1	Coefficient 1	-999999 to 999999	_ Real number		1.0	C
	+3 +4	K2	Coefficient 2					
	:	:	:					
	+2n-1 +2n	Kn	Coefficient n					
	+2n+1 +2n+2	В	Bias	-999999 to 999999	_	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

Processing contents

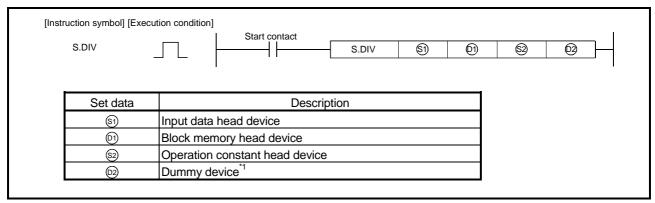
(1) The S.MUL instruction performs the following operation.

$$BW = (K1 \times E1) \times (K2 \times E2) \cdots \times (Kn \times En) + B$$

(2) When n is 0, BW = B.

Error

• When an operation error occurs


• When not n = 0 to 5.

Error code: 4100

Error code: 4100

11.4 Division (S.DIV)

				Į	Jsable device	es				
Setting data	Internal devices (System, user)		File	MELSECNET/H direct J[]\[]		Intelligent function	Index	Constant	Other	
data	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other	
(S1)	-					_	-			
©1	_			_						
S 2	=		0		_					
© 2	_					_	-			

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Divides the input value 1 (E1) by the input value 2 (E2).

Control Data

(1) Data specified in S.DIV instruction

Specification	position	Symbol	Name	Recommended range *1	Unit	Data format	Standard Value	Store
Innut data	§1)+0 +1	E1	Input value 1 (Minute)	-999999 to 999999	l	Real number	_	U
Input data	+2 +3	E2	Input value 2 (Denominator)	-999999 to 999999	l	Real number	_	U
Block memory	^{©1} +0 +1	BW	Output value	(-999999 to 999999)	1	Real number	_	S
	©2+0 +1	А	Coefficient 1	-999999 to 999999	l	Real number	1.0	U
	+2 +3	K1	Coefficient 2	-999999 to 999999	l	Real number	1.0	U
Operation	+4 +5	K2	Coefficient 3	-999999 to 999999	I	Real number	1.0	U
constant	+6 +7	B1	Bias 1	-999999 to 999999	l	Real number	0.0	U
-	+8 +9	B2	Bias 2	-999999 to 999999		Real number	0.0	U
	+10 +11	В3	Bias 3	-999999 to 999999		Real number	0.0	U

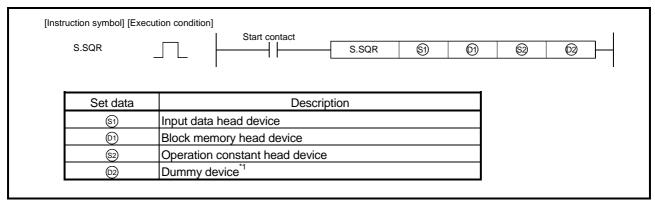
^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

Processing contents

(1) The S.DIV instruction performs the following operation.

$$BW = A \times \frac{K1 \times E1 + B1}{K2 \times E2 + B2} + B3$$


(2) When the denominator is 0, BW = B3.

Error

• When an operation error occurs

11.5 Extraction (S.SQR)

		Usable devices										
Setting data		devices n, user)	File	MELSECNET/H direct J[]\[]		Intelligent function	Index	Constant	Other			
uala	Bit Word		register	Bit	Word	module U[]\G[]	register Zn	K, H	Other			
S 1	_	(_	-					
© 1	_	(_								
<u>\$2</u>	_		0			=	=					
© 2	_					_	=					

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

The $\sqrt{\ }$ of input value (EI) is output.

When the input value is negative, 0 is output.

Control Data

(1) Data specified in S.SQR instruction

Specification	position	Symbol	Name	Recommended range *1	Unit	Data format	Standard Value	Store
Input data	\$1+0 +1	E1	Input value	0 to 999999	_	Real number	_	C
Block memory	©1+0 +1	BW	Output value	(0 to 999999)	_	Real number	_	S
Operation	©+0 +1	OLC	Output low cut value	0 to 999999	_	Real number	0.0	U
constant	+2 +3	К	Coefficient	0 to 999999	_	Real number	10.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

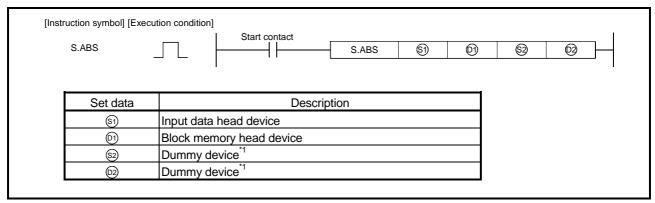
11 - 10

Processing contents

(1) The S.SQR instruction performs the following operation.

$$BW = K \times \sqrt{(E1)}$$

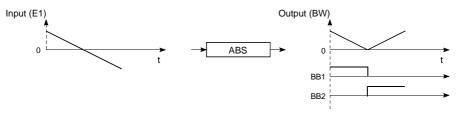
(2) When $K \times \sqrt{(E1)} \le 0LC$, BW = 0. Also, when (E1 < 0), BW = 0.


Error

11 - 10

• When an operation error occurs

11.6 Absolute Value (S.ABS)


				l	Jsable device	Usable devices										
Setting data		devices n, user)	File	MELSECNET/H direct J[]\[]		Intelligent function	Index	Constant	Other							
uala	Bit Word		register	Bit	Word	module U[]\G[]	register Zn	K, H	Other							
(S1)	-					_	-									
© 1	_			_												
<u>\$2</u>	=		0		_											
© 2	_					_	=									

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

The input value (E1) absolute value is output.

Control Data

(1) Data specified in S.ABS instruction

Specification	Position	Symb	Name	Recommended range ^{*1}	Unit	Data format	Standard Value	Store
Input data	\$1+0 +1	E1	Input value	-999999 to 999999	-	Real number	_	U
	©1+0 +1	BW	Output value	(0 to 999999)	_	Real number	_	S
		BB		-				
Block memory	+2	BE	Judgment of input value (E1) sign	b15 b12 b8 b4 b0 B B B B B 2 1 When E1 > 0: BB1= 1 When E1 = 0: BB1= BB2= 0	_	BIN 16Bit		S

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

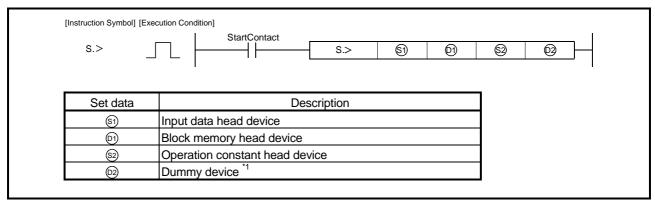
Users cannot set the data.

Processing contents

(1) The S.ABS instruction performs the following operation.

(2) The sign of the input value 1 (E1) is judged and the result is output to BB1 and BB2.

E1 Status	BB1	BB2
E1 > 0	1	0
E1 < 0	0	1
E1 = 0	0	0


Error

• When an operation error occurs

12 COMPARISON OPERATION INSTRUCTIONS

12.1 Comparison(S. >)

	Usable devices											
Setting data	Internal devices (System, user)		MELSECNET/ File direct J[]\[\]			Intelligent function	Index	Constant	Other			
uala	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Oiner			
S 1	_	(_	_					
(D1)	-	(0			=	=					
<u>\$2</u>	_	(0			=	=					
<u>©</u> 2	_				•	_	_					

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Compares the input value 1 (E1) and input value 2 (E2) and outputs the result of comparison.

Control data

(1) Data specified in S. > instruction

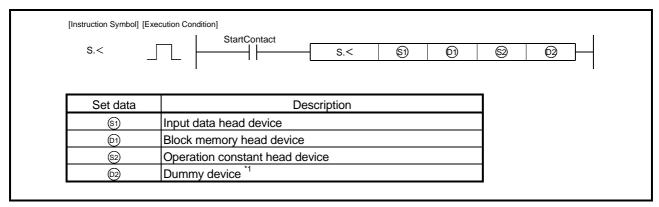
Specified p	osition	Symbol	Name	Recommended range *1	Unit	Data format	Standard Value	Store
Input	§1)+0 +1	E1	Input value 1	-999999 to 999999		Real number		U
data	+2 +3	E2	Input value 2	-999999 to 999999		Real number	1	U
	©)+0 +1	BW	Output value	(The same value as the input value 1 (E1) is stored)	1	Real number	-	S
		BB		=				
Block memory	+2	BB1	Comparison output	the result of comparison between E1 and E2 is stored.)		BIN 16Bit	ı	S
Operation	\$2+0 +1	К	Set value	-999999 to 999999	1	Real number	0.0	U
constant	+2 +3	HS	Hysteresis	0 to 999999	_	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

Processing contents

(1) Compares the input value 1 (E1) with the input value 2 (E2), and outputs the result of the comparison to BB1 of the block memory.


Condition	BB1
E1 > (E2 + K)	1
$E1 \le (E2 + K - HS)$	0
$(E2 + K - HS) < E1 \le (E2 + K)$	Last value is output

Error

• When the hysteresis value is negative

12.2 Comparison(S. <)

				Ĺ	Jsable device	es			
Setting data	Internal devices (System, user)		File	MELSECNET/H direct J[]\[]		Intelligent function	Index	Constant	Other
data	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other
(S1)	-					_	-		
©1	_			_					
<u>\$2</u>	=		0			=	=		
© 2	_					_	=		

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Compares the input value 1 (E1) and input value 2 (E2) and outputs the result of comparison.

Control data

(1) Data specified in S. < instruction

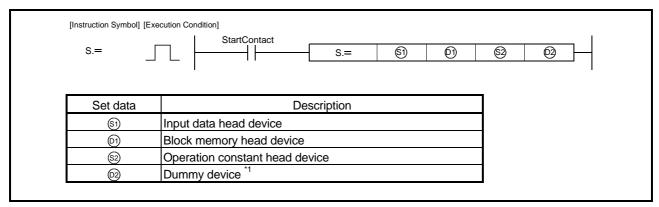
Specified p	osition	Symbol	Name	Recommended range *1	Unit	Data format	Standard Value	Store
Input	\$1)+0 +1	E1	Input value 1	-999999 to 999999	=	Real number	_	U
data	+2 +3	E2	Input value 2	-999999 to 999999	_	Real number	_	U
	©+0 +1	BW	Output value	(The same value as the input value 1 (E1) is stored)	_	Real number		S
		BB		_				
Block memory	+2	BB1	Comparison output	b15 b12 b8 b4 b0 B B B 1 (The result of comparison between E1 and E2 is stored.)	_	BIN 16Bit	_	S
Operation	\$2+0 +1	K	Set value	-999999 to 999999	=	Real number	0.0	U
constant	+2 +3	HS	Hysteresis	0 to 999999	_	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

Processing contents

(1) Compares the input value 1 (E1) with the input value 2 (E2), and outputs the result of the comparison to BB1 of the block memory.


Condition	BB1
E1 < (E2 + K)	1
E1 ≧ (E2 + K + HS)	0
$(E2 + K) \le E1 < (E2 + K + HS)$	Last value is output

Error

• When the hysteresis value is negative

12.3 Comparison(S. =)

	Usable devices											
Setting	Internal devices (System, user)		File	MELSECNET/H direct J[]\[]		Intelligent function	Index	Constant	Other			
data	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other			
(S1)	-		Ó									
©1	_			-								
<u>\$2</u>	=	0		-								
© 2	_			_								

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Compares the input value 1 (E1) and input value 2 (E2) and outputs the result of comparison.

Control data

(1) Data specified in S. = instruction

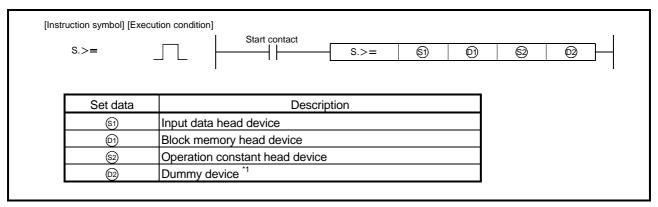
Specified p	osition	Symbol	Name	Recommended range *1	Unit	Data format	Standard Value	Store
Input	\$1)+0 +1	E1	Input value 1	-999999 to 999999	=	Real number	I	U
data	+2 +3	E2	Input value 2	-999999 to 999999	_	Real number	1	U
	⊕+0 +1	BW	Output value	(The same value as the input value 1 (E1) is stored)	_	Real number	1	S
		BB		-				
Block memory	+2	BB1	Comparison output	b15 b12 b8 b4 b0 B B B 1 Che result of comparison between E1 and E2 is stored.)	_	BIN 16Bit		S
Operation constant	\$2+0 +1	К	Set value	-999999 to 999999	_	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

Processing contents

(1) Compares the input value 1 (E1) with the input value 2 (E2), and outputs the result of the comparison to BB1 of the block memory.


