MITSUBISHI

Mitsubishi Programmable Controller वलE SEC L

MELSEC-L High-Speed Counter Module User's Manual

OSAFETY PRECAUTIONS

(Read these precautions before using this product.)

Before using this product, please read this manual and the relevant manuals carefully and pay full attention to safety to handle the product correctly.
The precautions given in this manual are concerned with this product only. For the safety precautions of the programmable controller system, refer to the user's manual for the CPU module used.

In this manual, the safety precautions are classified into two levels: "

Under some circumstances, failure to observe the precautions given under " serious consequences.
Observe the precautions of both levels because they are important for personal and system safety.

Make sure that the end users read this manual and then keep the manual in a safe place for future reference.

[Design Precautions]

WARNING

In an output circuit, when a load current exceeding the rated current or an overcurrent caused by a load short-circuit flows for a long time, it may cause smoke and fire. To prevent this, configure an external safety circuit, such as a fuse.

- Do not write any data to the "system area" of the buffer memory in the intelligent function module. Also, do not use any "use prohibited" signals as an input signal from the CPU module to the intelligent function module.
Doing so may cause malfunction of the programmable controller system.
- Outputs may remain on or off due to a failure of a transistor for external output.

Configure an external circuit for monitoring output signals that could cause a serious accident.

[Design Precautions]

1. CAUTION

Do not install the control lines or communication cables together with the main circuit lines or power cables.
Keep a distance of 150 mm or more between them. Failure to do so may result in malfunction due to noise.

[Installation Precautions]

WARNING

Shut off the external power supply for the system in all phases before mounting or removing a module. Failure to do so may result in electric shock or cause the module to fail or malfunction.

[Installation Precautions]

\triangle CAUTION

Use the programmable controller in an environment that meets the general specifications in the Safety Guidelines provided with the CPU module or head module. Failure to do so may result in electric shock, fire, malfunction, or damage to or deterioration of the product.

- To interconnect modules, engage the respective connectors and securely lock the module joint levers. Incorrect interconnection may cause malfunction, failure, or drop of the module.
- Do not directly touch any conductive parts and electronic components of the module. Doing so can cause malfunction or failure of the module.

[Wiring Precautions]

WARNING

Shut off the external power supply for the system in all phases before wiring. Failure to do so may result in electric shock or cause the module to fail or malfunction.

[Wiring Precautions]

\triangle CAUTION

- Ground the FG and LG terminals to the protective ground conductor dedicated to the programmable controller. Failure to do so may result in electric shock or malfunction.
- Check the rated voltage and terminal layout before wiring to the module, and connect the cables correctly. Connecting a power supply with a different voltage rating or incorrect wiring may cause a fire or failure.
- Connectors for external devices must be crimped with the tool specified by the manufacturer or must be correctly soldered. Incomplete connections may cause short circuit, fire, or malfunction.
- Place the cables in a duct or clamp them. If not, dangling cable may swing or inadvertently be pulled, resulting in damage to the module or cables or malfunction due to poor contact.
- Tighten the connector screw within the specified torque range. Undertightening can cause drop of the screw, short circuit, fire, or malfunction.
Overtightening can damage the screw and/or module, resulting in drop, short circuit, fire, or malfunction.
- When disconnecting the cable from the module, do not pull the cable by the cable part.

For the cable with connector, hold the connector part of the cable.
Pulling the cable connected to the module may result in malfunction or damage to the module or cable.

[Wiring Precautions]

CAUTION

- Prevent foreign matter such as dust or wire chips from entering the module. Such foreign matter can cause a fire, failure, or malfunction.
- A protective film is attached to the top of the module to prevent foreign matter, such as wire chips, from entering the module during wiring. Do not remove the film during wiring. Remove it for heat dissipation before system operation.
- Ground the shield cable on the encoder side (relay box). Always ground the FG and LG terminals to the protective ground conductor. Failure to do so may cause malfunction.
- Mitsubishi programmable controllers must be installed in control panels. Connect the main power supply to the power supply module in the control panel through a relay terminal block.
Wiring and replacement of a power supply module must be performed by qualified maintenance personnel with knowledge of protection against electric shock.
For wiring methods, refer to the MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and Inspection).

[Startup and Maintenance Precautions]

WARNING

Do not touch any terminal while power is on. Doing so will cause electric shock or malfunction.

- Shut off the external power supply for the system in all phases before cleaning the module or retightening the connector screw. Failure to do so may result in electric shock.

[Startup and Maintenance Precautions]

CAUTION

- Do not disassemble or modify the module. Doing so may cause failure, malfunction, injury, or a fire.
- Shut off the external power supply for the system in all phases before mounting or removing a module. Failure to do so may cause the module to fail or malfunction.
- After the first use of the product (module and display unit), the number of connections/ disconnections is limited to 50 times (in accordance with IEC 61131-2). Exceeding the limit may cause malfunction.
- Tighten the connector screw within the specified torque range. Undertightening can cause drop of the component or wire, short circuit, or malfunction. Overtightening can damage the screw and/or module, resulting in drop, short circuit, or malfunction.
- Before handling the module, touch a conducting object such as a grounded metal to discharge the static electricity from the human body. Failure to do so may cause the module to fail or malfunction.

[Disposal Precautions]

When disposing of this product, treat it as industrial waste.

CONDITIONS OF USE FOR THE PRODUCT

(1) Mitsubishi programmable controller ("the PRODUCT") shall be used in conditions;
i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or serious accident; and
ii) where the backup and fail-safe function are systematically or automatically provided outside of the PRODUCT for the case of any problem, fault or failure occurring in the PRODUCT.
(2) The PRODUCT has been designed and manufactured for the purpose of being used in general industries.
MITSUBISHI SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED TO ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT, PRODUCT LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO PROPERTY CAUSED BY the PRODUCT THAT ARE OPERATED OR USED IN APPLICATION NOT INTENDED OR EXCLUDED BY INSTRUCTIONS, PRECAUTIONS, OR WARNING CONTAINED IN MITSUBISHI'S USER, INSTRUCTION AND/OR SAFETY MANUALS, TECHNICAL BULLETINS AND GUIDELINES FOR the PRODUCT.
("Prohibited Application")
Prohibited Applications include, but not limited to, the use of the PRODUCT in;

- Nuclear Power Plants and any other power plants operated by Power companies, and/or any other cases in which the public could be affected if any problem or fault occurs in the PRODUCT.
- Railway companies or Public service purposes, and/or any other cases in which establishment of a special quality assurance system is required by the Purchaser or End User.
- Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as Elevator and Escalator, Incineration and Fuel devices, Vehicles, Manned transportation, Equipment for Recreation and Amusement, and Safety devices, handling of Nuclear or Hazardous Materials or Chemicals, Mining and Drilling, and/or other applications where there is a significant risk of injury to the public or property.

Notwithstanding the above, restrictions Mitsubishi may in its sole discretion, authorize use of the PRODUCT in one or more of the Prohibited Applications, provided that the usage of the PRODUCT is limited only for the specific applications agreed to by Mitsubishi and provided further that no special quality assurance or fail-safe, redundant or other safety features which exceed the general specifications of the PRODUCTs are required. For details, please contact the Mitsubishi representative in your region.

INTRODUCTION

Thank you for purchasing the Mitsubishi MELSEC-L series programmable controllers.
This manual describes the functions and programming of a high-speed counter module.

Before using this product, please read this manual and the relevant manuals carefully and develop familiarity with the functions and performance of the MELSEC-L series programmable controller to handle the product correctly. When applying the program examples introduced in this manual to the actual system, ensure the applicability and confirm that it will not cause system control problems.

■Relevant module: LD62, LD62D

Remark

Unless otherwise specified, this manual describes the program examples in which the I/O numbers of $\mathrm{X} / \mathrm{Y} 00$ to X/YOF are assigned for a high-speed counter module.
For I/O number assignment, refer to the following.
D] MELSEC-L CPU Module User's Manual (Function Explanation, Program Fundamentals)
Operating procedures are explained using GX Works2. When using GX Developer or GX Configurator-CT, refer to the following.

- When using GX Developer or GX Configurator-CT (

COMPLIANCE WITH THE EMC AND LOW VOLTAGE DIRECTIVES

(1) For programmable controller system

To configure a system meeting the requirements of the EMC and Low Voltage Directives when incorporating the Mitsubishi programmable controller (EMC and Low Voltage Directives compliant) into other machinery or equipment, refer to the Safety Guidelines provided with the CPU module or head module.
The CE mark, indicating compliance with the EMC and Low Voltage Directives, is printed on the rating plate of the programmable controller.

(2) For the product

To make this product comply with the EMC and Low Voltage Directives, refer to Page 34, Section 6.2.1 (4).

(3) CPU module user's manual

Manual name <manual number (model code)>	Description
MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and Inspection) <SH-080890ENG, 13JZ36>	Specifications of the CPU modules, power supply modules, display unit, SD memory cards, and batteries, information on how to establish a system, maintenance and inspection, and troubleshooting
MELSEC-L CPU Module User's Manual (Function Explanation, Functions and devices of the CPU module, and programming Program Fundamentals)	

(4) Head module user's manual

Manual name	Description		
<manual number (model code)>			
MELSEC-L CC-Link IE Field Network Head Module User's Manual			
<SH-080919ENG, 13JZ48>			Specifications, procedures before operation, system configuration,
:---			
installation, wiring, settings, and troubleshooting of the head module			

(5) Operating manual

Manual name <manual number (model code)>	Description
GX Works2 Version1 Operating Manual (Common)	
<SH-080779ENG, 13JU63>	System configuration, parameter settings, and online operations (common to Simple project and Structured project) of GX Works2
<SH-080373E, 13JU41>	Operating methods of GX Developer, such as programming, printing, monitoring, and debugging

SAFETY PRECAUTIONS 1
CONDITIONS OF USE FOR THE PRODUCT 4
INTRODUCTION 5
COMPLIANCE WITH THE EMC AND LOW VOLTAGE DIRECTIVES 6
RELEVANT MANUALS 7
MANUAL PAGE ORGANIZATION 11
TERMS 12
PACKING LIST 12
CHAPTER 1 HIGH-SPEED COUNTER MODULE 13
1.1 Application 13
1.2 Features 14
CHAPTER 2 PART NAMES 16
CHAPTER 3 SPECIFICATIONS 18
3.1 General Specifications 18
3.2 Performance Specifications 19
3.2.1 Number of parameters that can be set 21
3.3 Function List 22
3.4 List of I/O Signals 23
3.5 List of Buffer Memory Areas 24
CHAPTER 4 PROCEDURES BEFORE OPERATION 26
CHAPTER 5 SYSTEM CONFIGURATION 28
5.1 System Configuration 28
5.2 Applicable System 30
5.2.1 Restrictions when the high-speed counter module is connected to the head module 30
CHAPTER 6 INSTALLATION AND WIRING 31
6.1 Installation Environment and Installation Position 31
6.2 Wiring 32
6.2.1 Wiring precautions 32
6.2.2 Connectors for external devices. 36
6.2.3 Interface with external devices 38
6.2.4 Connectable encoders 43
6.3 Wiring Example (Module and Encoder) 44
6.4 Wiring Example (Controller and External Input Terminals) 47
6.5 Wiring Example (External Output Terminals) 50
CHAPTER 7 SETTINGS 51
7.1 Adding a Module 51
7.2 Switch Setting 52
7.3 Intelligent Function Module Detailed Setting 53
7.4 Parameter Setting. 54
7.5 Auto Refresh 55
CHAPTER 8 FUNCTION 56
8.1 Pulse Input Modes and Count Methods 57
8.1.1 Pulse input modes 57
8.1.2 Setting a count method 60
8.1.3 Reading the present value 60
8.2 Selecting Counter Type 61
8.2.1 Linear counter function 62
8.2.2 Ring counter function 63
8.3 Coincidence Output Function 66
8.4 Preset Function 71
8.5 Counter Function Selection 73
8.5.1 Reading the counter function selection count value 74
8.5.2 Count error 75
8.6 Count Disable Function 76
8.7 Latch Counter Function 77
8.8 Sampling Counter Function 78
8.9 Periodic Pulse Counter Function 79
CHAPTER 9 DISPLAY UNIT 81
9.1 Features 81
9.2 Menu Transition 81
9.3 List of Setting Value Change Screens 83
CHAPTER 10 PROGRAMMING 86
10.1 Using the Module in Standard System Configuration 86
10.2 Connecting the Module to the Head Module 94
10.3 Program Example with the Coincidence Detection Interrupt Function 104
CHAPTER 11 TROUBLESHOOTING 106
11.1 Error Information 106
11.2 The Module Does Not Start Counting Operation 107
11.3 The Module Does Not Correctly Count Pulses 107
11.4 Coincidence Output Function Does Not Correctly Operate 108
11.5 Coincidence Detection Interrupt Does Not Occur 108
11.6 Present Value Cannot Be Replaced with the Preset Value 108
11.7 Pulse Shaping Method 109
APPENDICES 110
Appendix 1 Details of I/O Signals 110
Appendix 1.1 Input signals 110
Appendix 1.2 Output signals 112
Appendix 2 Details of Buffer Memory Areas 114
Appendix 3 Checking Serial Number and Function Version 116
Appendix 4 Differences Between L Series and Q Series Modules 116
Appendix 5 When Using GX Developer and GX Configurator-CT 117
Appendix 5.1 GX Developer operation 117
Appendix 5.2 GX Configurator-CT operation 120
Appendix 6 External Dimensions 123
INDEX 124
REVISIONS 126
Warranty 127

MANUAL PAGE ORGANIZATION

In this manual, pages are organized and the symbols are used as shown below.
The following page illustration is for explanation purpose only, and is different from the actual pages.

*1 The mouse operation example is provided below. (For GX Works2)

TERMS

Unless otherwise specified, this manual uses the following terms.

Term	Description
High-speed counter module	Another term for the MELSEC-L series high-speed counter module
Head module	Abbreviation for the LJ72GF15-T2 CC-Link IE field network head module
Display unit	A liquid crystal display to be attached to the CPU module
Programming tool	Generic term for GX Works2 and GX Developer
GX Works2	Product name of the software package for the MELSEC programmable controllers
GX Developer	A setting and monitoring tool added in GX Developer (for high-speed counter modules)
GX Configurator-CT	The memory of an intelligent function module used to store data (such as setting values and monitored values) for communication with a CPU module.
Buffer memory	

PACKING LIST

The following items are included in the package of this product. Before use, check that all the items are included.

High-speed counter module

Module

Before Using the Product

CHAPTER 1 high-speed counter module

This chapter describes the application and the features of the high-speed counter module.

1.1

Application

The high-speed counter module can count high-speed input pulses that cannot be measured in a sequence using a general input module.

(1) Wide-range measurement between -2147483648 and 2147483647

- A count value is stored in 32-bit signed binary.
- The number of channels is 2 .

(2) Wide selection of the maximum counting speed

The counting speed can be selected from $500 \mathrm{k} / 200 \mathrm{k} / 100 \mathrm{k} / 10 \mathrm{k}$ with the LD62D, and $200 \mathrm{k} / 100 \mathrm{k} / 10 \mathrm{k}$ with the LD62. Even on gradual rising/falling edges, pulses can be correctly counted.

(3) Pulse input selection

The pulse input mode can be selected from 1-phase multiple of 1, 1-phase multiple of 2, 2-phase multiple of 1, 2-phase multiple of 2, 2-phase multiple of 4, and CW/CCW.

(4) Two counter types

The following counter types are available.
(a) Linear counter type

This type counts pulses between - 2147483648 and 2147483647 and detects an overflow if the count value is outside the range.
(b) Ring counter type This type repeatedly counts pulses between the ring counter upper limit value and the ring counter lower limit value.

(5) Coincidence output

This function compares the present counter value with the preset coincidence output point setting value and outputs on or off signal or starts an interrupt program when they match.

(6) Four counter functions

One of the following functions can be selected.
(a) Count disable function

This function stops counting pulses by inputting a signal while $\mathrm{CH} \square$ Count enable command $(\mathrm{Y} 4, \mathrm{YC})$ is on.
(b) Latch counter function

This function latches the present counter value when a signal is input.
(c) Sampling counter function

This function counts pulses input during the specified sampling period.
(d) Periodic pulse counter function

This function stores the present and previous counter values at the preset cycle while a signal is input.
(7) Execution of the preset function and the selected counter function with an external control signal

- The preset function can be performed by applying a voltage to the preset input terminal.
- The function selected by counter function selection can be performed by applying a voltage to the function start input terminal.

(8) Easy settings with GX Works2

Initial setting and auto refresh setting can be configured on screen. This eliminates the need for creating parameter setting programs and simplifies checking module settings and module operating status.