Condition	BB1
E1 = (E2 + K)	1
E1 ≠ (E2 + K)	0

Error

• When an operation error occurs

12.4 Comparison(S. \geq =)

	Usable devices											
Setting	Internal devices (System, user)		File	MELSECNET/H direct J[]\[]		Intelligent function	Index	Constant	Other			
data	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other			
(S1)	-		Ó									
©1	_			-								
<u>\$2</u>	=	0		-								
© 2	_			_								

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Compares the input value 1 (E1) and input value 2 (E2) and outputs the result of comparison.

Control data

(1) Data specified in S. >= instruction

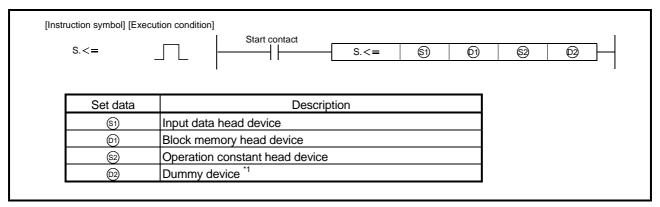
Specification	Position	Symbol	Name	Recommended range *1		Data format	Standard Value	Store
Input	\$1)+0 +1	E1	Input value 1	-999999 to 999999	_	Real number	_	U
data	+2 +3	E2	Input value 2	-999999 to 999999	_	Real number	_	U
	©+0 +1	BW	Output value	(The same value as the input value 1 (E1) is stored)	_	Real number	_	S
		BB		-				
Block memory	+2	BB1	Comparison output	(The result of comparison between E1 and E2 is stored.)	_	BIN 16Bit	_	S
Operation	\$2+0 +1	К	Set value	-999999 to 999999	_	Real number	0.0	U
constant	+2 +3	HS	Hysteresis	0 to 999999	_	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

Processing contents

(1) Compares the input value 1 (E1) with the input value 2 (E2), and outputs the result of the comparison to BB1 of the block memory.


Condition	BB1
E1 ≧ (E2 + K)	1
E1 < (E2 + K - HS)	0
$(E2 + K - HS) \le E1 < (E2 + K)$	Last value is output

Error

• When the hysteresis value is negative

12.5 Comparison(S. <=)

	Usable devices											
Setting	Internal devices (System, user)		File	MELSECNET/H direct J[]\[]		Intelligent function	Index	Constant	Other			
data -	Bit	Word	register	Bit	Word	module U[]\G[]	register Zn	K, H	Other			
(S1)	-		Ó		_							
© 1	_			_								
<u>\$2</u>	=	0		_								
© 2	_			_								

^{*1:} Special register SD1506 can be specified as a dummy device.

Functions

Compares the input value 1 (E1) and input value 2 (E2) and outputs the result of comparison.

Control data

(1) Data specified in S. <= instruction

Specification	Position	Symbol	Name	Recommended range *1	Unit	Data format	Standard Value	Store
Input	\$1)+0 +1	E1	Input value1	-999999 to 999999	_	Real number	_	U
data	+2 +3	E2	Input value2	-999999 to 999999	_	Real number	_	U
	©+0 +1	BW	Output value	(The same value as the input value 1 (E1) is stored)	_	Real number	_	S
		BB		-				
Block memory	+2	BB1	Comparison output	the result of comparison between E1 and E2 is stored.)	_	BIN 16Bit	_	S
Operation	\$2+0 +1	K	Set value	-999999 to 999999	=	Real number	0.0	U
constant	+2 +3	HS	Hysteresis	0 to 999999	_	Real number	0.0	U

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system.

Users cannot set the data.

Processing contents

(1) Compares the input value 1 (E1) with the input value 2 (E2), and outputs the result of the comparison to BB1 of the block memory.

Condition	BB1			
E1 ≦ (E2 + K)	1			
E1 > (E2 + K + HS)	0			
$(E2 + K) < E1 \le (E2 + K + HS)$	Last value is output			

Error

• When an operation error occurs

Error code: 4100

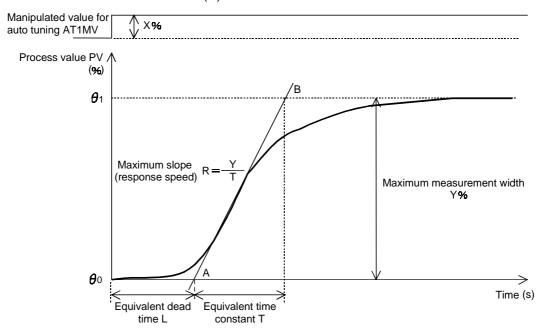
13 AUTO TUNING

Auto tuning is designed to make the initial setting of the PID constants.

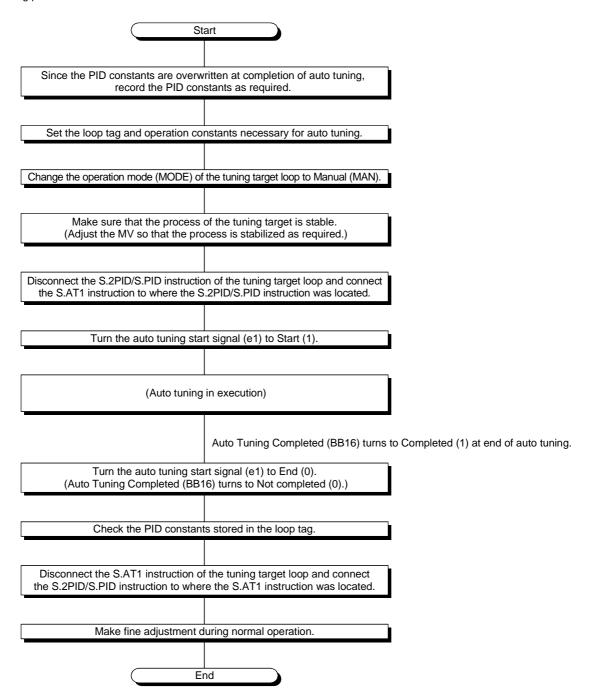
The auto tuning of the QnPHCPU can be used for processes that can be approximated with a primary delay plus dead time represented by the following expression.

Example: Process with relatively slow response such as temperature adjustment

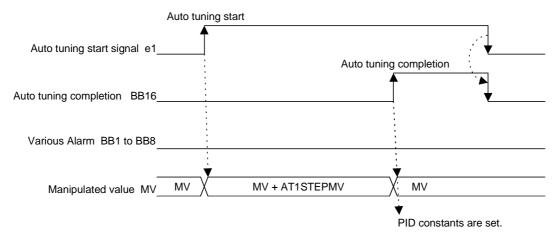
K: Gain, T: Time constant, L: Dead time, s: Laplace operator

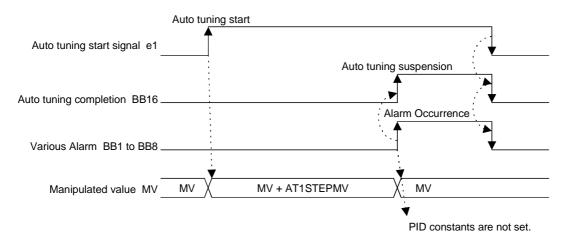

Auto tuning can be used for the loop that uses the S. PID or S. 2PID instruction.

Auto tuning is performed in the ZN process: stepped response process of Ziegler and Nichols. [Outline of stepped response process]

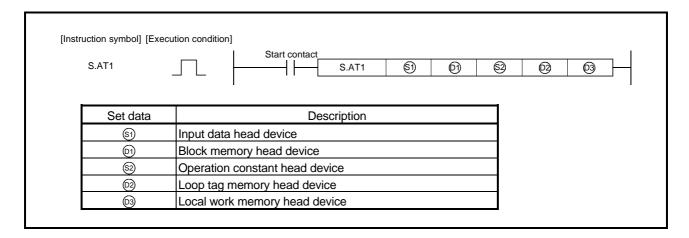

With no control operation being performed, change the manipulated value (MV) step by step and look how the process value (PV) varies.

- 1) When the manipulated value (MV) is changed step by step, the process value (PV) begins to vary slowly.
 - Soon, the PV will vary faster, then vary slowly again, and finally settle at a fixed value.
- 2) Draw a tangent line at the place where the process value (PV) varies fastest, and find the points of intersection A, B where this tangent line crosses the horizontal axis corresponding to the first process value (θ0) and last process value (θ1). This provides the equivalent dead time (L) and equivalent time constant (T) as shown below.
- 3) From the equivalent time constant (T) and maximum process value width (Y), calculate the maximum slope (response speed) R = Y/T.


Apply the equivalent dead time (L) and maximum slope (R) to the Ziegler and Nichols' adjustment rule, and calculate the proportional gain Kp (P), integral constant T_I (I) and derivative constant T_D (D).


Auto tuning procedure

(1) Time chart from auto tuning start until normal completion



(2) Time chart from auto tuning start until stop due to alarm occurrence

13.1 Auto tuning instruction (S. AT1)

		Usable devices										
Setting data	Internal devices (System, user)		File	MELSECNET/H direct J[]\[]		Intelligent function register		Constant	Other			
	Bit	Word	register	Bit	Word	module U[]\G[]	Zn	K, H	Outer			
(S1)	-	0		-								
(D1)	-			_								
<u>\$2</u>	_	(0		_							
(D2)	_	0		_								
© 3	_	()	9-								

Functions

Performs auto tuning and makes the initial setting of the PID constants.

Control data

(1) Data specified in S. AT1 instruction

Specified	position	Symbol	Name	Recommended range *1	Unit	Data format	Standard value	Store	
	\$1+0 +1	E1	Input value	-999999 to 999999	%	Real number	_	U	
Input data	+2	e1	Auto tuning start signal	b15 b12 b8 b4 b0 e 1 0: Stop/end 1: Start	_	BIN 16bit	0	C	
		BB							
		BB1	Alarm						
		BB2	Input upper limit alarm						
		BB3 Input lower limit alarm b15 b12 b8 b4 b	b15 b12 b8 b4 b0						
Block	(A) (A)	©)+0	BB4	Output upper limit alarm	B B B B B B B B B B		DIN		
memory	©1)+0	BB5	Output lower limit alarm	BB16 BB1 to BB8	=	BIN 16bit	_	S	
		BB6	Out time alarm	(0: Incomplete) (0: Without alarm)					
		BB7	Operation mode alarm	(1: Complete) (1: With alarm)					
		BB8	Identification alarm						
0		BB16	Auto tuning completion	O. December of control		DIN			
Operation constant	\$2+0	PN	Operation mode	Reverse operation Forward operation	_	BIN 16bit	0	U	
	© + 1	MODE	Operation mode	0 to FFFFH b15 b12 b8 b4 b0 C C C C C C A M L L L S M C A M A U A C C C V V B B B S T N C A M	_	BIN 16bit	8н	S/U	
Loop tag memory ²	+3 ALM		Alarm detection	b15 b12 b8 b4 b0 S P P H H L H L H L H L H L H L H L H L H	_	BIN 16bit	4000н	S/U	
	+12 +13	MV Manipulated value -10 to 110		-10 to 110	%	Real number	0.0	U	
	+18 +19	МН	Output upper limit value	-10 to 110	%	Real number	100.0	U	
	+20 +21	ML	Output lower limit value	-10 to 110	%	Real number	0.0	U	

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)

Specified position		Symbol	Name	R	ecommende	ed range *1	Unit	Data format	Standard value	Store
	@+52 +53	Р	Gain	0 to 999999			_	Real number	1.0	S/U
	+54 +55	I	Integral constant	0 to 999999			s	Real number	10.0	S/U
	+56 +57	D	Derivative constant	0 to 999999			s	Real number	0.0	S/U
Loop tag memory *2	+70 +71	AT1 STEP MV	Step manipulated value for AT1	-100 to 100			%	Real number	0.0	U
	+72 +73	AT1ST	Sampling cycle for AT1	0 to 999999	Note that	$\frac{AT1ST}{\DeltaT} \leq 32767$	s	Real number	1.0	U
	+74 +75	AT1 TOUT1	Time-out time for AT1	0 to 999999	Note that	$\frac{AT1TOUT1}{\DeltaT} \leq 32767$	s	Real number	100.0	U
	+76 +77	AT1 TOUT2	After maximum slope time-out time for AT1	0 to 999999	Note that	<u>AT1TOUT2</u> ≤ 32767	s	Real number	10.0	U
Local work memory *3	⊚+0 : +21	_	System area	Used by the s	ystem as a	work area.	_	_	_	S

^{*1:} The data of the item(s) where the values within the recommended range are given in the parentheses are stored by the system. Users cannot set the data.

Specified position	contents
§3+0	Sampling cycle counter initial preset flag
+1	Sampling cycle counter
+2	Time-out time counter initial preset flag
+3	Time-out time counter
+4	After maximum slope time-out time counter initial preset flag
+5	After maximum slope time-out time counter
+6	Step manipulated value preset flag
+7	Counter from auto tuning start
+8 +9	Auto tuning start-time PV0
+10 +11	PV _{n-1} (Last process value)
+12 +13	Maximum slope value
+14 +15	Maximum slope-time counter
+16 +17	Maximum slope-time PV
+18 +19	R (Response speed)
+20 +21	L (Equivalent dead time)

When control is to be started from the initial status, the data must be cleared with the sequence program.

(2) Execution cycle (ΔT)

Set the execution cycle in SD1500 and SD1501 as a real number.

13 - 6 13 - 6

^{*2:} The loop tag memory and loop tag past value memory occupy a total of 128 words. (Refer to Section 3.3.1 for details.)
*3: The applications of the loop tag past value memory are indicated below.

Processing contents

(1) Start signal judgement processing

Any of the following processings is performed depending on the statuses of the auto tuning start signal (e1) and auto tuning completed (BB16).

e1	BB16	Processing
0	0	BB2 to BB8 of BB are turned to 0. When the stepped manipulated value preset flag is 1, the following processing is performed. MV = MV - AT1STEPMV The S. AT1 instruction is terminated.
1	0	"(2) Loop stop processing" is performed.
0	1	BB16 of BB is turned to 0. The S. AT1 instruction is terminated.
1	1	The S. AT1 instruction is terminated.

(2) Loop stop processing

(a) Setting 1 in SPA of the alarm detection (ALM) selects a loop stop.

A loop stop performs the following processing and terminates the S. AT1 instruction.

- 1) The auto tuning completed (BB16) is turned to 1.
- 2) When the stepped manipulated value preset flag is 1, the following processing is performed.

$$MV = MV - AT1STEPMV$$

(b) Setting 0 in SPA of the alarm detection (ALM) selects a loop run.

A loop run performs "(3) Mode judgement processing".

(3) Mode judgement processing

Either of the following processings is performed depending on the operation mode (MODE) setting.

- (a) When the operation mode (MODE) is any of AUT, CAB, CAS, CCB, CSV, LCA and LCC, the following processing is performed and the S. AT1 instruction is terminated.
 - 1) The operation mode alarm (BB7) is turned to 1.
 - 2) The auto tuning completed (BB16) is turned to 1.
 - 3) When the stepped manipulated value preset flag is 1, the following processing is performed.

```
MV = MV - AT1STEPMV
```

(b) When the operation mode (MODE) is any of MAN, CMB, CMV and LCM, "(4) Input check processing" is performed.

(4) Input check processing

Either of the following processings is performed depending on the alarm detection (ALM) setting.

- (a) If either of PHA and HHA of the alarm detection (ALM) is 1, the following processing is performed and the S. AT1 is terminated.
 - 1) The input upper limit alarm (BB3) is turned to 1.
 - 2) The auto tuning completed (BB16) is turned to 1.
- (b) If either of PLA and LLA of the alarm detection (ALM) is 1, the following processing is performed and the S. AT1 is terminated.
 - 1) The input lower limit alarm (BB3) is turned to 1.
 - 2) The auto tuning completed (BB16) is turned to 1.

(5) Time-out judgement processing

Whether the auto tuning processing has reached the AT1 time-out time (AT1TOUT1) or not is judged.

- (a) If the AT1 time-out time (AT1TOUT1) is reached, the following processing is performed and the S. AT1 is terminated.
 - 1) The time-out alarm (BB6) is turned to 1.
 - 2) The auto tuning completed (BB16) is turned to 1.
- (b) If the AT1 time-out time (AT1TOUT1) is not reached, "(6) After maximum slope time-out judgment processing" is performed.

(6) After maximum slope time-out judgment processing

Whether the auto tuning processing has reached the AT1 after maximum slope time-out time (AT1TOUT2) or not is judged.

However, if the after maximum slope time-out time counter initial preset flag is 0, the processing in (c) is performed.

- (a) If the AT1 after maximum slope time-out time (AT1TOUT2) is reached, "(10) Identification processing" is performed.
- (b) If the AT1 after maximum slope time-out time (AT1TOUT2) is not reached, "(7) Stepped manipulated value set processing" is performed.
- (c) If the after maximum slope time-out time counter initial preset flag is 0, "(7) Stepped manipulated value set processing" is performed.

(7) Stepped manipulated value set processing

Whether the stepped manipulated value is "set (1)" or "not set (0)" is judged from the stepped manipulated value preset flag.

- (a) If the stepped manipulated value preset flag is 0, the following processing is performed and the S. AT1 is terminated.
 - The AT1 stepped manipulated value (AT1STEPMV) is added to the manipulated value (MV).

T1 = MV + AT1STEPMV

In the upper/lower limiter, the following operation is performed and the result of the operation is output to BB4 and BB5.

Condition		Result			Processing after upper/lower		
Condition	BB4 BB5 BB16 MV		MV	limiter			
T1 > MH	1	0	1	Original MV unchanged	0.4-44		
T1 < ML	0	1	1	Original MV unchanged	S. AT1 instruction is terminated.		
ML ≦ T1 ≦ MH	0	0	0	T1	The processing in 2) and later is performed.		

- 2) The stepped manipulated value preset flag is turned to 1.
- 3) The counter from auto tuning start is cleared to 0.
- 4) The input value (E1) is stored into the auto tuning start-time PV0.
- 5) The input value (E1) is stored into the last process value (PV_{n-1}).
- 6) The maximum slope value, maximum slope-time counter, maximum slope-time PV, response speed (R) and equivalent dead time (L) are cleared to 0.
- (b) If the stepped manipulated value preset flag is 1 "(8) Sampling cycle judgement processing" is performed.

(8) Sampling cycle judgment processing

Whether the sampling cycle is reached or not is judged from the AT1 sampling cycle (AT1ST).

- (a) If the sampling cycle is not reached, the S. AT1 instruction is terminated.
- (b) If the sampling cycle is reached, "(9) Response waveform observation processing" is performed.

(9) Response waveform observation processing

The following processing is performed for the input value (E1).

- (a) Response waveform observation
 - 1) The counter from auto tuning start is incremented.
 - 2) The following processing is performed according to the input value (E1) and last process value (PV_{n-1}).

Reverse operation (PN $= 0$)	T2 = F1 - PV _{n-1}
Forward operation (PN = 1)	$12 = E1 - PV_{n-1}$

3) The input value (E1) is stored into the last process value (PV_{n-1}).

(b) Maximum slope value

Depending on the slope (T2), the following processing is performed and the S. AT1 instruction is terminated.

 If reverse operation is performed (PN = 0) and AT1 stepped manipulated value (AT1STEPMV) ≥ 0 or forward operation is performed (PN = 1) and AT1 stepped manipulated value (AT1STEPMV) < 0

Condition	Processing
Maximum slope value slope ≤ (T2)	 Maximum slope value = slope (T2) Maximum slope-time counter = counter from auto tuning start Maximum slope-time PV = input value (E1) After maximum slope time-out count value is reset and count is restarted.
Maximum slope value > Slope(T2)	Maximum slope value remains unchanged from the last value.

2) If forward operation is performed (PN = 1) and AT1 stepped manipulated value (AT1STEPMV) ≥ 0 or reverse operation is performed (PN = 0) and AT1 stepped manipulated value (AT1STEPMV) < 0

Condition	Processing
Maximum slope value ≧ Slope(T2)	 Maximum slope value = slope (T2) Maximum slope-time counter = counter from auto tuning start Maximum slope-time PV = input value (E1) After maximum slope time-out count value is reset and count is restarted.
Maximum slope value < Slope(T2)	Maximum slope value remains unchanged from the last value.

(10) Identification processing

Using the maximum slope value, the following processing is performed.

- (a) Response speed
 - 1) The response speed for calculation (R') and response speed (R) are calculated with the following expression.

$$R' = \frac{\text{Maximum slope value(\%)}}{\text{AT1ST}}, R = \frac{|R'|}{100} \text{ (/s)}$$

2) If R \leq 0, the following processing is performed and the S. AT1 instruction is terminated. The identification alarm (BB8) is turned to 1.

The auto tuning completed (BB16) is turned to 1.

When the stepped manipulated value preset flag is 1, the following processing is performed.

MV = MV - AT1STEPMV

(b) Equivalent dead time

 The segment (b) made by the Y axis and the equivalent dead time (L) provided when the tangent line is drawn at the response speed for calculation (R') are calculated with the following expression.

$$b = (maximum slope-time PV) - R' \times (maximum slope counter) \times AT1ST$$

$$L = \frac{(Auto tuning start-time PV0)-b}{R'}$$

2) If L \leq 0, the following processing is performed and the S. AT1 instruction is terminated. The identification alarm (BB8) is turned to 1.

The auto tuning completed (BB16) is turned to 1.

When the stepped manipulated value preset flag is 1, the following processing is performed.

$$MV = MV - AT1STEPMV$$

(11) PID constant calculation processing

The response speed (R), equivalent dead time (L) and AT1 stepped manipulated value (AT1STEPMV) are assigned to the adjustment rule to calculate the PID constants.

(a) Control system

The control system is selected according to the integral constant T_{I} (I) and derivative constant T_{D} (D).

Integral constant T _I (I)	Derivative constant T _□ (D)	Control method		
Tı ≦ 0	-	Proportional control (P operation) only		
Tı > 0	T ⊳ ≦ 0	PI control (PI operation)		
11 > 0	$T_D > 0$	PID control (PID operation)		

(b) Adjustment rule

The ZN process: adjustment rule based on the stepped response of Ziegler and Nichols is used.

Control method	Rate example gain Kp (P)	Integral constant T _I (I)	Derivative constant T _D (D)
Р	$\frac{1}{R \times L} \times \frac{ AT1STEPMV }{100}$	0	0
PI	$\frac{0.9}{R \times L} \times \frac{ AT1STEPMV }{100}$	3.33 × L	0
PID	$\frac{1.2}{R \times L} \times \frac{ AT1STEPMV }{100}$	2 × L	0.5 × L

(c) PID constant storage

The following processing is performed and the S. AT1 instruction is terminated.

- 1) The PID constants are stored into the gain (P), integral constant (I) and derivative constant (D).
- 2) The auto tuning completed (BB16) is turned to 1.
- 3) The AT1 stepped manipulated value (AT1STEPMV) is subtracted from the manipulated value (MV), and the result is stored into the manipulated value (MV).

MV = MV - AT1STEPMV

ERROR

When an operation error occurred.

14 ERROR CODE

This chapter describes the definitions of the errors that will occur in the QnPHCPU and the compensation operation to be taken for the errors.

14.1 Error code list

There is the following process control instruction error.

• Error occurred midway through operation Error code: 4100

When an operation error occurs (error code: 4100), a detailed error code is stored into SD1502 and SD1503.

- SD1502: Error code that occurred in process control instruction
- SD1503: Processing number of corresponding instruction where error occurred

If "OPERATION ERROR (error code: 4100)" occurred in the process control instruction, confirm its details in the above special registers.

Table 14.1 Error Codes That Occurred in Process Control Instructions (Stored in SD1502)

Error code	Error definition	Cause	Processing
1	There is either a non-numeric or non-normalized number.	Set data, such as operation constant, loop tag memory, loop	Check/correct the set data.
2	Symbol error (The number is negative)	tag past value memory or execution cycle, has a problem.	
3	Number error (The number is outside the range)		
4	Integer range is exceeded		
5	Tried to divide by 0.		
6	An overflow occurred.		