CHAPTER 2 part names

The following table lists the part names of the high-speed counter module.

No.	Name	
1$)$	Module joint levers	Levers for connecting two modules
2$)$	\$A LED	On: A voltage is being applied to the phase A pulse input terminal.
3$)$	B LED	On: A voltage is being applied to the phase B pulse input terminal.
4$)$	DEC. LED	On: Pulses are being counted down.
5$)$	FUNC. LED	On: A voltage is being applied to the function start input terminal.
6$)$	DIN rail hook	A hook used to mount the module to a DIN rail
7$)$	Connector for external devices (40 pins)	A connector for I/O signal cables of external devices (5 Page 38, Section 6.2.3)
8$)$	Serial number display	Displays the serial number printed on the rating plate.

CHAPTER 3 specifications

This chapter describes general specifications, performance specifications, functions, I/O signals, and buffer memory areas.

3.1 General Specifications

For the general specifications of the high-speed counter module, refer to the following.
[]. Safety Guidelines, provided with the CPU module or head module

3.2 Performance Specifications

The following table describes the performance specifications of the high-speed counter module.
(1) LD62 (DC input sink output type)

Item		Specifications		
Counting speed switch setting*1		200k (100k to 200kPPS)	100k (10k to 100kPPS)	10k (10kPPS or less)
Number of occupied I/O points		16 points (I/O assignment: Intelligent, 16 points)		
Number of channels		2 channels		
Count input signal	Phase	1-phase input (1 multiple/2 multiples), 2-phase input (1 multiple/2 multiples/4 multiples), CW/CCW input		
	Signal level ($\phi \mathrm{A}, \phi \mathrm{B}$)	5/12/24VDC 2 to 5mA		
Counter	Counting speed (maximum) ${ }^{*}{ }^{2}$	200kPPS	100kPPS	10kPPS
	Counting range	32-bit signed binary (-2147483648 to 2147483647)		
	Type	UP/DOWN preset counter + Ring counter functions		
	Minimum count pulse width (duty ratio 50\%)	(Minimum phase difference in 2-phase input $1.25 \mu \mathrm{~s}$)	(Minimum phase difference in 2-phase input $2.5 \mu \mathrm{~s}$)	(Minimum phase difference in 2-phase input $25 \mu \mathrm{~s}$)
Coincidence output	Comparison range	32-bit signed binary		
	Comparison result	Setting value < Count value Setting value $=$ Count value Setting value > Count value		
External input	Preset	$\begin{gathered} 5 / 12 / 24 \mathrm{VDC} \\ 2 \text { to } 5 \mathrm{~mA} \end{gathered}$		
	Function start			
External output	Coincidence output	Transistor (sink type) output, 2 points/channel 12/24VDC 0.5A/point, 2A/common		
Internal current consumption (5VDC)		0.31 A		
Weight		0.13 kg		

*1 The value can be configured in intelligent function module switch setting.
*2 The counting speed is affected by the pulse rise/fall time.
The number of pulses that can be counted depending on the counting speed is as follows. Note that the count may be incorrect when pulses with long rise/fall time are counted.

| Counting speed
 switch setting | 200k | 100k | |
| :--- | :---: | :---: | :---: | :---: |
| Rise/fall time | Both 1- and 2-phase inputs | | |
| $t=1.25 \mu \mathrm{~s}$ or less | 200 kPPS | 100 kPPS | 10 kPPS |
| $\mathrm{t}=2.5 \mu \mathrm{~s}$ or less | 100 kPPS | 100 kPPS | 10 kPPS |
| $\mathrm{t}=25 \mu \mathrm{~s}$ or less | - | 10 kPPS | 10 kPPS |
| $\mathrm{t}=500 \mu \mathrm{~s}$ | - | $500 P P S$ | |

(2) LD62D (differential input sink output type)

Item		Specifications			
Counting speed switch setting*1		$\begin{aligned} & \text { 500k (200k to } \\ & 500 \mathrm{kPPS}) \end{aligned}$	$\begin{aligned} & \text { 200k (100k to } \\ & \text { 200kPPS) } \end{aligned}$	$\begin{gathered} \text { 100k (10k to } \\ \text { 100kPPS) } \end{gathered}$	10k (10kPPS or less)
Number of occupied I/O points		16 points (//O assignment: Intelligent, 16 points)			
Number of channels		2 channels			
Count input signal	Phase	1-phase input (1 multiple/2 multiples), 2-phase input (1 multiple/2 multiples/4 multiples), CW/CCW input			
	Signal level $(\phi \mathrm{A}, \phi \mathrm{~B})$	EIA Standard RS-422-A Differential line driver level (AM26LS31 (manufactured by Texas Instruments Incorporated) or equivalent)			
Counter	Counting speed (maximum) ${ }^{*}{ }^{2}$	500kPPS	200kPPS	100kPPS	10kPPS
	Counting range	32-bit signed binary (-2147483648 to 2147483647)			
	Type	UP/DOWN preset counter + Ring counter functions			
	Minimum count pulse width (duty ratio 50\%)	(Minimum phase difference in 2-phase input $0.5 \mu \mathrm{~s}$)	(Minimum phase difference in 2-phase input $1.25 \mu \mathrm{~s}$)	(Minimum phase difference in 2-phase input $2.5 \mu \mathrm{~s}$)	(Minimum phase difference in 2-phase input $25 \mu \mathrm{~s}$)
Coincidence output	Comparison range	32-bit signed binary			
	Comparison result	Setting value < Count value Setting value $=$ Count value Setting value > Count value			
External input	Preset	$5 / 12 / 24 \mathrm{VDC} 2$ to 5 mA (EIA Standard RS-422-A, A differential line driver can be connected.)			
	Function start				
External output	Coincidence output	Transistor (sink type) output, 2 points/channel 12/24VDC 0.5A/point, 2A/common			
Internal current consumption (5VDC)		0.36A			
Weight		0.13 kg			

*1 The value can be configured in intelligent function module switch setting.
*2 The counting speed is affected by the pulse rise/fall time.
The number of pulses that can be counted depending on the counting speed is as follows. Note that the count may be incorrect when pulses with long rise/fall time are counted.

| Counting speed
 switch setting | 500k | 200k | 100k | 10k |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Rise/fall time | Both 1- and 2-phase inputs | | | |
| $t=0.5 \mu$ s or less | 500 kPPS | 200 kPPS | 100 kPPS | 10 kPPS |
| $\mathrm{t}=1.25 \mu \mathrm{~s}$ or less | 200 kPPS | 200 kPPS | 100 kPPS | 10 kPPS |
| $\mathrm{t}=2.5 \mu \mathrm{~s}$ or less | - | 100 kPPS | 100 kPPS | 10 kPPS |
| $\mathrm{t}=25 \mu \mathrm{~s}$ or less | - | - | 10 kPPS | 10 kPPS |
| $\mathrm{t}=500 \mu \mathrm{~s}$ | - | - | 500 PPS | |

3.2.1 Number of parameters that can be set

Configure the parameters of the initial setting and the auto refresh of the high-speed counter module within the number of parameters that can be set to the CPU module or head module, including the number of parameters set for other intelligent function modules.
For the number of parameters that can be set to the CPU module and head module, refer to the following.
[] MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and Inspection)
[]. MELSEC-L CC-Link IE Field Network Head Module User's Manual

(1) Number of high-speed counter module parameters

The following number of parameters can be set for one high-speed counter module.

Model	Initial setting	Auto refresh
LD62	8	14 (Maximum number of parameters)
LD62D	8	14 (Maximum number of parameters)

(2) Checking the number of parameters

The number of parameters set for the intelligent function module and the maximum number of parameters can be checked by the following operation.

2 Project window \Rightarrow [Intelligent Function Module] \Rightarrow Right-click \Rightarrow [Intelligent Function Module Parameter List]

No.	Description
1)	The total number of parameters that have been selected under "Initialization (Count)"
2$)$	The maximum number of parameters for initial setting
3$)$	The total number of parameters that have been selected under "Auto Refresh (Count)"
4$)$	The maximum number of parameters for auto refresh setting

3.3
 Function List

The following table lists the functions of the high-speed counter module.

Item		Description	Reference
Linear counter function		This function counts pulses between -2147483648 and 2147483647 and detects an overflow if the count value is outside the range.	Page 62, Section 8.2.1
Ring counter function		This function repeatedly counts pulses between the ring counter upper limit value and the ring counter lower limit value.	$\begin{gathered} \text { Page 63, } \\ \text { Section 8.2.2 } \end{gathered}$
Coincidence output function		This function compares the present counter value with the preset coincidence output point setting value and outputs on or off signal when they match.	Page 66, Section 8.3
	Coincidence detection interrupt function	This function outputs an interrupt signal to the CPU module and starts an interrupt program when the present counter value matches with the preset coincidence output point setting value.	
Preset function		This function overwrites the present counter value with the preset value. This function is performed by a program or an external control signal (preset input).	Page 71, Section 8.4
Counter function selection	Count disable function	This function stops counting pulses while $\mathrm{CH} \square$ Count enable command ($\mathrm{Y} 4, \mathrm{YC}$) is on.	$\begin{aligned} & \text { Page 76, } \\ & \text { Section } 8.6 \end{aligned}$
	Latch counter function	This function stores the present counter value to the buffer memory when the counter function selection start command signal is input. This function is performed by a program or an external control signal (function input).	Page 77, Section 8.7
	Sampling counter function	This function counts pulses input during the specified sampling period after the counter function selection start command is input and stores the counter value to the buffer memory. This function is performed by a program or an external control signal (function input).	Page 78, Section 8.8
	Periodic pulse counter function	This function stores the present and previous counter values to the corresponding buffer memory areas at the preset cycle while the counter function selection start command signal is input.	Page 79, Section 8.9

Point ${ }^{\circ}$

- These functions can be used together.

However, select either the linear counter function or the ring counter function and any one of the counter functions from counter function selection.

- The preset function and the function selected from counter function selection can also be performed by the following external inputs.
- To perform the preset function, apply a voltage to the preset input terminal.
- To perform the function selected from counter function selection, apply a voltage to the function start input terminal.

3.4
 List of I/O Signals

The following table lists the I/O signals of the high-speed counter module.
For details on the I/O signals, refer to the following.

- Details of I/O signals (3 Page 110, Appendix 1)

Input signal		Output signal	
Device No.	Signal name	Device No.	Signal name
X0	Module READY	YO	CH1 Coincidence signal No. 1 reset command
X1	CH 1 Counter value large (point No.1)	Y1	CH1 Preset command
X2	CH1 Counter value coincidence (point No.1)	Y2	CH 1 Coincidence signal enable command
X3	CH1 Counter value small (point No.1)	Y3	CH1 Down count command
X4	CH1 External preset request detection	Y4	CH1 Count enable command
X5	CH 1 Counter value large (point No.2)	Y5	CH 1 External preset detection reset command
X6	CH1 Counter value coincidence (point No.2)	Y6	CH 1 Counter function selection start command
X7	CH 1 Counter value small (point No.2)	Y7	CH1 Coincidence signal No. 2 reset command
X8	CH 2 Counter value large (point No.1)	Y8	CH2 Coincidence signal No. 1 reset command
X9	CH 2 Counter value coincidence (point No.1)	Y9	CH2 Preset command
XA	CH 2 Counter value small (point No.1)	YA	CH2 Coincidence signal enable command
XB	CH2 External preset request detection	YB	CH2 Down count command
XC	CH 2 Counter value large (point No.2)	YC	CH 2 Count enable command
XD	CH 2 Counter value coincidence (point No.2)	YD	CH 2 External preset detection reset command
XE	CH 2 Counter value small (point No.2)	YE	CH 2 Counter function selection start command
XF	Use prohibited	YF	CH2 Coincidence signal No. 2 reset command

Point ${ }^{8}$

- The I/O numbers (X/Y) above apply when the start I/O number of the high-speed counter module is set to "0".
- The use prohibited signal above is used by the system and is not available for users. If used (turned on) by a user, the performance of the high-speed counter module is not guaranteed.

3.5 List of Buffer Memory Areas

The following table lists the buffer memory areas of the high-speed counter module.
For details on the buffer memory areas, refer to the following.

- Details of Buffer Memory Areas (3 Page 114, Appendix 2)

Address (decimal)	Address (hexadecimal)	Name	Initial value*1	Read/write ${ }^{\text {2 }}$
0	0_{H}	CH 1 Preset value (L) ${ }^{*}$	0	R/W
1	1_{H}	CH 1 Preset value (H)*3	0	R/W
2	2^{H}	CH 1 Present value (L) ${ }^{*} 3$	0	R
3	3_{H}	CH 1 Present value (H) ${ }^{* 3}$	0	R
4	4 H	CH 1 Coincidence output point No. 1 (L) ${ }^{* 3}$	0	R/W
5	5_{H}	CH 1 Coincidence output point No. $1(\mathrm{H})^{* 3}$	0	R/W
6	6^{H}	CH1 Coincidence output point No. 2 (L) ${ }^{* 3}$	0	R/W
7	7_{H}	CH 1 Coincidence output point No. $2(\mathrm{H})^{*} 3$	0	R/W
8	$8_{\text {H }}$	CH1 Overflow detection	0	R
9	9_{H}	CH 1 Counter function selection	0	R/W
10	A_{H}	CH1 Sampling/periodic time setting	0	R/W
11	B_{H}	CH1 Sampling/periodic counter flag	0	R
12	C_{H}	CH 1 Latch count value (L) ${ }^{* 3}$	0	R
13	D_{H}	CH 1 Latch count value $(\mathrm{H})^{* 3}$	0	R
14	E_{H}	CH1 Sampling count value (L) ${ }^{* 3}$	0	R
15	F_{H}	CH 1 Sampling count value $(\mathrm{H})^{* 3}$	0	R
16	${ }^{10}{ }_{H}$	CH 1 Periodic pulse count, previous value (L) ${ }^{* 3}$	0	R
17	11_{H}	CH 1 Periodic pulse count, previous value (H) ${ }^{* 3}$	0	R
18	$12^{\text {H }}$	CH 1 Periodic pulse count, present value (L) ${ }^{*} 3$	0	R
19	13_{H}	CH 1 Periodic pulse count, present value $(\mathrm{H})^{* 3}$	0	R
20	14_{H}	CH 1 Ring counter lower limit (L) ${ }^{* 3}$	0	R/W
21	15_{H}	CH 1 Ring counter lower limit (H) ${ }^{* 3}$	0	R/W
22	16_{H}	CH 1 Ring counter upper limit (L) ${ }^{* 3}$	0	R/W
23	17_{H}	CH1 Ring counter upper limit (H) ${ }^{* 3}$	0	R/W
24 to 31	$\begin{gathered} 18_{\mathrm{H}} \\ \text { to } \\ 1 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	System area	-	-
32	$2 \mathrm{H}_{\mathrm{H}}$	CH 2 Preset value (L) ${ }^{*} 3$	0	R/W
33	21_{H}	CH2 Preset value (H) ${ }^{* 3}$	0	R/W
34	$22^{\text {H }}$	CH 2 Present value (L) ${ }^{*} 3$	0	R
35	23_{H}	CH 2 Present value (H) ${ }^{* 3}$	0	R
36	$24^{\text {H }}$	CH 2 Coincidence output point No. 1 (L) ${ }^{* 3}$	0	R/W
37	${ }^{25} \mathrm{H}$	CH 2 Coincidence output point No. $1(\mathrm{H})^{* 3}$	0	R/W
38	26_{H}	CH2 Coincidence output point No.2 (L) ${ }^{*} 3$	0	R/W
39	27_{H}	CH 2 Coincidence output point No. $2(\mathrm{H})^{*} 3$	0	R/W

Address (decimal)	Address (hexadecimal)	Name	Initial value*	Read/write*2
40	$28_{\text {H }}$	CH2 Overflow detection	0	R
41	$29^{\text {H }}$	CH 2 Counter function selection	0	R/W
42	$2 \mathrm{~A}_{\mathrm{H}}$	CH2 Sampling/periodic time setting	0	R/W
43	$2 \mathrm{~B}_{\mathrm{H}}$	CH2 Sampling/periodic counter flag	0	R
44	$2 \mathrm{C}_{\mathrm{H}}$	CH 2 Latch count value (L) ${ }^{*} 3$	0	R
45	$2 \mathrm{D}_{\mathrm{H}}$	CH 2 Latch count value (H)*3	0	R
46	$2 \mathrm{E}_{\mathrm{H}}$	CH2 Sampling count value (L) ${ }^{* 3}$	0	R
47	$2 \mathrm{~F}_{\mathrm{H}}$	CH 2 Sampling count value (H) ${ }^{*}$	0	R
48	30_{H}	CH 2 Periodic pulse count, previous value (L) ${ }^{* 3}$	0	R
49	31_{H}	CH 2 Periodic pulse count, previous value (H) ${ }^{\star 3}$	0	R
50	32_{H}	CH 2 Periodic pulse count, present value (L) ${ }^{*} 3$	0	R
51	33_{H}	CH 2 Periodic pulse count, present value (H) ${ }^{* 3}$	0	R
52	34_{H}	CH 2 Ring counter lower limit (L) ${ }^{* 3}$	0	R/W
53	$35_{\text {H }}$	CH 2 Ring counter lower limit (H) ${ }^{* 3}$	0	R/W
54	36_{H}	CH2 Ring counter upper limit (L) ${ }^{* 3}$	0	R/W
55	37_{H}	CH2 Ring counter upper limit (H) ${ }^{*}$	0	R/W
$\begin{aligned} & 56 \\ & \text { to } \\ & 63 \end{aligned}$	$\begin{gathered} 38_{\mathrm{H}} \\ \text { to } \\ 3 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	System area	-	-

*1 This value is set when the high-speed counter module is powered on or the CPU module is reset.
*2 Whether a value can be read from/written to a program or not is indicated.
R: Readable
W: Writable
*3 Read or write values in 32-bit signed binary. (Be sure to use two words at a time.)