Table 14.2 Processing Numbers of Instructions where Error Occurred (Stored in SD1503)

Processing No. Instruction	1	2	3	4	5	6	7	8
S. IN	Range check	Input limiter	Engineering value reverse conversion	Digital Filter				
S. OUT1	Input addition processing	Change rate, upper/lower limiter	Reset windup	Output conversion				
S. OUT2		Change rate, upper/lower limiter		Output conversion				

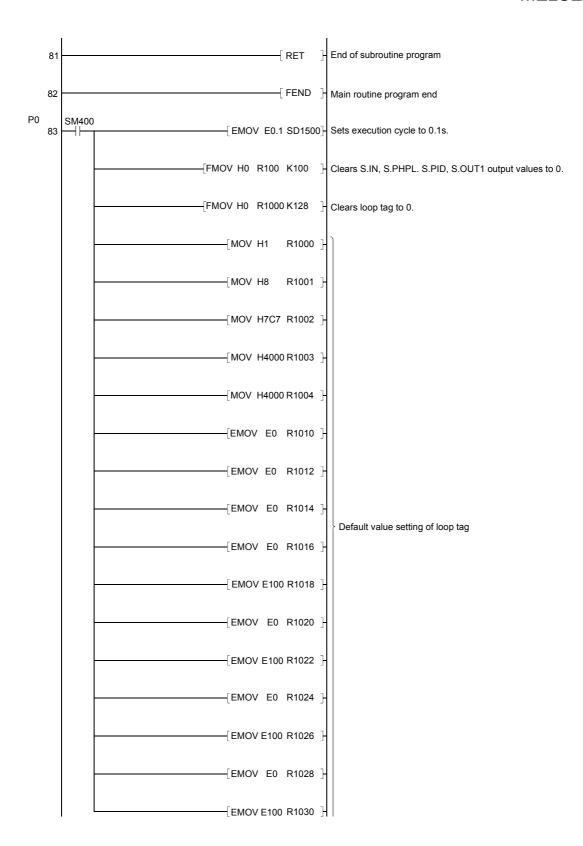
Table 14.2 Processing Numbers of Instructions where Error Occurred (Stored in SD1503)

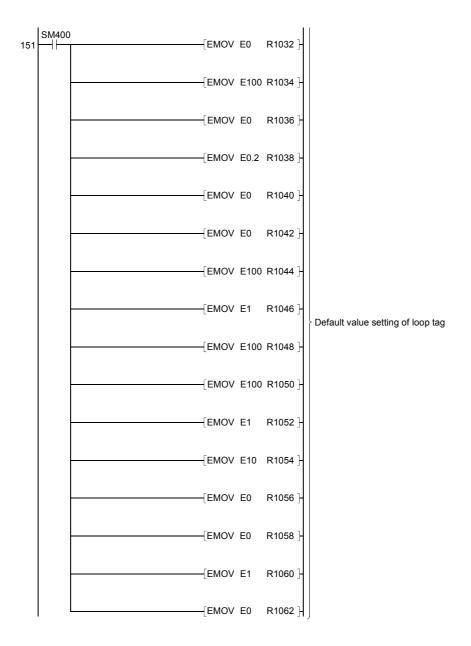
Processing								
No.	1	2	3	4	5	6	7	8
Instruction			5 .	0				
S. DUTY	Input	Change	Reset	Output ON	Output			
	addition	rate, upper/lower	windup	time conversion	conversion			
	processing	limiter		Conversion				
S. BC	Upper limit	Change rate	Output					
	check	check	conversion					
S. PSUM	Input value	Retentive	Output					
	increment	value	conversion					
0.00	operation	operation		0 . (()	5.5	5		
S. PID	Control	SV setting	Tracking	Gain (Kp)	PID	Deviation		
	cycle judgment	processing	processing	operation	operation	check		
S. 2PID	Control	SV setting	Tracking	Gain (Kp)	PID	PID	PID	Deviation
O. 21 1D	cycle	processing	processing	operation	operation 1)	operation 2)	operation 3)	check
	judgment	p.ccccg	p. 00000g	operaner.	*1	*2	*3	0.10011
S. PIDP	Control	SV setting	Tracking	Gain (Kp)	PIDP	Deviation	Change	Output
	cycle	processing	processing	operation	operation	check	rate, upper/	conversion
	judgment						lower limiter	
S. SPI	Operation	SV setting	Tracking	Gain (Kp)	SPI	Deviation		
0 100	time monitor	processing	processing	operation	operation	check		
S. IPD	Control	SV setting	Tracking	Gain (Kp)	IPD	Deviation check		
	cycle judgment	processing	processing	operation	operation	Check		
S. BPI	Control	SV setting	Tracking	Gain (Kp)	BPI	Deviation		
0. 5. 1	cycle	processing	processing	operation	operation	check		
	judgment	'						
S. R	Control	Engineering	Tracking	Change rate	Rate			
	cycle	value	processing	limiter	operation			
	judgment	conversion						
S. PHPL	Engineering	Upper/lower	Change rate	Engineering	Loop stop			
	value	limit check	check	value				
	reverse conversion			conversion				
S. ONF2	Control	SV setting	Tracking	MV	MV output	2-position		
0. ON 2	cycle	processing	processing	compensa-	Wiv Gatpat	ON/OFF		
	judgment	'		tion		control		
S. ONF3	Control	SV setting	Tracking	MV	MV output	3-position		
	cycle	processing	processing	compensa-		ON/OFF		
	judgment			tion		control		
S. PGS	Operation	SV count	MVPGS	Output				
	constant check	up	operation	processing				
S. SEL	Engineering	E1, E2	Engineering	Change	Output	Tracking		
O. OLL	value	selection	value	rate, upper/	conversion	processing		
	conversion	30.00.001	reverse	lower limiter	303101011	p. 00000mig		
			conversion					
S. AT1	Input check	Time out	After	Step	Sampling	Response	Identification	PID
		judgment	maximum	manipulated	cycle	waveform	processing	constant
			slope time-	value set	judgment	observation		calculation
			out time					

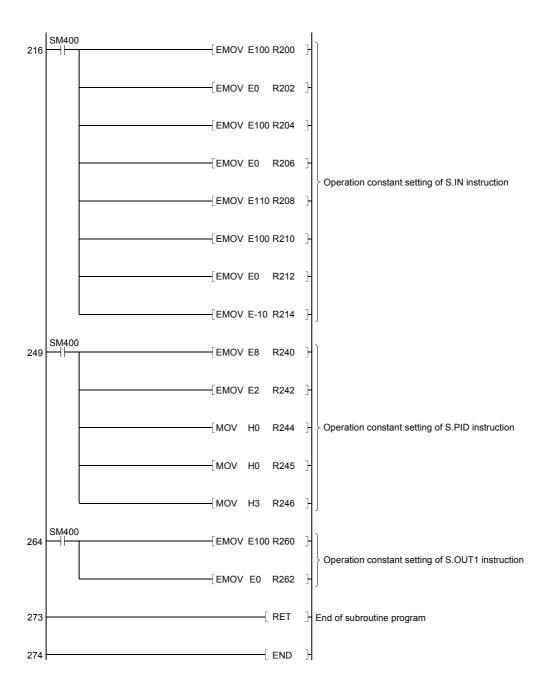
^{*1:} Indicates the operation processing of Bn or Cn. *2: Indicates the operation processing of Dn. *3: Indicates the operation processing of Δ MV.

Processing No. 1 is stored if an error occurs in the instruction that is not indicated in the above table.

14 - 2 14 - 2


APPENDIX


Appendix 1 EXAMPLE PROGRAM


In the following program, the operation mode switches to the manual mode at power-on. Turning X10 ON selects AUTO (automatic mode), starting PID control.

App - 1 App - 1

Appendix 2 Loop Tag Memory List

Appendix 2.1 PID control (SPID) 2-degree-of-freedom PID control (S2PID) Sample PI control (SSPI)

Loop tag memory list

Instruction used	Offset	Item	Name	Recommended range	Unit	Data storage	
						SPID S2PID	SSPI
	+0	_	_	_	_	_	_
	1	MODE *1	Operation mode	0 to FFFFн	-	S/U	S/U
	2	ALM *1	—	-		-	_
	3 4	INH *1	Alarm detection Alarm detection inhibition	0 to FFFFн 0 to FFFFн	-	S/U S/U	S/U S/U
	5	_	Alaim detection inhibition	— —	_	3/0	3/0
	6	_	_	_	_	_	_
	7	_	_	_	_	_	_
	8		=	_		_	_
	9		-	-	_	_	_
S. PHPL	10 11	PV	Process value	(RL to RH)	_	S	S
S. OUT1/S. DUTY	12 13	MV	Manipulated value	(-10 to 110)	%	S	S
S. PID/S. 2PID/ S. SPI	14 15	SV	Set value	RL to RH	_	U	U
S. PID/S. 2PID/ S. SPI	16 17	DV	Deviation	(-110 to 110)	%	S	S
S. OUT1/S. DUTY	18 19	МН	Output upper limit value	-10 to 110	%	U	U
S. OUT1/S. DUTY	20 21	ML	Output lower limit value	-10 to 110	%	U	U
S. PHPL/S. PID/ S. 2PID/S. SPI	22 23	RH	Engineering value upper limit	-999999 to 999999	_	U	U
S. PHPL/S. PID/ S. 2PID/S. SPI	24 25	RL	Engineering value lower limit	-999999 to 999999	_	U	U
S. PHPL	26 27	PH	Upper limit alarm set value	RL to RH PL < PH	_	U	U
S. PHPL	28 29	PL	Lower limit alarm value	RL to RH PL < PH	_	U	U
S. PHPL	30 31	НН	Upper upper limit alarm value	RL to RH PH ≦ HH	_	U	U
S. PHPL	32 33	LL	Lower lower limit alarm value	RL to RH LL ≦ PL	_	U	U
	34 35	_	_	_	_	_	_
	36 37	_	_	_	_	_	_
S. IN	38 39	α	Filter coefficient	0 to 1	_	U	U
S. PHPL	40 41	HS	Upper/lower limit alarm hysteresis	0 to 999999	%	U	U
S. PHPL	42 43	СТІМ	Change rate alarm check time	0 to 999999	s	U	U
S. PHPL	44 45	DPL	Change rate alarm value	0 to 100	%	U	U
S. PID/S. 2PID/ S. SPI	46 47	CT/ST	Control cycle/Operation time	0 to 999999	s	U (Set CT)	U (Set ST)

Instruction used	Offset	Item	Name	Recommended range	Unit	Data storage	
						SPID S2PID	SSPI
S. OUT1/S.DUTY	48 49	DML	Output change rate limit value	0 to 100	%	U	U
S. PID/S. 2PID/ S. SPI	50 51	DVL	Change rate limit value	0 to 100	%	U	U
S. PID/S. 2PID/ S. SPI	52 53	Р	Gain	0 to 999999	_	U	U
S. PID/S. 2PID/ S. SPI/S. OUT1/ S. DUTY	54 55	I *2	Integral constant	0 to 999999	s	U	U
S. PID/S. 2PID/ S. SPI	56 57	D/STHT	Derivative constant/Sample cycle	0 to 999999	S	U (D Setting)	U (STHT Setting)
S. PID/S. 2PID/ S. SPI	58 59	GW	Gap width	0 to 100	%	U	U
S. PID/S. 2PID/ S. SPI	60 61	GG	Gap gain	0 to 999999	_	U	U
S. PID/S. 2PID/ S. SPI/S. OUT1/S. DUTY	62 63	MVP	MV inside operation value	(-999999 to 999999)	%	S	S
S. 2PID	64 65	α	2Degree-of-freedom parameter α	0 to 1	_	U	_
S. 2PID	66 67	β	2Degree-of-freedom parameter β	0 to 1		U	
S. DUTY	68 69	CTDUTY	Control output cycle	0 to 999999	S	U	-

POINT

- MODE, ALM and INH marked *1 are shared among the instructions.
- I marked *2 shares the same value between the following instructions.
 - S. PID instruction and S. OUT1 instruction
 - S. PID instruction and S. DUTY instruction
 - S. 2PID instruction and S. OUT1 instruction
 - S. 2PID instruction and S. DUTY instruction
 - S. SPI instruction and S. OUT1 instruction

Appendix 2.2 I-PD Control (SIPD), Blend PI control (SBPI)