Point ${ }^{\rho}$

- The system areas listed above and the areas not listed above are used by the system and are not available for users. If data are written by a user, the performance of the high-speed counter module is not guaranteed.
- Buffer memory data in the high-speed counter module are initialized when the high-speed counter module is powered on or the CPU module is reset. To save the necessary data, read/write the data by executing the FROM/DFRO/TO/DTO instructions in the program or performing auto refresh to the device data.

CHAPTER 4 procedures before operation

This chapter lists the procedures before operation.

CHAPTER 5 sYstem configuration

TThis chapter describes the system configuration, number of connectable modules, and applicable software versions of the high-speed counter module.

5.1 System Configuration

The following figures show examples of system configuration using the high-speed counter module.

(1) When connected to the CPU module

(2) When connected to the head module

(1) Number of connectable modules

For the number of connectable modules, refer to the following.
[] MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and Inspection)
[]. MELSEC-L CC-Link IE Field Network Head Module User's Manual

(2) Compatible software versions

For compatible software versions, refer to the following.
[] MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and Inspection)
[]. MELSEC-L CC-Link IE Field Network Head Module User's Manual

5.2.1 Restrictions when the high-speed counter module is connected to the head module

The restrictions are as follows:

- The coincidence detection interrupt function cannot be used.
- A delay occurs due to link scan. When a counter value input with a program is processed, the counter value fluctuates due to the delay. Thoroughly examine the system to make sure that it will not cause controllability problem.

CHAPTER 6 installation and wiring

This chapter describes installation and wiring of the high-speed counter module.

6.1 Installation Environment and Installation Position

For precautions for installation environment and installation position, refer to the following.
[]] MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and Inspection)
[]. MELSEC-L CC-Link IE Field Network Head Module User's Manual

This section describes wiring of encoders and controllers to the high-speed counter module.

6.2.1 Wiring precautions

To maximize high-speed counter module performance and ensure high-reliability of the system, external wiring that is less susceptible to noise is required.
Observe the following precautions when wiring encoders and controllers to the high-speed counter module.

(1) Wiring

- The terminal is determined by the voltage of input signals. Connecting a module to a terminal with a different voltage may cause malfunction of the module and failure of the connected devices.
- For 1-phase input, connect a pulse input cable on the phase A side.
- Install a fuse for each external terminal to prevent the external devices or module from being burnt out or damaged if a load shorts in an output circuit.
The following fuses have been tested by Mitsubishi.

Model	Rated current	Contact
312.750	0.75 A	Littlefuse KK
216.800	0.8 A	http://www.littelfuse.co.jp/

(2) Connectors for external devices

- Connectors for external devices must be correctly soldered or crimped. Incomplete soldering or crimp may result in malfunction.
- Securely connect the connectors for external devices to the high-speed counter module and securely tighten the two screws.
- When disconnecting the cable from the high-speed counter module, do not pull the cable by the cable part. Hold the connector part of the cable. Pulling the cable connected to the module may result in malfunction or damage to the module or cable.

(3) Noise reduction measures

- If pulse-state noises are input, the high-speed counter module may incorrectly count pulses.
- Take the following noise reduction measures for high-speed pulse input.

Measure 1
Use shielded twisted pair cables.

Measure 2

Use the shortest possible shielded twisted pair cables, placing them not parallel with noise-generating power cables or I/O cables and at a distance of 150 mm or more.

Measure3
Ground the shield cable on the encoder side (relay box). Always ground the FG and LG terminals to the protective ground conductor.

- The following figure shows a wiring example for noise reduction.

- Ground the shielded twisted pair cable on the encoder side (relay box). (Wiring example:with an open collector output type encoder (24VDC))

Connect the shielded cable of the encoder to the shielded cable of the shielded twisted pair cable in the relay box. If the shielded wire of the encoder is not grounded, ground it to the relay box as shown by the dotted lines.

(4) Requirements for compliance with the EMC and Low Voltage Directives

Take the following measures for compliance with the EMC and Low Voltage Directives.

- Install an DC power inside the control panel.
- Use a shielded cable for the DC power when the cable is extended out of the control panel.
- Keep the length of the cables between the high-speed counter module and the external devices to 30 m or less.
- Use a shielded twisted pair cable and ground the shielded part of the cable to the control panel with the AD75CK-type cable clamping (Mitsubishi).

For details on the AD75CK, refer to the following.
[]. AD75CK-type Cable Clamping Instruction Manual

- Take the following noise reduction measures when wiring a connector for external devices.
[Example of wiring using a shielded cable]
The following figure shows an example of wiring for noise reduction using the A6CON1.

[Example of noise reduction measures taken to shielded cables]

Assembling the A6CON1

ϕ

6.2.2 Connectors for external devices

(1) Precautions

- Tighten the connector screws within the following specified torque range.

Screw	Tightening torque range
Connector screw (M2.6)	0.20 to $0.29 \mathrm{~N} \cdot \mathrm{~m}$

- Use copper wires having temperature rating of $75^{\circ} \mathrm{C}$ or more for the connectors.
- Use UL-approved connectors when required.

(2) Applicable connectors

Connectors for external devices that are applicable to the high-speed counter module need to be obtained by a user.
The following tables list the applicable connector types and the crimp tool.
(a) 40-pin connector

Type	Model	Applicable wire size
Soldering type connector (straight out type)	A6CON1	$0.3 \mathrm{~mm}^{2}$ (22 AWG) (Stranded)
Crimping type connector (straight out type)	A6CON2	0.088 to $0.24 \mathrm{~mm}^{2}$ (28 to 24 AWG) (Stranded)
Soldering type connector (both for straight out and 45-degree types)	A6CON4	$0.3 \mathrm{~mm}^{2}$ (22 AWG) (Stranded)

Point ${ }^{\rho}$

The A6CON3 (IDC type connector (straight out type)) cannot be used.
(b) Crimp tool for 40-pin connectors

Type	Model	Contact
Crimp tool	FCN-363T-T005/H	FUJITSU COMPONENT LIMITED http://www.fcl.fujitsu.com/en/

For wiring of connectors and usage of the crimp tool, contact FUJITSU COMPONENT LIMITED.

(3) Wiring method

For wiring method, refer to the following.
[]. MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and Inspection)
(4) Connection procedure

1. Plugging the connector

Plug the connector into the slot on the high-speed counter module.
2. Tightening the connector screws Tighten the two connector screws (M2.6).

1. Removing the connector

Loosen the two connector screws and pull out the connector from the module.

(5) Removal procedure

6.2.3 Interface with external devices

This section lists the interface of the high-speed counter module with external devices.

(1) Terminal layout and numbers

The following figure shows the terminal layout and numbers on the connector for external devices.

(2) LD62 (DC input sink output type)

*1 The A03, A04, B03, and B04 terminals are not used.

I/O classifi cation	Internal circuit	Terminal number ${ }^{* 1}$		Signal name	Operation	Input voltage (guaranteed value)	Operating current (guaranteed value)		
		CH1	CH2						
Output		A06	A05	EQU1 (coincidence output point No.1)	- Operating voltage: 10.2 to 30 V - Maximum load current: 0.5A/point, 2A/common*2 - Maximum voltage drop at on: 1.5 V - Response time Off to on: 0.1 ms or less On to off: 0.1 ms or less (rated load, resistive load)				
		B06	B05	EQU2 (coincidence output point No.2)					
		B02, B01		12/24V	- Input voltage: 10.2 to 30 V - Current consumption: 43 mA (TYP., 24VDC and all points on/common) - Common to all channels				
		A02, A01		OV					

*1 The A03, A04, B03, and B04 terminals are not used.
*2 Coincidence output derating (on ratio) is as follows.

(3) LD62D (differential input sink output type)

I/O classifi cation	Internal circuit	Terminal number* ${ }^{*}$		Signal name	Operation	Input voltage (guaranteed value)	Operating current (guaranteed value)
		CH1	CH2				
Input		A20 B20 A19 B19	A14 B14 A13 B13	Phase A pulse input Phase $\overline{\mathrm{A}}$ pulse input Phase B pulse input Phase $\overline{\mathrm{B}}$ pulse input	EIA Standard RS-422-A Line receiver (AM26C32 (manufactured by Texas Instruments Incorporated) or equivalent) The line receiver specifications are as follows: - VIT + Differential input on voltage (H level threshold voltage) 0.2 V - VIT - Differential input off voltage (L level threshold voltage) - 0.2 V - Vhys hysteresis voltage (VIT +- VIT -) 60 mV (Current type line driver cannot be used.)		
					On	21.6 to 26.4 V	2 to 5 mA
	$1 / 3 \mathrm{~W}$	A18		Preset	Off	5 V or less	0.1 mA or less
	$1 \mathrm{k} \Omega \quad 5 \quad 5.6 \mathrm{k}$,		B12		On	10.8 to 13.2V	2 to 5 mA
					Off	4 V or less	0.1 mA or less
	680 Ω	A17	A11	Preset inp	On	2.5 to 5.5 V	2 to 5 mA
	$\angle-7$ \longrightarrow				Off	1 V or less	0.1 mA or less
		B17	B11	PRSTCOM	Response time	Off to on 0.5 ms or less	On to off 1 ms or less
				Function start input	On	21.6 to 26.4 V	2 to 5 mA
				24 V	Off	5 V or less	0.1 mA or less
		B16	B10	Function start input	On	10.8 to 13.2 V	2 to 5 mA
				12V	Off	4 V or less	0.1 mA or less
				Function start input	On	2.5 to 5.5 V	2 to 5 mA
				5 V	Off	1 V or less	0.1 mA or less
		B15	B09	FUNCCOM	Response time	Off to on 0.5 ms or less	On to off 1 ms or less

*1 The A03, A04, A07, A08, B03, B04, B07, and B08 terminals are not used.

I/O classifi cation	Internal circuit	Terminal number ${ }^{* 1}$		Signal name	Operation	Input voltage (guaranteed value)	Operating current (guaranteed value)		
		CH1	CH2						
Output		A06	A05	EQU1 (coincidence output point No.1)	- Operating voltage: 10.2 to 30 V - Maximum load current: 0.5A/point, 2A/common ${ }^{* 2}$ - Maximum voltage drop at on: 1.5 V - Response time Off to on: 0.1 ms or less On to off: 0.1 ms or less (rated load, resistive load)				
		B06	B05	EQU2 (coincidence output point No.2)					
		B02, B01		12/24V	- Input voltage: 10.2 to 30 V - Current consumption: 43 mA (TYP., 24VDC and all points on/common) - Common to all channels				
		A02, A01		OV					

*1 The A03, A04, A07, A08, B03, B04, B07, and B08 terminals are not used.
*2 Coincidence output derating (on ratio) is as follows.

6.2.4 Connectable encoders

Encoders that can be connected to the high-speed counter module are as follows.

(1) To the LD62

- Open collector output type encoder
- CMOS level voltage output type encoder
(Check that the encoder output voltage meets the specifications of the LD62.)

(2) To the LD62D

- Line driver output type encoder
(Check that the encoder output voltage meets the specifications of the LD62D.)

Point ${ }^{\rho}$

The following encoder cannot be used with the high-speed counter module.

- TTL level voltage output type encoder

6.3 Wiring Example (Module and Encoder)

(1) Example of wiring with an open collector output type encoder (24VDC)

In parentheses, terminal numbers of channel 2 are shown.

Point ${ }^{8}$

For wiring of the LD62 and an encoder, separate power cables and signal cables, referring to the examples below.

- Example of correct wiring

- Example of inappropriate wiring

(2) Example of wiring with a voltage output type encoder (5VDC)

In parentheses, terminal numbers of channel 2 are shown.
(3) Example of wiring with a line driver (equivalent to AM26LS31) encoder

In parentheses, terminal numbers of channel 2 are shown.

6.4 Wiring Example (Controller and External Input Terminals)

(1) Example of wiring with a controller (sink type, 12VDC)

In parentheses, terminal numbers of channel 2 are shown.

In parentheses, terminal numbers of channel 2 are shown.

(2) Example of wiring with a controller (source type, 5VDC)

In parentheses, terminal numbers of channel 2 are shown.

In parentheses, terminal numbers of channel 2 are shown.
(3) Example of wiring with a controller (line driver)

In parentheses, terminal numbers of channel 2 are shown.

6.5 Wiring Example (External Output Terminals)

To use the coincidence output terminal (EQU), an external power supply of 10.2 to 30 VDC is required to operate the internal photocoupler. The following figure shows a wiring example.

(1) Wiring example for the high-speed counter module (sink output type)

LD62, LD62D

In parentheses, terminal numbers of channel 2 are shown.
*1 Install a fuse for each external terminal to prevent the external devices or module from being burnt out or damaged if a load shorts in an output circuit.

CHAPTER 7 settings

This chapter describes how to configure settings of the high-speed counter module.

Point ${ }^{8}$

To make settings valid, write settings configured in the "New Module", "Switch Setting", "Intelligent Function Module Detailed Setting", "Parameter", and "Auto_Refresh" screens to the CPU module, and reset or power off and then on the CPU module or set the CPU module to STOP, RUN, STOP, and then RUN.

7.1 Adding a Module

Add the model name of the high-speed counter module used for the project.

(1) Operation

Open the "New Module" dialog box.
Project window \Rightarrow [Intelligent Function Module] \Rightarrow Right-click \Rightarrow [New Module...]

Item		
Module Selection	Module Type	Select "Counter Module".
	Module Name	Select the model name of the module to be connected.
Mount Position	Mounted Slot No.	Select the number of the slot where the module is mounted.
	Specify start XY address	The start I/O number (hexadecimal) of the module mounted on the slot set to "Mounted Slot No." is displayed. This item can be set by user.
	Title	Enter a title.

7.2 Switch Setting

Set a pulse input mode, counting speed, and counter type for each channel.

(1) Operation

Open the "Switch Setting" dialog box.
Project window \Rightarrow [Intelligent Function Module] \Rightarrow Model name \Rightarrow [Switch Setting]

Switch Setting 0010:LD62

* If an out-of-range value is contained in the switch setting of the PLC parameter, it will be treated as default setting.

Item	Description	Setting value
Pulse input mode	Select a pulse input mode for each channel.	- 1-Phase Multiple of 1 (default) -1-Phase Multiple of 2 - CW/CCW - 2-Phase Multiple of 1 - 2-Phase Multiple of 2 - 2-Phase Multiple of 4
Counting speed setting	Select a counting speed for each channel. 500kpps can be selected for the LD62D only.	- 10kpps (default) - 100kpps - 200kpps - 500kpps
Counter format	Select a counter type for each channel.	- Linear Counter (default) - Ring Counter

7.3 Intelligent Function Module Detailed Setting

Set an output mode if a CPU stop error occurs and CPU module operation mode if a high-speed counter module error is detected.

(1) Operation

Open the "I/O Assignment" tab.

1. Open the "I/O Assignment" tab of the PLC Parameter dialog box.

Project window \Rightarrow [Parameter] \Leftrightarrow [PLC Parameter] \Rightarrow [I/O Assignment]
2. Click the Detailed Setting button.

3. Select "Clear" or "Hold" for "Error Time Output Mode".
4. Select "Stop" or "Continue" for "PLC Operation Mode at H/W Error".
5. Click the End button to fix the "Error Time Output Mode" and the "PLC Operation Mode at H/W Error" settings.

Item	Description	Setting value	Remarks		
$\begin{array}{l}\text { Error Time Output } \\ \text { Mode }\end{array}$	$\begin{array}{l}\text { Select whether to clear or hold module } \\ \text { output if a CPU stop error occurs. }\end{array}$	$\begin{array}{l}\text { • Clear (default) } \\ \text { • Hold } \\ \text { external outputs of coincidence } \\ \text { signals turn off. }\end{array}$			
• Hold: If a CPU stop error occurs,					
external outputs of coincidence					
signals are held in the status before					
the CPU module stops.				$]$	• Stop: If a high-speed counter module
:---					
PLC Operation Mode					
at H/W Error is detected, the CPU module					

7.4 Parameter Setting

Set parameters for each channel.
By setting parameters in a programming tool, parameter settings by programs are not necessary.

(1) Operation

Open the "Parameter" window.

1. Open the "Parameter" window from the project window.Project window \Rightarrow [Intelligent Function Module] \Rightarrow Model name \Rightarrow [Parameter]

2. Double-click the text box of the setting-target item and select or enter a value.

- Items with a pull-down list

Double-click the text box and select an option from the displayed pull-down list.

- Items without a pull-down list

Double-click the text box and enter a value.
3. When using CH 2 , perform the procedure 2 .

Item		Setting value	Reference
Basic setting	Preset value	- 2147483648 to 2147483647 (default: 0)	Page 71, Section 8.4
	Coincidence output point No. 1	- 2147483648 to 2147483647 (default: 0)	Page 66, Section 8.3
	Coincidence output point No. 2	- 2147483648 to 2147483647 (default: 0)	
	Ring counter upper limit	- 2147483648 to 2147483647 (default: 0)	Page 63, Section 8.2.2
	Ring counter lower limit	-2147483648 to 2147483647 (default: 0)	
Counter function	Counter function selection	0 : Count Disabling Function (default) 1: Latch Counter Function 2: Sampling Counter Function 3: Periodic Pulse Counter Function	Page 73, Section 8.5
	Sampling/periodic time setting	1 to 65535 (unit: 10ms) (default: 0)	

Transfer buffer memory data to the specified device.
This setting eliminates the need for reading buffer memory data with a program.

(1) Operation

Open the "Auto_Refresh" window.

1. Open the "Auto_Refresh" window from the project window.Project window \leftrightarrows [Intelligent Function Module] \Rightarrow Model name \Rightarrow [Auto_Refresh]
2. Click the text box of the setting-target item and enter the auto refresh target device.

CHAPTER 8 function

This chapter describes the details of the functions for the high-speed counter module and the setting methods. For details on I/O signals and buffer memory, refer to the following.

- Details of I/O Signals (3 Page 110, Appendix 1)
- Details of Buffer Memory Areas (

8.1 Pulse Input Modes and Count Methods

This section describes the pulse input modes and the count methods.

8.1.1 Pulse input modes

There are six pulse input modes: 1-phase pulse input (1 multiple/2 multiples), CW/CCW pulse input, and 2-phase pulse input (1 multiple/2 multiples/4 multiples).
(1) Pulse input modes and count timing

Pulse input mode		Count	ming
1-phase multiple of 1	For counting up	$\phi \mathrm{A}$ \square $\phi \mathrm{B}$ and \qquad count command (Y3, YB)	Counts on the rising edge (\uparrow) of $\phi \mathrm{A}$. ϕB and $C H \square$ Down count command $(Y 3, Y B)$ are off.
	For counting down		Counts on the falling edge (\downarrow) of ϕA. ϕB or $C H D$ Down count command (Y3, YB) is on.
1-phase multiple of 2	For counting up	$\phi \mathrm{A}$ \square $\phi \mathrm{B}$ and \qquad count command \qquad (Y3, YB)	Counts on the rising edge (\uparrow) and the falling edge (\downarrow) of ϕA. $\phi \mathrm{B}$ and $\mathrm{CH} \square$ Down count command $(\mathrm{Y} 3, \mathrm{YB})$ are off.
	For counting down		Counts on the rising edge (\uparrow) and the falling edge (\downarrow) of ϕA. $\phi \mathrm{B}$ or CH D Down count command $(\mathrm{Y} 3, \mathrm{YB})$ is on.
CW/CCW	For counting up	$\phi \mathrm{A}$ 4 \square 4 ϕB \qquad	Counts on the rising edge (\uparrow) of $\phi \mathrm{A}$. ϕB is off.
	For counting down	ϕA \qquad ϕB \square个 4 \qquad	$\phi \mathrm{A}$ is off. Counts on the rising edge (\uparrow) of $\phi \mathrm{B}$.
2-phase multiple of 1	For counting up	$\begin{aligned} & \phi A \backsim \square \square \\ & \phi \mathrm{~B} \square \square \square \end{aligned}$	Counts on the rising edge (\uparrow) of $\phi \mathrm{A}$ while $\phi \mathrm{B}$ is off.
	For counting down	$\phi \mathrm{A}$ \qquad ϕB \square	Counts on the falling edge (\downarrow) of ϕ A while $\phi \mathrm{B}$ is off.

Pulse input mode	Count timing		
2-phase multiple of 2	For counting up	$\begin{aligned} & \phi \mathrm{A}-\downarrow \downarrow \\ & \phi \mathrm{B}-\square \square \square \end{aligned}$	Counts on the rising edge (\uparrow) of $\phi \mathrm{A}$ while $\phi \mathrm{B}$ is off. Counts on the falling edge (\downarrow) of ϕA while ϕB is on.
	For counting down		Counts on the rising edge (\uparrow) of ϕA while ϕB is on. Counts on the falling edge (\downarrow) of ϕA while ϕB is off.
2-phase multiple of 4	For counting up	$\begin{aligned} & \phi \mathrm{A} \uparrow \downarrow \downarrow \\ & \phi \mathrm{~B} \uparrow \downarrow \downarrow \end{aligned}$	Counts on the rising edge (\uparrow) of ϕA while ϕB is off. Counts on the falling edge (\downarrow) of ϕA while ϕB is on. Counts on the rising edge (\uparrow) of ϕB while ϕA is on. Counts on the falling edge (\downarrow) of $\phi \mathrm{B}$ while $\phi \mathrm{A}$ is off.
	For counting down	$\begin{aligned} & \phi \mathrm{A} \uparrow \uparrow \downarrow \\ & \phi \mathrm{~B} \uparrow \downarrow \square \end{aligned}$	Counts on the rising edge (\uparrow) of ϕA while ϕB is on. Counts on the falling edge (\downarrow) of ϕA while ϕB is off. Counts on the rising edge (\uparrow) of ϕB while ϕA is off. Counts on the falling edge (\downarrow) of $\phi \mathrm{B}$ while $\phi \mathrm{A}$ is on.

Point ${ }^{\rho}$

For 1-phase pulse input and counting up, make sure that the phase B pulse input and $\mathrm{CH} \square$ Down count command (Y3, YB) are off before pulse input to phase A.
When the phase B pulse input or $C H \square$ Down count command $(Y 3, Y B)$ is on, pulses are counted down in phase A pulse input.

(a) 1-phase pulse input

The count method can be selected from 1 multiple and 2 multiples.
The following figure shows the relationship between phase A pulse input and phase B pulse input or $\mathrm{CH} \square$ Down count command (Y3, YB).

(b) CW/CCW pulse input

Pulses can be counted up with the phase A pulse input and counted down with the phase B pulse input. The following figure shows the relationship between phase A pulse input and phase B pulse input.

(c) 2-phase pulse input

The count method can be selected from 1 multiple, 2 multiples, and 4 multiples.
The phase difference between phase A pulses and phase B pulses determines whether the pulses are counted up or down.
The following figure shows the relationship between phase A pulse input and phase B pulse input.

8.1.2 Setting a count method

Configure a count method by switch setting.
For details on the setting method, refer to the following.

- Switch Setting (

8.1.3 Reading the present value

This section describes the details of the present value stored in the buffer memory and count values selected from counter function selection, and their reading method.

(1) Count value storage location

The present value is always stored in CHロ Present value (Un\G2, Un\G3, Un\G34, Un\G35) regardless of the counter function used.
When the latch counter, sampling counter, or periodic pulse counter function is performed, the count value is stored in the corresponding buffer memory areas listed in the table below.

Description		Present value	Counter function selection count value			
			Latch count value	Sampling count value	Periodic pulse count, previous value	Periodic pulse count, present value
Buffer memory address	CH1	UnIG2, UnIG3	UnIG12, UnIG13	UnIG14, UnIG15	UnIG16, UnIG17	UnlG18, UnIG19
	CH2	$\begin{aligned} & \text { UnIG34, } \\ & \text { UnIG35 } \end{aligned}$	UnlG44, UnIG45	UnIG46, UnlG47	UnIG48, UnlG49	Un\G50, UnIG51

(2) Stored data

The present value and the counter function selection count values are stored in the buffer memory areas in 32-bit signed binary.
The buffer memory data is automatically updated by counting operation. The latest count value can be read from the buffer memory.

Point ${ }^{\rho}$

Read the present value and counter function selection count values by two words at a time.
If the values are read by one word at a time, the lower word data and the higher word data will be inconsistent when the count value is updated during reading, and an incorrect count value may be read.

- Program example

- Inappropriate program example

The present value may change while CH1 Present value (L) (UnlG2) and CH1 Present value (H) (UnlG3) are read.

8.2 Selecting Counter Type

Select a counter type in the "Switch Setting" dialog box.
(1) Operation

1. Select "Linear Counter" or "Ring Counter" from "Counter format".

Project window \Rightarrow [Intelligent Function Module] \Rightarrow Model name \Rightarrow "Switch Setting"

Switch Setting 0010:LD62 X X

Item	Description	Reference
Linear Counter	Pulses are counted between -2147483648 (lower limit value) and 2147483647 (upper limit value).	Page 62, Section 8.2.1
Ring Counter	Pulses are repeatedly counted between the values stored in $\mathrm{CH} \square$ Ring counter lower limit (Un\G20, Un\G21, Un\G52, Un\G53) and CHD Ring counter upper limit (Un\G22, Un\G23, Un\G54, Un\G55).	Page 63, Section 8.2.2

8.2.1 Linear counter function

(1) Operation

- This function counts pulses between -2147483648 (lower limit value) and 2147483647 (upper limit value).
- The preset function and the coincidence output function can be used together.

(2) Overflow error

- In linear counter, an overflow error occurs if the present counter value falls below - 2147483648 (lower limit value) in counting down or exceeds 2147483647 (upper limit value) in counting up.
- If an overflow error occurs, " 1 " is stored in CHロ Overflow detection (Un\G8, Un\G40), the counting operation stops, and the present value does not change from -2147483648 or 2147483647 even if pulses are input.
- An overflow error can be cleared by performing the preset function.
- When the preset function is performed, " 0 " is stored in CHD Overflow detection (Un\G8, Un\G40) and the counting operation can be restarted.
- Overflow error status can be checked in the System Monitor dialog box. (Page 106, Section 11.1 (1))

8.2.2 Ring counter function

(1) Operation

This function repeatedly counts pulses between the values stored in CHD Ring counter lower limit (Un\G20, UnlG21, Un\G52, Un\G53) and CHD Ring. In ring counter, an overflow error does not occur.
The preset function and the coincidence output function can be used together.

(2) Count range

The count range is determined by the relationship between CHD Present value (Un\G2, Un\G3, Un\G34, UnlG35) and the ring counter lower limit/upper limit values when CHロ Count enable command (Y4, YC) is turned on or when the preset function is performed.
Normally, the count range is "Ring counter lower limit value \leq Present value \leq Ring counter upper limit value".
(a) When "Ring counter lower limit value \leq Present value \leq Ring counter upper limit value" (normally used)

- In counting up

When the present value reaches the ring counter upper limit value, the ring counter lower limit value is automatically stored in CHD Present value (Un\G2, Un\G3, Un\G34, Un\G35).

- In counting down

Even when the present value reaches the ring counter lower limit value, the ring counter lower limit value is held as the lower limit, and "Ring counter upper limit value - 1" is stored in CHD Present value (UnlG2, UnlG3, Un\G34, Un\G35) at the next count-down pulse input.
In counting up and down, the ring counter upper limit value is not stored in CHD Present value (Un\G2, Un\G3, UnlG34, UnlG35).
For example, when the count enable command is valid while the ring counter lower limit value is 0 , the ring counter upper limit value is 2000 , and the present value is 500 , the count range and the present value will change as follows.

(b) When "Present value < Ring counter lower limit value or ring counter upper limit value < Present value"

- In counting up

Even when the present value reaches the ring counter lower limit value, the ring counter lower limit value is held as the lower limit, and "Ring counter upper limit value +1 " is stored in CHD Present value (UnlG2, Un\G3, Un\G34, Un\G35) at the next count-up pulse input.

- In counting down

When the present value reaches the ring counter upper limit value, the ring counter lower limit value is automatically stored in CHD Present value (Un\G2, Un\G3, Un\G34, Un\G35).
In counting up and down, the ring counter upper limit value is not stored in CHD Present value (UnlG2, Un\G3, UnlG34, UnlG35).
For example, when the count enable command is valid while the ring counter lower limit value is 0 , the ring counter upper limit value is 2000 , and the present value is 3000 , the count range and the present value will change as follows.

(c) When "Ring counter lower limit value = "Ring counter upper limit value"

When this condition is met, a value that can be expressed in 32-bit signed binary (-2147483648 to 2147483647) will be the count range, regardless or the present value.

Point ${ }^{8}$

- While CHロ Count enable command (Y4, YC) is on, even if a value is written to CHD Ring counter lower limit (Un\G20, Un\G21, Un\G52, Un\G53) or CHD Ring counter upper limit (Un\G22, Un\G23, Un\G54, Un\G55), the stored value does not change.
Turn off CHD Count enable command (Y4, YC) before changing the ring counter upper/lower limit value.
- Turn off $\mathrm{CH} \square$ Count enable command (Y4, YC) before changing the count range by the preset function.

8．3 Coincidence Output Function

This function compares the present counter value with the preset coincidence output point setting value and outputs a signal when they match．
Up to two coincidence output points can be set for each channel．
When using external output of the coincidence signal，turn on CHD Coincidence signal enable command（Y2，YA） beforehand．

（1）Operation

The I／O numbers（X／Y）and the buffer memory addresses in（1）are for coincidence output point No．1．For those of coincidence output point No．2，refer to the following．
－List of I／O Signals（
－List of Buffer Memory Areas（ 3 Page 24，Section 3．5）

No．	Description
1）	Write a coincidence output point setting value to CHロ Coincidence output point No． 1 （Un\G4，Un\G5，Un\G36， Un\G37）of the high－speed counter module in 32－bit signed binary．
2）	When the count value matches with the coincidence output point setting value， $\mathrm{CH} \square$ Counter value small（point No．1）（ $\mathrm{X} 3, \mathrm{XA}$ ）turns off and $\mathrm{CH} \square$ Counter value coincidence（point No．1）（ $\mathrm{X} 2, \mathrm{X} 9$ ）turns on．
3）	Turn on CHロ Coincidence signal No． 1 reset command（Y0，Y8）to reset CHロ Counter value coincidence（point No．1）（X2，X9）． If CH C Counter value coincidence（point No．1）（X2，X9）remains on，the next coincidence signal cannot be output．
4）	When the counter value exceeds the coincidence output point setting value， $\mathrm{CH} \square$ Counter value large（point No．1） （ $\mathrm{X} 1, \mathrm{X} 8$ ）turns on．

Point ${ }^{\rho}$

Perform the following before turning on $\mathrm{CH} \square$ Coincidence signal enable command (Y2, YA).

- Set different values between CHD Coincidence output point No. 1 (UnlG4, UnIG5, UnIG36, UnlG37) and CHD Present value (UnIG2, UnIG3, UnIG34, UnIG35) by any of the following ways:
- Change the coincidence output point setting value.
- Change the present value by performing the preset function.
- Change the present value by inputting pulses.
- Turn off, on, and then off $\mathrm{CH} \square$ Coincidence signal No. 1 reset command (Y0, Y8).

When CHIC Coincidence signal enable command (Y2, YA) is turned on before counting operation or while the coincidence output point setting value matches with the present value, coincidence output is performed.

- CHO Counter value coincidence (point No.1) (X2, X9) is on immediately after the CPU module is powered on or is reset because both CHロ Present value (UnlG2, UnlG3, Un\G34, UnlG35) and CHロ Coincidence output point No. 1 (UnlG4, UnlG5, UnIG36, UnIG37) are set to "0".