Loop tag memory list

Instruction used	Offset	Itom	Nama	Booommonded range	Linit	Data s	torage
instruction used	Oliset	Item	Name	Recommended range	Unit	SIPD	SBPI
	+0		-	_	_		
	1	MODE *1	Operation mode	0 to FFFF _H	_	S/U	S/U
	2	A L N 4 *1	Al	-	_	- 0/11	- 0/11
	3	ALM *1 INH *1	Alarm detection Alarm detection inhibition	0 to FFFFн 0 to FFFFн	_	S/U	S/U S/U
	4 5	IINI	Alarm detection inhibition	0 10 FFFFH	_	S/U	5/0
	6	_	_	_	_		_
	7	_	_	_	_		_
	8	_	_	_	_	_	_
	9	_	=	-	_	_	_
S. PHPL	10 11	PV	Process value	(RL to RH)	_	S	S
S. OUT1	12 13	MV	Manipulated value	(-10 to 110)	%	S	S
S. IPD/S. BPI	14 15	SV	Set value	RL to RH	_	U	U
S. IPD/S. BPI	16 17	DV	Deviation	(-110 to 110)	%	S	S
S. OUT1	18 19	МН	Output upper limit value	-10 to 110	%	U	U
S. OUT1	20 21	ML	Output lower limit value	-10 to 110	%	U	U
S. PHPL/S. IPD/ S. BPI	22 23	RH	Engineering value upper limit	-999999 to 999999	_	U	U
S. PHPL/S. IPD/ S. BPI	24 25	RL	Engineering value lower limit	-999999 to 999999	_	U	U
S. PHPL	26 27	PH	Upper limit alarm set value	RL to RH PL < PH	_	U	U
S. PHPL	28 29	PL	Lower limit alarm value	RL to RH PL < PH	_	U	U
S. PHPL	30 31	НН	Upper upper limit alarm value	RL to RH PH≦HH	_	U	U
S. PHPL	32 33	LL	Lower lower limit alarm value	RL to RH LL ≦ PL	_	U	U
	34 35	_	_	_	_	_	_
	36 37	_	_	_	_	_	-
S. IN	38 39	α	Filter coefficient	0 to 1	_	U	U
S. PHPL	40 41	HS	Upper/lower limit alarm hysteresis	0 to 999999	%	U	U
S. PHPL	42 43	CTIM	Change rate alarm check time	0 to 999999	s	U	U
S. PHPL	44 45	DPL	Change rate alarm value	0 to 100	%	U	U
S. IPD/S. BPI	46 47	СТ	Control cycle	0 to 999999	S	U	U

Instruction used	Offset	Itom	Name	Decemmended range	Unit	Data s	storage
Instruction used	Oliset	Item	ivame	Recommended range	Offic	SIPD	SBPI
S. OUT1	48 49	DML	Output change rate limit value	0 to 100	%	U	U
S. IPD/S. BPI	50 51	DVL	Change rate limit value	0 to 100	%	U	U
S. IPD/S. BPI	52 53	Р	Gain	0 to 999999	_	U	U
S. IPD/S. BPI S. OUT1	54 55	I *2	Integral constant	0 to 999999	s	U	U
	56		Derivative constant/DV	D:0 to 999999	s	U	_
S. IPD/S. BPI	57	D/SDV	cumulative value	SDV:-999999 to 999999	%		S
S. IPD/S. BPI	58 59	GW	Gap width	0 to 100	%	U	U
S. IPD/S. BPI	60 61	GG	Gap gain	0 to 999999		U	U
S. IPD/S. OUT1	62 63	MVP	MV inside operation value	(-999999 to 999999)	%	S	-

POINT

- MODE, ALM and INH marked *1 are shared among the instructions.
- I marked *2 shares the same value between the S. IPD and S. OUT1 instructions and between the S. BPI and S. OUT1 instructions.

Appendix 2.3 Manual output (SMOUT), Monitor (SMON)

Loop tag memory list

Instruction used	Offset	Itom	n Name	Setting/Store range	Unit	Data storage	
instruction used	Oliset	Item	Name	Setting/Store range	Offic	SMOUT	SMON
	+0	_	_	_	_	_	1
	1	MODE *1	Operation mode	0 to FFFFн	-	S/U	S/U
	2	_	_	_	_	_	
	3	ALM *1	Alarm detection	0 to FFFFн	_	S/U	S/U
	4	INH *1	Alarm detection inhibition	0 to FFFFн	_	-	S/U
	5	_	_	_	_	_	_
	6	_	_	_	_	_	_
	7	_	_	=	_	_	_
	8	_	_	_	_	_	_
	9	_	_	_	_	_	_
0. DUIDI	10	D) /	5	(DL 1 DLI)			0
S. PHPL	11	PV	Process value	(RL to RH)	_	_	S
O MOUT	12	101		40.1.440	0/		
S. MOUT	13	MV	Manipulated value	-10 to 110	%	U	_
	14						
	15	_	_	_	_	_	_
	16						
	17	_	_	_	_	_	_
	18						
	19	_	_	_	_	_	_
	20						
	21	_	_	_	_	_	_
0. BUB!	22	DII	Engineering value upper	0000001 000000			
S. PHPL	23	RH	limit	-999999 to 999999	_	_	U
0. DUDI	24	D.	Engineering value lower	0000001 000000			
S. PHPL	25	RL	limit	-999999 to 999999	_	_	U
C DUDI	26	DU	Upper limit alarm set	RL to RH			- 11
S. PHPL	27	PH	value	PL < PH	_	_	U
0. DUDI	28	D.		RL to RH			
S. PHPL	29	PL	Lower limit alarm value	PL < PH	_	_	U
O DUDI	30		Upper upper limit alarm	RL to RH			
S. PHPL	31	HH	value	PH ≤ HH	_	_	U
0. DUDI	32		Lower lower limit alarm	RL to RH			
S. PHPL	33	LL	value	LL≦PL	_	_	U
	34						
	35	_	_	_	_	_	_
	36						
	37	_	_	_	_	_	_
0 111	38						
S. IN	39	α	Filter coefficient	0 to 1	_	_	U
0. 51.151	40		Upper/lower limit alarm		0,1		
S. PHPL	41	HS	hysteresis	0 to 999999	%	_	U
0. DUIDI	42	OTIL!	Change rate alarm	0.4- 000000			
S. PHPL	43	CTIM	check time	0 to 999999	S	_	U
0. 0.101	44			2	0.		
S. PHPL	45	DPL	Change rate alarm value	0 to 100	%	_	U
	46						
	47	-	_	_	-	_	_

POINT

• MODE, ALM and INH marked *1 are shared among the instructions.

Appendix 2.4 Manual output with monitor(SMWM), PIDP Control (SPIDP)

Loop tag memory list

Instruction used	Offset	Itom	Item Name	Decemmended range	Lloit	Data storage	
Instruction used	Offset	item	iname	Recommended range	Unit	SMWM	SPIDP
	+0		_	_	_	_	_
	1	MODE *1	Operation mode	0 to FFFFн	_	S/U	S/U
	2		_				
	3	ALM *1	Alarm detection	0 to FFFF _H	_	S/U	S/U
	4	INH *1	Alarm detection inhibition	0 to FFFFн	_	S/U	S/U
	5	_		_	_		_
	6		-	_	_	_	_
	7		_	_	_		_
	8				_ _	<u> </u>	_
	9 10		_	_	_	_	_
S. PHPL	11	PV	Process value	(RL to RH)	_	S	S
S. MOUT/S. PIDP	12 13	MV	Manipulated value	-10 to 110	%	U	S
S. PIDP	14 15	SV	Set value	RL to RH	_	_	U
S. PIDP	16 17	DV	Deviation	(-110 to 110)	%	_	S
S. PIDP	18 19	МН	Output upper limit value	-10 to 110	%	_	U
S. PIDP	20 21	ML	Output lower limit value	-10 to 110	%	_	U
S. PHPL/S. PIDP	22 23	RH	Engineering value upper limit	-999999 to 999999	_	U	U
S. PHPL/S. PIDP	24 25	RL	Engineering value lower limit	-999999 to 999999	_	U	U
S. PHPL	26 27	PH	Upper limit alarm set value	RL to RH PL < PH	_	U	U
S. PHPL	28 29	PL	Lower limit alarm value	RL to RH PL < PH	_	U	U
S. PHPL	30 31	НН	Upper upper limit alarm value	RL to RH PH ≦ HH	_	U	U
S. PHPL	32 33	LL	Lower lower limit alarm value	RL to RH LL ≦ PL	_	U	U
	34 35	_	-	_	_	_	_
	36 37	_	—	_	_	_	_
S. IN	38 39	α	Filter coefficient	0 to 1	_	U	U
S. PHPL	40 41	HS	Upper/lower limit alarm hysteresis	0 to 999999	%	U	U
S. PHPL	42 43	CTIM	Change rate alarm check time	0 to 999999	s	U	U
S. PHPL	44 45	DPL	Change rate alarm value	0 to 100	%	U	U
S. PIDP	46 47	СТ	Control cycle	0 to 999999	S	_	U

App - 10 App - 10

In atmostic and a second	Offset	lkava	Nama	December ded renes	Limit	Data s	torage
Instruction used	Oliset	Item	Name	Recommended range	Unit	SMWM	SPIDP
S. PIDP	48 49	DML	Output change rate limit value	0 to 100	%		U
S. PIDP	50 51	DVL	Change rate limit value	0 to 100	%	_	U
S. PIDP	52 53	Р	Gain	0 to 999999	_	-	U
S. PIDP	54 55	I	Integral constant	0 to 999999	s	_	U
S. PIDP	56 57	D	Derivative constant	0 to 999999	s	_	U
S. PIDP	58 59	GW	Gap width	0 to 100	%	_	U
S. PIDP	60 61	GG	Gap gain	0 to 999999	_	_	U

POINT

App - 11 App - 11

[•] MODE, ALM and INH marked *1 are shared among the instructions.

Appendix 2.5 2 Position ON/OFF Control (SONF2), 3 Position ON/OFF Control (SONF3)

Loop tag memory list

Instruction used	Offset	Itom	Name	Recommended range	Unit	Data storage		
instruction used	Oliset	Item	Name	Recommended range	Unit	SONF2	SONF3	
	+0		_	_	_	_	_	
	1	MODE *1	Operation mode	0 to FFFF _H	_	S/U	S/U	
	2	*1	-	_	_		_	
	3	ALM *1	Alarm detection	0 to FFFF _H	_	S/U	S/U	
	4	INH *1	Alarm detection inhibition	0 to FFFFн	_	S/U	S/U	
	5	_	_	_	_		_	
	6		-	_	_		_	
	7		-	_	_		_	
	8	_	_	_	_			
	9		_	_	_			
S.PHPL	10 11	PV	Process value	(RL to RH)	_	S	S	
S.ONF2/S.ONF3	12 13	MV	Manipulated value	(-10 to 110)	%	S	S	
S.ONF2/S.ONF3	14 15	SV	Set value	RL to RH	_	U	U	
S.ONF2/S.ONF3	16 17	DV	Deviation	(-110 to 110)	%	S	S	
S.ONF2/S.ONF3	18 19	HSO	Hysteresis	0 to 999999	_	U	U	
S.ONF3	20 21	HS1	Hysteresis	0 to 999999	_	_	U	
S.PHPL	22 23	RH	Engineering value upper limit	-999999 to 999999	_	U	U	
S.PHPL	24 25	RL	Engineering value lower limit	-999999 to 999999	_	U	U	
S.PHPL	26 27	PH	Upper limit alarm set value	RL to RH PL < PH	_	U	U	
S.PHPL	28 29	PL	Lower limit alarm value	RL to RH PL < PH	_	U	U	
S.PHPL	30 31	НН	Upper upper limit alarm value	RL to RH PH ≦ HH	_	U	U	
S.PHPL	32 33	LL	Lower lower limit alarm value	RL to RH LL ≦ PL	_	U	U	
	34 35							
	36 37				_	_		
S.IN	38 39	α	Filter coefficient	0 to 1	_	U	U	
S.PHPL	40 41	HS	Upper/lower limit alarm hysteresis	0 to 999999	%	U	U	
S.PHPL	42 43	CTIM	Change rate alarm check time	0 to 999999	S	U	U	
S.PHPL	44 45	DPL	Change rate alarm value	0 to 100	%	U	U	
S.ONF2/S.ONF3	46 47	СТ	Control cycle	0 to 999999	s	U	U	

POINT

[•] MODE, ALM and INH marked *1 are shared among the instructions.

Appendix 2.6 Batch counter (SBC)

Loop tag memory list

Instruction used	Offset	Item	Name	Recommended range	Unit	Data storage
				- Total Tanga		SBC
	+0	MODE *1	On a retion media			-
	1	MODE	Operation mode	0 to FFFFн	_	S/U
	2 3	ALM *1	Alarm detection	0 to FFFF _H		
	4	INH *1	Alarm detection inhibition	0 to FFFF _H	_	S/U
	5	— —	— —	— —		
	6		_	_	_	_
	7	_	_	_	_	_
	8		_	_		<u> </u>
	9		_	_		_
S. PSUM	10		Retentive value (Integer			
C. I COM	11	SUM1	part)	(0 to 2147483647)	_	S
S. PSUM	12 13	SUM2	Retentive value (Fraction part)	(0 to 2147483647)	_	S
S. BC	14 15	SV1	Set value 1	0 to 2147483647	_	U
S. BC	16 17	SV2	Set value 2	0 to 2147483647	_	U
	18 19	_	_	_	_	_
	20 21	_	_	_	_	_
	22 23	_	_	_	_	_
	24 25	_	_	_	_	_
S. BC	26 27	PH	Upper limit alarm set value	0 to 2147483647	_	U
	28 29	_	_	_	_	_
	30 31	_	_	_	_	_
	32 33	_	_	_	_	_
	34 35	_	_	_	_	_
	36 37	_	_	_	_	-
	38 39	_	_	_	_	_
	40 41	_	_	_	_	_
S. BC	42 43	СТІМ	Change rate alarm check time	0 to 999999	s	U
S. BC	44 45	DPL	Change rate alarm value	0 to 2147483647	_	U
	46 47	_	_			_

POINT

• MODE, ALM and INH marked *1 are shared among the instructions.

Appendix 2.7 Rate control (SR)

Loop tag memory list

Instruction used	Offset	Item	Name	Recommended range	Unit	Data storage
instruction useu	Oliset	пеш	Name	Neconinended range	Offic	SR
	+0		_	_	_	
	1	MODE *1	Operation mode	0 to FFFFн	_	S/U
	2		_	-	_	-
	3	ALM *1	Alarm detection	0 to FFFFH	_	S/U
	4	INH *1	Alarm detection inhibition	0 to FFFFн		S/U
	5 6	_	<u> </u>	_	_	<u> </u>
	7		<u>-</u>	_		
	8			_	_	_
	9		_	_	_	_
	10					_
S. PHPL	11	PV	Process value	(RL to RH)	_	S
S. OUT2	12 13	MV	Manipulated value	(-10 to 110)	%	S
S. R	14 15	SPR	Set value	-999999 to 999999	_	U
S. R	16 17	BIAS	Bias	-999999 to 999999	%	U
S. OUT2	18 19	МН	Output upper limit value	-10 to 110	%	U
S. OUT2	20 21	ML	Output lower limit value	-10 to 110	%	U
S. PHPL	22 23	RH	Engineering value upper limit	-999999 to 999999	_	U
S. PHPL	24 25	RL	Engineering value lower limit	-999999 to 999999	_	U
S. PHPL	26 27	PH	Upper limit alarm set value	RL to RH PL < PH	_	U
S. PHPL	28 29	PL	Lower limit alarm value	RL to RH PL < PH	_	U
S. PHPL	30 31	НН	Upper upper limit alarm value	RL to RH PH ≦ HH	_	U
S. PHPL	32 33	LL	Lower lower limit alarm value	RL to RH LL ≦ PL	_	U
	34 35	_	_	_	_	_
	36 37	_	_	_	_	_
S. IN	38 39	α	Filter coefficient	0 to 1	_	U
S. PHPL	40 41	HS	Upper/lower limit alarm hysteresis	0 to 999999	%	U
S. PHPL	42 43	CTIM	Change rate alarm check time	0 to 999999	s	U
S. PHPL	44 45	DPL	Change rate alarm value	0 to 100	%	U
S. R	46 47	СТ	Control cycle	0 to 999999	s	U

Instruction used	Offset	Item	Name	Recommended range	Unit	Data storage SR
S. OUT2	48 49	DML	Output change rate limit value	0 to 100	%	U
S. R	50 51	DR	Change rate limit value	0 to 999999		U
S. R	52 53	RMAX	Rate upper limit value	-999999 to 999999	_	U
S. R	54 55	RMIN	Rate lower limit value	-999999 to 999999	_	U
S. R	56 57	Rn	Rate current value	(-99999 to 999999)	_	S

POINT

 \bullet MODE, ALM and INH marked *1 are shared among the instructions.

Appendix 3 OPERATION PROCESSING TIME

Appendix 3.1 The Operation Processing Time of Each Instruction

The operation processing time of each instruction is indicated in the table on this page and later. Since the operation processing time changes depending on the setting conditions, refer to the value in the table as the guideline of the processing time.

Instruction	Condition	Processing time(µs)
S.IN	Condition where ALM does not turn ON during loop run	69
S.OUT1	Condition where ALM does not turn ON during loop run in AUT mode	44
S.OUT2	Condition where ALM does not turn ON during loop run in AUT mode	29
S.MOUT	Executed during loop run in MAN mode	27
S.DUTY	Execution cycle = 1, Control output cycle = 10 Condition where ALM does not turn ON during loop run in AUT mode	53
S.BC	Condition where ALM does not turn ON during loop run in AUT mode	29
S.PSUM	Integration start signal = ON Integration hold signal = OFF	23
S.PID	Set value pattern = 3(Without cascade) Tracking bit = 0 Execution cycle = Control cycle = 1 Integral constant ≠ 0 Derivative constant ≠ 0 Condition where ALM does not turn ON during loop run in AUT mode	94
S.2PID	Set value pattern = 3 (Without cascade) Tracking bit = 0 Execution cycle = Control cycle = 1 Integral constant $\neq 0$ Derivative constant $\neq 0$ Condition where ALM does not turn ON during loop run in AUT mode	135
S.PIDP	Set value pattern = 3(Without cascade) Tracking bit = 0 Execution cycle = Control cycle = 1 Integral constant \neq 0 Derivative constant \neq 0 Condition where ALM does not turn ON during loop run in AUT mode	115
S.SPI	Set value pattern = 3(Without cascade) Tracking bit = 0 Operating time = Sample cycle (ST = STHT) Integral constant ≠ 0 Condition where ALM does not turn ON during loop run in AUT mode	87
S.IPD	Set value pattern = 3(Without cascade) Tracking bit = 0 Execution cycle = Control cycle = 1 Integral constant ≠ 0 Derivative constant ≠ 0 Condition where ALM does not turn ON during loop run in AUT mode	76
S.BPI	Set value pattern = 3(Without cascade) Tracking bit = 0 Execution cycle = Control cycle = 1 Integral constant ≠ 0 Condition where ALM does not turn ON during loop run in AUT mode	72

App - 16 App - 16

Instruction	Condition	Processing time(µs)
	Set value pattern = 3(Without cascade)	, , , , , , , , , , , , , , , , , , ,
	Tracking bit = 0	
S.R	Execution cycle = Control cycle = 1	58
	Executed during loop run in AUT	
S.PHPL	Condition where ALM does not turn ON during loop run in AUT mode	100
	Input data = 50, With lead/lag guarantee	
S.LLAG	Lead time = 1, Delay time = 1	27
	Input data = 50, Integral time = 1	
S.I	Output initial value = 0	14
	Input data = 50, Derivative time = 1	
S.D	Output initial value = 0	16
	Input data = 50	
	Operation control signal 0 → 1	
	Data collection interval = 1	<u></u>
S.DED	Sampling count = 10	17
	Output initial value = 0	
	Initial output switching = 0	
0.110	Input number = 5	00
S.HS	Input data = 50, 100, 150, 200, 250	29
0.1.0	Input number = 5	00
S.LS	Input data = 50, 100, 150, 200, 250	32
O MID	Input number = 5	20
S.MID	Input data = 50, 100, 150, 200, 250	39
S.AVE	Input number = 2, Input data = 50, 100	24
	Input data = 50	
	Upper limit value = 100	
S.LIMT	Lower limit value = 0	30
	Upper limit hysteresis = 0	
	Lower limit hysteresis = 0	
	Input data = 50	
	Positive direction limit value = 100	
S.VLMT1	Negative direction limit value = 100	25
	Positive direction hysteresis = 0	
	Negative direction hysteresis = 0	
	Input data = 50	
	Positive direction limit value = 100	
S.VLMT2	Negative direction limit value = 100	27
	Positive direction hysteresis = 0	
	Negative direction hysteresis = 0	
	Input data = 10	
	Set value pattern = 3(Without cascade)	
S.ONF2	Tracking bit = 0	52
	Execution cycle = Control cycle = 1	
	Executed during loop run in MAN mode	
	Input data = 10	
	Set value pattern = 3(Without cascade)	
S.ONF3	Tracking bit = 0	59
	Execution cycle = Control cycle = 1	
	Executed during loop run in MAN mode	
	Input data = 50	
S.DBND	Dead zone upper limit = 100, Dead zone lower limit = 0	26
	Input low cut value = 0, Initial value = 0	
	Input range = 1	

App - 17 App - 17

Instruction	Condition	Processing time(µs)
	Number of operation constant polygon points = 16	
	Operation type = 0(Hold type)	
S.PGS	Execution cycle = 1	18
	Set value = 10	
	Condition where ALM does not turn ON during loop run in AUT mode	
S.SEL	Set value pattern = 18H(E1, E2 Used, Without cascade) Tracking bit = 0	68
S.SEL	Condition where ALM does not turn ON during loop run in AUT mode	00
	Output set value = 0, Output control value = 50	
S.BUMP	Mode selection signal = 1	18
	Delay time = 1, Delay zone = 1	
	Output addition value = 50, Output subtraction value = 50	
CAMD	Output set value = 0, Output signal = 1	47
S.AMR	Output addition signal = 1, Output subtraction signal = 0	17
	Output upper limit value = 50, Output lower limit value = 0	
S.FG	Input data = 50, Number of polygon points = 2	33
S.IFG	Polygon coordinates (30, 40), (60, 70)	33
S.FLT	Input data = 50, Data collection interval = 1	36
0.1 L1	Sampling count = 10	30
	Input data = 50	
S.SUM	Input low cut value = 0, Initial value = 0	16
	Input range = 1	
	Both temperature and pressure are corrected.	
	Differential pressure = 100, Measurement temperature = 300	
S.TPC	Measured pressure = 10000, Design temperature = 0	39
	Bias (Temperature) = 273.15	
	Design pressure = 0 Bias pressure = 10332.0	
S.ENG	Input data = 50, Engineering value upper limit = 100	
S.IENG	Engineering value lower limit = 0	25
	Input number = 2, Input data = 50, 100	
S.ADD	Number of coefficients = 2, Coefficient = 1, 1, Bias = 0	25
0.0110	Input number = 2, Input data = 50, 100	
S.SUB	Number of coefficients = 2, Coefficient = 1, 1, Bias = 0	26
C MI II	Input number = 2, Input data = 50, 100	00
S.MUL	Number of coefficients = 2, Coefficient = 1, 1, Bias = 0	23
S.DIV	Input data = 50, 100	26
3.DIV	Coefficient = 1, 1, 1, Bias = 0, 0, 0	20
S.SQR	Input data = 50	30
	Output low cut value = 0, Coefficient = 10	
S.ABS	Input data = 50	13
S.>	Input data = 50, 100	18
J.,	Set value = 0, Hysteresis = 0	10
S.<	Input data = 50, 100	18
-	Set value = 0, Hysteresis = 0	
S.=	Input data = 50, 100	16
	Set value = 0	
S.>=	Input data = 50, 100 Set value = 0, Hysteresis = 0	18
	Input data = 50, 100	
S.<=	Set value = 0, Hysteresis = 0	18
	Set value = 0, hysteresis = 0 Set value pattern = 3(Without cascade)	
	Tracking bit = 0	
S.AT1	Execution cycle = 1	67
	Executed during loop run in MAN mode	
	======================================	

Appendix 3.2 Operation processing time of 2-degree-of-freedom PID control loop

This section gives an example of the operation constant of each instruction and the processing times taken when actual values are stored into the loop tag memory.