(2) Operation

Set values for "Coincidence output point No.1" and "Coincidence output point No.2".
$\$$ Project window \Rightarrow [Intelligent Function Module] \Rightarrow Model name \Rightarrow [Parameter]

Item	Setting range
Coincidence output point No. 1	-2147483648 to 2147483647
Coincidence output point No.2	

(3) Output status setting at a CPU stop error

If a CPU stop error occurs, the output status (clear/hold) of external output signals can be set. Configure the setting in the "Intelligent Function Module Detailed Setting" dialog box.
(a) Operation

Set "Clear" or "Hold" for "Error Time Output Mode".
\geqslant Project window \Rightarrow [Parameter] \Rightarrow [PLC Parameter $] \Leftrightarrow[$ [I/O Assignment $]$ \Rightarrow Detailed Setting Button

Intelligent Function Module Detailed Setting								
	Slot	Type	Model Name	Error Time Output Mode	PLC Operation Mode at H/W Error	I/O Response Time	Control PLC	4
0	PLC	PLC		\checkmark	-	\checkmark	\checkmark	
1	PLC	Built-in I/O Function		\checkmark	\checkmark	\checkmark	\checkmark	
2	O(*-0)	Intelligent	LD62	Clear	Stop \quad	\checkmark	∇	
3	1(*-1)			Clear	\checkmark	\checkmark	\checkmark	
4	2(*-2)			Hold	-	\checkmark	-	

(4) Coincidence detection interrupt function

This function outputs an interrupt signal to the CPU module and starts an interrupt program when the present counter value matches with the preset coincidence output point setting value.

(a) Interrupt factors (SI)

One intelligent function module can have interrupt factors (SI) up to 16 points.
The high-speed counter module has interrupt factors of 4 points for each coincidence output point as shown below.

SI No.	
0	Channel 1: Coincidence detection of coincidence output point No.1
1	Channel 1: Coincidence detection of coincidence output point No.2
2	Channel 2: Coincidence detection of coincidence output point No.1
3	Channel 2: Coincidence detection of coincidence output point No.2
4 to 15	Reserved

Interrupt program execution timing

(b) Setting interrupt pointers

Assign interrupt factors (SI) and the interrupt pointers of the CPU module in the "Intelligent Function Module Interrupt Pointer Setting" dialog box of the PLC Parameter dialog box.

5 Project window \Rightarrow [Parameter] \Rightarrow [PLC Parameter $] \Rightarrow$ [PLC System] \Rightarrow [Intelligent Function Module Setting] \Rightarrow Internpt Pointer Seting button

Item		Description	Setting range
PLC Side	Interrupt Pointer Start No.	Enter the start number of the interrupt pointer of the CPU module.	50 to 255
	Interrupt Pointer Count	Enter the number of interrupt factors (SI).	1 to 4
	Start I/O No.	Enter the start I/O number of the high-speed counter module.	0000_{H} to $0 \mathrm{FF} 0_{\mathrm{H}}$
	Start SI No.	Enter the start number of the interrupt factor (SI) of the high-speed counter module.	0 to 3

Ex. Assigning SIO to SI3 of the high-speed counter module, whose start I/O number has been set to 20 , to the interrupt pointers I50 to I53

(c) Using only a specific SI No.

- Setting in the "Intelligent Function Module Interrupt Pointer Setting" dialog box Interrupt factors are used starting from the start SI No. by the number of interrupt pointers set in the "Intelligent Function Module Interrupt Pointer Setting" dialog box.

For example, when "1" is set for "Start SI No." and "2" is set for "Interrupt Pointer Count", only SI1 and SI2 are used.

When these settings are not configured, the interrupt function will not be used.

- Using the IMASK instruction

Using the IMASK instruction allows enabling or disabling interrupt program execution (interrupt mask) for each interrupt pointer.
For details on the IMASK instruction, refer to the following.
[]] MELSEC-Q/L Programming Manual (Common Instruction)

Point ${ }^{\rho}$

A coincidence detection interrupt occurs on the rising edge of the counter value coincidence signal (off to on).
Therefore, the next interrupt will not be requested unless the coincidence signal is reset and the counter value coincidence signal is turned off.

8．4 Preset Function

This function overwrites the present counter value with the set value．The set value is referred to as a preset value． This function can be used to start counting pulses from the preset value．
The function can be performed by a program or an external control signal．

（1）Performing the preset function by a program

Perform the preset function by turning on $\mathrm{CH} \square$ Preset command（Y1，Y9）．

No．	Description
1）	Write a value to CHロ Preset value（UnIG0，UnIG1，Un\G32，Un\G33）in 32－bit signed binary．
2）	On the rising edge（off to on）of CHロ Preset command（Y1，Y9），the value stored in CHロ Present value（UnIG2， UnIG3，UnIG34，UnIG35）is replaced with the value stored in CHロ Preset value（UnIG0，UnIG1，UnIG32，UnIG33）． The preset function is performed regardless of the on／off status of CHロ Count enable command（Y4，YC）．

（2）Performing the preset function by an external control signal

Perform the preset function by applying an on voltage to the preset input terminal for external input．

No．	Description
1$)$	Write a value to CHロ Preset value（Un\G0，Un\G1，Un\G32，Un\G33）in 32－bit signed binary．
2$)$	On the rising edge（off to on）of the preset command（A voltage is applied to the preset input terminal．），the value stored in CHロ Present value（Un\G2，Un\G3，Un\G34，Un\G35）is replaced with the value stored in CH口 Preset value（Un\G0，Un\G1，Un\G32，Un\G33）． The preset function is performed regardless of the on／off status of CHロ Count enable command（Y4，YC）．

Point ${ }^{8}$

While CHD External preset request detection（ $\mathrm{X} 4, \mathrm{XB}$ ）is on（3）），the preset function cannot be performed even if a voltage is applied to the preset input terminal or $\mathrm{CH} \square$ Preset command（Y1，Y9）is turned on．
The preset function can be performed when $\mathrm{CH} \square$ External preset request detection $(\mathrm{X} 4, \mathrm{XB})$ is turned off by turning on $\mathrm{CH} \square$ External preset detection reset command（Y5，YD）（4））．

8．5 Counter Function Selection

The count disable function，the latch counter function，the sampling counter function，or the periodic pulse counter function can be used by selecting each item in＂Counter function selection＂．
The selected counter function is performed by the counter function selection start command（A voltage is applied to the function start input terminal or $\mathrm{CH} \square$ Counter function selection start command（Y6，YE）is turned on by a program）． Any one of the counter functions can be used．

（1）Operation

Select a counter function in＂Counter function selection＂．

$$
2 \text { Project window } \Rightarrow \text { [Intelligent Function Module] } \Rightarrow \text { Model name } \Rightarrow \text { [Parameter] }
$$

Item	Description	Reference
Count Disabling Function	Stops counting while CHロ Count enable command（Y4，YC）is on．	Page 76，Section 8．6
Latch Counter Function	Latches the present counter value when a signal is input．	Page 77, Section 8.7
Sampling Counter Function	Counts pulses input during the specified sampling period（T）．	Page 78，Section 8．8
Periodic Pulse Counter Function	Stores the present and previous counter values to CHロ Periodic pulse count，present value（Un\G18，Un\G19，Un\G50，Un\G51）and CHロ Periodic pulse count，previous value（Un\G16，Un\G17，Un\G48， Un\G49），respectively，at the preset cycle（T）．	Page 79，Section 8．9

Point ${ }^{8}$

－Change the counter function while CHD Counter function selection start command（Y6，YE）is off．
－The selected counter function can be performed by turning on $\mathrm{CH} \square$ Counter function selection start command（Y6，YE） or applying a voltage to the function start input terminal．A signal that is input first takes priority．
－Time for the sampling counter function or the periodic pulse counter function can be set by writing a value of 1 to 65535 to $\mathrm{CH} \square$ Sampling／periodic time setting（Un\G10，Un\G42）．The value can be set in increments of 10 ms ．
Ex．Setting＂420＂for CHロ Sampling／periodic time setting（Un\G10，Un\G42）

$$
420 \times 10=4200(\mathrm{~ms})
$$

8.5.1

This value is stored when the selected counter function is performed.
When the latch counter, sampling counter, or periodic pulse counter function is performed, the count value is stored in the corresponding buffer memory areas listed in the table below.

Description		Present value	Counter function selection count value				
		Latch count value	Sampling count value	Periodic pulse count, previous value	Periodic pulse count, present value		
Buffer memory address	CH1		$\begin{aligned} & \text { UnIG2, } \\ & \text { UnIG3 } \end{aligned}$	Un\G12, UnlG13	Un\G14, UnlG15	UnIG16, UnIG17	UnIG18, UnIG19
	CH2	UnIG34, UnIG35	UnlG44, UnlG45	Un\G46, Un\G47	Un\G48, UnlG49	UnlG50, UnIG51	

The present value and the counter function selection count values are stored in the buffer memory areas in 32-bit signed binary.
The buffer memory data is automatically updated by counting operation. The latest count value can be read from the buffer memory.

Point ${ }^{\rho}$

- Read the present value and the counter function selection count values by two words at a time.

If the values are read by one word at a time, the lower word data and the higher word data will be inconsistent when the count value is updated during reading, and an incorrect count value may be read.

- Program example

- Inappropriate program example

The present value may change while CH1 Present value (L) (Un\G2) and CH1 Present value (H) (Un\G3) are read.

- Although the storage addresses differ between Latch count value (Un\G12, Un\G13, Un\G44, Un\G45) and Periodic pulse count, present value (Un\G18, Un\G19, Un\G50, Un\G51), the stored values are always the same (updated simultaneously). Therefore, when the latch counter function or the periodic pulse counter function is performed, Latch count value (Un\G12, Un\G13, Un\G44, Un\G45) and Periodic pulse count, present value (Un\G18, Un\G19, Un\G50, Un\G51) do not hold their previous values.

8.5.2 Count error

A count error may occur when the selected counter function is performed by external input (A voltage is applied to the function start input terminal.) or by a program (CHD Counter function selection start command (Y6, YE) is turned on). This section describes how to calculate the count error.
(1) Count error (maximum) due to a delay of response to an external input $\left(\frac{1[\mathrm{~ms}]}{1000}\right)$ [s] \times Pulse input speed [PPS] \times Multiplication [count]
(2) Count error (maximum) when the selected counter function is performed by a program
$\left(\frac{1 \text { scan time }[\mathrm{ms}]}{1000}\right)[\mathrm{s}] \times$ Pulse input speed [PPS] \times Multiplication [count]
(3) Count error (maximum) due to an internal clock delay when the sampling counter function or the periodic pulse counter function is performed $\left(\frac{\text { Sampling/periodic time setting value } \times 10[\mathrm{~ms}]}{1000}\right)[\mathrm{s}] \times \frac{\text { Error in design, } 100[\mathrm{ppm}]}{1000000}$
\times Pulse input speed [PPS] \times Multiplication [count]

8．6 Count Disable Function

This function stops counting pulses while $\mathrm{CH} \square$ Count enable command $(\mathrm{Y} 4, \mathrm{YC})$ is on．
The following figure shows the relationship among $\mathrm{CH} \square$ Count enable command（ $\mathrm{Y} 4, \mathrm{YC}$ ），the counter function selection start command，and the present counter value．

No．	Description
1$)$	Counting starts when $\mathrm{CH} \square$ Count enable command（Y4，YC）is turned on．
2$)$	Counting stops when $\mathrm{CH} \square$ Counter function selection start command（Y6，YE）is turned on．
3$)$	Counting restarts when $\mathrm{CH} \square$ Counter function selection start command（Y6，YE）is turned off．
4$)$	Counting stops when the counter function selection start command（function start input）is turned on．
5$)$	Counting restarts when the counter function selection start command（function start input）is turned off．
6$)$	Counting stops when $\mathrm{CH} \square$ Count enable command（Y4，YC）is turned off．
7$)$	Counting stops regardless of the on／off status of $\mathrm{CH} \square$ Counter function selection start command（Y6，YE）because CH口 Count enable command（Y4，YC）is off．
8$)$	Even though CHロ Count enable command（Y4，YC）is turned on，counting remains stopped because CHD Counter function selection start command（Y6，YE）is on．
9$)$	Counting restarts when CHロ Counter function selection start command（Y6，YE）is turned off．

8.7 Latch Counter Function

This function stores the present counter value when the signal is input.
The following figure shows the relationship among the present counter value, the counter function selection start command, and CHI Latch count value (Un\G12, Un\G13, Un\G44, Un\G45).

On the rising edge of $\mathrm{CH} \square$ Counter function selection start command (Y6, YE) or the counter function selection start command (function start input) of 1) to 4), the present counter value is stored in CHD Latch count value (Un\G12, Un\G13, Un\G44, UnlG45).
The latch counter function is performed regardless the on/off status of $\mathrm{CH} \square$ Count enable command ($\mathrm{Y} 4, \mathrm{YC}$).

8．8 Sampling Counter Function

This function counts pulses input during the specified sampling period (T) ．
The following figure shows the relationship between the signals and the buffer memory areas．

No．	Description
1）	Input pulses are counted from 0 on the rising edge of CHロ Counter function selection start command（Y6，YE）or the counter function selection start command（function start input）．
2$)$	Counting stops when the specified sampling period has elapsed．
3$)$	While the sampling counter function is performed，＂1＂is stored in CHO Sampling／periodic counter flag（UnlG11， UnIG43）．
4$)$	Even after the sampling counter function is performed，the value stored in CHロ Sampling count value（UnIG14， UnIG15，UnIG46，UnIG47）is held．
5）	The sampling counter function is performed regardless the on／off status of CHロ Count enable command（Y4，YC）．

8.9 Periodic Pulse Counter Function

This function stores the present and previous counter values to CHロ Periodic pulse count, present value (UnlG18, UnlG19, Un\G50, Un\G51) and CHD Periodic pulse count, previous value (Un\G16, Un\G17, Un\G48, Un\G49), respectively, at the preset cycle (T).
The following figure shows the relationship between the signals and the buffer memory areas.
$\mathrm{CH} \square$ Count enable command (Y4, YC)
$\mathrm{CH} \square$ Present value
(Un\G2, Un\G3, Un\G34, Un\G35)
$\mathrm{CH} \square$ Counter function selection start command (Y6, YE)
Counter function selection start command (function start input)
$\mathrm{CH} \square$ Periodic pulse count, present value (Un\G18, Un\G19, Un\G50, Un\G51)
$\mathrm{CH} \square$ Periodic pulse count, previous value (Un\G16, Un\G17, Un\G48, Un\G49)

CH \square Sampling/periodic counter flag (Un\G11, Un\G43)

No．	Description
1）	The present counter value， 0 ，is stored in CHD Periodic pulse count，present value（Un\G18，Un\G19，Un\G50， UnlG51）．
2）	The present counter value，200，is stored in CHD Periodic pulse count，present value（Un\G18，Un\G19，Un\G50， Un\G51）． The value 0，which has been stored in CHD Periodic pulse count，present value（UnlG18，Un\G19，Un\G50， Un\G51），is then stored in CHロ Periodic pulse count，previous value（Un\G16，Un\G17，Un\G48，Un\G49）．
3）	The present counter value，20，is stored in CHロ Periodic pulse count，present value（Un\G18，Un\G19，Un\G50， Un\G51）． The value 200，which has been stored in CHロ Periodic pulse count，present value（UnlG18，UnlG19，Un\G50， Un\G51），is then stored in CHロ Periodic pulse count，previous value（Un\G16，Un\G17，Un\G48，Un\G49）．
4）	The present counter value，100，is stored in CHD Periodic pulse count，present value（Un\G18，Un\G19，Un\G50， UnlG51）． The value 20，which has been stored in CHロ Periodic pulse count，present value（UnlG18，Un\G19，Un\G50， Un\G51），is then stored in CHロ Periodic pulse count，previous value（Un\G16，Un\G17，Un\G48，Un\G49）．
5）	The present counter value，80，is stored in CHD Periodic pulse count，present value（Un\G18，Un\G19，Un\G50， UnlG51）． The value 100，which has been stored in CHロ Periodic pulse count，present value（Un\G18，Un\G19，Un\G50， Un\G51），is then stored in CHロ Periodic pulse count，previous value（Un\G16，Un\G17，Un\G48，Un\G49）．
6）	The periodic pulse counter function is performed regardless the on／off status of $\mathrm{CH} \square$ Count enable command（Y4， YC）．
7）	While the periodic pulse counter function is performed，＂1＂is stored in CHD Sampling／periodic counter flag（UnlG11， UnlG43）．

Point ${ }^{8}$

Read CHD Periodic pulse count，previous value（Un\G16，Un\G17，Un\G48，Un\G49）and CHD Periodic pulse count， present value（Un\G18，Un\G19，Un\G50，Un\G51）by two words at a time．

Ex．Program example

x0	－DMOV	uol G16	D6
	［DMOV	U01 G18	D8

Note that the previous value and the present value may become the same depending on the update timing of them in the module and read timing in the program．
If the previous and the present values are the same，read the values again．（ \sim Page 93，Section 10.1 （7）（b））

CHAPTER 9 dISpLAY UNIT

This chapter describes display unit functions that can be used for the high-speed counter module.
For details on operations, functions, and menu structure of the display unit, refer to the following.
[]. MELSEC-L CPU Module User's Manual (Function Explanation, Program Fundamentals)

9.1 Features

A display unit is an LCD. By attaching it to the CPU module, the system status can be checked and values set for the system can be changed without software packages.