(1) Loop type and used instructions

(a) Loop type: S2PID

(b) Used instructions: S.IN, S.PHPL, S.2PID, S.OUT1

(2) Operation constants

(a) S.IN instruction

Name	Item	Setting
Engineering conversion upper limit	EMAX	100.0
Engineering conversion lower limit	EMIN	0.0
Input upper limit	NMAX	100.0
Input lower limit	NMIN	0.0
Upper limit range error occurrence	HH	95.0
Upper limit range error return	Н	80.0
Lower limit range error return	L	20.0
Lower limit range error occurrence	LL	5.0

(b) S.PHPL instruction: Without operation constant

(c) S.2PID instruction

Name	Item	Setting
Derivative gain	MTD	4.0
Deviation large alarm hysteresis	DVLS	3.0
Operation mode	PN	0
Tracking bit	TRK	0
Set value pattern	SVPTN	3

(d) S.OUT1 instruction

Name	Item	Setting
Output conversion upper limit	NMAX	100.0
Output conversion lower limit	NMIN	0.0

App - 19 App - 19

(3) Loop tag memory

Offset	Item	Name	Recommended range	Setting
+0	_	_	_	0
+1	MODE	Operation mode	0 to FFFFH	10н
+2	_	_	_	0
+3	ALM	Alarm detection	0 to FFFFн	0
+4	INH	Alarm detection inhibition	0 to FFFFн	0
+5	_	_	_	0
+6	_	_	_	0
+7	_	_	_	0
+8	_	_	_	0
+9	_	_	_	0
+10	PV	Process value	RL to RH	0.0
+12	MV	Manipulated value	-10 to 110	0.0
+14	SV	Set value	RL to RH	55.0
+16	DV	Deviation	-110 to 110	7
+18	MH	Output upper limit value	-10 to 110	100.0
+20	ML	Output lower limit value	-10 to 110	0.0
+22	RH	Engineering value upper limit	-999999 to 999999	100.0
+24	RL	Engineering value lower limit	-999999 to 999999	0.0
+26	PH	Upper limit alarm set value	RL to RH	80.0
+28	PL	Lower limit alarm value	RL to RH	20.0
+30	HH	Upper limit alarm value	RL to RH	90.0
+32	LL	Lower limit alarm value	RL to RH	10.0
+34	_	_	_	0
+36	_	_	_	0
+38	α	Filter coefficient	0 to 1	0.0
+40	HS	Upper/lower limit alarm hysteresis	0 to 999999	3.0
+42	CTIM	Change rate alarm check time	0 to 999999	8.0
+44	DPL	Change rate alarm value	0 to 100	30.0
+46	CT	Control cycle	0 to 999999	1.0
+48	DML	Output change rate limit value	0 to 100	100.0
+50	DVL	Change rate limit value	0 to 100	25.0
+52	Р	Gain	0 to 999999	3.0
+54	I	Integral constant	0 to 999999	8.0
+56	D	Derivative constant	0 to 999999	5.0
+58	GW	Gap width	0 to 100	15.0
+60	GG	Gap gain	0 to 999999	2.0
+62	MVP	MV inside operation value	-999999 to 999999	0.25
+64	α	2-degree-of-freedom parameter α	0 to 1	0.0
+66	β	2-degree-of-freedom parameter β	0 to 1	1.0

(4) Processing time

(a) Processing times of used instructions

S.IN : 69μs
 S.PHPL : 100μs
 S.2PID : 135μs
 S.OUT1 : 44μs
 (b) Processing time of loop type
 S2PID : 348μs

App - 21 App - 21

INDEX

[Number]
2-degree-of-freedom PID(S.2PID) 9- 9
2-position ON/OFF(S.ONF) 9-83
3-position ON/OFF(S.ONF3) 9-89
[A]
Absolute value(S.ABS)11-11
Addition(S.ADD)11- 1
Alarm detection inhibition(INH)3-8
Alarm detection(ALM) 3- 7
ALM(Alarm detection) 3- 7
Analog input processing(S.IN)8-1
Analog memory(S.AMR)9-110
AUT(AUTOMATIC) 3- 9
Auto tuning(S.AT1)13- 4
Average value(S.AVE) 9-75
[B]
Basics PID(S.PID) 9- 1
Batch counter(S.BC) 8-28
Blend PI control (S.BPI) 9-41
Block memory 3- 6
Bump-less transfer(S.BUMP) 9-108
[C]
CAB(COMPUTER AUTOMATIC BACK UP) 3-9
CAS(CASCADE)
Cascade loop 5- 2
CCB(COMPUTER CASCADE BACK UP) 3- 9
Change rate limiter 1(S.VLIMT1)9-79
Change rate limiter 2(S.VLIMT2)9-81
CMB(COMPUTER MANUAL BACK UP) 3- 9
CMV(COMPUTER MV) 3- 9
Control cycle4- 1
CSV(COMPUTER SV) 3- 9
[D]
D operation 1- 8
Dead time(S.DED) 9-65
Dead zone(S.DBND)9-95
Derivative operation (D operation) 1-8
Deviation large alarm inhibition(DVLI) 3-8
Deviation large alarm(DVLA)3-8
Differentiation(S.D)9-63
Division(S.DIV) 11-7
DMLA(Output change rate limit alarm) 3-8
DMLI
(Output change rate limit alarm inhibition) 3-8
DPNA
(Negative direction change rate alarm) 3- 8

	DPNI(Negative direction change rate alarm	า
	inhibition)	3- 8
	DPPA	
	(Positive direction change rate alarm)	3- 8
	DPPI(Positive direction change rate alarm	
	inhibition)	3- 8
	DVLA(Deviation large alarm)	
	DVLI(Deviation large alarm inhibition)	3- 8
[E	<u> </u>	
-	Engineering value conversion(S.ENG)	.10-12
	Engineering value reverse conversion(S.IE	
		.10-14
	Error code list	
	Execution cycle	
	Extraction(S.SQR)	
[F	=]	
•	Forward operation	1- 5
[H	H]	
•	HHA(Upper upper limit alarm)	3- 8
	HHI(Upper upper limit alarm inhibition)	
	How to Read Instructions	
[[
	I operation	1- 7
	I-PD control(S.IPD)	
	INH(Alarm detection inhibition)	
	Input data	
	Integral operation(I operation)	
	Integration(S.I)	
	Intermediate value	
	Inverted polygon(S.IFG)	
ſL	-]	
_	LCA(LOCAL AUTOMATIC)	3- 9
	LCC(LOCAL CASCADE)	
	LCM(LOCAL MANIPULATED)	
	Lead/lag(S.LLAG)	
	LLA(Lower limit alarm)	
	LLI(Lower limit alarm inhibition)	
	Local work memory	
	Loop memory	
	Loop selector	
	Loop selector(S.SEL)	
	Loop tag memory list	.0 102
		dd- 13
	Loop tag past value memory	
	Loop type	
	Low selector(S.LS)	
	LO ** OCIOCIOI (O.LO)	0 7 (

Lower limit alarm inhibition(LLI)		3- 8
Lower limit alarm inhibition(PLI)	Positive direction change rate alarm(DP	PA) .3- 8
Lower limit alarm(LLA) 3- 8	Process control instruction used data	3- 4
Lower limit alarm(PLA)3-8	Program example	Add- 1
[M]	Program setting device(S.PGS)	9-97
MAN(MANUAL)3- 9	Pulse retentive(S.PSUM)	8-32
Manual output(S.MOUT)8-17	[R]	
MHA(Output upper limit alarm)3-8	Rate (S.R)	9-48
MHI(Output upper limit alarm inhibition) 3-8	Rate example control(P operation)	1- 6
MLA(Output lower limit alarm) 3- 8	Retentive(S.SUM)	10- 8
MLI(Output lower limit alarm inhibition) 3-8	Reverse action	1- 5
MODE(Operation mode)3-9	[S]	
Multiplication(S.MUL)11- 5	S. = (Comparison)	12- 5
[N]	S. < (Comparison)	
Negative direction change rate alarm inhibition	S. <= (Comparison)	
(DPNI)3- 8	S. > (Comparison)	
Negative direction change rate alarm(DPNA)	S. >= (Comparison)	12- 7
3- 8	S.2PID (2-degree-of-freedom PID)	
[O]	S.ABS(Absolute value)	11-11
OOPA(Output open alarm) 3- 8	S.ADD(Addition)	11- 1
OOPI(Output open alarm inhibition) 3- 8	S.AMR(Analog memory)	
Operation constant 3- 6	S.AT1(Auto tuning instruction)	13- 4
Operation mode(MODE)3-9	S.AVE(Average value)	9-75
Operation processing timeAdd-18	S.BC(Batch counter)	8-28
Output change rate limit alarm inhibition(DMLI)	S.BPI(Blend PI control)	9-41
3- 8	S.BUMP (Bump-less transfer)	9-108
Output change rate limit alarm(DMLA) 3-8	S.D (Differentiation)	9-63
Output limiter processing function 5- 2	S.DBND(Dead zone)	9-95
Output lower limit alarm inhibition(MLI) 3-8	S.DED (Dead time)	9-65
Output lower limit alarm(MLA) 3- 8	S.DIV(Division)	11- 7
Output open alarm inhibition(OOPI) 3-8	S.DUTY(Time ratio example)	8-21
Output open alarm(OOPA) 3- 8	S.ENG(Engineering value conversion)	10-12
Output processing with mode switching 1(S.OUT1)	S.FG (Polygon)	10- 1
8- 6	S.FLT (Standard filter)	10- 5
Output processing with mode switching 2(S.OUT2)	S.HS(Upper selector)	9-68
8-12	S.I(Integration)	9-6
Output upper limit alarm(MHA)3-8	S.IENG(Engineering value reverse conv	ersion)
Output upper limit alarm inhibition(MHI) 3-8		10-14
[P]	S.IFG (Inverted polygon)	10- 3
P operation 1- 6	S.IN(Analog input processing)	8- ′
PHA(Upper limit alarm) 3- 8	S.IPD(I-PD control)	9-33
PHI(Upper limit alarm inhibition)3-8	S.LIMT(Upper/lower limiter)	9-77
PID Operation1- 9	S.LLAG (Lead/Lag)	9-59
PLA(Lower limit alarm)3-8	S.LS(Low selector)	9-70
PLI(Lower limit alarm inhibition)	S.MID(Intermediate value selection)	9-72
Polygon(S.FG)10- 1	S.MOUT(Manual output)	8-17
Position type PID(S.PIDP) 9- 17	S.MUL(Multiplication)	11- 5
Positive direction change rate alarm	S.ONF2(2 position ON/OFF)	
inhibition(DPPI)	S.ONF3(3 position ON/OFF)	9-89

S.OUT1(Output processing with mod	
S.OUT2(Output processing with mod	
S.PGS(Program setting device)	9-97
S.PHPL(Upper/lower limit alarm)	9-53
S.PID(Basics PID)	9- 1
S.PIDP(Position type PID)	9-17
S.PSUM(Pulse retentive)	
S.R(Rate)	
S.SEL(Loop selector)	
S.SPI(Sample PI)	
S.SQR(Extraction)	
S.SUB(Subtraction)	
S.SUM(Retentive)	
S.TPC(Temperature/pressure comp	
C V/ INTA/Objection and limited A)	
S.VLIMT1(Change rate limiter 1)	
S.VLIMT2(Change rate limiter 2)	
S2PID(2-degree-of-freedom PID cor	•
	•
Sample PI(S.SPI)	
SBC(Batch counter)	
SBPI(Blend PI control)	
SEA(Sensor alarm)	3- 8
SEI(Sensor alarm inhibition)	3- 8
Sensor alarm inhibition(SEI)	3- 8
Sensor alarm(SEA)	3- 8
SIPD(I-PD control)	2- 5, Add- 7
SMON(Monitor)	2- 6, Add- 9
SMOUT(Manual output)	
SMWM(Manual output with monitor)	
, , , , , , , , , , , , , , , , , , , ,	2- 6, Add-11
SONF2(2 position ON/OFF control)	,
, , , , , , , , , , , , , , , , , , ,	2- 5. Add-13
SONF3(3 position ON/OFF control)	-,
	2- 5 Add-13
SPA(Stop alarm)	
SPGS(Program setting device)	
SPID(PID control)	
SPIDP(PIDP control)	
SR(Rate control)	
SSEL(Selector)	
SSPI(Sample PI control)	
SSR(Rate control)	
Standard filter(S.FLT)	
Stepped response process	
Stop alarm(SPA)	
Subtraction(S.SUB)	11- 3

[T]
Temperature/pressure compensation
correction(S.TPC)10-10
Time rate example(S.DUTY)8-21
Tracking
Tracking flag(TRKF)3- 8
Tracking function5- 2
TRKF(Tracking flag)3- 8
[U]
Upper limit alarm(PHA)3- 8
Upper limit alarm inhibition(PHI)3- 8
Upper/lower limit alarm(S.PHPL)9-53
Upper/lower limiter(S.LIMT)9-77
Upper selector(S.HS)9-68
Upper upper limit alarm(HHA)3- 8
Upper upper limit alarm inhibition(HHI)3- 8
[Z]
ZN process13- 1

Index - 3

WARRANTY

Please confirm the following product warranty details before starting use.

1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the dealer or Mitsubishi Service Company. Note that if repairs are required at a site overseas, on a detached island or remote place, expenses to dispatch an engineer shall be charged for.

[Gratis Warranty Term]

The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place.

Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.

[Gratis Warranty Range]

- (1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
- (2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
 - 1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
 - 2. Failure caused by unapproved modifications, etc., to the product by the user.
 - 3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
 - 4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
 - 5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
 - 6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
 - 7. Any other failure found not to be the responsibility of Mitsubishi or the user.

2. Onerous repair term after discontinuation of production

- (1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued. Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
- (2) Product supply (including repair parts) is not possible after production is discontinued.

3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.

4. Exclusion of chance loss and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to damages caused by any cause found not to be the responsibility of Mitsubishi, chance losses, lost profits incurred to the user by Failures of Mitsubishi products, damages and secondary damages caused from special reasons regardless of Mitsubishi's expectations, compensation for accidents, and compensation for damages to products other than Mitsubishi products and other duties.

5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

6. Product application

- (1) In using the Mitsubishi MELSEC programmable logic controller, the usage conditions shall be that the application will not lead to a major accident even if any problem or fault should occur in the programmable logic controller device, and that backup and fail-safe functions are systematically provided outside of the device for any problem or fault.
- (2) The Mitsubishi general-purpose programmable logic controller has been designed and manufactured for applications in general industries, etc. Thus, applications in which the public could be affected such as in nuclear power plants and other power plants operated by respective power companies, and applications in which a special quality assurance system is required, such as for Railway companies or National Defense purposes shall be excluded from the programmable logic controller applications.

Note that even with these applications, if the user approves that the application is to be limited and a special quality is not required, application shall be possible.

When considering use in aircraft, medical applications, railways, incineration and fuel devices, manned transport devices, equipment for recreation and amusement, and safety devices, in which human life or assets could be greatly affected and for which a particularly high reliability is required in terms of safety and control system, please consult with Mitsubishi and discuss the required specifications.

HEADOUARTERS

MITSUBISHI ELECTRIC EUROPE B.V. **EUROPE** German Branch Gothaer Straße 8 **D-40880 Ratingen** Phone: +49 (0) 2102 / 486-0 Fax: +49 (0) 2102 / 486-1120 e mail: megfamail@meg.mee.com

MITSUBISHI ELECTRIC FRANCE EUROPE B.V. French Branch 25, Boulevard des Bouvets F-92741 Nanterre Cedex Phone: +33 1 55 68 55 68 Fax: +33 1 55 68 56 85

e mail: factory.automation@fra.mee.com

MITSUBISHI ELECTRIC IRFI AND EUROPE B.V. Irish Branch Westgate Business Park, Ballymount

IRL-Dublin 24 Phone: +353 (0) 1 / 419 88 00 Fax: +353 (0) 1 / 419 88 90 e mail: sales.info@meir.mee.com

ITALY

MITSUBISHI ELECTRIC FUROPE B.V. Italian Branch Via Paracelso 12

I-20041 Agrate Brianza (MI) Phone: +39 039 6053 1 Fax: +39 039 6053 312

e mail: factory.automation@it.mee.com MITSUBISHI ELECTRIC EUROPE B.V.

Spanish Branch Carretera de Rubí 76-80 E-08190 Sant Cugat del Vallés Phone: +34 9 3 / 565 3131 Fax: +34 9 3 / 589 2948 e mail: industrial@sp.mee.com

MITSUBISHI ELECTRIC UK **EUROPE B.V.** UK Branch Travellers Lane GB-Hatfield Herts. AL10 8 XB Phone: +44 (0) 1707 / 27 61 00 Fax: +44 (0) 1707 / 27 86 95

e mail: automation@meuk.mee.com MITSUBISHI ELECTRIC JAPAN CORPORATION
Office Tower "Z" 14 F
8-12,1 chome, Harumi Chuo-Ku

Tokyo 104-6212 Phone: +81 3 6221 6060 Fax: +81 3 6221 6075

MITSUBISHI ELECTRIC **AUTOMATION** 500 Corporate Woods Parkway Vernon Hills, IL 60061 Phone: +1 847 / 478 21 00

Fax: +1 847 / 478 22 83

MIDDLE EAST REPRESENTATIVE

TEXEL Electronics Ltd. ISRAFI IL-42160 Netanya Phone: +972 (0) 9 / 863 08 91 Fax: +972 (0) 9 / 885 24 30

e mail: texel_me@netvision.net.il

EUROPEAN REPRESENTATIVES

GEVA AUSTRIA Wiener Straße 89 AT-2500 Baden Phone: +43 (0) 2252 / 85 55 20 Fax: +43 (0) 2252 / 488 60 e mail: office@geva.at

TEHNIKON BELARUS Oktjabrskaya 16/5, Ap 704 **BY-220030 Minsk** Phone: +375 (0)17 / 22 75 704 Fax: +375 (0)17 / 22 76 669 e mail: tehnikon@belsonet.net

Getronics b.v. BELGIUM Control Systems Pontbeeklaan 43 B-1731 Asse-Zellik

Phone: +32 (0) 2 / 467 17 51 Fax: +32 (0) 2 / 467 17 45 e mail: infoautomation@getronics.com

TELECON CO. BULGARIA 4, A. Ljapchev Blvd. **BG-1756 Sofia** Phone: +359 (0) 2 / 97 44 05 8 Fax: +359 (0) 2 / 97 44 06 1 e mail:

INEA CR d.o.o. CROATIA Drvinje 63 **HR-10000 Zagreb** Phone: +385 (0) 1 / 36 67 140 Fax: +385 (0) 1 / 36 67 140 e mail: -

AutoCont Control Systems s.r.o. Nemocnicni 12 CZECH REPUBLIC CZ-702 00 Ostrava 2 Phone: +420 59 / 6152 111 Fax: +420 59 / 6152 562

DENMARK

e mail: consys@autocont.cz louis poulsen industri & automation

Geminivei 32

e mail: utu@utu.ee

DK-2670 Greve Phone: +45 (0) 70 / 10 15 35 Fax: +45 (0) 43 / 95 95 91 e mail: lpia@lpmail.com

ESTONIA UTU Flektrotehnika AS Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0) 6 / 51 72 80 Fax: +372 (0) 6 / 51 72 88

FINLAND Beijer Electronics OY Ansatie 6a FIN-01740 Vantaa Phone: +358 (0) 9 / 886 77 500 Fax: +358 (0) 9 / 886 77 555

e mail: info@beijer.fi UTFCO A.B.F.F. GRFFCF 5, Mavrogenous Str. GR-18542 Piraeus Phone: +302 (0) 10 / 42 10 050 Fax: +302 (0) 10 / 42 12 033

e mail: sales@uteco.gr Meltrade Automatika Kft. HUNGARY 55, Harmat St. HÚ-1105 Budapest Phone: +36 (0)1 / 2605 602 Fax: +36 (0)1 / 2605 602 e mail: office@meltrade.hu

SIA POWEL LATVIA Lienes iela 28 **LV-1009 Riga** Phone: +371 784 / 22 80 Fax: +371 784 / 22 81 e mail: utu@utu.lv

EUROPEAN REPRESENTATIVES

UAB UTU POWEL LITHUANIA Savanoriu pr. 187 LT-2053 Vilnius Phone: +370 (0) 52323-101 Fax: +370 (0) 52322-980 e mail: powel@utu.lt

INTEHSIS SRL **MOLDOVA** Cuza-Voda 36/1-81 **MD-2061 Chisinau** Phone: +373 (0)2 / 562 263 Fax: +373 (0)2 / 562 263 e mail: intehsis@mdl.net

NETHERLANDS

Control Systems Donauweg 2 B NL-1043 AJ Amsterdam Phone: +31 (0) 20 / 587 67 00 Fax: +31 (0) 20 / 587 68 39 e mail: info.gia@getronics.com

Getronics b.v.

Beijer Electronics AS NORWAY Teglverksveien 1 N-3002 Drammen Phone: +47 (0) 32 / 24 30 00 Fax: +47 (0) 32 / 84 85 77 e mail: info@beijer.no

MPL Technology Sp. z o.o. **POLAND** ul. Sliczna 36 PL-31-444 Kraków Phone: +48 (0) 12 / 632 28 85 Fax: +48 (0) 12 / 632 47 82 e mail: krakow@mpl.pl

Sirius Trading & Services srl Str. Biharia No. 67-77 ROMANIA RO-013981 Bucuresti 1 Phone: +40 (0) 21 / 201 1146 Fax: +40 (0) 21 / 201 1148 e mail: sirius@siriustrading.ro

INEA d.o.o. SLOVENIA SI-1000 Ljubljana Phone: +386 (0) 1-513 8100 Fax: +386 (0) 1-513 8170

e mail: inea@inea.si Beijer Electronics AB **SWEDEN** Box 426 **S-20124 Malmö**

Phone: +46 (0) 40 / 35 86 00 Fax: +46 (0) 40 / 35 86 02 e mail: info@beijer.se

ECONOTEC AG SWITZFRI AND Postfach 282 CH-8309 Nürensdorf Phone: +41 (0) 1 / 838 48 11 Fax: +41 (0) 1 / 838 48 12 e mail: info@econotec.ch

GTS TURKEY Darülaceze Cad. No. 43 Kat. 2 **TR-80270 Okmeydani-Istanbul** Phone: +90 (0) 212 / 320 1640 Fax: +90 (0) 212 / 320 1649 e mail: gts@turk.net

CSC Automation Ltd. UKRAINE 15, M. Raskova St., Fl. 10, Office 1010 **UA-02002 Kiev**

Phone: +380 (0) 44 / 238-83-16 Fax: +380 (0) 44 / 238-83-17

e mail: csc-a@csc-a.kiev.ua

EUROPEAN REPRESENTATIVES

Avtomatika Sever Ltd. Lva Tolstogo St. 7, Off. 311 **RU-197376 St Petersburg** RUSSIA Phone: +7 812 / 11 83 238 Fax: +7 812 / 11 83 239 e mail: as@avtsev.spb.ru

CONSYS RUSSIA Promyshlennaya St. 42 **RU-198099 St Petersburg** Phone: +7 812 / 325 36 53 Fax: +7 812 / 147 20 55 e mail: consys@consys.spb.ru

Electrotechnical RUSSIA Systems Siberia Partizanskaya St. 27, Office 306 RU-121355 Moscow Phone: +7 095/416-4321 Fax: +7 095/416-4321 e mail: info@eltechsystems.ru

RUSSIA Electrotechnical Systems Siberia Shetinkina St. 33, Office 116 RU-630088 Novosibirsk Phone: +7 3832 / 22-03-05 Fax: +7 3832 / 22-03-05 e mail: info@eltechsystems.ru

Elektrostyle ul. Garschina 11 RUSSIA **RU-140070 Moscow** Phone: +7 095 / 514 9316 Fax: +7 095 / 514 9317 e mail: info@estl.ru

Elektrostyle Krasnij Prospekt 220-1 Office No. 312 **RU-630049 Novosibirsk** RUSSIA Phone: +7 3832 / 10 66 18 Fax: +7 3832 / 10 66 26 e mail: info@estl.ru

ICOS RUSSIA Industrial Computer Systems Zao Ryazanskij Prospekt 8a, Office 100 RÚ-109428 Moscow Phone: +7 095 / 232 - 0207 Fax: +7 095 / 232 - 0327 e mail: mail@icos.ru

NPP Uralelektra RUSSIA ul. Sverdlova 11a RU-620027 Ekaterinburg Phone: +7 34 32 / 53 27 4 Fax: +7 34 32 / 53 27 45 e mail: elektra@etel.ru

SSMP Rosgidromontazh Ltd. RUSSIA 23, Lesoparkovaya Str. **RU-344041 Rostov On Don** Phone: +7 8632 / 36 00 22 Fax: +7 8632 / 36 00 26 e mail:

STC Drive Technique I ul. Bajkalskaja 239, Office 2 - 23 RUSSIA RU-664075 Irkutsk Phone: +7 3952 / 24 38 16 Fax: +7 3952 / 23 02 98 e mail: privod@irk.ru

STC Drive Technique RUSSIA Poslannikov Per. 9, str.1 RU-107005 Moscow Phone: +7 095 / 790-72-10 Fax: +7 095 / 790-72-12 e mail: info@privod.ru

AFRICAN REPRESENTATIVE

SOUTH AFRICA CBI Ltd. Private Bag 2016 ZA-1600 Isando Phone: +27 (0) 11/ 928 2000 Fax: +27 (0) 11/ 392 2354 e mail: cbi@cbi.co.za