9.2 Menu Transition

(1) Menu structure

The following diagram shows the "MOD MON/TEST" menu and the "MOD SETTINGS" menu structures.

(2) Screen transition to the initial setting change screen

The following figure shows screen transition to the initial setting change screen.

9.3 List of Setting Value Change Screens

The following table lists setting value change screens.
(1) User interface language is English

Name		Format	Setting range	
Setting item	Screen display		Upper limit value	Lower limit value
Preset value	PRESET VALUE	Numeric value	2147483647	- 2147483648
Coincidence output point No. 1	COINCIDENCE NO1	Numeric value	2147483647	-2147483648
Coincidence output point No. 2	COINCIDENCE NO2	Numeric value	2147483647	- 2147483648
Ring counter upper limit	RING COUNT MAX	Numeric value	2147483647	-2147483648
Ring counter lower limit	RING COUNT MIN	Numeric value	2147483647	- 2147483648
Counter function selection	COUNTER FUNC	Set by user	-	-
Sampling/periodic time setting	SAMPLING/PERIOD	Numeric value	65535	1

（2）Preset value

＂PRESET VALUE＂screen

1．Move the cursor using the \varangle and $>$ buttons， increase or decrease the cursor position value using the Δ and ∇ buttons，and press the oк）button．

Input item

Input item	Setting range	
	Upper limit value	Lower limit value
PRESET VALUE	2147483647	-2147483648

（3）Coincidence output point No． 1
＂COINCIDENCE NO1＂screen

一致出力NO1
0000000000

1．Move the cursor using the \varangle and $>$ buttons， increase or decrease the cursor position value using the Δ and ∇ buttons，and press the ○к button．

Input item

Input item	Setting range	
	Upper limit value	
COINCIDENCE NO1	2147483647	-2147483648

（4）Coincidence output point No． 2
＂COINCIDENCE NO2＂screen

COINCIDENCE NO2

0000000000

1．Move the cursor using the \langle and $>$ buttons， increase or decrease the cursor position value using the Δ and ∇ buttons，and press the Гok button．

Input item

Input item	Setting range	
	Upper limit value	
COINCIDENCE NO2	2147483647	-2147483648

(5) Ring counter upper limit
"RING COUNT MAX" screen

1. Move the cursor using the \langle and $>$ buttons, increase or decrease the cursor position value using the Δ and ∇ buttons, and press the [ok button.

Input item

Input item	Setting range	
	Upper limit value	
RING COUNT MAX	2147483647	-2147483648

(6) Ring counter lower limit
"RING COUNT MIN" screen

1. Move the cursor using the \varangle and \downarrow buttons, increase or decrease the cursor position value using the $\boldsymbol{\Delta}$ and ∇ buttons, and press the OK button.

Input item

Input item	Setting range	
	Upper limit value	
RING COUNT MIN	2147483647	-2147483648

(7) Counter function selection

"COUNTER FUNC" screen

COUNTER FUNC
-COUNT DISABLE
-LATCH
-SAMPLING

1. Use the $\boldsymbol{\Delta}$ and ∇ buttons to select "COUNT DISABLE", "LATCH", "SAMPLING", or "PERIODIC PULSE" and press the oк button.
2. Move the cursor using the \langle and \downarrow buttons, increase or decrease the cursor position value using the Δ and ∇ buttons, and press the Гok button.

Input item

Input item	Setting range		
	Upper limit value		
SAMPLING/PERIOD	65535	1	

CHAPTER 10programming

This chapter describes basic programs of the high-speed counter module.

10.1 Using the Module in Standard System Configuration

This section describes a system configuration using the high-speed counter module and program examples for counting operation.

(1) System configuration

The following figure shows an example using the high-speed counter module in standard system configuration.

Point ${ }^{\rho}$

When using the L02CPU, assign X/Y30 to $\mathrm{X} / \mathrm{Y} 3 \mathrm{~F}$ for the high-speed counter module to set the same assignment as the system above. For the LX40C6, assign X/Y40 to X/Y4F and for the LY41NT1P, assign X/Y50 to X/Y6F.

(2) Programming condition

The program counts pulses input to CH 1 of the high-speed counter module.

(3) Switch setting

Set a pulse input mode, counting speed, and counter type as follows:
(2) Project window \Rightarrow [Intelligent Function Module] \Rightarrow [LD62] \Rightarrow [Switch Setting]

Item	Contents	
	CH1	CH2*1
Pulse input mode	2-Phase Multiple of 1	1-Phase Multiple of 1
Counting speed setting	200kpps	10kpps
Counter format	User defined	Linear Counter

*1 Set the default values when the channel is not used.

(4) Initial setting

Item	Contents	
	CH1	CH2*1
Preset value	2500	0
Coincidence output point No.1	1000	0
Coincidence output point No.2	0	0
Ring counter upper limit*2	5000	0
Ring counter lower limit ${ }^{*}$	-5000	0
Counter function selection	User defined	0
Sampling time setting ${ }^{* 3}$	10000 ms	0
Periodic time setting ${ }^{*} 4$	5000 ms	

*1 Set the default values when the channel is not used.
*2 Set these items when using the ring counter function.
*3 Set this item when using the sampling counter function.
*4 Set this item when using the periodic pulse counter function.
(5) User devices

Device	Description	
D0 and D1	Present value	
D2 and D3	Latch count value	
D4 and D5	Sampling count value	
D6 and D7	Periodic pulse count, previous value	
D8 and D9	Periodic pulse count, present value	
D10	Overflow status storage	
M10	Initial setting completion signal	
X40	Count start signal	LX40C6 (X40 to X4F)
X41	Present value read signal	
X42	Coincidence output data setting signal	
X43	Preset command signal	
X44	Count stop signal	
X45	Coincidence LED clear signal	
X46	Counter function start signal	
X47	Counter function stop signal	
X48	Latch count data read signal	
X49	Latch execution signal	
X4A	Sampling count data read signal	
X4B	Sampling count start signal	
X4C	Periodic pulse count data read signal	
X4D	Periodic pulse count start signal	
Y50	Coincidence confirmation LED signal	LY41NT1P (Y50 to Y6F)
Y51	Overflow occurrence confirmation LED signal	
X30	Module READY	LD62 (X/Y30 to X/Y3F)
X31	CH 1 Counter value large (point No.1)	
X32	CH 1 Counter value coincidence (point No.1)	
X33	CH1 Counter value small (point No.1)	
X34	CH 1 External preset request detection	
X35	CH 1 Counter value large (point No.2)	
X36	CH1 Counter value coincidence (point No.2)	
X37	CH1 Counter value small (point No.2)	
Y30	CH1 Coincidence signal No. 1 reset command	
Y31	CH1 Preset command	
Y32	CH 1 Coincidence signal enable command	
Y33	CH1 Down count command	
Y34	CH1 Count enable command	
Y35	CH1 External preset detection reset command	
Y36	CH 1 Counter function selection start command	
Y37	CH1 Coincidence signal No. 2 reset command	

Point ${ }^{8}$
The input signal X3F is used by the system and is not available for users. If used (turned on) by a user, the performance of the high-speed counter module is not guaranteed.

(6) Program example when intelligent function module parameters are used

(a) Setting parameters

Configure initial setting with parameters.
$>$ Project window \Rightarrow [Intelligent Function Module $] \Rightarrow$ [LD62] \Rightarrow [Parameter]

Item	Description	Setting value
Preset value	Enter a preset value.	2500
Coincidence output point No.1	Enter a value for the coincidence output point No.1.	1000
Coincidence output point No.2	Not used	-
Ring counter upper limit	Enter these values when using the ring counter function.	5000
Ring counter lower limit		
Counter function selection	Select any function when a counter function is not used.	Depends on the function used.
Sampling/periodic time setting (unit: 10 ms)	Enter a value when using the sampling counter function.	1000
	Enter a value when using the periodic pulse counter function.	500

(b) Auto refresh

Set auto refresh destination devices.
Project window \Leftrightarrow [Intelligent Function Module] \Rightarrow [LD62] \Leftrightarrow [Auto_Refresh]

970030:LD62[]-Auto_Refresh			$\square \square$
Display Filter Display All \quad			
Item	$\mathrm{CH1}$	CH 2	
```Transfer to CPU Present value Latch count value Sampling count value Periodic pulse count, previous value Periodic pulse count, present value Sampling/periodic counter flag Overfow detection```	The data of the buffer memory is transmitted to the specified device.		
	TODO		
	D2		
	D4		
	D6		
	D8		
	D10		
Transfer Direction [Intelligent Function Module -> PLC] Buffer Memory Address [8 (8h)], Transfer Word Counts[1] Device Comment []			
A counter overflow occurrence status is stored when the counter format is linear counter.			


Item	Description	Setting value
Present value	Enter the device where the present value is stored.	D0
Latch count value	Enter the device where the latch count value is stored.	D2
Sampling count value	Enter the device where the sampling count value is stored when using   the sampling counter function.	D4
Periodic pulse count, previous value	Enter the device where the previous periodic pulse count value is stored   when using the periodic pulse counter function.	D6
Periodic pulse count, present value	Enter the device where the present periodic pulse count value is stored   when using the periodic pulse counter function.	D8
Sampling/periodic counter flag	Not used	-
Overflow detection	Enter the device where the overflow detection result is stored when using   the linear counter function.	D10

## (c) Writing intelligent function module parameters

Write the set parameters to the CPU module, and reset the CPU module or power off and then on the programmable controller.
© [Online] $\Rightarrow$ [Write to PLC...]


## (d) Program example



To use each function, insert the following program into the position "A" in the program above.

- Using the count disable function
$\left.\begin{array}{|l|lll}\text { X30 } & \text { X46 } \\ & \text { XSET } & \text { Y36 } & ]\end{array}\right]$
- Using the latch counter function

- Using the sampling counter function

- Using the periodic pulse counter function



## (7) Program example when intelligent function module parameters are not used


*1 Set these values when using the ring counter.
*2 Set this value when using the linear counter.
(a) Using the sampling counter function or the periodic pulse counter function

To use the sampling counter function or the periodic pulse counter function, insert the following program into the position " A " in the program above.

- Using the sampling counter function

$$
\ldots\left[\text { DMOV K1000 } \begin{array}{lll}
\text { U31 } \\
\text { G10 }
\end{array}\right] \text { Sampling time is set to } 10000 \mathrm{~ms} \text {. }
$$

- Using the periodic pulse counter function


## (b) Using each function

To use each function, insert the following program into the position " B " in the program above.

- Using the count disable function
(
- Using the latch counter function

- Using the sampling counter function

- Using the periodic pulse counter function



### 10.2 Connecting the Module to the Head Module

This section describes a system configuration using the high-speed counter module and program examples for counting operation.

## (1) System configuration

The following figure shows a system configuration where the high-speed counter module is connected to the head module.

Power supply module (Q62P)
CPU module (Q10UDHCPU)
Master/local module (QJ71GF11-T2)
Input module (QX10)
Output module (QY10)

Power supply module (L61P)
Head module (LJ72GF15-T2)
High-speed counter module (LD62)
Input module (LX40C6)
Output module (LY10R2)
END cover (L6EC)
$X / Y 1000 X / Y 1010 X / Y 1020$
to to to


Network No. 1

## (2) Programming condition

The program counts pulses input to CH 1 of the high-speed counter module connected to a head module.

## (3) Initial setting

Item	Contents	
		CH1
Preset value	2500	0
Coincidence output point No.1	1000	0
Coincidence output point No.2	0	0
Ring counter upper limit ${ }^{*}$	5000	0
Ring counter lower limit ${ }^{* 2}$	-5000	0
Counter function selection	User defined	Count Disabling Function
Sampling time setting ${ }^{* 3}$	10000 ms	0
Periodic time setting ${ }^{*}$	5000 ms	0

*1 Set the default values when the channel is not used.
*2 Set these items when using the ring counter function.
*3 Set this item when using the sampling counter function.
*4 Set this item when using the periodic pulse counter function.

## (4) User devices

Device	Description	
W1000 and W1001	Device to which the present value is written by auto refresh	
W1002 and W1003	Device to which the latch count value is written by auto refresh	
W1004 and W1005	Device to which the sampling count value is written by auto refresh	
W1006 and W1007	Device to which the previous periodic pulse count value is written by auto refresh	
W1008 and W1009	Device to which the present periodic pulse count value is written by auto refresh	
W1010	Device to which the overflow status storage is written by auto refresh	
X20	Count start signal	QX10 (X20 to X2F)
X22	Coincidence output data setting signal	
X23	Preset command signal	
X24	Count stop signal	
X25	Coincidence LED clear signal	
X26	Counter function start signal	
X27	Counter function stop signal	
X29	Latch execution signal	
X2B	Sampling count start signal	
X2D	Periodic pulse count start signal	
Y30	Coincidence confirmation LED signal	QY10 (Y30 to Y3F)
Y31	Overflow occurrence confirmation LED signal	
X1000	Module READY	LD62 (X/Y1000 to X/Y100F)
X1002	CH1 Counter value coincidence (point No.1)	
Y1000	CH1 Coincidence signal No. 1 reset command	
Y1001	CH1 Preset command	
Y1002	CH1 Coincidence signal enable command	
Y1004	CH1 Count enable command	
Y1006	CH1 Counter function selection start command	
SB49	Data link status of the own station	
SWB0.0	Data link status of each station (station No.1)	
N0	Nesting (station No.1)	
M0	Communication ready flag (station No.1)	
T1 to T5	Interlock between the own and other stations	

## (5) Setting parameters for the master station

1. Create a project using GX Works2.

Select "QCPU(Q mode)" for "PLC Series" and "Q10UDH" for "PLC Type".
P Project] $\Rightarrow$ [New...]

New Project
Project Type:
Simple Project
PLC Series:
QCPU (Q mode)
QLC Iype:
QiouDH
Language:

2. Open the Network Parameter dialog box and set parameters as shown below.
$\$$ Project window $\Rightarrow$ [Parameter $] \Rightarrow$ [Network Parameter $\Rightarrow$ [Ethernet/CC IE/MELSECNET]

3. Open the Network Configuration Setting window and set parameters as shown below.

P Project window $\Rightarrow$ [Parameter] $\Rightarrow$ [Network Parameter] $\Rightarrow$
[Ethernet/CC IE/MELSECNET] $\Rightarrow$ Network Configuration Setting button

	Station No.	Station Type	RX/RY Setting			RWw/RWr Setting		
Number of PLCs			Points	Start	End	Points	Start	End
1	1	Intelligent Device Station	256	0000	00FF	256	0000	00FF

4. Open the Refresh Parameter window and set parameters as shown below.Project window $\Rightarrow$ [Parameter] $\Rightarrow$ [Network Parameter] $\Rightarrow$
[Ethernet/CC IE/MELSECNET] $\Rightarrow$ $\square$ button
```
\(\therefore\) Network Parameter CC IE Field Refresh Parameter Module No:1
-
```

Assignment Method
C Points/Start
c StartiEnd

	Link Side						PLC Side					-
	Dev.		Points	Start	End		Dev		Points	Start	End	
Transfer 5B	SB		512	0000	01FF	1	SB	$\checkmark$	512	0000	01FF	
Transfer 5W	SW		512	0000	01FF	4	SW	$\checkmark$	512	0000	01FF	
Transfer 1	RX	$\checkmark$	256	0000	00FF	4	$X$	$\checkmark$	256	1000	10FF	
Transfer 2	RY	$\nabla$	256	0000	00FF	4	Y	$\checkmark$	256	1000	10FF	
Transfer 3	RWW	$\checkmark$	256	0000	00FF	4	W	$\checkmark$	256	000000	0000FF	
Transfer 4	RWr	$\checkmark$	256	0000	00FF	4	W	$\checkmark$	256	001000	0010FF	
Transfer 5		$\checkmark$				4		$\checkmark$				
Transfer 6		$\checkmark$				4		$\checkmark$				
Transfer 7		$\checkmark$				4		$\checkmark$				
Transfer 8		$\checkmark$				1		$\checkmark$				

Default Check $\quad$ End $\quad$ Cancel
5. Write the set parameters to the CPU module on the master station, and reset the CPU module or power off and then on the programmable controller.[Online] $\Rightarrow$ [Write to PLC...]

(6) Setting parameters for the intelligent device station

1. Create a project using GX Works2.

Select "LCPU" for "PLC Series" and "LJ72GF15-T2" for "PLC Type".
P Project] $\Rightarrow$ [New...]

2. Open the PLC Parameter dialog box and set parameters as shown below.Project window $\Rightarrow$ [Parameter $] \Leftrightarrow[$ PLC Parameter $] \Leftrightarrow$ "Communication Head Setting"

3. Add the high-speed counter module (LD62) to the GX Works2 project.

Project window $\Rightarrow$ [Intelligent Function Module] $\Rightarrow$ Right-click $\Leftrightarrow$ [New Module...]

4. Open the "Switch Setting" dialog box for the high-speed counter module and set parameters as shown below.

7 Project window $\Rightarrow$ [Intelligent Function Module] $\Rightarrow$ [LD62] $\Rightarrow$ [Switch Setting]


Item	Contents	
	CH1	CH2*1
Pulse input mode	2-Phase Multiple of 1	1-Phase Multiple of 1
Counting speed setting	200kpps	10kpps
Counter format	User defined	Linear Counter

*1 Set the default values when the channel is not used.
5. Open the initial setting window for the high-speed counter module and set parameters as shown below.

Project window $\Rightarrow[$ Intelligent Function Module $] \Rightarrow[$ LD62 $] \Rightarrow[$ Parameter $]$


Item	Description	Setting value
Preset value	Enter a preset value.	2500
Coincidence output point No.1	Enter a value for the coincidence output point No.1.	1000
Coincidence output point No.2	Not used	-
Ring counter upper limit	Enter these values when using the ring counter function.	5000
Ring counter lower limit		
Counter function selection	Select the counter function to be used.   Select any function when a counter function is not used.	
	Enter a value when using the sampling counter function.	Depends on the function used.
	Enter a value when using the periodic pulse counter function.	500

6. Open the "Auto_Refresh" window for the high-speed counter module and set parameters as shown below.

Project window $\Leftrightarrow$ [Intelligent Function Module] $\Rightarrow$ [LD62] $\Rightarrow$ [Auto_Refresh]


Item	Description	Setting value
Present value	Enter the device where the present value is stored.	W1000
Latch count value	Enter the device where the latch count value is stored.	W1002
Sampling count value	Enter the device where the sampling count value is stored when   using the sampling counter function.	W1004
Periodic pulse count, previous value	Enter the device where the previous periodic pulse count value is   stored when using the periodic pulse counter function.	W1006
Periodic pulse count, present value	Enter the device where the present periodic pulse count value is   stored when using the periodic pulse counter function.	W1008
Sampling/periodic counter flag	Not used	-
Overflow detection	Enter the device where the overflow detection result is stored when   using the linear counter function.	W1010

7. Write the set parameters to the head module, and reset the head module or power off and then on the programmable controller.
[Online] $\Rightarrow$ [Write to PLC...]


## (7) Program example

The following figure shows a program example. Write the program to the CPU module on the master station. Timers for interlock between the own and other stations (T1 to T5) are set to 100 ms .


To use each function, insert the following program into the position "A" in the program above.

- Using the count disable function

- Using the latch counter function

- Using the sampling counter function

- Using the periodic pulse counter function



### 10.3 Program Example with the Coincidence Detection Interrupt Function

This section describes a program example to start an interrupt program at coincidence detection in CH 1 Coincidence detection point No. 1 .

## (1) System configuration

The system configuration is the same as the following.

- System configuration ( 3 Page 86, Section 10.1 (1))


## (2) Programming condition

(a) Interrupt pointer setting


(b) User devices

Device	Description
D20 to D35	Interrupt enable flag storage for IMASK instruction

## (3) Program example

Before using an interrupt pointer, enable an interrupt with the IMASK instruction.


## Point ${ }^{\rho}$

- When the program above is executed, the 150 interrupt program is enabled, and all other interrupt programs are disabled. To execute any interrupt program other than the 150 interrupt program, set the bit that corresponds to the target interrupt pointer to "1: enabled".
- For details on the IMASK instruction, refer to the following.

L] MELSEC-Q/L Programming Manual (Common Instruction)

## CHAPTER 11 troubleshooting

This chapter describes errors and troubleshooting of the high-speed counter module.

## Point ${ }^{\rho}$

The high-speed counter module does not support the following functions performed in the "System Monitor" dialog box.

- Display of the "H/W Information" dialog box
- Display of errors and the corresponding actions in the "Module's Detailed Information" dialog box
- Module error collection function


### 11.1 Error Information

(1) Checking errors in the System Monitor dialog box
[Diagnostics] $\Rightarrow$ [System Monitor]

(2) Error information detected by the high-speed counter module

Description/cause	Error information display/storage location	Action
Overflow error   - In linear counter, pulses were counted up exceeding the present value, 2147483647.   - In linear counter, pulses were counted down below the present value, -2147483648.	Module status display in the "System Monitor" dialog box   - No display: No overflow detected (no error)   - Module error: Overflow detected	Perform the preset function to clear the overflow error.
	Overflow detection flag   The following value is stored in $\mathrm{CH} \square$ Overflow detection (Un\G8, Un\G40).   - 0: No overflow detected   - 1: Overflow detected	
	Module error status bit of the module information read by the UNIRD instruction   - 00: No overflow detected (no error)   - 10: Overflow detected (moderate error)	

### 11.2 The Module Does Not Start Counting Operation

Check item	Action
Is any LED of the CPU module indicating an error?	If the LED indicates an error, refer to the troubleshooting in the manual for the   CPU module used and take corrective actions to restore normal operation of   the CPU module.
	If the $\phi A$ LED and $\phi B$ LED turn on, check the external wiring and the encoder,   and make necessary corrections. If they do not turn on, the cause is a   hardware failure. Please consult your local Mitsubishi representative,   explaining a detailed description of the problem.
directly applied to the pulse input terminals for $\phi A$ and $\phi B ?$	
Is the external wiring for $\phi A$ and $\phi B$ correct?	Check the external wiring and make necessary corrections.
Is CH口 Count enable command (Y4, YC) on?	Turn on CHD Count enable command (Y4, YC) using a program.
Is the pulse input method same as the pulse input mode   setting specified in the intelligent function module switch   setting?	Set the pulse input method same as the pulse input mode specified in the   intelligent function module switch setting.
Is CHD Counter function selection start command (Y6,	If the count disable function has been selected, turn off CH口 Counter function
YE) off or is a voltage not applied to the function start input	
terminal?	selection start command (Y6, YE) or the function start input terminal.
Is there an overflow error?	Perform the preset function to clear the overflow error.

### 11.3 The Module Does Not Correctly Count Pulses

Check item	Action
	Check the external wiring and make necessary corrections.
Is the external wiring for $\phi \mathrm{A}$ and $\phi \mathrm{B}$ correct?	Even for 1-phase input, the pulses may be miscounted if the ABCOM terminal is connected to the pulse signal.   Reconnect the ABCOM terminal to the external power supply ( $5 \mathrm{~V} / 12 \mathrm{~V} / 24 \mathrm{~V}$ ) or the GND terminal. ( 3 Page 44, Section 6.3, Page 47, Section 6.4)
Is the maximum speed of the input pulses within the counting speed range specified in the intelligent function module switch setting?	Correct the counting speed configured in the intelligent function module switch setting according to the maximum speed of the input pulses.
Does the input pulse waveform meet the performance specifications?	Observe the pulse waveform with a synchroscope. If the waveform does not meet the performance specifications, input pulses that meet the specifications.
Are the count value data handled in 32-bit signed binary in the program?	Correct the program so that the count value data are handled in 32-bit signed binary.
Are shielded twisted pair cables used for the pulse input lines?	Use shielded twisted pair cables for the pulse input lines.
Is the high-speed counter module affected by noise through the grounding area?	- Disconnect the ground cable from the high-speed counter module.   - Disconnect the high-speed counter module case if it touches on the grounding area.
Are noise reduction measures taken in the control panel or for noise emitting devices?	Take noise reduction measures, such as installing a CR surge suppressor to the electromagnetic switch.
Is there a sufficient distance between the high voltage equipment and the pulse input cables?	Wire the pulse input cables alone when placing them in a duct and keep a distance of 150 mm or more from the power cables in the control panel.
Are the count values of CH 1 and CH 2 same when the same number of pulses are input?	If the count values differ, the cause is a hardware failure. Please consult your local Mitsubishi representative, explaining a detailed description of the problem.
Was the preset function performed within the count range of the ring counter? (This item is for the ring counter function only.)	Reset the preset value within the count range and perform the preset function again.


Check item	Action
Are CHD Coincidence signal No． 1 reset command（YO， Y 8 ）and $\mathrm{CH} \square$ Coincidence signal No． 2 reset command （Y7，YF）off？	Turn off CHD Coincidence signal No． 1 reset command（Y0，Y8）and／or $\mathrm{CH} \square$ Coincidence signal No． 2 reset command（Y7，YF）．
Are the values in $\mathrm{CH} \square$ Coincidence output point No． 1 （Un\G4，Un\G5，Un\G36，Un\G37）and CHD Coincidence output point No． 2 （Un\G6，Un\G7，Un\G38，Un\G39）set within the count range of the ring counter？（This item is for the ring counter function only．）	Set the value（s）in CHD Coincidence output point No． 1 （Un\G4，Un\G5， Un\G36，Un\G37）and／or CHD Coincidence output point No． 2 （Un\G6，Un\G7， Un\G38，Un\G39）within the count range of the ring counter．
Is CHロ Coincidence signal enable command（Y2，YA）on？	Turn on $\mathrm{CH} \square$ Coincidence signal enable command（Y2，YA）．
Is a voltage applied to the power supply terminal for external coincidence output？	Apply a voltage to the power supply terminal for external coincidence output．
Is the external wiring for the coincidence output point No． 1 terminal（EQU1）and the coincidence output point No． 2 terminal（EQU2）correct？	Check the external wiring and make necessary corrections．

## 11．5 Coincidence Detection Interrupt Does Not Occur

Check item	Action
Is the intelligent function module interrupt pointer setting   in the PLC Parameter dialog box correct？	Review the intelligent function module interrupt pointer setting．
Is Program execution control instruction，such as the   IMASK instruction，correctly used？	Review the program．
Are CHロ Counter value coincidence（point No．1）（X2，X9）   and CHロ Counter value coincidence（point No．2）（X6，	Reset（turn off）CHD Counter value coincidence（point No．1）（X2，X9）and／or   CH口 Counter value coincidence（point No．2）（X6，XD）using CHロ   CD）off？
Coincidence signal No．1 reset command（Y0，Y8）and／or CHロ Coincidence   signal No．2 reset command（Y7，YF）．	

## 11.6

Present Value Cannot Be Replaced with the Preset Value

Check item	Action
Is CHロ External preset request detection（X4，XB）off？	Reset（turn off）CHロ External preset request detection（X4，XB）using CH口   External preset detection reset command（Y5，YD）．
Is the external wiring for the preset input terminal correct？	Check the external wiring and make necessary corrections．

### 11.7 Pulse Shaping Method

An effective method for pulse shaping is to apply a dummy resistance of several hundreds ohms (/several watts) across pulse input terminals connected to a pulse generator to increase a load current through the cables. This method becomes more effective as the load current value increases.

The following figure shows an example of dummy resistance connection when the signal level is at 24VDC.
[Dummy resistance connection example at 24VDC]


Pulse shaping is effective as counter measures against the following situations.

## (1) Wiring distance between the pulse generator and the LD62 is long

Pulse shaping removes waveform rounding and stabilizes pulse waveforms.

## (2) Waveform is unstable due to a noise

Pulse waveforms stabilize by pulse shaping, which suppresses an effect from external noises.
Point ${ }^{\circ}$
The following formulas show examples of methods to determine the dummy resistance rating and the rated power. For example, when approx. 30 mA load current is set, the corresponding dummy resistance rating is calculated in the following formula.
$\mathrm{R}=\mathrm{V} \div \mathrm{I}=24 \mathrm{~V} \div 30 \mathrm{~mA}=800 \Omega$
The power applied to the dummy resistance is calculated in the following formula.
$\mathrm{P}=\mathrm{V} \times \mathrm{I}=24 \mathrm{~V} \times 30 \mathrm{~mA}=0.72 \mathrm{~W}$
Considering design margin, set the rated power of the dummy resistance to 2 W .

## APPENDICES

## Appendix 1

Details of I／O Signals

This section describes the details on the I／O signals from the high－speed counter module to the CPU module．
Point ${ }^{\rho}$
The I／O numbers $(X / Y)$ in this section apply when the start I／O number of the high－speed counter module is set to＂ 0 ＂．

## Appendix 1．1 Input signals

（1）Module READY（X0）
－This signal turns on when the high－speed counter module is ready for counting operation after the CPU module is powered on or is reset．
－Pulses are not counted while this signal is off．
（2） $\mathrm{CH} \square$ Counter value large（point No．1）（X1，X8）
－This signal turns on when CHD Present value（UnlG2，Un\G3，UnlG34，Un\G35）is larger than CHD Coincidence output point No． 1 （Un\G4，UnlG5，Un\G36，UnlG37）．
－This signal turns off when CHロ Present value（Un\G2，Un\G3，Un\G34，Un\G35）is equal to or smaller than CHロ Coincidence output point No． 1 （Un\G4，Un\G5，Un\G36，Un\G37）．
（3） $\mathrm{CH} \square$ Counter value coincidence（point No．1）（X2，X9）
－This signal turns on when CHロ Present value（Un\G2，Un\G3，Un\G34，Un\G35）is equal to CHロ Coincidence output point No． 1 （Un\G4，Un\G5，Un\G36，Un\G37）．And then，the on status will be latched．
－This signal is turned off by CHD Coincidence signal No． 1 reset command（Y0，Y8）．
－This signal is on immediately after the CPU module is powered on or is reset because both CHロ Present value（Un\G2，Un\G3，Un\G34，Un\G35）and CHロ Coincidence output point No． 1 （Un\G4，Un\G5，Un\G36， UnlG37）are set to＂0＂．

## （4）CHD Counter value small（point No．1）（X3，XA）

－This signal turns on when CHロ Present value（Un\G2，Un\G3，Un\G34，Un\G35）is smaller than CHロ Coincidence output point No． 1 （UnlG4，UnlG5，UnlG36，UnlG37）．
－This signal turns off when CHD Present value（Un\G2，Un\G3，Un\G34，Un\G35）is equal to or larger than CHI Coincidence output point No． 1 （Un\G4，UnlG5，UnlG36，UnlG37）．

## （5） $\mathrm{CH} \square$ External preset request detection（X4，XB）

－This signal is turned on by a preset command from an external input terminal．And then，the on status will be latched．
－This signal is turned off by $\mathrm{CH} \square$ External preset detection reset command（Y5，YD）．
（6） $\mathrm{CH} \square$ Counter value large（point No．2）（X5，XC）
－This signal turns on when CHD Present value（Un\G2，UnlG3，Un\G34，Un\G35）is larger than CHD Coincidence output point No． 2 （Un\G6，Un\G7，Un\G38，Un\G39）．
－This signal turns off when CHD Present value（Un\G2，Un\G3，Un\G34，Un\G35）is equal to or smaller than CHD Coincidence output point No． 2 （UnlG6，Un\G7，UnlG38，Un\G39）．

## （7） $\mathrm{CH} \square$ Counter value coincidence（point No．2）（X6，XD）

－This signal turns on when CHロ Present value（Un\G2，Un\G3，Un\G34，Un\G35）is equal to CHロ Coincidence output point No． 2 （Un\G6，Un\G7，Un\G38，Un\G39）．And then，the on status will be latched．
－This signal is turned off by CHD Coincidence signal No． 2 reset command（Y07，YF）．
－This signal is on immediately after the CPU module is powered on or is reset because both CHD Present value（Un\G2，Un\G3，Un\G34，Un\G35）and CHD Coincidence output point No． 2 （Un\G6，Un\G7，Un\G38， UnlG39）are set to＂0＂．

## （8）CHD Counter value small（point No．2）（X7，XE）

－This signal turns on when CHD Present value（Un\G2，UnlG3，Un\G34，Un\G35）is smaller than CHロ Coincidence output point No． 2 （UnlG6，Un\G7，Un\G38，UnlG39）．
－This signal turns off when CHロ Present value（Un\G2，Un\G3，Un\G34，UnlG35）is equal to or larger than $\mathrm{CH} \square$ Coincidence output point No． 2 （UnlG6，Un\G7，Un\G38，UnlG39）．

## Appendix 1.2 Output signals

(1) $\mathrm{CH} \square$ Coincidence signal No. 1 reset command (Y0, Y8)

This signal is turned on to reset $\mathrm{CH} \square$ Counter value coincidence (point No.1) (X2, X9).
(a) Operating timing

The command is valid as long as the signal is on.
(2) $\mathrm{CH} \square$ Preset command (Y1, Y9)

This signal is turned on to perform the preset function.
(a) Operating timing

The command is valid on the rising edge (from off to on) of the signal.

## (3) $\mathrm{CH} \square$ Coincidence signal enable command (Y2, YA)

This signal is turned on to output the status of $\mathrm{CH} \square$ Counter value coincidence (point No.1) ( $\mathrm{X} 2, \mathrm{X} 9$ ) and $\mathrm{CH} \square$ Counter value coincidence (point No.2) (X6, XD) to the external terminal.
(a) Operating timing

The command is valid as long as the signal is on.

## (4) CHD Down count command (Y3, YB)

- This signal is turned on to count down pulses in 1-phase pulse input mode.
- The module counts down pulses when the phase $B$ pulse input or this signal is turned on.
- For counting up, check that the phase B pulse input and this signal are off.
(a) Operating timing

The command is valid as long as the signal is on.
(5) $\mathrm{CH} \square$ Count enable command (Y4, YC)

This signal is turned on to count pulses.
(a) Operating timing

The command is valid as long as the signal is on.
(6) $\mathrm{CH} \square$ External preset detection reset command (Y5, YD)

This signal is turned on to reset $\mathrm{CH} \square$ External preset request detection ( $\mathrm{X} 4, \mathrm{XB}$ ).
(a) Operating timing

The command is valid as long as the signal is on.

## (7) $\mathrm{CH} \square$ Counter function selection start command (Y6, YE)

This signal is turned on to perform the selected counter function.
(a) Operating timing

- The command is valid on the rising edge (from off to on) of the signal. (latch counter function and sampling counter function)
- The command is valid as long as the signal is on. (count disable function and periodic pulse counter function)


## (8) CHD Coincidence signal No. 2 reset command (Y7, YF)

This signal is turned on to reset CHロ Counter value coincidence (point No.2) (X6, XD).
(a) Operating timing

The command is valid as long as the signal is on.

## Appendix 2 Details of Buffer Memory Areas

(1) CHロ Preset value (Un\G0, Un\G1, Un\G32, Un\G33)

- A preset value is stored in this area.
- The setting range is between -2147483648 and 2147483647 (32-bit signed binary).
(2) CHD Present value (Un\G2, Un\G3, Un\G34, Un\G35)
- The present counter value is stored in this area.
- The stored value is between -2147483648 and 2147483647 (32-bit signed binary).
(3) $\mathrm{CH} \square$ Coincidence output point No. 1 (Un\G4, Un\G5, UnlG36, Un\G37), CHD Coincidence output point No. 2 (Un\G6, Un\G7, Un\G38, Un\G39)
- The coincidence output point setting value for comparison with the present counter value is stored in this area.
- Two coincidence detection output points, CHD Coincidence output point No. 1 (Un\G4, Un\G5, Un\G36, Un\G37) and CHD Coincidence output point No. 2 (UnlG6, Un\G7, Un\G38, Un\G39), can be set for each channel.
- The setting range is between -2147483648 and 2147483647 (32-bit signed binary).


## (4) CHD Overflow detection (Un\G8, Un\G40)

- When the counter type is set to linear counter, overflow status is stored in this area.
- Either of the following values is stored based on overflow status.

Status	Stored value
No overflow detected	0
Overflow detected	1

(5) $\mathrm{CH} \square$ Counter function selection (UnlG9, UnlG41)

- A value to select the counter function is stored in this area.
- The following table shows the setting value for each function.

Counter function	Setting value
Count disable function	0
Latch counter function	1
Sampling counter function	2
Periodic pulse counter function	3

(6) $\mathrm{CH} \square$ Sampling/periodic time setting (Un\G10, Un\G42)

- A time value for the sampling counter function or the periodic pulse counter function is stored in this area.
- The setting range is between 1 and 65535 ( 16 -bit signed binary) ${ }^{* 1}$. The setting unit is 10 ( ms ).
*1 To set a value between 32768 and 65535 , store the value in hexadecimal.
For example, store " $\mathrm{F} 424_{\mathrm{H}}$ " to set " 62500 ".
Ex. Storing "420" in this area
$420 \times 10=4200(\mathrm{~ms})$


## (7) $\mathrm{CH} \square$ Sampling/periodic counter flag (Un\G11, Un\G43)

- When the sampling counter function or the periodic pulse counter function is selected, the operating status of the selected function is stored in this area.
- Either of the following values is stored based on the operating status.

Operating status	Stored value
Function stopped	0
Function being performed	1

(8) $\mathrm{CH} \square$ Latch count value (Un\G12, Un\G13, Un\G44, Un\G45)

- The latch count value is stored in this area during execution of the latch counter function.
- The stored value is between -2147483648 and 2147483647 (32-bit signed binary).
(9) $\mathrm{CH} \square$ Sampling count value (Un\G14, Un\G15, Un\G46, Un\G47)
- The sampling count value is stored in this area during execution of the sampling counter function.
- The stored value is between -2147483648 and 2147483647 (32-bit signed binary).
(10)CHD Periodic pulse count, previous value (Un\G16, UnlG17, Un\G48, Un\G49), CHD Periodic pulse count, present value (Un\G18, Un\G19, Un\G50, Un\G51)
- The previous and present periodic pulse count values are stored in this area during execution of the periodic pulse counter function.
- The stored value is between -2147483648 and 2147483647 (32-bit signed binary).
(11)CH $\square$ Ring counter lower limit (Un\G20, Un\G21, Un\52, Un\G53), CHD Ring counter upper limit (Un\G22, Un\G23, Un\G54, Un\G55)
- When the counter type is set to ring counter, the count range is stored in this area.
- The setting range is between -2147483648 and 2147483647 (32-bit signed binary).


## Appendix 3 <br> Checking Serial Number and Function Version

For how to check the serial number and the function version, refer to the following.
[]] MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and Inspection)
[]] MELSEC-L CC-Link IE Field Network Head Module User's Manual

## Appendix 4 Differences Between L Series and Q Series Modules

The following table describes the differences between the $L$ series modules and the $Q$ series modules in specifications.

Item	LD62	LD62D	QD62
Coincidence output derating (on ratio)	Limited $^{* 1}$	No limitations	
Coincidence output external auxiliary   power supply and current consumption	43 mA (TYP., 24VDC and all points on/   common)	QmA (TYP., 24VDC/point)	
Bot supported*2			
Bown fuse detection	NoSE LED is equipped.   XF: Use prohibited	Supported   The FUSE LED is equipped.   XF: Blown fuse detection flag	

*1 Coincidence output derating (on ratio) has been set to the high-speed counter module. ( $\sqrt[3]{ }$ Page 38, Section 6.2.3)
*2 The high-speed counter module does not have a built-in fuse for blown fuse detection. Install a fuse for each external terminal to prevent the external devices or module from being burnt out or damaged if a load shorts.
( $\because$ Page 32, Section 6.2.1)

## Appendix 5 When Using GX Developer and GX Configurator-CT

This chapter describes how to operate GX Developer and GX Configurator-CT.

## (1) Applicable software versions

For the applicable software versions, refer to the following.
[] MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and Inspection)

## Appendix 5.1 GX Developer operation

When using GX Developer, configure settings in the following screens.

Screen	Application	Reference
I/O assignment	Set the type and the I/O signal range of the module to be   connected.	Page 117, Appendix 5.1(1)
Intelligent function module   detailed setting	Set an output mode if a CPU stop error occurs and CPU module   operation mode if a high-speed counter module error is detected.	Page 118, Appendix 5.1(2)
Switch setting for I/O and   intelligent function module	Set a pulse input mode, counting speed, and counter type.	Page 119, Appendix 5.1(3)

## (1) I/O assignment

Open the "I/O assignment" tab.
$\$$ Parameter $\Rightarrow$ [PLC parameter] $\Rightarrow$ [I/O assignment]


Item	Description
Type	Select "Intelli.".
Model name	Enter the model name of the module.
Points	Select "16point".
Start XY	Enter the start I/O number of the high-speed counter module if required.

## (2) Intelligent function module detailed setting

Open the "I/O assignment" tab.


Intelligent function module detailed setting							
	Slot	Type	Model name	Error time output mode	H/W error time PLC operation mode	1/0 response time	Control PLC ${ }_{\text {- }}$
0	PLC	PLC		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
1	PLC	Built-in I/O function		$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
2	O(**-0)	Intelli.	LD62	Clear	Stop -	$\checkmark$	$\checkmark$
3	1(**-1]			-	$\checkmark$	$\checkmark$	$\checkmark$
4	2(**-2]			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
5	3(*-3)			$\checkmark$	-	$\checkmark$	$\checkmark$
6	4(*-4)			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
7	$5(* 5)$			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
8	$66^{(x-6)}$			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
9	7(*-7)			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
10	$8\left({ }^{(x-8)}\right.$			$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
11	9(*-9)			$\checkmark$	$\checkmark$	$\checkmark$	$\cdots$


Item	Description	Setting value	Remarks
Error time output mode	Select whether to clear or hold module output if a CPU stop error occurs.	- Clear (default)   - Hold	- Clear: If a CPU stop error occurs, all external outputs of coincidence signals turn off.   - Hold: If a CPU stop error occurs, external outputs of coincidence signals are held in the status before the CPU module stops.
H/W error time PLC operation mode	- Select whether to stop or continue the CPU module operation if a high-speed counter module error (SP.UNIT DOWN) is detected.   - The error (SP.UNIT DOWN) is detected if the module READY flag is not in ready due to module hardware failure.	- Stop (default)   - Continue	- Stop: If a high-speed counter module error is detected, the CPU module stops.   - Continue: Even if a high-speed counter module error is detected, the CPU module continues running a program for modules other than the faulty one.

## (3) Switch setting

Open the "I/O assignment" tab.
$\int$ Parameter $\Rightarrow$ [PLC parameter $] \Rightarrow[I / \mathrm{O}$ assignment $] \Rightarrow$ Switch setting button



## Point ${ }^{\rho}$

- In counting speed setting, "500kPPS" can be selected for the LD62 only. Do not set " 500 kPPS " for the LD62. Doing so will result in incorrect count.
- Switches 3 to 5 fields in the "Switch setting for I/O and intelligent function module" dialog box are used by the system and are not available for users. Always leave these fields blank. If a value is set, the performance of the high-speed counter module is not guaranteed.


## Appendix 5.2 Gx Configurator-CT operation

When using GX Developer, procedures for displaying parameter setting screens of GX Configurator-CT differ from those of GX Works2.
The following figures show how to display GX Configurator-CT screens using GX Developer.
Note that the setting contents are the same as those of GX Works2. ( 3 Page 51, CHAPTER 7)

Screen	Application
Initial setting	Set values including a preset value.
Auto refresh setting	Transfer buffer memory data to the specified device.
Monitor/Test	Test/monitor the buffer memory and I/O signals.



Window for selecting the target intelligent
function module and setting parameters


Enter "Start I/O No.", and select
"Module type" and "Module model name".



## Appendix 6 External Dimensions

The following figures show the external dimensions of the high-speed counter module.
(1) LD62, LD62D

(Unit: mm)

## INDEX

## 0 to 9

1-phase multiple of 1 ..... 57
1-phase multiple of 2 ..... 57
2-phase multiple of 1 ..... 57
2-phase multiple of 2 ..... 58
2-phase multiple of 4 ..... 58

## A

Adding a Module . . . . . . . . . . . . . . . . . . . . . . . . . 51
Auto Refresh .55

## C

CHD Coincidence output point No. 1
(Un\G4, Un\G5, Un\G36, Un\G37)114
CHD Coincidence output point No. 2 (Un\G6, Un\G7, Un\G38, Un\G39) ..... 114
$\mathrm{CH} \square$ Coincidence signal enable command (Y2, YA) ..... 112
CHD Coincidence signal No. 1 reset command (Y0, Y8) ..... 112
CHD Coincidence signal No. 2 reset command (Y7, YF) ..... 113
CHO Count enable command (Y4, YC) ..... 112
CHI Counter function selection (UnlG9, UnlG41) ..... 114
CHD Counter function selection start command(Y6, YE)113
$\mathrm{CH} \square$ Counter value coincidence (point No.1) (X2, X9) ..... 110
(XBL Co111
CHI Counter value large (point No.1) (X1, X8) ..... 110
$\mathrm{CH} \square$ Counter value large (point No.2) ( $\mathrm{X} 5, \mathrm{XC}$ ) ..... 111
CH ㅁ Counter value small (point No.1) ( $\mathrm{X} 3, \mathrm{XA}$ ) ..... 110
$\mathrm{CH} \square$ Counter value small (point No.2) (X7, XE ..... 111
CHD Down count command (Y3, YB) ..... 112
CHD External preset detection reset command (Y5, YD) ..... 112
$\mathrm{CH} \square$ External preset request detection (X4, XB) ..... 110
CHD Latch count value (Un\G12, UnlG13, Un\G44, UnIG45) ..... 115
CHD Overflow detection (UnlG8, Un\G40) ..... 114
CHD Periodic pulse count, previous value (Un\G16, Un\G17, Un\G48, Un\G49) ..... 115
$\mathrm{CH} \square$ Periodic pulse count, present value
(Un\G18, Un\G19, Un\G50, Un\G51) ..... 115
CHD Present value
(Un\G2, Un\G3, Un\G34, Un\G35) ..... 114
CHO Preset command (Y1, Y9) ..... 112
$\mathrm{CH} \square$ Preset value
(Un\G0, Un\G1, Un\G32, Un\G33) ..... 114
CHD Ring counter lower limit
(Un\G20, Un\G21, Un\G52, Un\G53) ..... 115
$\mathrm{CH} \square$ Ring counter upper limit
(Un\G22, Un\G23, Un\G54, Un\G55) ..... 115
CHD Sampling count value
(Un\G14, Un\G15, Un\G46, Un\G47) ..... 115
CHD Sampling/periodic counter flag (Un\G11, Un\G43) ..... 115
CHD Sampling/periodic time setting (Un\G10, Un\G42) ..... 114
Coincidence detection interrupt function ..... 68
Coincidence Output Function ..... 66
Count Disable Function ..... 76
Count error ..... 75
Counter Function Selection ..... 73
CW/CCW ..... 57
E
External Dimensions ..... 123
F
Fuse. ..... 32
I
I/O assignment ..... 117
Intelligent Function Module Detailed Setting ..... 53,118
Interrupt factors (SI) ..... 68
L
Latch Counter Function ..... 77
Linear counter function. ..... 62
M
Module READY (XO) ..... 110
0
Overflow error ..... 62
P
Parameter Setting ..... 54
Performing the preset function by a program ..... 71
Performing the preset function by an external control signal ..... 72
Periodic Pulse Counter Function ..... 79
Preset Function ..... 71
Pulse input modes ..... 57

## R

Reading the counter function selection count value ..... 74
Reading the present value ..... 60
Ring counter function ..... 63
Sampling Counter Function ..... 78
Selecting Counter Type ..... 61
Switch Setting. ..... 52,119

## T

Terminal layout and numbers . . . . . . . . . . . . . . . . . 38
*The manual number is given on the bottom left of the back cover.


Japanese manual version SH-080912-B
This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses.
Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

## Warranty

Please confirm the following product warranty details before using this product.

## 1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.
However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module. [Gratis Warranty Term]
The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place.
Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.
[Gratis Warranty Range]
(1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.

1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
2. Failure caused by unapproved modifications, etc., to the product by the user.
3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

## 2. Onerous repair term after discontinuation of production

(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued.
Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
(2) Product supply (including repair parts) is not available after production is discontinued.

## 3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.

## 4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation of damages caused by any cause found not to be the responsibility of Mitsubishi, loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products, special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products, replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

## 5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

Microsoft, Windows, Windows NT, and Windows Vista are registered trademarks of Microsoft Corporation in the United States and other countries.
Pentium is a trademark of Intel Corporation in the United States and other countries.
Ethernet is a trademark of Xerox Corporation.
All other company names and product names used in this manual are trademarks or registered trademarks of their respective companies.
SPREAD
Copyright(C) 1996 FarPoint Technologies, Inc.

## MELSEC-L High-Speed Counter Module User's Manual

MODEL	LD62(D)-U-E
MODEL   CODE	13JZ49
SH(NA)-080920ENG-B(1012)MEE	




